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The Chow t-structure on the ∞-category of
motivic spectra

By Tom Bachmann, Hana Jia Kong, Guozhen Wang, and Zhouli Xu

Abstract

We define the Chow t-structure on the ∞-category of motivic spectra
SH(k) over an arbitrary base field k. We identify the heart of this t-
structure SH(k)c♥ when the exponential characteristic of k is inverted. Re-
stricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♥

as the category of even graded MU2∗MU-comodules. Furthermore, we show
that the ∞-category of modules over the Chow truncated sphere spectrum
1c=0 is algebraic.

Our results generalize the ones in Gheorghe–Wang–Xu in three aspects:
to integral results; to all base fields other than just C; to the entire ∞-
category of motivic spectra SH(k), rather than a subcategory containing
only certain cellular objects.

We also discuss a strategy for computing motivic stable homotopy groups
of (p-completed) spheres over an arbitrary base field k using the Postnikov–
Whitehead tower associated to the Chow t-structure and the motivic Adams
spectral sequences over k.
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1. Introduction

1.1. Overview. Motivic stable homotopy theory, introduced by Voevodsky
and Morel, is a subject that has successfully applied abstract homotopy theory
to solve problems in number theory and algebraic geometry.

Recent work by Gheorghe–Wang–Xu [GWX21] has reversed this informa-
tion flow — using motivic stable homotopy theory, the computation of classical
stable homotopy groups of spheres, a fundamental problem in topology, has
been extended into a much larger range [IWX20a], [IWX20b].

Gheorghe–Wang–Xu [GWX21] defined and studied a subcategory of
(p-completed) cellular objects of the ∞-category of motivic spectra over the
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complex numbers SH(C), and they identify its heart as the abelian category of
p-complete, even graded comodules over the Hopf algebroid MU2∗MU, which is
equivalent to the abelian category quasi-coherent sheaves on the moduli stack
of formal groups over Zp-algebras, and is central to chromatic homotopy theory.

A natural question to ask is whether we can generalize this work

• to the entire motivic stable homotopy category, rather than just a sub-
category consisting of certain cellular objects over the p-completed sphere
spectrum;
• to an integral rather than p-complete result;
• and to other base fields than just C.

In this paper, we achieve all three goals by defining a t-structure, which we
call the Chow t-structure, on the motivic stable homotopy category SH(k) over
any base field k. Its non-negative part SH(k)c≥0 is generated under colimits
and extensions by Thom spectra Th(ξ) associated toK-theory points ξ ∈ K(X)

(equivalently formal differences of vector bundles ξ = [V1] − [V2]) on smooth
and proper schemes X (see Definition 2.1). We denote the truncation functors
by E 7→ Ec=0, Ec≥0, and so on.

One of our key theorems is that the motivic bigraded homotopy groups
of a homotopy object with respect to the Chow t-structure can be expressed
by Ext groups over MU2∗MU of its MGL homology (Theorem 1.1). Using
the theory of comonadic descent, we give a concrete algebraic description of
the Chow heart SH(k)c♥ (Theorem 1.5). We show that the ∞-category of
modules over 1c=0 (where 1 denotes the motivic sphere spectrum) is algebraic
(Theorem 1.8). Restricting to the subcategory of cellular modules over 1c=0, we
get an equivalence with Hovey’s stable category Hov(MU2∗MU) (Theorem 1.9).

This equivalence between stable ∞-categories results in an isomorphism
between the motivic Adams spectral sequence and the algebraic Novikov spec-
tral sequence, that is, the Adams spectral sequence in the stable category
Hov(MU2∗MU). Since the latter spectral sequence is purely algebraic, its com-
putation is much more accessible and can be done by computer programs.
Therefore, this isomorphism allows us to fully compute the motivic Adams
spectral sequence for all spectra in SH(k)c♥ within any reasonable range. We
can then adapt the same methodology as in [GWX21], [IWX20a], [IWX20b];
using naturality of the motivic Adams spectral sequences, we can obtain new
information on differentials and extensions from spectra in the Chow heart
SH(k)c♥ to the sphere spectrum, and therefore compute motivic stable stems
over any base field k in a reasonable range.

1.2. Main result. From now on, we denote by e the exponential charac-
teristic of the field k. We prove the following key theorem about the Chow
t-structure:
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Theorem 1.1 (see Theorem 3.14). Let E ∈ SH(k)[1/e]. Then there is a
canonical isomorphism

π2w−s,wEc=i ∼= Exts,2wMU2∗MU(MU2∗,MGL2∗+i,∗E).

Here, on the right-hand side, s is the homological degree, and 2w is the
internal degree.

Over k = C for E the sphere spectrum 1, Theorem 1.1 tells us

π2w−s,w1c=0
∼= Exts,2wMU2∗MU(MU2∗,MU2∗)

as an integral statement. This is in contrast to Isaksen’s result [Isa19, Prop.
6.2.5]

π2w−s,w1
∧
p /τ
∼= Exts,2wBP2∗BP(BP2∗,BP2∗)

at each prime p, where τ : Σ0,−1
1
∧
p → 1

∧
p is the endomorphism of [Ghe18],

[Isa19].
We have the following easy corollary of Theorem 1.1, reproving [Ghe18,

Th. 3.13].

Corollary 1.2. Over C, both 1c=0 and 1∧p /τ are E∞-rings.

Remark 1.3. Another easy corollary of Theorem 1.1 is that smashing with
MGL detects Chow-∞-connectivity (Corollary 3.17).

1.3. Reconstruction theorems. It is shown in [GWX21, Cor. 1.2] that the
category 1

∧
p /τ -Mod of cellular modules over 1∧p /τ is purely algebraic:1 the

heart of the t-structure defined in [GWX21] is equivalent to MU2∗MU∧p -CoMod;
the entire module category can be identified with Hovey’s stable category of
comodules Hov(MU2∗MU∧p ). (See [Hov04] for a definition of this category.)
Other versions of this result over C can be found in [Kra18], [Pst18], [GIKR21].
We upgrade this to an integral result over arbitrary fields, using 1c=0 as a
replacement for 1∧p /τ (which makes sense by the discussion after Theorem 1.1).

1.3.1. Description of the Chow heart. The category SH(k)c♥[1/e] can be
described as a category of presheaves over the category of pure MGL-motives,
together with some extra data.

Definition 1.4.The category of pure MGL-motives, denoted by PMMGL(k),
is the smallest idempotent complete additive subcategory of MGLc=0-Mod

containing the object X{i} := (Σ2i,iX+ ∧MGL)c=0 for each i ∈ Z and smooth
proper variety X.

1It is known that over the complex numbers, the p-completion and the HZ/p-nilpotent
completion for the sphere are equivalent.
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When it is clear from the context, we abuse notation and denote X{0}
by X.

It turns out that PMMGL(k) is an additive ordinary 1-category, and the
mapping set [X,Y {∗}]PMMGL(k) is equivalent to MGL2∗,∗(Y × X). This defi-
nition of pure MGL-motives coincides with the definition in [NZ06] by taking
the idempotent completion of the category of MGL-correspondences.

The category PMMGL(k) is naturally enriched in MU2∗MU-comodules.
There is thus a classical notion of enriched presheaves on PMMGL(k) (see, e.g.,
[Rie14, §3.5]).

Theorem 1.5 (see Section 4.3 and Remark 4.17). The functor sending F ∈
SH(k)c♥[1/e] to the presheaf on PMMGL(k) given by F∗(X) = [Σ2∗,∗X+, F ∧
MGL] induces an equivalence of categories between SH(k)c♥[1/e] and the cate-
gory of enriched presheaves on PMMGL(k) (with values in MU2∗MU-comodules).

Remark 1.6. Explicitly, the structure of enriched presheaves on PMMGL(k)

requires the following compatibility: for every graded MGL-correspondence
α : X → Y , the following diagram commutes:

F (Y )∗
α∗−−−−→ F (X)∗

∆F,Y

y ∆F,X

y
MU2∗MU⊗MU2∗ F (Y )∗

∆(α)∗−−−−→ MU2∗MU⊗MU2∗ F (X)∗.

Here ∆(α) is the effect of comultiplication. We give the full explicit description
in Section 4.3.

Remark 1.7. P. Sechin is studying a category of “Landweber-equivariant
Grothendieck motives” over a field k [Sec20]. One may show that this category
embeds fully faithfully into SH(k)c♥.

1.3.2. Algebraicity of 1c=0-Mod[1/e]. By [Bac21, Lemma 29],

1c=0-Mod[1/e]c♥ ' SH(k)[1/e]c♥.

The Chow heart SH(k)[1/e]c♥ is an abelian category. In general, for a com-
pactly generated abelian category A viewed as the heart of its derived cate-
gory, we consider the category Hov(A) := Ind(Thick(Aω)), where Aω denotes
the subcategory of the compact objects (see Section 4.1.5). We prove that the
module category 1c=0-Mod[1/e] is algebraic.

Theorem 1.8 (see Proposition 4.3). There is a symmetric monoidal equiv-
alence

1c=0-Mod[1/e] ' Hov(1c=0-Mod[1/e]c♥).
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1.3.3. Results in the cellular case. In the cellular case, the results take the
following simpler form.

Theorem 1.9 (see Corollary 4.29).

(1) There is an equivalence

SH(k)[1/e]cell,c♥ ' MU2∗MU-CoMod[1/e].

(2) The cellular subcategory is equivalent to Hovey ’s stable category of comodules

1c=0-Modcell[1/e] ' Hov(MU2∗MU)[1/e].

Remark 1.10. It comes as a surprise that Theorem 1.9 does not depend on
the base field k. In fact, let l/k be a field extension. The base change functor
SH(k)cell → SH(l)cell is right-t-exact (for the Chow t-structures) and induces

SH(k)[1/e]cell,c♥ ' MU2∗MU-CoMod[1/e] ' SH(l)[1/e]cell,c♥.

This does not imply that base change is conservative on cellular spectra that
are Chow bounded below, since the Chow t-structure is not left complete (e.g.,
all η-periodic spectra are Chow ∞-connective, by Proposition 2.17).

In more general cases involving field extensions, we have the following
results.

Definition 1.11 (see Definition 4.19). Let W be a set of smooth proper
schemes over k that contains Spec(k) and is closed under finite products. Define
theW -cellular category, denoted by SH(k)wcell to be the subcategory of SH(k)

generated under taking colimits and desuspensions by objects of the form Th(ξ)

for ξ ∈ K(X) and X ∈W .

We also define the Chow t-structure on the W -cellular category.

Theorem 1.12 (see Corollary 4.27 and 4.28). Let G and W be as in one
of the following situations:

(1) Let l/k be a finite Galois extension with Galois group G, and let W be
{Spec(l′) | l′ is a subextension of l/k}.

(2) Let W be {Spec(l)| l/k is a finite separable extension}, and let G=Gal(k)

be the absolute Galois group.

We have

SH(k)[1/e]wcell,c♥ ' MU2∗MU-CoMod[1/e],

1c=0-Mod[1/e]wcell ' Hov(MU2∗MU)[1/e],

MGLc=0-Mod[1/e]wcell,c♥ ' MU2∗-Mod[1/e].
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Here MU2∗MU and MU2∗ denote the corresponding constant Mackey func-
tors, and -CoMod, Hov and -Mod are performed relative to the category of
G-Mackey functors.

Remark 1.13. In [BHS20], Burklund, Hahn and Senger prove a similar re-
sult in the special case when the field extension is C/R with the Galois group C2.

1.4. Proof strategy of Theorem 1.5. We obtain the description of the Chow
heart using the theory of comonadic descent; to show it applies, we use re-
sults that follow from Theorem 1.1. In the discussion below we omit [1/e]

from the notation. More precisely, for a motivic commutative ring spectrum
A ∈ CAlg(SH(k)), there is an induced Chow t-structure on the category
A-Mod. (Just let the non-negative part be generated by free A-modules of
the form A ∧ Th(ξ), for X smooth proper and ξ ∈ K(X).) We focus on the
induced t-structures on 1c=0-Mod and also MGLc=0-Mod. The free-forgetful
adjunction

1c=0-Mod � MGLc=0-Mod

defines a comonad C over MGLc=0-Mod. We show that when restricted
to subcategories of suitably bounded objects, the adjunction is comonadic.
Therefore 1c=0-Modc♥ is equivalent to the category of Cc♥-comodules in
MGLc=0-Modc♥, where Cc♥ denotes the restriction of C.

Using spectral Morita theory, we can identify the category MGLc=0-Mod

as a presheaf category. Under this equivalence, we give an explicit description
of the comonad Cc♥. In the cellular case this turns out to be exactly the
comonad describing MU2∗MU-comodules over MU2∗-modules. This description
together with the equivalences SH(k)c♥ ' 1c=0-Modc♥ ' Cc♥-CoMod results
in Theorem 1.5.

Remark 1.14 (work of Bondarko). The Chow t-structure on MGLc=0-Mod

is adjacent to a weight structure in the sense of Bondarko [Bon10]. Bondarko’s
work then yields an explicit description of MGLc=0-Modc♥ ' MGL-Modc♥

(see [Bon10, Th. 4.4.2(4)]) and a similar description of all of MGLc=0-Mod

is easily obtained. This proof is equivalent to what we summarized above as
“spectral Morita theory.”

Remark 1.15. The proofs show that the scalar extension functor MGL-Mod

→ MGLc=0-Mod identifies with Bondarko’s weight complex functor.

1.5. Proof strategy for Theorem 1.1. Before explaining some further appli-
cations of Theorem 1.1, let us sketch its proof. Our approach uses another t-
structure on SH(k), the homotopy t-structure. Its non-negative part SH(k)≥0

is generated under colimits and extensions by {Σ∞+ X ∧G∧nm | n ∈ Z, X ∈ Smk}
(see Section 3.3). For all d ≥ 0, the intersections

Id := ΣdSH(k)≥0 ∩ SH(k)c≥0



714 TOM BACHMANN, HANA JIA KONG, GUOZHEN WANG, and ZHOULI XU

define a sequence of further t-structures. We write τd=0 for the 0-th truncation
functor with respect to Id. It turns out that these t-structures form a direct
system with the Chow t-structure as the colimit (Lemma 3.13).

One key property of these t-structures is the following vanishing result.

Proposition 1.16 (see Proposition 3.12). Let E ∈ SH(k)[1/e].
(1) π∗,∗τd=0E is concentrated in Chow degrees ≤ 0.
(2) MGL2∗,∗τ

d
=0E equals MGL2∗,∗E and vanishes for other bidegrees.

As a consequence of Proposition 1.16, the Adams–Novikov spectral se-
quence for τd=0E collapses and converges to π∗,∗τd=0E. In other words, we have
canonical isomorphisms

π2w−s,w(τd=0E) ∼= Exts,2wMU∗MU(MU∗,MGL2∗,∗E).

Since we can approximate Ec=0 as a colimit by τd=0E, the same result holds for
the Chow t-structure. This is exactly the statement of Theorem 1.1.

1.6. Towards computing motivic stable homotopy groups of spheres . We
now turn to computational applications of Theorems 1.1 and 1.9.

Computations of motivic stable homotopy groups of spheres is currently
a very popular subject. Most results are in the following two categories, using
mainly two different computational tools.

The first type of results gives a description for certain bidegrees of motivic
stable stems over an arbitrary base field k, in terms of number theoretical
invariants of the base field k. Two major results in this direction are
• Morel’s work [Mor06] on the 0-line, i.e., ⊕

s
πs,s1, in terms of Milnor K-theory;

• Röndigs–Spitzweck–Østvær’s more recent work [RSØ19] on the 1-line, i.e.,
⊕
s
πs+1,s1, in terms of hermitian and Milnor K-groups of the base field k

whose characteristic is not 2.
These computations use the slice spectral sequence and the results are for the
integral sphere 1.

The second type of results determine the motivic stable stems over a spe-
cific field k in a reasonable but much larger range of bidegrees. The compu-
tational tool is the motivic Adams spectral sequence. These results provide
p-primary information one prime at a time, where p is different from the expo-
nential characteristic of the base field k. Most notably,
• over C, Isaksen–Wang–Xu [IWX20a] have computed ⊕

w
πs,w1

∧
2 for s ≤ 90;

• over R, Belmont–Isaksen [BI20] have computed ⊕
w
πs,w1

∧
2 for s− w ≤ 11;

• over finite fields, Wilson–Østvær [WØ17] have computed πs,01∧2 for s ≤ 18.
Our goal is to pursue the second direction using the motivic Adams spectral

sequence, and to use the Chow t-structure to do computations over an arbitrary
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field k, so the p-primary computations can be achieved in a large and reasonable
range.

The computation of the E2-page of the motivic Adams spectral sequence
depends on understanding the motivic homology of a point and the motivic
Steenrod algebra action on it. The mod p homology of a point is computed in
terms of Milnor K-theory by work of Voevodsky [Voe03a], [Voe11] when the
base field contains a primitive p-th root of unity and has characteristic coprime
to p. The motivic Steenrod algebra is computed by work of Voevodsky [Voe03b]
and Hoyois–Kelly–Østvær [HKØ17]. With the knowledge of the structure of the
motivic Steenrod algebra, the motivic Adams E2-page can be fully determined
by a purely homological algebra computation.

The next step, which is also the hardest part, is to determine the mo-
tivic Adams differentials. According to the Mahowald Uncertainty Principle
[Goe07], [Xu17], any Adams type spectral sequence that converges to the stable
homotopy groups of spheres has infinitely many non-zero differentials after the
E2-page, and any method that is used to compute these non-zero differentials
leaves infinitely many unsolved by that method. The spirit of the Mahowald
Uncertainty Principle is that we need to combine all known methods together
to push forward these computations.

Nevertheless, classically and over the base field C, Gheorghe–Wang–Xu
[GWX21] has developed a new method to compute the motivic Adams differ-
entials, which is so far the most efficient one. The most crucial part of this
method is to obtain the following isomorphism of two spectral sequences, using
an equivalence of two stable ∞-categories.

Theorem 1.17 (Theorem 1.3 of [GWX21]). For each prime p, there is
an isomorphism of spectral sequences, between the HZ/p-based motivic Adams
spectral sequence for 1∧p /τ and the algebraic Novikov spectral sequence for BP2∗ .

Since the algebraic Novikov spectral sequence is a purely algebraic spectral
sequence, and can be computed in a large range by an automated computer pro-
gram [IWX20a], [IWX20b], Theorem 1.17 allows us to obtain non-zero Adams
differentials for free.

Using Theorems 1.8 and 1.9, we generalize Theorem 1.17 to the following
Theorem 1.18 that works for any spectrum F in SH(k)c♥ and over an arbitrary
base field k. This allows us to obtain non-zero Adams differentials for various
spectra for free in a similar fashion to the case over C but over an arbitrary
base field k.

In the discussion below, we again implicitly invert the exponential charac-
teristic e of the base field throughout to ease notation.

Let HZ/p denote the motivic Eilenberg–MacLane spectrum. Under the
equivalence in Theorem 1.9,

1c=0-Modcell ' Hov(MU2∗MU),



716 TOM BACHMANN, HANA JIA KONG, GUOZHEN WANG, and ZHOULI XU

the spectrum HZ/p ∧ 1c=0 corresponds to the MU2∗MU-comodule

H = MU2∗MU/(p, a1, a2, . . . ).

The equivalence in Theorem 1.5 gives an equivalence between the HZ/p-based
motivic Adams spectral sequences and the H-based Adams type spectral se-
quences in the category of stable MU2∗MU-comodules.

Theorem 1.18 (see Theorem 5.3 and 5.4). Let F ∈ SH(k)c♥ . Let M =

MGL2∗,∗F be the associated MU2∗MU-comodule. Then the trigraded motivic
Adams spectral sequence for F based on HZ/p is isomorphic (with all higher
and multiplicative structure) to the trigraded algebraic Novikov spectral sequence
based on H for M .

See Definition 5.2 for the algebraic Novikov spectral sequence for an object
M in Hov(MU2∗MU) based on a commutative monoid H.

Now we discuss how to compute the motivic homotopy groups of the
p-completion of a general motivic spectrumX with the property thatX ' Xc≥0

using Theorem 1.18. Note that the motivic sphere spectrum is such an example.
Consider its Postnikov–Whitehead tower with respect to the Chow t-structure:

Xc≥2 Xc=2

Xc≥1 Xc=1

X Xc≥0 Xc=0.

For every term Xc=n in the Postnikov–Whitehead tower, consider the motivic
Adams spectral sequences based on HZ/p and the induced maps among them.
This gives us the following tower of motivic Adams spectral sequences:

motASS(Xc≥2) motASS(Xc=2) algNSS(MGL2∗+2,∗X)

motASS(Xc≥1) motASS(Xc=1) algNSS(MGL2∗+1,∗X)

motASS(X) motASS(Xc≥0) motASS(Xc=0) algNSS(MGL2∗,∗X).

For every comodule MGL2∗+n,∗X, its algebraic Novikov spectral sequence can
be computed in a large range by a computer program. This gives many non-zero
differentials in the motivic Adams spectral sequence for Xc=n. We may then
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pull back these Adams differentials to the motivic Adams spectral sequences for
Xc≥n and push them forward to the motivic Adams spectral sequences for X.

The strategy for computing motivic Adams differentials for X can be sum-
marized in the following steps. See Section 5.2 for more details.
(1) Compute Ext∗,∗,∗A (HZ/p∗,∗,HZ/p∗,∗X) over the k-motivic Steenrod algebra

by a computer program. These Ext-groups consist of the E2-page of the
motivic Adams spectral sequence for X based on HZ/p.

(2) Compute by a computer program the algebraic Novikov spectral sequence
based on BP2∗BP/I for the BP2∗BP-comodules BPGL2∗+n,∗X for every n
in a reasonable range.

(3) Identify the k-motivic Adams spectral sequence based on HZ/p for each
Xc=n, with the algebraic Novikov spectral sequence based on BP2∗BP/I

for BPGL2∗+n,∗X for n ≥ 0. This computation includes an identification
of the abutments with the multiplicative (and higher) structures.

(4) Compute the mod p motivic homology of Xc≥n using the universal coeffi-
cient spectral sequence (see Propositions 7.7 and 7.10 of [DI05])⊕

k≥n
TorBP2∗
∗,∗ (BPGL2∗+k,∗X, Z/p) =⇒ HZ/p∗,∗Xc≥n.

(5) Compute by a computer program the E2-pages of the HZ/p-based motivic
Adams spectral sequence for Xc≥n, using the computation of HZ/p∗,∗Xc≥n
in step (4).

(6) Pull back motivic Adams differentials for Xc=n to motivic Adams differ-
entials for Xc≥n, and then push forward to motivic Adams differentials
for X.

(7) Deduce additional Adams differentials for X with a variety of ad hoc argu-
ments. The most important methods are Toda bracket shuffles and com-
parison to known results in the C-motivic Adams spectral sequence.
The inputs of our strategy are HZ/p∗,∗X and MGL∗,∗X (or BPGL∗,∗X). In

the case of the sphere spectrum X = 1, it is more plausible to know π∗,∗BPGL∧p
(over some fields) rather than BPGL∗,∗. In this case, we modify our strategy
by using pro-objects (1/pn)n as a substitute. See Section 5.3 for more details.

As an example, we can show that over finite fields, our method gives proofs
of previously undetermined Adams differentials in [WØ17]. See Section 5.6 for
more details.

1.7. Organization. The rest of this article is organized as follows. In Sec-
tion 2, we define the Chow t-structure and discuss some of its basic properties.
In Section 3, we discuss the connection between the Chow t-structure and
the homotopy t-structure. In particular, we prove one of our main theorems,
Theorem 1.1 as Theorem 3.14. In Section 4, we use the theory of comonadic
descent, the Barr–Beck–Lurie theorem and spectral Morita theory to give a
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concrete description of the Chow heart and to prove the algebraicity of the
stable ∞-category 1c=0-Mod[1/e]. In particular, we prove Theorems 1.5, 1.8,
1.9 and 1.12. In Section 5, we prove Theorem 1.18 and discuss applications to-
ward computing motivic stable homotopy groups of spheres. In Appendices A,
B and C, we recall well-known results regarding a cell structure of MGL, a
vanishing result of MGL, and motivic cohomology of a point.

1.8. Conventions and notation. Following, e.g., [NS17, Def. 2.1], we call a
symmetric monoidal ∞-category C presentably symmetric monoidal if C is pre-
sentable and the tensor product preserves colimits in each variable separately.

Given a morphism of schemes f : X → Y , we denote by f∗ : SH(Y ) →
SH(X) the induced base change functor and by f∗ : SH(X)→ SH(Y ) its right
adjoint. If f is smooth, then f∗ has a left adjoint, which we denote by f#.

Here is a table of further notation that we employ.

map(−,−) internal mapping object
Spc ∞-category of spaces
SH ∞-category of spectra
Ab 1-category of abelian groups
PΣ,PSH,PAb product-preserving presheaves Section 4.2.2
CB•(A) cobar construction [MNN17, Constr. 2.7]
A-Mod modules over monoid A [Lur17, Def. 4.2.1.13]
C-CoMod comodules over comonad C [Lur17, Def. 4.2.1.13]
Hov(C) stable category of comodules Section 4.1.5
Alg(−),CAlg(−) (commutative) algebra objects
MU complex cobordism spectrum
Map(−,−) mapping space in an ∞-category
map(−,−) mapping spectrum in a stable ∞-category
[−,−] homotopy classes of maps, i.e. π0Map(−,−)

O,OX trivial line bundle
nO,On trivial vector bundle of rank n
SmS category of smooth, finite type S-schemes
Spc(S) ∞-category of motivic spaces over S [BH21, §2.2]
SH(S) ∞-category of motivic spectra over S [BH21, §4.1]
Sp,q bigraded sphere Sp−q ∧G∧qm
Σp,q functor of suspension by Sp,q

Th(ξ) = ThS(ξ) Thom spectrum of ξ ∈ K(X), X ∈ SmS [BH21, §16.2]
MGL algebraic cobordism motivic spectrum [BH21, §16.2]
E∧a a-completion of a (motivic) spectrum
E∧MGL MGL-nilpotent completion [Man21, §7.1]
LMGLE MGL-localization [Man21, §2.4]
SH(S)≥0,≤0 homotopy t-structure [BH21, §B]
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πp,qE bigraded homotopy groups
πp,qE bigraded homotopy sheaves
SH(S)c≥0,c≤0 Chow t-structure Definition 2.1
SH(S)pure Definition 2.10
SH(S)lisse Definition 2.13
SH(S)puretate≥d Appendix A
c(p, q) Chow degree Definition 3.1
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2. Elementary properties

Let S be a scheme.

Definition 2.1. Denote by SH(S)c≥0 the subcategory generated under col-
imits and extensions by motivic Thom spectra Th(ξ) for X smooth and proper
over S and ξ ∈ K(X) arbitrary. This is the non-negative part of a t-structure
on SH(S) [Lur17, Prop. 1.4.4.11(2)] called the Chow t-structure. We denote
the non-positive part by SH(S)c≤0, the heart by SH(S)c♥, and we write

E 7→ Ec≥0, Ec≤0, Ec=0

for the truncation functors. We also put SH(S)c≥n = ΣnSH(S)c≥0 and define
SH(S)c≤n, Ec≥n, etc. similarly.

Example 2.2. By definition, for any n ∈ Z, the bigraded sphere S2n,n '
Th(nO) is in SH(S)c≥0.

Remark 2.3. For any ring spectrum A ∈ CAlg(SH(S)), we can define a
Chow t-structure on the category of A-modules. Its non-negative part is the
subcategory generated under colimits and extensions by the free A-modules
A ∧ Th(ξ) for X smooth and proper over S and ξ ∈ K(X).
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2.1. First properties.

Lemma 2.4. Let C be a stable presentable category, S ⊂ C a set of objects,
and denote by C≥0 ⊂ C the subcategory generated under colimits and extensions
by S . Then E ∈ C≤0 if and only if [ΣiS,E] = 0 for all S ∈ S and i > 0.

Proof. By definition, E ∈ C≤0 if and only if Map(ΣX,E) = 0 for all
X ∈ C≥0 (see, e.g., [Lur17, Rem. 1.2.1.3]). Necessity is thus clear. To prove
sufficiency, let E ∈ C satisfy the stated condition, and write CE ⊂ C for the
subcategory of all F ∈ C such that Map(ΣF,E) = 0. Then S ⊂ CE by assump-
tion, and CE is closed under colimits and extensions. Thus C≥0 ⊂ CE , which
concludes the proof. �

Thus given E ∈ SH(S), we have E∈SH(S)c≤0 if and only if [ΣiTh(ξ), E]

= 0 for all i > 0 (and ξ aK-theory point on a smooth proper scheme X over S).
We will use this characterization without further comment from now on.

The category SH(S) is symmetric monoidal, so it carries a notion of strong
duals (see, e.g., [DP83]). The following is a straightforward generalization of
[Rio05, Th. 2.2].

Lemma 2.5. For f : X → S smooth and proper and ξ ∈ K(X), the spec-
trum ThS(ξ) ∈ SH(S) is strongly dualizable with dual ThS(−TX−ξ), where TX
denote the tangent bundle. More generally, if E ∈ SH(X) is strongly dualizable
with dual DE , then f#(E) is strongly dualizable with dual f#(Th(−TX)∧DE).

Proof. Since the Thom spectrum functor turns sums into smash prod-
ucts (essentially by construction, see, e.g., [BH21, §16.2]), Th(ξ) ∈ SH(X) is
strongly dualizable (in fact invertible) with dual Th(−ξ). By definition, we
have ThS = f# ◦ Th; it thus suffices to prove the second statement. This
follows from the natural equivalences

map(f#(E),−) ' f∗map(E, f∗(−)) ' f∗(DE ∧ f∗(−))

' f#(Th(−TX) ∧DE ∧ f∗(−)) ' f#(Th(−TX) ∧DE) ∧ −;

here we used the relationship between f ! and f∗ and f∗ [Hoy17, Th. 6.18(1,2)]
and the projection formula [Hoy17, Th. 1.1(7)]. �

Remark 2.6.

(1) Note that the spectra ThS(ξ) are compact, being strongly dualizable in a
category with compact unit (see, e.g., [Hoy17, Prop. 6.4(3)] for the latter).

(2) The dualizability of the generators is important for many of the properties
of the Chow t-structure.
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2.2. Compatibility with filtered colimits.

Proposition 2.7. The Chow t-structure is compatible with filtered col-
imits: SH(S)c≤0 is closed under filtered colimits (and so are SH(S)c≥0 and
SH(S)c=0).

Proof. The first claim is immediate from Remark 2.6(1) (stating that
Th(ξ) is compact) and Lemma 2.4 (stating that E ∈ SH(S)c≤0 if and only if
Map(ΣTh(ξ), E) ' 0 for certain X, ξ). By definition SH(S)c≥0 is even closed
under all colimits, and finally SH(S)c=0 is closed under filtered colimits, being
the intersection of SH(S)c≤0 and SH(S)c≥0. �

Corollary 2.8. The functor E 7→ Ec≤0 : SH(S) → SH(S) preserves
filtered colimits.

Proof. The functor factors as SH(S) → SH(S)c≤0 ↪→ SH(S); here the
first functor is a left adjoint by definition, and the second one preserves filtered
colimits by Proposition 2.7. �

2.3. Interaction with tensor products.

Proposition 2.9. The Chow t-structure is compatible with the symmetric
monoidal structure; i.e., the non-negative part of the Chow t-structure is closed
under taking smash products:

SH(S)c≥0 ∧ SH(S)c≥0 ⊂ SH(S)c≥0.

Proof. Since SH(S) is presentably symmetric monoidal, it suffices to show
that the generators of SH(S)c≥0 are closed under binary smash products. This
is clear since Th(ξ) ∧ Th(ζ) ' Th(ξ × ζ), and smooth proper S-schemes are
closed under fiber products over S. �

Definition 2.10. Denote by SH(S)pure ⊂ SH(S) the smallest subcategory
that is closed under filtered colimits and extensions and contains Th(ξ) for any
K-theory point ξ on a smooth proper scheme X over S.

Note that by Definition 2.1, the subcategory SH(S)c≥0 is defined to be
closed under arbitrary colimits. Thus SH(S)pure ⊂ SH(S)c≥0. By Proposi-
tion 2.9, we have that SH(S)pure ∧ SH(S)c≥0 ⊂ SH(S)c≥0. Interestingly, the
same holds for the non-negative part of the Chow t-structure, essentially by
duality (see Lemma 2.5).

Proposition 2.11. We have

SH(S)pure ∧ SH(S)c≤0 ⊂ SH(S)c≤0.

Proof. Let C ⊂ SH(S) denote the subcategory of all spectra Z such that

Z ∧ SH(S)c≤0 ⊂ SH(S)c≤0.
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Since SH(S)c≤0 is closed under filtered colimits (by Proposition 2.7) and ex-
tensions (as is the non-positive part of any t-structure), so is the category C.
Hence to show that SH(S)pure ⊂ C, it suffices to show that Th(ζ) ∈ C for any
K-theory point ζ on a smooth proper scheme X.

Let E be a spectrum in SH(S)c≤0, and let ξ be a K-theory point on a
smooth proper scheme Y . For any i > 0, we find by duality (see Remark 2.6(2))
that

[ΣiTh(ξ), E ∧ Th(ζ)] ' [ΣiTh(ξ) ∧ Th(−TX − ζ), E]

' [ΣiTh(ξ × (−TX − ζ)), E] = 0.

This concludes the proof. �

Corollary 2.12. For X ∈ SH(S)pure, Y ∈ SH(S), we have

Yc≤0 ∧X ' (Y ∧X)c≤0, Yc≥0 ∧X ' (Y ∧X)c≥0

and
Yc=0 ∧X ' (Y ∧X)c=0.

In particular, (taking Y = 1) we have

Xc≤0 ' X ∧ 1c≤0.

Proof. For any E ∈ SH(S), there is a unique up to equivalence cofiber
sequence

E′ → E → E′′,

where the first term is in SH(S)c≥0 and the last term is in SH(S)c<0 [BBD82,
Prop. 1.3.3(ii)]. Therefore, any stable endofunctor of SH(S) preserving the
non-negative and non-positive parts of a t-structure must commute with trun-
cation. This holds for − ∧X by Propositions 2.11 and 2.9. �

2.4. Right completeness.

Definition 2.13. Write SH(S)lisse for the stable presentable subcategory
generated by SH(S)pure.

Thus SH(S)c≥0 ⊂ SH(S)lisse, and so it defines a t-structure on SH(S)lisse.
This is just the restriction of the Chow t-structure.

Proposition 2.14. The Chow t-structure on SH(S)lisse is right complete;
i.e., we have

∩nSH(S)lisse
c≤n = 0.

The above definition of right completeness coincides with other possible
ones, by (the dual of) [Lur17, Prop. 1.2.1.19] and Proposition 2.7.

Proof. This is a formal consequence of the fact that SH(S)lisse is generated
by SH(S)c≥0. �
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Remark 2.15. The Chow t-structure is typically not left complete; i.e.,
∩nSH(S)lisse

c≥n 6= 0. See Proposition 2.17 below.

2.5. Interaction with η-periodization.

Definition 2.16. A spectrum E ∈ SH(S)lisse is Chow-∞-connective if E ∈
SH(S)c≥n for all n.

Proposition 2.17. If E ∈ SH(S)lisse is η-periodic, then E is Chow-∞-
connective.

Proof. Right completeness and compatibility with filtered colimits (Propo-
sition 2.7) imply that

E ' colim
n→−∞

Ec≥n;

indeed the cofiber of the natural map is in SH(S)c≤n for every n. Since

G∧−km ' ΣkTh(−kO) ∈ SH(S)c≥k,

we have Ec≥n ∧G∧−km ∈ SH(S)c≥n+k and hence

E ' E[1/η] ' colim
n→−∞

Ec≥n[1/η] ' colim
n→−∞

colim
k→∞

Ec≥n ∧G∧−km ∈ SH(S)c≥∞.

This was to be shown. �

Example 2.18.We work entirely in SH(S)lisse. For E∈SH(S)lisse, the fiber
of the η-completion map E→E∧η is η-periodic, and hence Chow-∞-connective.
Thus η-completion induces an equivalence on Chow homotopy objects.

Remark 2.19. Let k be a field, and let e be the exponential characteristic
of k. Then SH(k)[1/e] ⊂ SH(k)lisse (combine [EK20, Cor. 2.1.7] and [LYZR19,
Prop. B.1]). Hence the above results also apply to SH(k)[1/e].

2.6. Interaction with base change. For future reference, we record the fol-
lowing facts about the interaction between the Chow t-structure and base
change. Recall the following standard definition.

Definition 2.20. Let C and D be two categories with t-structures. We say
a functor F : C → D is right-t-exact (respectively left-t-exact) if F preserves the
non-negative (respectively non-positive) parts of t-structures.

Proposition 2.21. Let f : S′ → S be a morphism of schemes.
(1) The functor f∗ : SH(S) → SH(S′) is right-t-exact and f∗ : SH(S′) →
SH(S) is left-t-exact.

(2) If f is smooth and proper, then f∗ is also left-t-exact and its left adjoint
f# : SH(S′)→ SH(S) is right-t-exact.

Proof. The right adjoint of a right-t-exact functor is left-t-exact and vice
versa (see, e.g., [Bac18b, Lemma 5]). It thus suffices to show the right-t-exact-
ness claims.
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(1) For any X ∈ SmS and ξ ∈ K(X), we have f∗Th(ξ) ' Th(f∗ξ). It
follows that f∗ sends the generators of SH(S)c≥0 into SH(S′)c≥0. The claim
follows since f∗ also preserves colimits and extensions.

(2) For X ∈ SmS′ and ξ ∈ K(X), we have f#(Th(ξ)) = ThS(ξ). Since f
is proper, if X is proper over S′, then X is proper over S; thus f# preserves
the generators of SH(−)c≥0. We conclude as in (1). �

Remark 2.22. If f is not smooth and proper, then f∗ is not in general
left-t-exact. Indeed if this was the case for all f smooth, then f# would be
right-t-exact for all such f , and we would find that Σ2n,nΣ∞X+ ∈ SH(S)c≥0

for all n ∈ Z and all X ∈ SmS . This would imply that SH(S)c≥0 = SH(S),
which is false in general (see, e.g., Proposition 3.6).

Example 2.23. We give an explicit example showing that f∗ fails to be
left-t-exact when f is not smooth and proper.

Let k be an infinite perfect field, and let U be an open subscheme of A1
k

such that ∅ 6= U ( A1
k. Then

Σ̃U ' A1
k/U '

∨
x∈A1

k\U

S2,1 ∧ x+,

where by Σ̃ we mean the unreduced suspension. It follows from Proposition 3.6
that the spheres S2,1 ∧ x+ are not in SH(S)c≥1, and consequently Σ∞Σ̃U 6∈
SH(k)c≥1. Since k is infinite, U has a rational point and so Σ∞+ U ' 1 ∨
Σ−1Σ∞Σ̃U . Writing fU : U → Spec(k) for the structure morphism, we deduce
that fU#(1) ' Σ∞+ U 6∈ SH(k)c≥0. In particular, f∗U is not left-t-exact.

Example 2.24. We now improve the construction of the previous example
to show that even the base change along field extensions is not exact. Suppose
that 0 6∈ U . Then Σ∞+ U admits Σ−1S2,1 as a retract. In fact, we find that the
pro-object

“ lim
∅6=U

”Σ∞+ U

also admits S2,1 as a retract. Writing

f : Spec(k(t)) = lim
∅6=U⊂A1\0

U → Spec(k)

we find that by continuity (see, e.g., [Hoy15, Lemma A.7])

[Σ−2,−1
1, f∗Σ−1(1c≤0)]SH(k(t)) ' colim

U
[Σ−2,−1U+,Σ

−1(1c≤0)]SH(k) 6= 0,

since the latter group admits [1,1c≤0]SH(k) as a summand (which is non-zero
by Theorem 3.14). It follows that f∗ is not t-exact.

2.7. Cellular Chow t-structure. We denote by SH(S)cell ⊂ SH(S) the sub-
category of cellular spectra, i.e., the localizing subcategory generated by the
bigraded spheres Sp,q, p, q ∈ Z.
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Definition 2.25. Denote by SH(S)cell
c≥0 the subcategory generated under

colimits and extensions by S2n,n for n ∈ Z. This is the non-negative part of
a t-structure on SH(S)cell [Lur17, Prop. 1.4.4.11(2)] called the cellular Chow
t-structure. We denote the non-positive part by SH(S)cell

c≤0.

Remark 2.26. By definition we have

SH(S)cell
c≥0 ⊂ SH(S)c≥0 ∩ SH(S)cell,

but we do not know if the reverse inclusion holds, in general. This would hold
if cellularization is t-exact (rather than just left t-exact, which it always is).
Lemma 4.22 implies that this is true over fields.

Lemma 2.4 characterizes SH(S)cell
c≤0 in terms the vanishing of certain ho-

motopy groups.
We now have enough notation in place to justify the multiplicative aspects

of 1c=0 and 1∧p /τ over C more fully. Specifically, we make the following claims:
(1) The truncation functor SH(k)c≥0 → SH(k)c=0 is symmetric monoidal.
(2) Its right adjoint SH(k)c=0 ↪→ SH(k)c≥0 is lax symmetric monoidal.
(3) The p-completion functor SH(k)→ SH(k)∧p is symmetric monoidal.
(4) Its right adjoint SH(k)∧p ↪→ SH(k) is lax symmetric monoidal.
(5) The canonical inclusion SH(k)cell ↪→ SH(k) is symmetric monoidal.
(6) Its right adjoint (cellularization) SH(k) → SH(k)cell is lax symmetric

monoidal.
The right adjoint of any symmetric monoidal functor is lax symmetric monoidal,
whence statements (2), (4), and (6) follow from (1), (3) and (5), respectively,
and (5) is obvious. (1) and (3) hold because the functors are localizations
compatible with the tensor product (i.e., the tensor product preserves weak
equivalences in either variable), which for (1) follows from Proposition 2.9 and
for (3) follows from the fact that the tensor product preserves cofibers in each
variable.

Proof of Corollary 1.2. Recall that over C, τ : Σ0,−1
1
∧
p → 1

∧
p is the endo-

morphism of [Ghe18], [Isa19]. Since S0,−1 = Σ2Th(−O) ∈ ΣSH(k)c>0, we find
that the canonical map 1

∧
p → (1c=0)∧p annihilates τ : Σ0,−1

1
∧
p → 1

∧
p . There is

thus an induced map
1
∧
p /τ → (1c=0)∧p ,

which by Theorem 1.1 and [Isa19, Prop. 6.2.5] induces an isomorphism on π∗,∗.
We deduce that 1∧p /τ is the p-complete cellularization of 1c=0. The above dis-
cussion implies that 1c=0 and thus 1∧p /τ are both E∞-rings, reproving [Ghe18,
Th. 3.13]. �

Most results established above for the Chow t-structure on SH(S) also
hold for the cellular version.
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Example 2.27. Let k be a field of characteristic 6= p with k×/p ' {1},
and containing a primitive p-th root of unity. Then by [Voe11], we have
π∗,∗(HZ/p) ' KM

∗ (k)/p[τ ] ' Fp[τ ]. This implies that HZ/(p, τ) ∈ SH(k)cell,c♥.
Indeed we have MGL ∈ SH(k)cell

c≥0 (Theorem A.1). By the Hopkins–Morel iso-
morphism [Hoy15], we have HZ ∈ SH(k)cell

c≥0. Therefore HZ/(p, τ) ∈ SH(k)cell
c≥0.

On the other hand, HZ/(p, τ) ∈ SH(k)cell
c≤0 just means that π2m+i,m(HZ/(p, τ))

vanishes for m ∈ Z, i > 0, which is clear since KM
∗ (k)/p ' Fp.

Remark 2.28. Continuing Example 2.27, write

P i : HZ/p→ Σ2i(p−1),i(p−1)HZ/p

for the reduced power operation. Since P i commutes with τ (note that if p = 2,
then

√
−1 ∈ k since k×/2 ' {1}), it defines

P i/τ : HZ/(p, τ)→ Σ2i(p−1),i(p−1)HZ/(p, τ).

Noting that Σ2n,nHZ/(p, τ) ∈ SH(k)cell,c♥, which is an additive 1-category, we
deduce that the operation P i/τ is Z/p-linear, i.e., it comes from a map in the
A1-derived category.

3. Relationship to algebraic cobordism

In this section, we show that the Chow t-structure is the colimit of a di-
rected systems of t-structures, in the sense of Lemma 3.13. The non-negative
parts and the non-positive parts of these t-structures can be partially charac-
terized by taking MGL-homology (Lemma 3.12). As a result, the homotopy
groups of Chow homotopy objects can be computed by the motivic Adams–
Novikov spectral sequence, which collapse at the E2-page (Theorem 3.14). In
fact, we prove these results for a more general collection of t-structures, which
include Chow t-structure as a special case.

Throughout this section, we let S = Spec(k) be the spectrum of a field of
exponential characteristic e, and we implicitly invert e throughout. Thus we
write SH(k) for SH(k)[1/e], and so on. The main reason for this is that we
need to use a vanishing result for algebraic cobordism (Theorem B.1), which is
proved by relating algebraic cobordism to higher Chow groups, and this rela-
tionship is currently only known away from the characteristic [Hoy15]. Another
simplification also occurs, which is that Remark 2.19 applies.

3.1. Chow degrees.

Definition 3.1. Given a bidegree (p, q) ∈ Z × Z, we call c(p, q) = p − 2q

the associated Chow degree. Given a bigraded abelian group M∗,∗, we say that
M∗,∗ is concentrated in Chow degrees ≥ d (respectively ≤ d, = d) if Mp,q = 0

for c(p, q) < d (respectively > d, 6= d).
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Example 3.2. By Example 2.2, spheres of non-negative Chow degree are
in SHc≥0(k). Therefore, if E ∈ SH(k)c≤0, then π∗,∗E is concentrated in Chow
degrees ≤ 0.

Example 3.3. Let E ∈ SH(k) with π∗,∗E concentrated in Chow degrees
≤ 0. Consider the cofiber sequence

G∧nm ∧ E
ηn−→ E → E/ηn.

The homotopy groups π∗,∗(G∧nm ∧ E) ' π∗−n,∗−nE are concentrated in Chow
degree ≤ −n. Hence we have πp,q(E/ηn) ' πp,q(E) for any fixed (p, q) and n
sufficiently large. As a result, E → E∧η induces an isomorphism on π∗,∗.

3.2. MGL-homology in a more general t-structure. In anticipation of our
treatment of cellular objects later, we generalize our setting slightly. Thus we
fix

I ⊂ SH(k)c≥0.

We assume throughout that I is closed under colimits and extensions and gen-
erated by a set of compact object; thus, in particular, I defines a t-structure.
We denote its non-negative and non-positive parts by

SH(k)I≥0 := I and SH(k)I≤0,

and we denote the truncations by τI≥n, τI≤n and τI=n. We also assume that
1 ∈ I and Σ2,1I = I.

Example 3.4. Taking I = SH(k)c≥0, we get τI≥0 = (−)c≥0, and so on.
This is the maximal choice.

Example 3.5. Taking I to be the subcategory generated under colimits and
extensions by the S2n,n, we obtain the smallest possible choice.

Proposition 3.6. Let E∈SH(k)I≥0 (resp.E∈SH(k)I≤0 ,E∈SH(k)I=0).
Then
(1) MGL∧E ∈ SH(k)I≥0 (resp. MGL∧E ∈ SH(k)I≤0 , MGL∧E ∈ SH(k)I=0),

and
(2) MGL∗,∗E is concentrated in Chow degrees ≥ 0 (resp. ≤ 0, = 0).

Proof. (1) In the notation of Section A, we have MGL ∈ SH(k)puretate≥0

(see Theorem A.1). Thus (1) is immediate from (the proofs of) Propositions 2.9
and 2.11.

(2) The ≤ 0 part of (2) follows from (1) and the fact that S2n,n ∈ I. It
hence remains to prove the ≥ 0 part of (2). It is sufficient to show the statement
is true for the maximal choice of I (Example 3.4).

Let C ⊂ SH(k) denote the subcategory of all spectra E such that MGL∗,∗E

is concentrated in Chow degrees ≥ 0. It suffices to show that SH(k)c≥0 ⊂ C.



728 TOM BACHMANN, HANA JIA KONG, GUOZHEN WANG, and ZHOULI XU

The category C is closed under small sums, cofibers, and extensions, and hence
to show that SH(k)c≥0 ⊂ C it is enough to show that Th(ξ) ∈ C for every
K-theory point ξ on a smooth proper variety X. We thus need to show that
MGL2n+i,nTh(ξ) = 0 for i < 0. Using the Thom isomorphism and duality we
rewrite this as

[S2n+i,n,MGL ∧ Th(ξ)] ∼= [Σ2n+i,nTh(−TX − ξ),MGL] ∼= MGL2s−i,sX,

where s = dimX+rank(ξ)−n. Thus the result follows from Theorem B.1. �

Corollary 3.7. For E ∈ SH(k) arbitrary, we have

MGLp,qτI=iE =

{
0 if c(p, q) 6= i,

MGLp,q(E) if c(p, q) = i.

Proof. By replacing E with ΣiE, we reduce to the case that i = 0.
The Chow degree non-zero part of the statement is immediate from Propo-

sition 3.6.
For the Chow degree zero part, we consider two cofiber sequences

τI≥1E → τI≥0E → τI=0E, and τI≥0E → E → τI≤−1E.

They yield associated long exact sequences

· · · → MGL2∗,∗τI≥1E → MGL2∗,∗τI≥0E → MGL2∗,∗τI=0E

→ MGL2∗−1,∗τI≥1E → · · · ,
· · · → MGL2∗+1,∗τI≤−1E → MGL2∗,∗τI≥0E → MGL2∗,∗E

→ MGL2∗,∗τI≤−1E → · · · .

By Proposition 3.6, in each long exact sequence, the first and the last term
in the above part vanish. Therefore, we have equivalences

MGL2∗,∗τI=0E ∼= MGL2∗,∗τI≥0E ∼= MGL2∗,∗E. �

3.3. t-structure as a direct colimit. We now bring the homotopy t-structure
into play.

Definition 3.8. Let SH(k)≥0 denote the subcategory of SH(k) generated
under colimits and extensions by Σ∞+ X ∧ G∧nm for X ∈ Smk and n ∈ Z. This
defines the non-negative part of the homotopy t-structure.

Since we are working over fields, the subcategory SH(k)≥0 is characterised
by a vanishing of homotopy sheaves [Hoy15, Th. 2.3]:

SH(k)≥0 =
{
E ∈ SH(k) | πi+n,n(E) = 0 for i < 0, n ∈ Z

}
,

SH(k)≤0 =
{
E ∈ SH(k) | πi+n,n(E) = 0 for i > 0, n ∈ Z

}
.

(3.3.1)

Recall that the notation SH(k)≥d denotes the subcategory ΣdSH(k)≥0.
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Theorem-Definition 3.9. Let Id be the category SH(k)≥d ∩ I . This is
the non-negative part of a t-structure on SH(k).

Proof. We need to show that Id is closed under colimits and extensions
and is presentable [Lur17, Prop. 1.4.4.11(1)]. This is true for SH(k)≥d and I
by [Lur17, Prop. 1.4.4.11(2)]; the case of Id follows since subcategories with
these properties are closed under limits (and so, in particular, intersections; use
that limits of presentable categories along left adjoint functors are presentable
[Lur09, Prop. 5.5.3.13]). �

Example 3.10. Let I be SH(k)c≥0. For a smooth proper variety X and a
K-theory point ξ on X of rank ≥ d, we have Th(ξ) ∈ Id. Indeed it suffices to
check that Th(ξ) ∈ SH(k)≥d, which follows from [BH21, Lemma 13.1].

Example 3.11. Let E ∈ I be compact. Then E ∈ Id for d sufficiently
small. This follows from the facts that (1) the subcategory of bounded below
spectra is thick, (2) the subcategory of compact spectra is the thick subcategory
generated by spectra of the form Σn,nΣ∞+ X for n ∈ Z and X ∈ Smk [Nee01,
Lemma 4.4.5] [DI05, Th. 9.2] and (3) these generators are bounded below, by
definition.

We use the notations τd≤n, τ
d
≥n, τ

d
=n to denote the truncation functors

associated to the t-structure with non-negative part Id.
The following is a key technical result.

Proposition 3.12. Let E ∈ Id . Then we have the following:
(1) τd≤0E ∈ Id ,
(2) MGL2∗,∗τ

d
≤0E

∼= MGL2∗,∗E .

Suppose now that E ∈ Id+1 . Then we have additionally the following:
(3) π∗,∗τd≤0E is concentrated in Chow degrees ≤ 0, and
(4) MGL∗,∗τ

d
≤0E is concentrated in Chow degree 0.

Proof. (1) This is immediate from the cofiber sequence τd≥1E → E →
τd≤0E, since E ∈ Id and τd≥1E ∈ ΣId ⊂ Id.

(2) Consider the long exact sequence

· · · → MGL2∗,∗τ
d
≥1E → MGL2∗,∗E → MGL2∗,∗τ

d
≤0E

→ MGL2∗−1,∗τ
d
≥1E → · · · .

It suffices to show that MGL2∗+i,∗τ
d
≥1E = 0 for i = 0,−1. Since τd≥1E ∈ ΣId ⊂

SH(k)c≥1, the result follows from Proposition 3.6.
(3) We need to show that π2n+i,n(τd≤0E) = 0 for i > 0. This vanishing

arises for two slightly different reasons, depending on if (a) n + i > d or (b)
n+ i ≤ d.
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(a) When n+ i > d, we have S2n+i,n = Σn+iG∧nm ∈ ΣSH(k)≥d. Therefore
we have S2n+i,n ∈ ΣId. Since τd≤0E is in the ≤ 0 part of the t-structure
corresponding to Id, the homotopy groups π2n+i,i(τ

d
≤0E) vanishes by definition.

(b) When n+i ≤ d, by equation (3.3.1), if F ∈ SH(k)≥d+1, then π2n+i,n(F )

= 0. Therefore it suffices to show that τd≤0E ∈ SH(k)≥d+1. Consider the cofiber
sequence in (1). Since τd≥1E ∈ ΣId ⊂ SH(k)≥d+1 and E ∈ Id+1 ⊂ SH(k)≥d+1,
the result follows.

(4) By (1) we have τd≤0E ∈ SH(k)c≥0. Hence MGL∗,∗τ
d
≤0E is concen-

trated in Chow degrees ≥ 0, by Proposition 3.6(2). It remains to show that
MGL∗,∗τ

d
≤0E is concentrated in Chow degrees ≤ 0.

Let C ⊂ SH(k) be the subcategory consisting all spectra M such that
π∗,∗(M ∧ τd≤0E) is concentrated in Chow degrees ≤ 0. It suffices to show that
MGL ∈ C. Note that C is closed under filtered colimits, extensions, wedge
sums, and Σ2n,n for any n ∈ Z. By (3), 1 ∈ C, and hence (in the notation of
Section A) SH(k)puretate≥0 ⊂ C. The result thus follows from Theorem A.1. �

Proposition 3.13. Let E ∈ SH(k). There are directed systems

τn≥0E → τn−1
≥0 E → · · · → τI≥0E

and
τn≤0E → τn−1

≤0 E → · · · → τI≤0E,

which are in fact colimit diagrams.

Proof. Since In ⊂ In−1 ⊂ · · · ⊂ SH(k)I≥0, the directed systems exist.
To see that the second one is a colimit diagram, it suffices to show that

colimn τ
n
≤0E∈SH(k)I≤0. (Indeed the fiber of E→colimn τ

n
≤0E is colimn τ

n
>0E

∈ SH(k)I>0, so we conclude by [BBD82, Prop. 1.3.3(ii)].) This follows from
Example 3.11, which shows that every generator of SH(k)I≥0 = I is in In for
n sufficiently small.

Taking the fiber of the constant colimit diagram E mapping to the second
one yields the first one (up to a shift), which is thus also a colimit diagram.
This concludes the proof. �

3.4. MGL-completion and Adams–Novikov spectral sequence. We come to
the main result of this section.

Recall from [DI10, §7] or [HKO11] the usual MGL based motivic Adams–
Novikov spectral sequence

Ext∗,∗,∗MGL∗,∗MGL(MGL∗,∗,MGL∗,∗X) =⇒ π∗,∗X
∧
MGL.

Recall that (MGL2∗,∗,MGL2∗,∗MGL) is a Hopf algebroid canonically isomor-
phic to (MU2∗,MU2∗MU). (Combine [NSØ09, Cor. 6.7, Lemma 6.4] and [Spi20,
Cor. 6.7]; recall our convention that we implicitly invert e.) In particular, for
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E ∈ SH(k), the graded abelian group MGL2∗,∗E is canonically a comodule
over MU2∗MU.

Theorem 3.14. Let E ∈ SH(k)I≥0 . Then
(1) the canonical map τI≤0E → τI≤0(E)∧MGL to the MGL-nilpotent completion

induces an isomorphism on π∗,∗ , and
(2) π2w−s,wτI≤0E ∼= Exts,2wMU∗MU(MU∗,MGL2∗,∗E).

Proof. We first prove part (2) of the theorem. We have isomorphisms

τI≤0E
(∗)
' τI≤0τI≥0E

L.3.13' τI≤0 colim
d

τd≥0E

C.2.8' colim
d

τI≤0τ
d
≥0E

L.3.13' colim
n,d

τn≤0τ
d
≥0E,

where (∗) holds because E ∈ SH(k)I≥0. The third equivalence uses Corol-
lary 2.8, which is stated for the largest I. By a similar proof we can show it
also works for other choices of I. Since the right-hand side of the isomorphism
in part (2) is compatible with filtered colimits in E [Hov04, Lemma 3.2.2(b)],
we may replace E by τd≥0E and so we may assume that E ∈ Id. Let n < d. We
shall show that π2w−s,wτ

n
≤0E ' Exts,2wMU∗MU(MGL2∗,∗E). Taking the (constant)

colimit as n→ −∞ will yield the result.
By Lemma 3.12(2) and (4), we find that MGL2∗+i,∗τ

n
≤0E = MGL2∗,∗E for

i = 0, and otherwise it vanishes. Hence the Adams–Novikov spectral sequence
for τn≤0E again collapses, and it suffices to show that this spectral sequence
converges to π∗,∗τn≤0E or, in other words, that τn≤0E is MGL-nilpotent com-
plete (on homotopy groups). By Lemma 3.12(1), τn≤0(E) is connective in the
homotopy t-structure; hence by [Man21, §5.1 and Th. 7.3.5] we have

τn≤0(E)∧MGL ' LMGLτ
n
≤0(E) ' τn≤0(E)∧η .

It is thus sufficient to show that τn≤0(E)→ τn≤0(E)∧η induces an equivalence on
π∗,∗. This follows from Lemma 3.12(3) and Example 3.3.

This concludes the proof of part (2).
For part (1), Corollary 3.7 implies that the Adams–Novikov spectral se-

quence for τI≤0E collapses and

π2w−s,wτI≤0(E)∧MGL
∼= Exts,2wMU∗MU(MU∗,MGL2∗,∗E).

Hence part (1) follows from part (2). �

3.5. First consequences. Theorem 3.14 is the central result of this paper.
We establish here some of its immediate consequences, many of which will be
amplified in Section 4.

Lemma 3.15. Let E ∈ SH(k). If πi,0(E ∧ Th(ξ)) = 0 for all i ∈ Z and
K-theory points ξ on smooth proper varieties X , then E ' 0.
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Proof. By duality, the assumption is equivalent to [ΣiTh(ξ), E] = 0 for all
i ∈ Z and K-theory points ξ on smooth proper varieties X. Taking ξ = nO
shows that [Σi,jΣ∞+ X,E] = 0 for all i, j ∈ Z and all X smooth and proper.
This implies that E = 0 by Remark 2.19. �

Remark 3.16. Let E ∈ SH(k)c♥. By Theorem 3.14, the map α : E →
E∧MGL induces an isomorphism on π∗,∗. Let X be smooth projective and ξ ∈
K(X). By Corollary 2.12 we have E∧Th(ξ) ∈ SH(k)c♥, and hence E∧Th(ξ)→
(E ∧ Th(ξ))∧MGL again induces an equivalence on π∗,∗. But tensoring with
the strongly dualizable object Th(ξ) preserves limits, so (E ∧ Th(ξ))∧MGL '
E∧MGL ∧ Th(ξ). Lemma 3.15 now implies that α is an equivalence. This is a
special case of Proposition 4.3 in the next section.

We deduce the following strengthening of Proposition 2.17.

Corollary 3.17. Let E ∈ SH(k). Then E is Chow-∞-connective if and
only if E ∧MGL ' 0.

Proof. By right completeness (Proposition 2.14), E ∈ SH(k)c≥n if and
only if Ec=i = 0 for i < n. (Indeed necessity is clear, and for sufficiency note
that Ec<n ∈ ∩mSH(k)c<m = 0.) Consequently, E is Chow-∞-connective if
and only if Ec=i = 0 for all i.

Hence we find

E is Chow-∞-connective

⇐⇒ Ec=i = 0 for all i
L.3.15⇐⇒ π∗,∗(Ec=i ∧ Th(ξ)) = 0 for all i, X smooth proper and ξ ∈ K(X)

C.2.12⇐⇒ π∗,∗(E ∧ Th(ξ))c=i = 0 for all i
T.3.14+T.A.1⇐⇒ MGL∗,∗(E ∧ Th(ξ))c=i = 0 for all i

C.3.7⇐⇒ MGL2∗+i,∗(E ∧ Th(ξ)) = 0 for all i

⇐⇒ π∗,∗(MGL ∧ E ∧ Th(ξ)) = 0

L.3.15⇐⇒ MGL ∧ E = 0 �

4. Reconstruction theorems

We keep the conventions from the last section: S = Spec(k) is the spectrum
of a field of exponential characteristic e, which is implicitly inverted throughout.

In this section we will amplify the results of the last section by deducing
fairly explicit descriptions of the categories SH(k)c♥ and 1c=0-Mod. We begin
in Section 4.1 by describing these categories in terms of a certain comonad C on
MGLc=0-Mod. Then in Section 4.2 we explain how work of Bondarko supplies
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a very explicit description of the category MGLc=0-Mod, and we also identify
the comonad C. Finally in Section 4.3, we use this to provide an explicit
description of SH(k)c♥.

4.1. Comonadic descent.

4.1.1. Suppose we have a presentably symmetric monoidal category D
and A ∈ CAlg(D). We obtain a free-forgetful adjunction

F : D � A-Mod : U

and the endofunctor

C := FU = ⊗A : A-Mod→ A-Mod,

which acquires the structure of a comonad [Lur17, Prop. 4.7.3.3].
We denote by C-CoMod the category of comodules under C (see [Lur17,

Def. 4.2.1.13]), and hence obtain a factorization [Lur17, §4.7.4]

D � C-CoMod � A-Mod,

where C-CoMod→ A-Mod is the forgetful functor that we denote by H (with
right adjoint the cofree comodule functor) and D → C-CoMod sends X to
X ⊗A with its canonical comodule structure.

4.1.2. Cobar resolution.We can form the cobar resolution [MNN17, Constr.
2.7]

1D → CB•(A) :=
Ä
A⇒ A⊗A

→
→
→ . . .

ä
;

this as a coaugmented cosimplicial object in CAlg(D). Taking module cate-
gories, we obtain a coaugmented cosimplicial category

(4.1.1) D → CB•(A)-Mod :=
Ä
A-Mod ⇒ (A⊗A)-Mod

→
→
→ . . .

ä
.

It follows from [Lur17, Th. 4.7.6.2] that

lim
∆

CB•(A)-Mod ' C-CoMod.

Let ∆s be the subcategory of ∆ with the same objects, but where the mor-
phisms are given by injective order preserving maps between nonempty linearly
ordered sets. We will often be interested in the restriction of diagram (4.1.1)
to the coinitial subcategory ∆s ↪→ ∆ [Lur09, Lemma 6.5.3.7]; i.e., view this as
a coaugmented semi -cosimplicial object. The limit of any cosimplicial object
is the same as the limit of its associated semi-cosimplicial object. Therefore we
also have

lim
∆s

CB•(A)-Mod ' C-CoMod.



734 TOM BACHMANN, HANA JIA KONG, GUOZHEN WANG, and ZHOULI XU

4.1.3. Monoidal structure. The category C-CoMod is in fact symmetric
monoidal, and the left adjoint functors above are symmetric monoidal. Indeed
(4.1.1) is a diagram of symmetric monoidal categories and symmetric monoidal
functors (since it comes from a diagram of commutative rings and commutative
ring maps). Since limits of symmetric monoidal categories are computed on the
underlying categories [Lur17, Cor. 3.2.2.5], it follows that the limit C-CoMod

is symmetric monoidal, as desired.

4.1.4. t-structure. Suppose that D carries a t-structure and ⊗A : D → D is
t-exact. We can give each of the categories A⊗n-Mod the t-structure detected
by the forgetful functor to D (see, e.g., [Bac21, Lemma 29]).

When viewed as a semi-cosimplicial category, the maps in (4.1.1) become
t-exact functors.

For −∞ ≤ m ≤ n ≤ +∞, we denote by A⊗p-Mod[m,n] the subcategory
of objects bounded in the t-structure. Then CB•(A)-Mod[m,n] is a full sub-
diagram of (4.1.1). Since limits preserve fully faithful functors, we find that

C-CoMod[m,n] := lim
∆s

CB•(A)-Mod[m,n]

is a full subcategory of C-CoMod; in fact, C-CoMod[m,n] is equivalent to
H−1(A-Mod[m,n]), where H : C-CoMod→ A-Mod is the forgetful functor.

Let C[m,n] : A-Mod[m,n] → A-Mod[m,n] denote the restriction of C, and
C♥ = C[0,0]. We note that by construction,

(4.1.2) C-CoMod[m,n] ' C[m,n]-CoMod.

One checks immediately that

C-CoMod≥0 := C-CoMod[0,∞] and C-CoMod≤0 := C-CoMod[−∞,0]

define a t-structure on C-CoMod.

4.1.5. Compact generation. We consider the t-structure on C-CoMod de-
fined in Section 4.1.4.

Suppose that C-CoMod♥ is compactly generated. Let C-CoMod♥ω de-
note the category of its compact objects.

We consider the category

Hov(C) := Ind(Thick(C-CoMod♥ω)),

where Thick(C-CoMod♥ω) denotes the thick subcategory of C-CoMod gener-
ated by C-CoMod♥ω, and Ind denotes the category obtained by freely adding
filtered colimits (see [Lur09, 5.3.5.1]). We obtain an adjunction [Lur09, Props.
5.3.5.10 and 5.3.5.13]

Hov(C) � C-CoMod.
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Remark 4.1. The assumption that C-CoMod♥ is compactly generated
need not imply that C-CoMod is compactly generated. Moreover if E ∈
C-CoMod♥ is compact, it need not be the case that E ∈ C-CoMod is compact.

Remark 4.2. If C is the comonad describing comodules over some Hopf
algebroid Ψ, then under mild assumptions Hov(C) coincides with Hovey’s cat-
egory Hov(Ψ) [Hov04]. See [BH18, §3] for a treatment in the language of
∞-categories. In this situation we will use the notations Hov(C) and Hov(Ψ)

interchangeably.

4.1.6. Modules over 1c=0 . We apply the above discussion with the category
D = 1c=0-Mod and A = MGL ∧ 1c=0 (which is equivalent to MGLc=0 by
Corollary 2.12). We obtain

1c=0-Mod � C-CoMod � MGLc=0-Mod.

We consider the t-structure on 1c=0-Mod induced by the Chow t-structure
(Remark 2.3).

Proposition 4.3.

(1) The free functor F̄ : 1c=0-Mod → C-CoMod is t-exact and symmetric
monoidal.

(2) For −∞ ≤ m ≤ n < ∞, the restriction 1c=0-Mod[m,n] → C-CoMod[m,n]

is an equivalence. In particular,

1c=0-Modc♥ ' C-CoModc♥.

(3) The functor F̄ induces a symmetric monoidal equivalence 1c=0-Mod '
Hov(C).

Proof. (1) This is clear by construction.
(2) We shall apply the Barr-Beck-Lurie theorem [Lur17, Th. 4.7.3.5]. It

hence suffices to show that (a) F : 1c=0-Mod[m,n] → MGLc=0-Mod[m,n] is
conservative, and (b) F -split totalizations exist in 1c=0-Mod[m,n] and are pre-
served by F .

(a) For E ∈ 1c=0-Mod, we have E ∧1c=0 MGLc=0 ' E ∧MGL, and this
is zero if and only if E has vanishing Chow homotopy objects (Corollary 3.17).
Thus if E is additionally Chow bounded from the left, then E ' 0 by right
completeness.

(b) Since our categories are presentable, totalizations (and in fact all
small limits) exist [Lur09, Cor. 5.5.2.4]. The truncation functors (−)c≥m com-
mute with limits, and the subcategories of n-coconnective objects are pre-
served by limits. It follows that limits in 1c=0-Mod[m,n] are computed by
first computing in 1c=0-Mod and then applying (−)c≥m, and similarly for
MGLc=0-Mod[m,n]. Being t-exact, F commutes with (−)c≥m, and hence it is
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enough to show that F : 1c=0-Mod[−∞,n] → MGLc=0-Mod[−∞,n] preserves
totalizations. Since the forgetful functors are conservative and preserves lim-
its, it is enough to show that ∧MGL preserves totalizations in SH(k)c≤n, i.e.,
MGL ∧ limn∈∆E

n ' limn∈∆ MGL ∧ En. We are dealing with Chow-bounded
above objects, so it suffices to show that the induced maps on Chow homotopy
objects are isomorphisms (Proposition 2.14). This follows from t-exactness of
smashing with MGL (Corollary 2.12) and [Lur17, Prop. 1.2.4.5(5)], i.e., the
fact that totalizations of bounded above spectra behave like finite limits on
homotopy objects. More precisely, for E• ∈ SH(k)c≤n and i ∈ Z, there exists
N � 0 such that

(MGL ∧ lim
n∈∆

En)c=i ' MGL ∧ ( lim
n∈∆

En)c=i

' MGL ∧ (TotNE•)c=i

' (MGL ∧ TotNE•)c=i

' (TotN (MGL ∧ E•))c=i ' ( lim
n∈∆

MGL ∧ En)c=i;

here TotN refers to the N -th partial totalization, i.e., the limit over ∆≤N .
(3) Let G ⊂ 1c=0-Mod the class of objects of the form Th(ξ) ∧ 1c=0 '

Th(ξ)c=0 (see Corollary 2.12). They form a compact generating family, and
G ⊂ 1c=0-Modc♥. There is an induced symmetric monoidal functor

Ind(Thick(G))→ Ind(Thick(F̄G)),

which is an equivalence by (2). The left-hand side is 1c=0-Mod. The right-hand
side is Hov(C), by definition (and (2)). This is the desired result. �

Corollary 4.4. There are canonical symmetric monoidal equivalences

SH(k)c♥ ' 1c=0-Modc♥ ' Cc♥-CoMod,

where Cc♥ is the comonad on MGLc=0-Modc♥ obtained by restricting C .

Proof. The functor SH(k) → 1c=0-Mod induces an equivalence of the
hearts, e.g., by [Bac21, Lemma 29]. The second equivalence follows from Propo-
sition 4.3(2) via equation (4.1.2). �

4.2. Modules over MGLc=0 .

4.2.1. Pure MGL-motives. For a smooth proper variety X and i ∈ Z, de-
note byX{i} ∈ MGLc=0-Mod the object (Σ2i,iX+∧MGL)c=0 ' Σ2i,i(X+)c=0∧
MGL. By the Thom isomorphism, these are generators of MGLc=0-Mod (as
a localizing subcategory). Write PMMGL(k) ⊂ MGLc=0-Mod for the smallest
idempotent complete additive subcategory containing the objects X{i}. For
now we view this as a spectrally enriched category. By duality and adjunction,
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we have

MapPMMGL(k)(X{i}, Y {j})
' MapPMMGL(k)(MGLc=0, (X × Y ){j − dX − i})

' MapSH(k)(S
2(i+dX−j),(i+dX−j), ((X × Y )+)c=0 ∧MGL).

Proposition 3.6 thus implies that

π∗MapPMMGL(k)(X{i}, Y {j}) ' MGL∗+2(i+dX−j),(i+dX−j)(((X × Y )+)c=0)

is concentrated in degree 0. In other words, our spectrally enriched category
PMMGL(k) is just an additive ordinary 1-category. The above computation
together with Corollary 3.7 shows that

(4.2.1)
HomPMMGL(k)(X{i}, Y {j}) ' MGL2(i+dX−j),(i+dX−j)(X × Y )

' MGL2(dY +j−i),(dY +j−i)(X × Y ).

Remark 4.5. For future use, we point out the following generalization. If
B ∈ SH(k) is any oriented ring spectrum, we can form a category PMB of
pure B-motives. It is the idempotent complete additive 1-category generated
by objects X{i}B and morphisms

HomPMB
(X{i}B, Y {j}B) = [Σ2i,iΣ∞+ X ∧B,Σ2j,jΣ∞+ Y ∧B]B-Mod.

This construction enjoys the following properties:

(1) If M is in B-Mod, then the functor M∗(X) := [Σ2∗,∗Σ∞+ X ∧ B,M ]B-Mod

defines a linear presheaf on PMB.
(2) If u : A→ B is a morphism of oriented ring spectra and F is any A-module,

then B⊗AF is a B-module and we have a canonical map uF : F → B⊗AF .
Given α : X → Y ∈ PMA and s ∈ F∗, we have uF∗(α∗s) = u∗(α)∗(uF∗s).

Remark 4.6. Given an oriented cohomology theory A∗ on smooth proper
k-varieties, one can define a 1-category of pure A-motives [NZ06, §6]. It is
generated as an idempotent complete additive 1-category by objects X{i} with
sets of maps

[X{i}, Y {j}] = Aj+dY −i(X × Y )

and composition given by convolution. Taking A∗ = B2∗,∗ for some oriented
ring spectrum B, we recover the category PMB. (In particular, taking A∗ =

MGL2∗,∗ we recover PMMGL(k).) Given the above description, the only part
of this assertion that we have not proved yet is that composition in PMA is
given by convolution; this is a purely formal consequence of the rigidity of the
generators.
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4.2.2. Spectral Morita theory. By Remark 2.19 and the Thom isomor-
phism, PMMGL(k) compactly generates MGLc=0-Mod. Since we have an ex-
plicit description of PMMGL(k) as a spectrally enriched category, we should be
able to recover MGLc=0-Mod by a variant of Morita theory, such as [SS03].
For an ∞-category D with finite coproducts, we use the notation

PΣ(D) = Fun×(Dop,Spc), PSH(D) = Fun×(Dop,SH),

PAb(D) = Fun×(Dop,Ab),

where Fun× denotes the category of product-preserving functors. Provided
that D is additive, there are equivalences [Lur18, Rem. C.1.5.9]

PSH(D)≥0 ' PΣ(D) and PSH(D)♥ ' PAb(D).

Note that PSH(D) has a natural (pointwise) t-structure.

Lemma 4.7. Let D be a small semi-additive ∞-category. The full subcate-
gory PSH(D)≥0 consisting of functors F : Dop → SH≥0 ⊂ SH is generated un-
der colimits and extension by the image of the canonical functor D → PSH(D).
In particular, PSH(D)≥0 is the non-negative part of a t-structure. Its non-
positive part consists of the functors Dop → SH≤0 ⊂ SH.

Proof. For d ∈ D, write Rd ∈ PSH(D) for the “representable functor.” We
have

(∗) map(Rd, Re) ' Map(d, e)gp ∈ SH≥0,

where the superscript gp denotes group completion of the additive E∞-monoid
structure. Consider the t-structure on PSH(D) generated by the objects Rd
for d ∈ D. We have an adjunction SH � PSH(D) : evd. The left adjoint
is right-t-exact, since it sends the generator 1 ∈ SH to Rd, whence the right
adjoint evd is left-t-exact. By (∗) it is also right-t-exact. Thus the functors evd
for d ∈ D form a conservative t-exact collection, whence the non-negative and
non-positive parts of the t-structure are as claimed. �

Proposition 4.8.We have a canonical t-exact, symmetric monoidal equiv-
alence

MGLc=0-Mod ' PSH(PMMGL(k)).

Proof. This is standard. To be more precise, the symmetric monoidal
category PSH(PMMGL(k)) can be obtained as the stabilization of a localization
of P(PMMGL(k)) (see, e.g., [Aok20, Rem. 2.10]). The universal properties of
presheaves, day convolution, localization and stabilization thus imply that there
exists a unique cocontinuous symmetric monoidal functor

PSH(PMMGL(k))→ MGLc=0-Mod

extending the inclusion PMMGL(k)→ MGLc=0-Mod. Since it induces equiva-
lences on mapping spectra between compact generators, it is an equivalence. By
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Lemma 4.7, this equivalence identifies the non-negative parts of the t-structures,
and hence is t-exact. �

Given E∈MGLc=0-Mod, denote by πci (E)∈PAb(PMMGL(k)) the presheaf
with πci (E)(X) = πiMapMGLc=0-Mod(X,E), ∀X ∈ PMMGL(k).

Corollary 4.9.

(1) The functor πc0 : MGLc=0-Modc♥ → PAb(PMMGL(k)) is an equivalence.
(2) For E ∈ MGLc=0-Mod, we have E ∈ MGLc=0-Modc≥0 (respectively E ∈

MGLc=0-Modc≤0) if and only if πci (E) = 0 for all i < 0 (respectively i > 0).
(3) The Chow t-structure on MGLc=0-Mod is non-degenerate [BBD82, p. 32].

Proof. By Proposition 4.8, all statements translate into assertions about
PSH(PMMGL(k)), which are easily verified. �

Remark 4.10. An object F ∈ MGLc=0-Modc♥ ' PAb(PMMGL(k)) con-
sists of the following data:
• for every smooth proper variety X, we have a graded abelian group F (X)∗ =

πc0(F )(X{∗});
• for every graded MGL-correspondence α : X→Y (i.e., α∈MGL2∗,∗(X×Y )),
we have a homomorphism α∗ : F (Y )∗ → F (X)∗

subject to the conditions that
• for composable MGL-correspondences α, β, we have α∗β∗ = (βα)∗,
• id∗ = id and 0∗ = 0, as well as
• for parallel MGL-correspondences α, β, we have α∗ + β∗ = (α+ β)∗.
For example, since MGL2∗,∗ ∼= MU2∗, each F (X)∗ is an MU2∗-module, and all
the α∗ are automatically MU2∗-module maps.

Remark 4.11. The category PAb(PMMGL(k)) has enough projective ob-
jects, namely the representable presheaves. When viewed as objects of the cat-
egory PSH(PMMGL(k)), they have mapping spectra concentrated in degree 0

(see the proof of Lemma 4.7). Using [Lur17, Prop. 1.3.3.7] (or spectra Morita
theory) this implies PSH(PMMGL(k)) ' D(PAb(PMMGL(k))).

To summarize, we have

PMMGL(k) MGLc=0-Modc♥ PAb(PMMGL(k))

MGLc=0-Mod PSH(PMMGL(k)) D(PAb(PMMGL(k)))

'

' '

where the downwards arrows are the inclusions of the hearts.

4.2.3. Identification of the monad. Denote by

FunL0 (MGLc=0-Mod,MGLc=0-Mod) ⊂ Fun(MGLc=0-Mod,MGLc=0-Mod)
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the subcategory of those functors F that preserve colimits and such that

F (MGLc=0-Modc♥) ⊂ MGLc=0-Modc♥.

Lemma 4.12. The restriction

FunL0 (MGLc=0-Mod,MGLc=0-Mod)

→ FunL(MGLc=0-Modc♥,MGLc=0-Modc♥)

is an equivalence.

Proof. By [Sos19, Lemma 3.2] we have

FunL(MGLc=0-Mod,MGLc=0-Mod) ' Fun⊕(PMMGL(k),MGLc=0-Mod),

where Fun⊕ denotes the category of biproduct preserving functors. Therefore,
we deduce that

FunL0 (MGLc=0-Mod,MGLc=0-Mod) ' Fun⊕(PMMGL(k),MGLc=0-Modc♥).

This latter category identifies with FunL(PΣ(PMMGL(k)),MGLc=0-Modc♥) by
[Lur09, Prop. 5.5.8.15] and [BH21, Lemma 2.8]. Finally we have

FunL(PΣ(PMMGL(k)),MGLc=0-Modc♥)

' FunL(PAb(PMMGL(k)),MGLc=0-Modc♥),

since MGLc=0-Modc♥ is a 1-category and PMMGL(k) is additive. This con-
cludes the proof. �

Corollary 4.13. Restriction induces an equivalence

{cocontinuous comonads on MGLc=0-Mod preserving the heart}

' {cocontinous comonads on MGLc=0-Modc♥}.

Proof. Since comonads on D are by definition given by Alg(Fun(D,D)op),
this follows from the fact that the restriction equivalence of Lemma 4.12 is
compatible with the composition monoidal structures. �

Under the above equivalence, the comonad C corresponds to its restriction
to the heart, which we denote by Cc♥ or also by C when it is clear in the context.
We describe this restriction.

By equation (4.2.1), [X{i}, Y {j}] ' [X{0}, Y {j − i}]. Therefore we can
view [X{∗}, Y {∗}] as a single graded group by taking the first ∗ to be 0. Observe
that for smooth proper varieties X,Y , the mapping set, [X{0}, Y {∗}]PMMGL(k),
is an MU2∗MU-comodule; indeed we have seen that up to some shift in degrees
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it identifies with MGL2∗,∗(X × Y ). In other words, for any graded MGL-
correspondence α : X → Y ∈ [X{0}, Y {∗}]PMMGL(k), we obtain

∆(α) =
∑
i

pi ⊗ αi

∈ MU2∗MU⊗MU2∗ MGL2∗,∗(X × Y )

' MU2∗MU⊗MU2∗ [X{0}, Y {∗}]PMMGL(k).

Recall our description of MGLc=0-Modc♥ in Remark 4.10. Let F ∈
MGLc=0-Modc♥; thus F is a kind of presheaf on smooth proper varieties to-
gether with some extra data, namely an action by MGL-correspondences. We
wish to describe CF ∈ MGLc=0-Modc♥; again this is a presheaf with an action
by MGL-correspondences.

Remark 4.14. We have CF = MGLc=0 ∧1c=0 F , which has two structures
as an MGLc=0-module. Since the underlying spectra are the same, the right
module structure has the same value on sections as the left module structure
when viewed as an object of PSH(PMMGL(k)), however the action by graded
MGL-correspondences differs. The “correct” action is on the left, and given a
correspondence α : X → Y , we denote it by α∗L : CF (Y )→ CF (X).

Proposition 4.15.

(1) Given F ∈ MGLc=0-Modc♥ ' PAb(PMMGL(k)), the object CF is given on
sections by

(CF )(X)∗ = MU2∗MU⊗MU2∗ F (X)∗.

Given an MGL-correspondence α : X → Y , the action α∗L : CF (Y )∗ →
CF (X)∗ is given by ∆(α)∗ . In other words, for s ∈ F (Y ) and p ∈ MU2∗MU,
we have

α∗L(p⊗ s) =
∑
i

ppi ⊗ α∗i (s)

in the notation for ∆(α) of above.
(2) The counit map CF → F is given on sections by p⊗ s 7→ ε(p)s, where ε is

the counit of the Hopf algebroid (MU2∗,MU2∗MU).

(3) The comultiplication map CF → C2F is given on sections by p ⊗ s 7→
∆(p)⊗ s.

Proof. (1) Given F ∈ MGLc=0-Mod, we have

CF = MGLc=0 ∧1c=0 F ' (MGLc=0 ∧1c=0 MGLc=0) ∧MGLc=0 F.

Since also MGLc=0 ' MGL ∧ 1c=0 (Corollary 2.12) we get

MGLc=0 ∧1c=0 MGLc=0 ' (MGL ∧MGL) ∧ 1c=0 ' MGLc=0[a1, a2, . . . ],

where MU2∗MU = MU∗[a1, a2, . . . ] (use [NSØ09, Lemma 6.4]). The description
of the sections of CF follows.
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To obtain the description of α∗L, we apply Remark 4.5 with A = MGLc=0,
M = CF , B = MGLc=0 ∧1c=0 MGLc=0 and u the map inserting a unit on
the right. Part (1) of the remark implies that α∗L is MU2∗MU-linear. Thus to
determine α∗L(p⊗ s), we may assume that p = 1. We find that B ∧A F ' CF ,
uF∗(s) = 1 ⊗ s and u∗(α) = ∆(α). Part (2) of the remark thus asserts the
claimed formula α∗L(1⊗ s) = ∆(α)∗(1⊗ s).

(2) The counit map is the module action

CF = MGL ∧ F → F,

which under MGL∧F ' (MGL∧MGL)∧MGLF corresponds to the multiplica-
tion map MGL ∧MGL→ MGL followed by the old module action on F . The
result follows since the multiplication in MGL corresponds to the counit in the
associated Hopf algebroid.

(3) By definition, the comultiplication MGL∧MGL→ MGL∧MGL∧MGL

is by inserting a unit in the middle. The proof is similar to (2). �

Example 4.16. In the special case when α ∈ MU2∗ = [1{0},1{∗}]PMMGL(k),
we get ∆(α) = ηL(α) ⊗ id, where ηL is the left unit of the Hopf algebroid
(MU∗,MU∗MU). Therefore the MU2∗-module structure on (CF )(X)∗ is indeed
the left MU2∗-module structure on MU2∗MU⊗MU2∗ F (X)∗.

4.3. The Chow heart. Using Corollary 4.4 and Proposition 4.15, we can
now describe the category SH(k)c♥ explicitly, by spelling out what modules
under the comonad Cc♥ mean in terms of Remark 4.10. Namely, we have
SH(k)c♥'Cc♥-CoMod, where we view Cc♥ as a comonad on PAb(PMMGL(k)).
An object F ∈ Cc♥-CoMod is given by the following data:
• for every smooth proper variety X, we have a graded MU2∗MU-comodule
F (X)∗ := [Σ2∗,∗X+, F ∧MGL], and
• for every graded MGL-correspondence α : X → Y , we have an MU2∗-linear
map α∗ : F (Y )∗ → F (X)∗

subject to the following conditions:
• (αβ)∗ = β∗α∗, (α+ β)∗ = α∗ + β∗, id∗ = id, 0∗ = 0, and
• for every graded MGL-correspondence α : X → Y , the following diagram
commutes:

F (Y )∗
α∗−−−−→ F (X)∗

∆F,Y

y ∆F,X

y
MU2∗MU⊗MU2∗ F (Y )∗

∆(α)∗−−−−→ MU2∗MU⊗MU2∗ F (X)∗.

A morphism from F to G consists of an MU2∗MU-comodule map F (X)∗ →
G(X)∗ for every smooth proper variety X, compatible with pullback along
graded MGL-correspondences in the evident way.
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We thank an anonymous referee for pointing out the following.

Remark 4.17. As we have observed above, the mapping sets in PMMGL(k)

are naturally MU2∗MU-comodules. In fact, this makes PMMGL(k) into a cat-
egory enriched in MU2∗MU-comodules. The compatibility condition displayed
above precisely means that SH(k)c♥[1/e] is equivalent to the category of en-
riched presheaves on PMMGL(k) (see, e.g., [Rie14, §3.5]).

We can also prove the following.

Proposition 4.18. There is a canonical equivalence

1c=0-Mod[1/e]b ' Db(SH(k)c♥).

Proof. We implicitly invert e throughout. We know by Remark 4.11 that
MGLc=0-Mod ' D(MGLc=0-Modc♥). Consider the comonadic adjunction

F : 1c=0-Modb � MGLc=0-Modb ' Db(MGLc=0-Modc♥) : R.

The functor F is t-exact and conservative by Proposition 4.3, and R is t-exact
since MGLc=0 ∈ SH(k)c≥0. The category MGLc=0-Modc♥ has enough in-
jectives, being a presheaf category. Since F is a conservative exact left ad-
joint, the category 1c=0-Modc♥ also has enough injectives, namely those of
the form RI for I ∈ MGLc=0-Modc♥ injective. To conclude, by the dual
of [Lur17, Prop. 1.3.3.7], it suffices to prove that if X ∈ 1c=0-Modc♥, then
[X,ΣiRI]1c=0-Modb

= 0 for i > 0. But by adjunction, this is the same as
[FX,ΣiI]Db(MGLc=0-Modc♥), which vanishes since F is t-exact and I is injec-
tive. �

4.4. W -cellular objects.

Definition 4.19. Let W be a set of smooth proper schemes over k that
contains Spec(k) and is closed under finite products. Define the W -cellular
category, denoted by SH(k)wcell, to be the subcategory of SH(k) generated
under taking colimits and desuspensions by objects of the form Th(ξ) for ξ ∈
K(X) and X ∈W .

Remark 4.20. When W contains only Spec(k), this specializes to the cel-
lular subcategory in Section 2.7. Since this is the smallest choice, all cellular
objects are W -cellular for any choice of W .

Fix W . In the discussion below, cellular means W -cellular.

4.4.1. The W -cellular Chow t-structure. Given a stable presentable cate-
gory D under SH(k), we denote by Dwcell the subcategory generated under
colimits and desuspensions by the images of SH(k)wcell. Similarly, we write
Dwcell
≥0 for the subcategory generated under colimits and extensions by images

of the objects of the form Th(ξ) for ξ ∈ K(X) and X ∈ W . This defines a
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t-structure on Dwcell, whose truncation we denote by τwcell
c≤0 , τwcell

c≥0 , τwcell
c=0 . We

call it cellular Chow t-structure. The inclusion Dwcell ↪→ D admits a right ad-
joint, called the cellularization functor D → Dwcell. In the following discussion,
we take D to be SH(k) or SH(k)

∧A−−→ A-Mod for some A ∈ CAlg(SH(k)).

We have the following results in the cellular case, analogous to Lemma 3.15.

Lemma 4.21. Let E ∈ SH(k)wcell . If πi,0(E ∧ Th(ξ)) = 0 for all i ∈ Z
and K-theory points ξ on smooth proper varieties X ∈W , then E ' 0.

Proof. The proof is similar to that of Lemma 3.15. �

Let E 7→ Ewcell denote the cellularization of E ∈ SH(k). A key fact is as
follows.

Lemma 4.22. The cellularization functor SH(k) → SH(k)wcell is t-exact
for the Chow t-structures. Equivalently, for E ∈ SH(k)c≥0 , we have Ewcell ∈
SH(k)wcell

c≥0 .

Proof. The equivalence follows from the fact that SH(k)wcell
c≥0 ⊂ SH(k)c≥0,

whence cellularization is always left-t-exact, being right adjoint to a right-t-
exact functor.

Now let E ∈ SH(k)c≥0. To prove that Ewcell ∈ SH(k)wcell
c≥0 it is enough

to show that τwcell
c<0 Ewcell ' 0. Similar to the proof of Proposition 2.14, the

cellular Chow t-structure is right complete. Therefore we only need to show
that τwcell

c=i E
wcell ' 0 for all i < 0.

By Lemma 4.21, it suffice to show πs,0(τwcell
c=i E

wcell ∧ Th(ξ)) = 0 for all
s ∈ Z and K-theory points ξ on smooth proper varieties X ∈W . Theorem 3.14
applied to I = SH(k)wcell

c≥0 shows that

π∗,∗(τ
wcell
c=i E

wcell ∧ Th(ξ)) ' Ext∗,∗MU2∗MU(MU2∗,MGL2∗+i,∗E
wcell ∧ Th(ξ)).

Here we also use the cellular version of Proposition 2.11 that gives (τwcell
c=i E

wcell)

∧ Th(ξ) ' τwcell
c=i (Ewcell ∧ Th(ξ)). Since MGL is cellular, we have

MGL2∗+i,∗E
wcell ∧ Th(ξ) ' MGL2∗+i,∗E ∧ Th(ξ),

which vanishes by Proposition 3.6(2). Therefore when i ≤ 0, the bigraded
homotopy groups of τwcell

c=i E
wcell ∧ Th(ξ) all vanish. The result follows. �

Lemma 4.23. Let A ∈ CAlg(SH(k)c≥0), and consider the following com-
mutative diagram of left adjoint functors:

SH(k) Awcell-Mod A-Mod

SH(k)wcell Awcell-Modwcell A-Modwcell

∧Awcell ∧
AwcellA

∧Awcell ∧
AwcellA

a
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All of the right adjoints are t-exact, all the horizontal right adjoints are conser-
vative, and the bottom right horizontal functor a is an equivalence.

Proof. If F : C → D is a functor of presentable stable ∞-categories such
that D is generated under colimits by the essential image of F , and F admits
a right adjoint G, then G is conservative. Indeed given α : X → Y ∈ D such
that Gα is an equivalence, the class of objects T ∈ D such that Map(T, α) is
an equivalence is closed under colimits and contains the essential image of F ,
hence is all of D, and so α is an equivalence. Conservativity of the horizontal
right adjoints follows from this observation, taking F to be a horizontal left
adjoint. This also means that a is an equivalence if and only if it is fully
faithful, which we may test on the compact generators Σp,qAwcell ∧ Th(ξ) for
K-theory points ξ on smooth proper varieties X ∈W . In other words we need
to show that π∗,∗(Awcell ∧ Th(ξ)) ' π∗,∗(A ∧ Th(ξ)). This holds by definition
(and dualizability of Th(ξ)).

We prove the t-exactness of the right adjoints. Since all the left adjoints
are right t-exact, the right adjoints are left t-exact. Therefore it suffices to show
that all the right adjoints are right t-exact.

First we prove the statement for the top horizontal arrows. We denote the
functors by notation as in the following diagram:

F : SH(k) Awcell-Mod A-Mod : U,
F ′

U ′

L

R

where F and U are the composites. By assumption, A ∈ SH(k)c≥0. Thus for
any E ∈ SH(k)c≥0, UFE ' A∧E ∈ SH(k)c≥0. Since the non-negative part of
A-Mod is generated by F (SH(k)c≥0) and U preserves colimits (its left adjoint
preserving compact generators), U is right-t-exact. By Lemma 4.22,

Awcell ∈ SH(k)wcell
c≥0 ⊂ SH(k)c≥0.

We may thus apply the same argument to Awcell-Mod and deduce that the U ′

is t-exact. Now we show the right t-exactness of R. Given E ∈ A-Mod≥0, by
t-exactness of U and U ′, we have 0 ' U(τ<0E) ' (U ′R(E))<0 ' U ′τ<0R(E).

Using conservativity of U ′, we conclude that τ<0R(E) ' 0 and equivalently
R(E) ∈ Awcell-Mod≥0.

The same argument proves the t-exactness statements for the bottom left
arrow (and the bottom right arrows are t-exact, being equivalences).

It remains to check that the vertical right adjoints (cellularizations) are
t-exact. This is true for the left-hand vertical right adjoint by Lemma 4.22. Ex-
actness of the other two vertical right adjoints follows formally, since a functor
is t-exact if and only if its composite with a t-exact conservative functor is. �
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4.4.2. W -cellular reconstruction.

Corollary 4.24. Let −∞ ≤ m ≤ n ≤ ∞ and A ∈ CAlg(SH(k)c≥0).
The composite functor

A-Modwcell
[m,n] ↪→ A-Mod

τ[m,n]−−−→ A-Mod[m,n]

is fully faithful.

Proof. Since cellularization preserves the ≥ m part by Lemma 4.23, we
have an adjunction

A-Modwcell
[m,∞] � A-Mod[m,∞] : (−)wcell.

Consider the following diagram of adjunction pairs:

A-Modwcell
[m,∞] A-Mod[m,∞]

A-Modwcell
[m,n] A-Mod[m,n]

(−)wcell

τwcell
≤n

τ≤ni

We denote by L : A-Modwcell
[m,∞] → A-Mod[m,n] the composite of the left ad-

joints and R its right adjoint. Note that the vertical adjunctions are in fact
localizations, namely annihilating the > n parts. It follows that there is an
induced adjunction of the localizations

τ≤n : A-Modwcell
[m,n] � A-Mod[m,n] : (−)wcell,

where left adjoint is the composite L◦ i, and thus it is equivalent to the functor
we are required to show is fully faithful. It thus suffices to show that RL(E) '
E for any E ∈ A-Modwcell

[m,n] ⊂ A-Modwcell
[m,∞]. Since cellularization is t-exact by

Lemma 4.23, we have

RL(E) ' (τ≤nE)wcell ' τwcell
≤n (Ewcell) ' τwcell

≤n (E) ' E.

This concludes the proof. �

Corollary 4.25. Let −∞ ≤ m ≤ n <∞.
(1) The following diagram is a pullback square:

1c=0-Modwcell
[m,n] −−−−→ 1c=0-Mod[m,n]y y

MGLc=0-Modwcell
[m,n] −−−−→ MGLc=0-Mod[m,n].

(2) The comonad C on MGLc=0-Mod restricts to a comonad Cwcell
[m,n] on

MGLc=0-Modwcell
[m,n] and

Cwcell
[m,n]-CoMod ' 1c=0-Modwcell

[m,n].
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Proof. (1) In other words, given E ∈ 1c=0-Mod[m,n], E is in (the essential
image of the fully faithful inclusion of) 1c=0-Modwcell

[m,n] if and only if E ∧MGL

is in (the essential image of) MGLc=0-Modwcell
[m,n]. Since necessity is clear, we

show sufficiency. Since ∧MGL is conservative on 1c=0-Mod[m,n] as we proved
in Proposition 4.3, it is enough to show that Ewcell ∧MGL ' E ∧MGL. Since
MGL is cellular, we have Ewcell ∧MGL ' (E ∧MGL)wcell, and E ∧MGL is
cellular in MGLc=0-Mod[m,n] by assumption, so the result follows.

(2) C restricts as claimed since MGLc=0 ∧MGL ∈ MGLc=0-Modwcell,c♥.
Now by construction, under the equivalence C[m,n]-CoMod ' 1c=0-Mod[m,n],
Cwcell

[m,n]-CoMod is equivalent to the full subcategory of 1c=0-Mod[m,n] spanned
by those objects E such that E ∧MGL is cellular in MGLc=0-Mod[m,n]; this
is 1c=0-Modwcell

[m,n] by (1). �

Arguing as in the proof of Proposition 4.8, we have the following cellular
analogue.

Proposition 4.26. We have a canonical t-exact, symmetric monoidal
equivalence

MGLc=0-Modwcell ' PSH(PMwcell
MGL(k)),

where PMwcell
MGL(k) ⊂ PMMGL(k) denote the full subcategory spanned by X{i}

for X ∈W and i ∈ Z.

Proof. The proof is similar to that of Proposition 4.8 by replacing the
whole categories with the cellular categories. �

4.4.3. Field extensions. We discuss the reconstruction theorems in the cel-
lular cases for different choices of W .

First, set W to be {Spec(l)| l/k is a finite separable extension}. Let G =

Gal(k) be the absolute Galois group. Recall that the stable category of genuine
G-spectra SH(BG) [BH21, Exam. 9.12] admits a t-structure with heart the
category of G-Mackey functors [BH21, Prop. 9.11]

PAb(Span(FinG)) =: MackG.

Here FinG denotes the category of finite discrete G-sets. The canonical sym-
metric monoidal cocontinuous functor SH → SH(BG) induces the “constant
Mackey functor”

Ab→ MackG, A 7→ A.

This is symmetric monoidal and so preserves rings, Hopf algebroids, etc. In
particular, from the usual Hopf algebroid (MU2∗,MU2∗MU) we obtain the con-
stant Hopf algebroid in (graded) Mackey functors (MU2∗,MU2∗MU).
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Corollary 4.27. SetW to be {Spec(l) | l/k is a finite separable extension},
and let G = Gal(k) be the absolute Galois group. We have

SH(k)wcell,c♥ ' MU2∗MU-CoMod,

1c=0-Modwcell ' Hov(MU2∗MU),

MGLc=0-Modwcell,c♥ ' MU2∗-Mod.

Here -CoMod, Hov and -Mod are performed relative to MackG .

Proof. Recall the cocontinuous symmetric monoidal functor c : SH(BG)→
SH(k) [BH21, Prop. 10.6]. For X ∈ FinG, it satisfies c(Σ∞+ X) ' Σ∞+ cX for
some cX finite étale over k, and hence c(SH(BG)≥0) ⊂ SH(k)c≥0. There is
thus an induced functor

c : MackG ' SH(BG)♥ → MGLc=0-Modwcell,c♥.

Let MackZ
G denote the category of Z-graded Mackey functors. The invertible

object Σ2,1MGLc=0 ∈ MGLc=0-Modwcell,c♥ determines a symmetric monoidal
functor cZ : MackZ

G → MGLc=0-Modwcell,c♥, which admits a right adjoint c∗Z.
We claim c∗Z(MGLc=0) ' MU2∗ and MGLc=0-Modwcell,c♥ ' MU2∗-Mod.
Since both sides are of the form PAb and the functor is surjective on

strongly dualizable generators, the second claim follows from the first. Let X
be the finite G-set G/H for some subgroup H ⊂ G. Using Section 4.2, we
compute that

c∗Z(MGLc=0)(X)i ' MapMGLc=0-Mod(c(X)(i),MGLc=0)

' MGL2i,i(Spec(lH)) ' MU2i.

This is indeed the formula expected for the sections of a constant Mackey func-
tor. In other words, c∗Z(MGLc=0)(−)∗ and MU2∗ ∈ MackG = PAb(Span(FinG))

have canonically identical sections. What we need to check is that given
α : X → Y ∈ Span(FinG), the pullback maps α∗ of the two presheaves agree.
Any map in Span(FinG) is a composite of a “usual” map f : X → Y ∈ FinG and
a “reverse” map gt : Y → Z ∈ Span(FinG) corresponding to g : Z → Y ∈ FinG.
It suffices to separately compare pullbacks along f (restriction maps) and
pullbacks along gt (transfers). Our formula for c∗Z(MGLc=0)(X)∗ is actually
functorial in X ∈ FinG, i.e., the restriction maps are as expected. It re-
mains to compare the transfers. We employ the following trick. The cate-
gory FinG can be made into a site, where the coverings are those maps of
finite G-sets that are surjective (ignoring the G-actions); this is often called
the étale topology. Denote by ShvAb(Span(FinG)) ⊂ PAb(Span(FinG)) the full
subcategory of those Mackey functors whose underlying presheaves on FinG
are étale sheaves, and by ShvAb(FinG) ⊂ PAb(FinG) the category of étale
sheaves. Note that the underlying presheaf MU2∗ ∈ PAb(FinG) is a sheaf in
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the étale topology. By [BH21, Prop. C.11, Cor. C.13], the forgetful functor
ShvAb(Span(FinG)) → ShvAb(FinG) is an equivalence. In other words, the
transfers are uniquely determined by the restriction maps.

We have thus established the third equivalence. The other two follow for-
mally from Propositions 4.25 and 4.15, i.e., the identification of SH(k)wcell,c♥

with Cwcell-CoMod, and the explicit description of C, translated into the cat-
egory MGLc=0-Modwcell,c♥ ' MU2∗-Mod (and similarly for 1c=0-Modwcell).

�

We have similar results for another two choices of W :

Corollary 4.28. Let l/k be a finite Galois extension with Galois group G.
Let W be {Spec(l′) | l′ is a subextension of l/k}. We have

SH(k)wcell,c♥ ' MU2∗MU-CoMod,

1c=0-Modwcell ' Hov(MU2∗MU),

MGLc=0-Modwcell,c♥ ' MU2∗-Mod.

Again, everything is relative to MackG , but this time for the finite group G.

Proof. Similarly, by [BH21, Prop. 10.6], we have a cocontinuous symmetric
monoidal functor cl/k : SH(BG) → SH(k). The results follow from the same
arguments as in the proof of Corollary 4.27. �

As mentioned in Remark 4.20, we can also obtain results for the ordinary
cellular category by taking W to be {Spec(k)}.

Corollary 4.29. We have canonical, symmetric monoidal, t-exact equiv-
alences

SH(k)cell,c♥ ' MU2∗MU-CoMod,

1c=0-Modcell ' Hov(MU2∗MU),

MGLc=0-Modcell,c♥ ' MU2∗-Mod.

Proof. It follows from Corollary 4.28 by taking the trivial extension. �

5. Towards computations of motivic stable stems

In this section, we discuss a strategy for computing differentials in the mo-
tivic Adams spectral sequence based on HZ/p for a general motivic spectrum X

and, in particular, consequentially computing motivic stable stems. This strat-
egy has worked very well for 1 over C in the work [GWX21], [IWX20a],
[IWX20b]. Since the main structural theorems in this paper work for any
field k, whose exponential characteristic is different from the prime p, we can
now generalize the strategy over C to the field k. We will first discuss the
general strategy over k and then take a closer look at the cases k = C,R, and
finite fields.
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5.1. Algebraicity of the motivic Adams spectral sequence in the Chow heart .
The crucial point of the strategy for computing Adams differentials over C is
the following theorem [GWX21, Th. 1.3], describing the algebraicity of the
motivic Adams spectral sequence of 1∧p /τ .

Theorem 5.1 (Gheorghe–Wang–Xu). For each prime p, there is an iso-
morphism of spectral sequences, between the HZ/p-based motivic Adams spectral
sequence for 1∧p /τ , and the algebraic Novikov spectral sequence for BP2∗ .

Since the algebraic Novikov spectral sequence for BP2∗ can be completely
computed by a computer program [IWX20b] within any reasonable range, The-
orem 5.1 provides a source of nontrivial differentials in the motivic Adams spec-
tral sequence for 1∧p /τ . We can then pull back these differentials along the map
of spectral sequences induced by the unit map 1

∧
p → 1

∧
p /τ :

motASS(1∧p ) −→motASS(1∧p /τ),

and push forward these differentials along the map of spectral sequences in-
duced by the quotient map 1

∧
p /τ → Σ1,−1

1
∧
p :

motASS(1∧p /τ) −→motASS(Σ1,−1
1
∧
p ).

As a consequence, we obtain differentials in the motivic Adams spectral
sequence for 1∧p .

Over an arbitrary field k, the substitute for 1∧p /τ over C consists of the
objects 1c=n for n ≥ 0. They all live in a suspension of the Chow heart.
Theorem 5.4 below is a generalization of Theorem 5.1.

In general, let F ∈ SH(k)c♥. We can attempt to compute π∗,∗F by run-
ning the HZ/p-based motivic Adams spectral sequence. This is the trigraded
spectral sequence obtained from the graded cosimplicial spectrum

map(S0,∗, F ∧ CB•(HZ/p)) ' map(S0,∗, F ∧1c=0 CB•
1c=0

(1c=0 ∧HZ/p)).

The Hopkins–Morel isomorphism (with the exponential characteristic e implic-
itly inverted) [Hoy15]

HZ ' MGL/(a1, a2, . . . )

implies that
1c=0 ∧HZ/p ' 1c=0 ∧MGL/(p, a1, a2, . . . )

is cellular in 1c=0-Mod, where p 6=e. Under the equivalence (see Corollary 4.29)

1c=0-Modcell ' Hov(MU2∗MU),

1c=0 ∧HZ/p thus corresponds to MU2∗MU/(p, a1, a2, . . . ).
We give a more general definition of the algebraic Novikov spectral se-

quence in the category of Hov(MU2∗MU).
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Definition 5.2. Let X be an object in Hov(MU2∗MU), and let H be a
commutative monoid in Hov(MU2∗MU). Define the algebraic Novikov spec-
tral sequence based on H for X to be the spectral sequence associated to the
cosimplicial object X ∧ CB•(H) in Hov(MU2∗MU), of the form

Es,i,t1 = πsmapHov(MU2∗MU)(Σ
tMU2∗, X ∧ CBi(H))

=⇒ πs−imapHov(MU2∗MU)(Σ
tMU2∗, X),

with differentials dr : Es,i,tr → Es+r−1,i+r,t
r . Here ΣtMU2∗ denote MU2∗ with

the internal degree of every element shifted positively by t. A similar defi-
nition of the algebraic Novikov spectral sequence applies to the category of
Hov(BP2∗BP).

Theorem 5.3. Let F ∈SH(k)cell,c♥ . Write M for the MU2∗MU-comodule
associated to F under the equivalence in Corollary 4.29, and write H for the
comodule MU2∗MU/(p, a1, a2, . . . ). The trigraded motivic Adams spectral se-
quence for F based on HZ/p is equivalent (with all higher and multiplicative
structure) to the algebraic Novikov spectral sequence based on H for M .

Proof. We have canonical equivalences of graded cosimplicial spectra:

map(1, F ∧ CB•(HZ/p))
' map(1, F ∧1c=0 CB•

1c=0
(1c=0 ∧HZ/p))

' map1c=0-Mod(1c=0, F ∧1c=0 CB•
1c=0

(1c=0 ∧HZ/p))
' mapHov(MU2∗MU)(MU2∗, M ∧ CB•(H));

here the first equivalence follows from the fact that F is a module over 1c=0,
the second is by adjunction, and the third is by Corollary 4.29. �

More generally we have the following.

Theorem 5.4. Let F ∈ SH(k)c♥ . Write M for the MU2∗MU-comodule
associated to F cell under the equivalence in Corollary 4.29, and write H for the
comodule MU2∗MU/(p, a1, a2, . . . ). The same equivalence of spectral sequences
holds.

Proof. Indeed for general F ∈ SH(k)c♥, its HZ/p-based motivic Adams
spectral sequence coincides with that for F cell. �

The category of p-local MU2∗MU-comodules and the category of BP2∗BP-
comodules are equivalent as abelian categories (cf. [Mor85, Prop. 1.2.3]). The
comodule MU2∗MU/(p, a1, a2, . . . ) is p-local, and it corresponds to

BP2∗ ⊗MU2∗ MU2∗MU/(p, a1, a2, . . . ) ∼= BP2∗BP/I
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as a BP2∗BP-comodule, where I = (p, v1, v2, . . . ) is the augmentation ideal
of BP2∗. Therefore, the algebraic Novikov spectral sequence of an MU2∗MU-
comodule X based on H = MU2∗MU/(p, a1, a2, . . . ), is equivalent to the al-
gebraic Novikov spectral sequence of its p-localization X(p) based on H, and
is equivalent to the algebraic Novikov spectral sequence of its corresponding
BP2∗BP-comodule based on BP2∗BP/I.

Corollary 5.5. Let F ∈ SH(k)c♥ . Then the trigraded motivic Adams
spectral sequence for F based on HZ/p is equivalent (with all higher and mul-
tiplicative structure) to the trigraded algebraic Novikov spectral sequence for
BPGL2∗,∗F based on BP2∗BP/I .

Proof. Immediate from Theorem 5.4 and the above discussion. �

The original definition of the algebraic Novikov spectral sequence ([Mil75],
[Nov67]) is defined at each prime p in the category of BP2∗BP-comodules, and
only for BP2∗. It converges to the E2-page of the Adams-Novikov spectral
sequence Ext∗,∗BP2∗BP(BP2∗,BP2∗) for the (p-completed) sphere spectrum. It is
defined by filtering the cobar complex using the powers of the augmentation
ideal I = (p, v1, v2, . . . ).

In the case of BP2∗, our Definition 5.2 of the algebraic Novikov spectral
sequence based on BP2∗BP/I is equivalent to the original one. This is proved
in [GWX21, §9].

A natural question is the following.

Question 5.6. For a BP2∗BP-comodule Y , we have the following two defi-
nitions of the algebraic Novikov spectral sequence:

• the one using the filtration of the powers of the augmentation ideal I, and
• the one in Definition 5.2 based on BP2∗BP/I.

When are they equivalent?

We give a sufficient condition for such an equivalence in Proposition 5.8.

We first recall the following definition in homological algebra (see, e.g.,
[Şeg01]).

Definition 5.7. A BP2∗-module Y has Levin index 1 if the following maps
that are induced by In → In−1 are zero for all n ≥ 1:

Ext∗,∗BP2∗
(In−1Y,Fp)→ Ext∗,∗BP2∗

(InY,Fp),

where I = (p, v1, v2, . . . ).

It is proved in [Şeg01] and [GWX21, Lemma 9.7] that BP2∗ itself has Levin
index 1.



THE CHOW t-STRUCTURE ON THE ∞-CATEGORY OF MOTIVIC SPECTRA 753

Proposition 5.8. Let Y be a BP2∗BP-comodule whose underlying BP2∗-
module has Levin index 1. Then the two definitions of the algebraic Novikov
spectral sequence for Y in Question 5.6 are equivalent.

Proof. The proof is essentially identical to the proof of Theorem 8.3 of
[GWX21], where the technical condition that BP2∗ has Levin index 1 ([GWX21,
Lemma 9.7]) is replaced by the general condition that Y has Levin index 1. �

Remark 5.9. In general, without the condition that Y has Levin index 1,
the two definitions of the algebraic Novikov spectral sequences are not equiv-
alent. In fact, for F ∈ SH(k)c♥, suppose that BPGL2∗,∗F has Levin index
at least 2. Then the algebraic Novikov spectral sequence for BPGL2∗,∗F de-
fined by powers of I is isomorphic to a modified version of the motivic Adams
spectral sequence in the sense of [BHHM08, §3].

5.2. The strategy. For a motivic spectrum X with the property that X '
Xc≥0, we consider its Postnikov–Whitehead tower with respect to the Chow
t-structure:

Xc≥2 Xc=2

Xc≥1 Xc=1

X Xc≥0 Xc=0.

Remark 5.10.

• By Corollary 3.7 and for degree reasons, if we take MGL∗,∗ of each term
of this Postnikov–Whitehead tower, the corresponding Chow spectral se-
quence computing MGL∗,∗X collapses at its E1-page.
• If we take π∗,∗ of each term of this Postnikov–Whitehead tower, by Theo-
rem 3.14, we have

π∗,∗Xc=n ' Ext∗,∗MU2∗MU(MU2∗,MGL2∗+n,∗X).

The E1-page of the corresponding tower spectral sequence computing π∗,∗X
is isomorphic to the E2-page of the motivic Adams–Novikov spectral se-
quence. Over C, for the case X = 1

∧
p , it was proved in [Isa19] that after a

re-grading, these two spectral sequences are isomorphic. We suspect that
this is an isomorphism of spectral sequences after a re-grading over a gen-
eral field.
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Now consider the motivic Adams spectral sequences based on HZ/p for
every term in the Postnikov–Whitehead tower with respect to the Chow t-
structure, and the induced maps among them. This gives us the following
tower of motivic Adams spectral sequences:

motASS(Xc≥2) motASS(Xc=2) algNSS(BPGL2∗+2,∗X)

motASS(Xc≥1) motASS(Xc=1) algNSS(BPGL2∗+1,∗X)

motASS(X) motASS(Xc≥0) motASS(Xc=0) algNSS(BPGL2∗,∗X).

We now have a strategy for computing differentials in the motivic Adams
spectral sequence for X based on HZ/p. The input of our computations is
BPGL∗,∗X and HZ/p∗,∗X over the base field k.

For every BP∗BP-comodule BPGL2∗+n,∗X, its algebraic Novikov spectral
sequence can be computed in a large range by a computer program. This
gives many non-zero differentials in the motivic Adams spectral sequence for
Xc=n. We may then pull back these Adams differentials to the motivic Adams
spectral sequences for Xc≥n, and push forward them to the motivic Adams
spectral sequences for X.

Here are detailed steps of this strategy:

(1) Compute Ext∗,∗,∗A (HZ/p∗,∗,HZ/p∗,∗X) over the k-motivic Steenrod algebra
by a computer program. These Ext-groups consist of the E2-page of the
motivic Adams spectral sequence for X based on HZ/p.
• Over C for the spectrum 1

∧
2 , this was computed in a large range in

[IWX20a], [IWX20b].
• Over R for the spectrum 1

∧
2 , this was computed in a range in [DI17],

[BI20] using the ρ-Bockstein spectral sequence and computations over
C. This ρ-Bockstein computation can also be automated.
• Over finite fields for the spectrum 1

∧
2 , this was computed in [WØ17]

by a long exact sequence with the other two terms the C-motivic Ext.
The boundary homomorphism corresponds to the Steenrod operation
action on powers of τ .

(2) Compute by a computer program the algebraic Novikov spectral sequence
based on BP2∗BP/I for the BP2∗BP-comodules BPGL2∗+n,∗X for every n
in a reasonable range. The structures of these comodules BPGL2∗+n,∗X

depend on each field k for n ≥ 1. For n = 0, BPGL2∗+n,∗ = BP2∗ after
p-completion for all fields k. The case for BP2∗ was computed in a large
range in [IWX20a], [IWX20b]. This computation includes all differentials
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and the multiplicative structure of the cohomology of the Hopf algebroid
(BP2∗,BP2∗BP).

(3) Identify the k-motivic Adams spectral sequence based on HZ/p for each
Xc=n, with the algebraic Novikov spectral sequence based on BP2∗BP/I

for BPGL2∗+n,∗X, for n ≥ 0. This computation includes an identification
of the abutments with the multiplicative (and higher) structures.

(4) Compute the mod p motivic homology of Xc≥n using the universal coeffi-
cient spectral sequence (see Propositions 7.7 and 7.10 of [DI05]):⊕

k≥n
TorBP2∗
∗,∗ (BPGL2∗+k,∗X, Z/p) =⇒ π∗,∗Xc≥n ∧HZ/p.

Here we use the fact that 1c=0∧BPGL/(p, v1, . . . ) is a cellular module over
1c=0 ∧ BPGL and the equivalences

Xc≥n ∧HZ/p ' Xc≥n ∧ BPGL/(p, v1, . . . )

' (Xc≥n ∧ BPGL) ∧(1c=0∧BPGL) (1c=0 ∧ BPGL/(p, v1, . . . )),

and the isomorphisms

π∗,∗1c=0 ∧ BPGL ∼= BP2∗,

π∗,∗Xc≥n ∧ BPGL ∼=
⊕
k≥n

BPGL2∗+k,∗X,

π∗,∗1c=0 ∧ BPGL/(p, v1, . . . ) ∼= Z/p.

(5) Compute by a computer program the E2-pages of the motivic Adams spec-
tral sequence for Xc≥n based on HZ/p, using the computation of π∗,∗Xc≥n∧
HZ/p in step (4).

(6) Pull back motivic Adams differentials for Xc=n to motivic Adams differ-
entials for Xc≥n, and then push forward to motivic Adams differentials
for X.

(7) Deduce additional Adams differentials for X with a variety of ad hoc argu-
ments. The most important methods are Toda bracket shuffles and com-
parison to known results in the C-motivic Adams spectral sequence.

Most of the computations in steps (1)–(5) can be automated. In the rest of this
section, we will elaborate on step (6) of this strategy, in the cases of X = 1

and k = C, R and finite fields.

5.3. Continuous Adams spectral sequences. For the sphere spectrum 1, the
inputs of our strategy are HZ/p∗,∗ and BPGL∗,∗. In practice, it is more plausible
to know π∗,∗(BPGL∧p ) rather than BPGL∗,∗. In order to take the p-completion
into account, we consider pro-objects as a substitute.
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Definition 5.11. Let (Xi)i∈I be a pro-object in SH(k). We call the cosim-
plicial object

∆ 3 n 7→ lim
i

[Xi ∧ (HZ/p)∧n]

the continuous HZ/p-resolution of (Xi)i∈I , and the associated spectral sequence
the continuous Adams spectral sequence of (Xi)i∈I .

Remark 5.12. Given X ∈ SH(k), write

Fp(X) = (· · · → X
p−→ X

p−→ X) ∈ Pro(SH(k)),

and (X/pn)n ∈ Pro(SH(k)) for the pro-p-completion. Then there is a fiber
sequence

Fp(X)→ X → (X/pn)n,

where in the middle we mean the constant pro-object. Thus if Y ∈ SH(k)

such that p : Y → Y is equivalent to the trivial map, then Fp(X) ∧ Y ' 0 in
Pro(SH(k)) and so X ∧ Y ' (X/pn ∧ Y )n in Pro(SH(k)). In particular, the
continuous HZ/p-resolution of the pro-p-completion (X/pn)n is just the usual
HZ/p-resolution of X.

We now consider the following tower of pro-objects:

· · · → ((1/pn)c≥i)n → · · · → ((1/pn)c≥1)n → ((1/pn)c≥0)n ' (1/pn)n.

The layers are given by

((1/pn)c=i)n ∈ Pro(SH(k)c♥).

Their continuous Adams spectral sequences are related in the way outlined
above to the continuous Adams spectral sequence for ((1/pn)c≥0)n, which is
just the pro-p-completion of 1, and so by Remark 5.12 we recover information
about the usual motivic Adams spectral sequence. It remains to identify the
continuous Adams spectral sequence of the layers; we can achieve this under
some simplifying assumptions.

Proposition 5.13. Suppose that π∗,∗BPGL∧p has bounded p-torsion. Put

Bi
∗ = π2∗+i,∗BPGL∧p ,

viewed as a BP2∗BP-comodule. Then (π∗,∗(1/p
n)c=i)n corresponds to the pro-

p-completion of Bi
∗ ∈ Hov(MU2∗MU). In particular, the continuous Adams

spectral sequence of ((1/pn)c=i)n is isomorphic to the algebraic Novikov spectral
sequence of Bi

∗ .

Proof. We may replace BP by MU throughout. We know that (1/pn)c=i ∈
SH(k)cell,c♥ corresponds to the MU2∗MU-comodule Xi

n = π2∗+i,∗(MGL/pn).
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Let Ki
n be the kernel of multiplication by pn on Bi

∗. Then we have a short
exact sequence

0→ (Bi/pn)n → (Xi
n)n → (Ki−1

n )n → 0

of pro-objects in MU2∗MU-comodules. The bonding maps in (Ki−1
n )n are given

by multiplication by p, and since the p-torsion is bounded, sufficiently long
composites of bonding maps are zero. It follows that (Ki−1

n )n ' 0 as a pro-
object, and so (Bi/pn)n ' (Xi

n)n as pro-objects. Let

Y i
n = cof(Bi pn−→ Bi) ∈ Hov(MU2∗MU);

in other words, (Y i
n)n is the pro-p-completion of Bi in the derived category of

comodules. We have a cofiber sequence

Σ(Ki
n)n → (Y i

n)n → (Bi/pn)n,

and so arguing as before and combining with the previous result, we find that

(Y i
n)n ' (Bi/pn)n ' (Xi

n)n.

The last sentence follows from Remark 5.12. �

5.4. Over the complex numbers. Over the complex numbers, this strategy
has been proved to be very successful. In [IWX20a], [IWX20b], using this
method, the knowledge of both C-motivic and classical stable homotopy groups
of spheres at the prime 2 was extended from 60 to 90. It is also used in [GWX21,
§10] to provide one-line proofs for many historically hard Adams differentials.

In fact, over C, we have π∗,∗BPGL∧p = (BP2∗)
∧
p [τ ] = Z∧p [τ, v1, v2, . . .], with

|τ | = (0,−1), |vi| = (2pi − 2, pi − 1). In other words, we have

π2∗+n,∗BPGL∧p
∼=

{
Σ0,−m(BP2∗)

∧
p if n = 2m and m ≥ 0,

0 otherwise,

where Σ0,−m(BP2∗)
∧
p means every element in (BP2∗)

∧
p is shifted by bidegree

(0,−m).
This corresponds to the fact that

π∗,∗(1
∧
p )c=n ∼=

{
π∗,∗Σ

0,−m
1
∧
p /τ if n = 2m and m ≥ 0,

0 otherwise.

By Proposition 7.2 of [GWX21], we have MGL∗,∗1
∧
p
∼= π∗,∗MGL∧p over C.

By a similar proof to that of Proposition 7.2 of [GWX21], we have BPGL∗,∗1
∧
p

∼= π∗,∗BPGL∧p . Then the tower of motivic Adams spectral sequences based on
HZ/p becomes
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motASS((1∧p )
c≥4) motASS((1∧p )

c=4
)

algNSS

(Σ0,−2(BP2∗)
∧
p )

motASS((1∧p )c≥2) motASS(1∧p c=2
)

algNSS

(Σ0,−1(BP2∗)
∧
p )

motASS(1∧p ) motASS(1∧p ) motASS((1∧p )
c=0

) algNSS((BP2∗)
∧
p )

Here we may view Σm,n(BP2∗)
∧
p as an element in the derived category of

p-completed BP2∗BP-comodules: It is a cochain complex concentrated in coho-
mological degree 2n−m, with the comodule Σ2n(BP2∗)

∧
p in that cohomological

degree. Under the equivalence of the categories in Corollary 4.29, Σm,n(BP2∗)
∧
p

corresponds to Σm,n
1
∧
p /τ .

In this case, all horizontal arrows are identical, up to a shift of degrees.
So the information above the bottom row is not of much use. This is indeed
the case in the work of [IWX20a], [IWX20b], where only the naturality of the
motivic Adams spectral sequences of the unit map 1

∧
p → 1

∧
p /τ was used.

5.5. Over the real numbers. Over the real numbers, at the prime 2, recall
that we have

π∗,∗HZ/2 = Z/2[ρ, τ ],

with |ρ| = (−1,−1), |τ | = (0,−1). The class ρ is a map

ρ : 1→ Gm = Σ1,1
1,

that corresponds to −1 ∈ R× (see [Bac18a] for example), and it can be further
viewed as a map

ρ : Σ−1,−1
1
∧
2 → 1

∧
2 .

We denote by 1∧2 /ρ the cofiber of ρ.
By Corollary 1.9 of [BS20], there is an equivalence between the category of

cellular spectra over C and the category of cellular modules over 1∧2 /ρ over R,
under which the C-motivic sphere 1∧2 corresponds to 1∧2 /ρ over R.

The class τ then corresponds to a map

τ : Σ0,−1
1
∧
2 /ρ→ 1

∧
2 /ρ.

We denote by 1∧2 /(ρ, τ) the cofiber of τ .
The R-motivic π∗,∗BPGL∧2 was computed by Hu–Kriz [HK01] and Hill

[Hil11].
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Proposition 5.14. We have

π∗,∗BPGL∧2
∼= Z∧2


ρ,

v0, τ2v0, τ4v0, τ6v0, τ8v0, . . .

v1, τ4v1, τ8v1, . . .

v2, τ8v2, . . .

· · ·

 /

v0 = 2

ρv0 = 0

ρ3v1 = 0

ρ7v2 = 0

· · ·


and the generators satisfy the further relations

τ2i+1·jvi · τ2k+1·lvk = τ2i+1(j+2k−il)vivk

when i ≤ k , as if the class τ were an element in this ring.
Here the bidegrees of the generators are

|τ | = (0,−1), |ρ| = (−1,−1), |vn| = (2n+1 − 2, 2n − 1).

For the Chow degrees, we have τ and ρ in degrees 2 and 1, and we have
all vn’s in degree 0. Therefore, we can read off the Chow degree n part of the
R-motivic π∗,∗BPGL∧2 . The first few are the following:

• Chow = 0: Z∧2 [v0, v1, . . .] = (BP2∗)
∧
2 .

• Chow = 1: ρ · Z∧2 [v0, v1, . . .]/ρv0 = Σ−1,−1BP2∗/2.

• Chow = 2: ρ2 · Z∧2 [v0, v1, . . .]/ρv0 = Σ−2,−2BP2∗/2.

• Chow = 3: ρ3 · Z∧2 [v0, v1, . . .]/(ρv0, ρ
3v1) = Σ−3,−3BP2∗/(2, v1).

• Chow = 4: ρ4(BP2∗)
∧
2⊕τ2v0(BP2∗)

∧
2 = Σ−4,−4BP2∗/(2, v1)⊕Σ0,−2(BP2∗)

∧
2 .

• Chow = 5: ρ5(BP2∗)
∧
2 = Σ−5,−5BP2∗/(2, v1).

• Chow = 6: ρ6(BP2∗)
∧
2 = Σ−6,−6BP2∗/(2, v1).

• Chow = 7: ρ7(BP2∗)
∧
2 = Σ−7,−7BP2∗/(2, v1, v2).

• Chow = 8: ρ8(BP2∗)
∧
2 ⊕

τ4v0(BP2∗)∧2 +τ4v1(BP2∗)∧2
τ4v0·v1−τ4v1·v0

= Σ−8,−8BP2∗/(2, v1, v2)⊕ (Σ0,−4(BP2∗)
∧
2 + Σ2,−3BP2∗/2).

On the spectrum level, this corresponds to the fact that

π∗,∗(1
∧
2 )c=0

∼= π∗,∗1
∧
2 /(ρ, τ).

In the category of BP2∗BP-comodules, we have short exact sequences

0 BP2∗/In BP2∗/In BP2∗/In+1 0,
vn+1
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where In = (2, v1, . . . , vn). This implies that we could realize the comodule
BP2∗/In inductively by the spectrum 1

∧
2 /(ρ, τ, 2, v1, . . . , vn). These spectra are

all E∞.
In higher Chow degrees, these comodules are more complicated. However,

Corollary 4.29 tells us they correspond to module spectra over 1∧2 /(ρ, τ). By
Proposition 5.14, these comodules can be filtered such that the subquotients are
shifts of BP2∗/In. Then by naturality, we can use the motivic Adams spectral
sequences for shifts of the spectra 1

∧
2 /(ρ, τ, 2, v1, . . . , vn) to study the one for

(1∧2 )c=n.
For example in Chow degree 8, by Corollary 4.29, the second summand

of the comodule, denoted by M8, corresponds to a module spectrum over
1
∧
2 /(ρ, τ), denoted by X8. Then the short exact sequence of comodules

0 Σ0,−4(BP2∗)
∧
2 M8 Σ2,−3BP2∗/2 0

gives us a cofiber sequence of module spectra over 1∧2 /(ρ, τ)

Σ0,−4
1
∧
2 /(ρ, τ) X8 Σ2,−3

1
∧
2 /(ρ, τ, 2).

This cofiber sequence gives us maps of motivic Adams spectral sequences:

motASS(Σ0,−4
1
∧
2 /(ρ, τ)) motASS(X8) motASS(Σ2,−3

1
∧
2 /(ρ, τ, 2)).

We anticipate that this would allow us to compute motivic Adams differentials
for X8 from the ones for Σ0,−4

1
∧
2 /(ρ, τ) and Σ2,−3

1
∧
2 /(ρ, τ, 2), which are purely

algebraic. This gives us a tower of motivic Adams spectral sequences:

motASS((1∧2 )c≥3) motASS((1∧2 )c=3)

algNSS

(Σ−3,−3BP2∗/(2, v1))

motASS((1∧2 )c≥2) motASS((1∧2 )c=2)

algNSS

(Σ−2,−2BP2∗/2)

motASS((1∧2 )c≥1) motASS((1∧2 )c=1)

algNSS

(Σ−1,−1BP2∗/2)

motASS(1∧2 ) motASS(1∧2 ) motASS((1∧2 )c=0) algNSS((BP2∗)
∧
2 ).

Comparing to the case over C, it is clear that over R different rows contain dif-
ferent algebraic information of motivic Adams differentials. We anticipate that
this allows us to obtain motivic Adams differentials for 1∧2 from the algebraic
Novikov spectral sequences for various BP2∗BP-comodules.
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5.6. Over finite fields. Next, we discuss the cases of finite fields Fq, where
q is a power of an odd prime. We are going to concentrate on the computations
at the prime 2.

Recall from [HKØ17] and Theorem 8.2 of [Kyl19] (see also [WØ17] and
Appendix C) that we have

• π∗,∗HZ/2 =

{
Z/2[τ, u]/u2, Sq1τ = 0 if q ≡ 1 mod 4,

Z/2[τ, ρ]/ρ2, Sq1τ = ρ if q ≡ 3 mod 4,

where |τ | = (0,−1), |u| = |ρ| = (−1,−1);

• π∗,∗HZ∧2 =


Z∧2 if (∗, ∗) = (0, 0),

(Z/(qw − 1))∧2 if (∗, ∗) = (−1,−w) and w ≥ 1,

0 otherwise;
• π∗,∗BPGL∧2 = π∗,∗HZ∧2 ⊗ BP2∗.

We can read off the Chow degree n part of π∗,∗BPGL∧2 . In particular, it is
concentrated in Chow degrees 0 and 2w − 1 for w ≥ 1. In positive Chow
degrees, we have

BPGL∗,∗(1
∧
2 )c=2w = 0,

BPGL∗,∗(1
∧
2 )c=2w−1 = Σ−1,−wBP2∗/2

ν2(qw−1),

where ν2(−) is the 2-adic valuation function.

Remark 5.15. We remark that in positive chow degrees, most of these
BP2∗-modules do not have Levin index 1. For example in Chow degree 1, it is
Σ−1,−1BP2∗/2

ν2(q−1). In particular, when q ≡ 5 mod 8, we have Σ−1,−1BP2∗/4,
and when q ≡ 1 mod 8, we have Σ−1,−1BP2∗/8 ·2m for m ≥ 0. Both of them do
not have Levin index 1. In fact, one can show that BP2∗/2

ν2(qw−1) has Levin
index 1 if and only if ν2(qw − 1) = 1.

For every spectrum (1∧2 )c=n, by a change-of-ring isomorphism and the
description of BPGL∗,∗(1

∧
2 )c=n, the universal coefficient spectral sequence col-

lapses for degree reasons (see Propositions 7.7 and 7.10 of [DI05] and step (4)

of our strategy in Section 5.2):

Tor(BP2∗)∧2
∗,∗ (BPGL∗,∗(1

∧
2 )c=n, Z/2) =⇒ HZ/2∗,∗(1∧2 )c=n.

We have that for w ≥ 1,

HZ/2∗,∗(1∧2 )c=2w = 0,

HZ/2∗,∗(1∧2 )c=2w−1 =

{
Z/2{τw} ⊕ Z/2{uτw−1} if q ≡ 1 mod 4,

Z/2{τw} ⊕ Z/2{ρτw−1} if q ≡ 3 mod 4.
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Here τw, uτw−1, ρτw−1 denote the generators of the groups Z/2, in bidegrees
(0,−w), (−1,−w), (−1,−w). Note that

HZ/2∗,∗(1∧2 )c=0 = HZ/2{1},

generated by 1 in bidegree (0, 0). By Corollary 4.29, these spectra (1∧2 )c=n are
cellular modules over (1∧2 )c=0. Therefore, we learn that for w ≥ 1,

π∗,∗(1
∧
2 )c=2w = 0,

π∗,∗(1
∧
2 )c=2w−1 = π∗,∗Σ

−1,−w(1∧2 )c=0/2
ν2(qw−1).

In particular, the spectrum (1∧2 )c=2w−1 has the same homotopy groups as a
2-cell complex over (1∧2 )c=0, with cells in bidegrees (−1,−w) and (0,−w), and
attaching map 2ν2(qw−1), or equivalently qw − 1.

We emphasis that the spectrum (1∧2 )c=0 is very well understood indepen-
dent of the base field (whose characteristics is not 2, which includes these finite
fields Fq). By Corollaries 4.29 and 5.5, the motivic Adams spectral sequence
of (1∧2 )c=0 is isomorphic to the algebraic Novikov spectral sequence for BP2∗,
which is again independent of the base field. Over C, this spectral sequence
is isomorphic to the motivic Adams spectral sequence of 1∧2 /τ , and it is well
understood in a large range of dimensions [IWX20a], [IWX20b]. For the spec-
trum (1∧2 )c=0/2

ν2(qw−1), its motivic Adams spectral sequence is isomorphic to
the algebraic Novikov spectral sequence for BP2∗/2

ν2(qw−1), which can also be
understood through known computations over C.

As an application of the Postnikov–Whitehead tower of the Chow t-struc-
ture, we compute all Adams differentials on powers of τ , reproving Corol-
lary 7.12 of [WØ17]. By Leibniz’s rule, we only need to compute all non-zero
differentials on classes of the form τ2n .

Proposition 5.16. Let m(n) = ν2(q2n − 1), where ν2(−) is the 2-adic
valuation function.
(1) When q ≡ 1 mod 4, all non-zero Adams differentials on the classes τ2n are

dm(n)(τ
2n) = h

m(n)
0 uτ2n−1 for n ≥ 0.

(2) When q ≡ 3 mod 4, all non-zero Adams differentials on the classes τ2n are

dm(n)(τ
2n) = h

m(n)
0 ρτ2n−1 for n ≥ 1.

Proof. Suppose that q ≡ 1 mod 4. For degree reasons, the only non-zero
Adams differential on τ2n has the form

dm(τ2n) = hm0 uτ
2n−1

for some integer m, depending on n.
Let w = 2n. From the above discussion, we have

HZ/2∗,∗(1∧2 )c=2n+1−1 = Z/2{τ2n} ⊕ Z/2{uτ2n−1}.
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So the differentials of interest are present in the motivic Adams spectral se-
quence for (1∧2 )c=2n+1−1, and the ones for 1∧2 follows from naturality of the
motivic Adams spectral sequences and the following zigzag in the Postnikov–
Whitehead tower:

motASS
((1∧2 )c≥2n+1−1)

motASS
((1∧2 )c=2n+1−1)

algNSS
(BPGL∗,∗(1

∧
2 )c=2n+1−1)

motASS(1∧2 ).

We have
BPGL∗,∗(1

∧
2 )c=2n+1−1 = Σ−1,−2nBP2∗/2

ν2(q2
n−1).

Therefore, in the algebraic Novikov spectral sequence, we have

dm(n)(τ
2n) = h

m(n)
0 uτ2n−1,

where m(n) = ν2(q2n−1). This completes the proof for the cases q ≡ 1mod 4.
For the cases q≡3mod 4, note that τ2 is an indecomposable element on the

motivic Adams E2-page. The rest of the proof works in the exact same way. �

In [WØ17], Wilson–Østvær computed πn,01
∧
2 for 0 ≤ n ≤ 20 when q ≡

1 mod 4 and for 0 ≤ n ≤ 18 when q ≡ 3 mod 4. The difference of ranges is
due to the computation of an Adams d2-differential from the 20-stem to the
19-stem in the cases q ≡ 1 mod 4, while the answer for an Adams d2-differential
is unknown in the cases q ≡ 3 mod 4. This d2-differential is also the hardest
one in the computation up to the 20-stem. In fact, Wilson–Østvær proved

Proposition 5.17 ([WØ17, Prop. 7.16, Rem. 7.19]). Over Fq , where q is
a power of an odd prime, in the motivic Adams spectral sequence for 1∧2 , we have

(1) d2(τg) = uh2
0g , when q ≡ 5 mod 8;

(2) d2(τg) = 0, when q ≡ 1 mod 8;
(3) d2(τ2g) = ρτh2

0g or 0, when q ≡ 3 mod 4.

As an application of Proposition 5.16 and the Chow t-structure method,
we give much simpler proofs of the Adams d2-differentials in the cases (1) and
(2) in Proposition 5.17. We also compute the unknown Adams d2-differential
in the cases q ≡ 3 mod 4 in Proposition 5.17. The intuitions of our proofs are
explained in Remarks 5.18 and 5.20.

Proof of Proposition 5.17 (1) and (2). In both cases q ≡ 1, 5 mod 8, as
discussed in [WØ17], for degree reasons, the only possibilities are

d2(τg) = uh2
0g or 0.
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On the motivic Adams E2-page, we have

τg · d0 = τe2
0 6= 0,

uh2
0g · d0 = uh2

0e
2
0 6= 0.

See [WØ17, Prop. 7.1] for the multiplicative structure of the Adams E2-page.
By Proposition 5.16(1), for the case n = 0, we have

d2(τ) =

{
0 if q ≡ 1 mod 8,

uh2
0 if q ≡ 5 mod 8.

By Leibniz’s rule, we have d2(e2
0) = 0. Thus,

d2(τ · e2
0) = d2(τ) · e2

0 =

{
0 if q ≡ 1 mod 8,

uh2
0e

2
0 if q ≡ 5 mod 8.

The element d0 is a permanent cycle for degree reasons. So we have d2(τg·d0) =

d2(τg) · d0 and

d2(τg) =

{
0 if q ≡ 1 mod 8,

uh2
0g if q ≡ 5 mod 8.

�

Remark 5.18. There are two reasons why it is harder to come up with
direct proofs of Proposition 5.17(1) and (2).
• The element τg is indecomposable on the motivic Adams E2-page.
• On the E2-pages, the element τg is detected by (1∧2 )c=0, while its potential
target uh2

0g is detected by (1∧2 )c=1. They live in different Chow degrees.
After multiplication by d0, both τg · d0 = τe2

0 and uh2
0g · d0 = uh2

0e
2
0 are

detected by (1∧2 )c=1 on the motivic Adams E2-pages, so this d2-differential can
be obtained through the algebraic Novikov spectral sequence, something purely
algebraic.

Proposition 5.19. In the motivic Adams spectral sequence for 1∧2 over Fq ,
where q is a power of an odd prime, and q ≡ 3 mod 4, we have

d2(τ2g) = 0.

Proof. For degree reasons, the only possibilities are
d2(τ2g) = ρτh2

0g or 0.

On the motivic Adams E2-page, we have

τ2g · d0 = τ2e2
0 6= 0,

ρτh2
0g · d0 = ρτh2

0e
2
0 6= 0.

See [WØ17, Prop. 7.1] for the multiplicative structure of the Adams E2-page.
By Proposition 5.16(2) for the case n = 1, we have

d2(τ2) = 0.
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(In fact, we have d3(τ2) = ρτh3
0 when q ≡ 3 mod 8, and τ2 supports non-zero

d4 or higher when q ≡ 7 mod 8.)
By Leibniz’s rule, we have

d2(τ2g) · d0 = d2(τ2g · d0) = d2(τ2 · e2
0) = d2(τ2) · e2

0 = 0.

The element d0 is a permanent cycle for degree reasons. Since ρτh2
0g · d0 6= 0,

we have
d2(τ2g) = 0. �

Remark 5.20. Similarly to Remark 5.18, on the E2-pages, the element
τ2g is detected by (1∧2 )c=1, while its potential target ρτh2

0g is detected by
(1∧2 )c=3. They live in different Chow degrees. After multiplication by d0, they
are both detected by (1∧2 )c=3, and the d2-differential can be obtained through
the algebraic Novikov spectral sequence.

Remark 5.21. We note that by Leibniz’s rule, d2(τ2g)=0 in all cases for q.

Appendix A. A cell structure for MGL

We record the fact that the Thom spectrum MGL admits a very well-
behaved cell structure. We suspect that this is well known, but we do not
know a reference.

Write SH(S)puretate≥d for the subcategory generated under filtered colim-
its, extensions and sums by ThS(On) ' S2n,n with n ≥ d. The result we need
is as follows.

Theorem A.1. We have MGL ∈ SH(S)puretate≥0 . The same is true for
the motivic Thom spectra MSL,MSp.

We need a few preparations for the proof.

Lemma A.2. Let X ∈ SmS , U ⊂ X open with smooth complement Z ⊂ X .
Let V be a vector bundle on X . Then there is a cofibration sequence

Th(V |U )→ Th(V )→ Th(V |Z ⊕NZ/X) ∈ Spc(S)∗.

Proof. We have

Th(V )/Th(V |U ) =
V/V \ 0

V |U/V |U \ 0
' V

V \ 0 ∪ V |U
= V/V \ Z,

and that latter space is equivalent to Th(NZ/V ) by purity. The short exact
sequence (see, e.g., [Sta18, Tag 0690])

0→ NZ/X → NZ/V → NX/V ' V → 0

implies the desired result by [Hoy17, (3.26)]. �
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Denote by Spc(S)puretate≥d
∗ the smallest full subcategory of Spc(S)∗ that

(1) contains ∗ and S2n,n for n ≥ d,
(2) is closed under filtered colimits, and
(3) if A → B → C is a cofiber sequence with A,C ∈ Spc(S)puretate≥d

∗ , then
B ∈ Spc(S)puretate≥d

∗ .

Theorem A.3 (Wendt). Let S be the spectrum of a field, G a split re-
ductive group, X = G/P a homogeneous space and V a vector bundle on X of
rank d. Then Th(V ) ∈ Spc(S)puretate≥d

∗ .

Proof. We use the ideas of [Wen10, Prop. 2.2]. The Bruhat decomposition
provides a filtration

Z0 = ∅ ⊂ Z1 ⊂ · · · ⊂ Zn = X

by closed subschemes, such that Zi \ Zi−1 is a finite disjoint union of affine
spaces (see [Wen10, Proof of Prop. 3.7]). Via Lemma A.2, we obtain cofibration
sequences

Th(V |X\Zi
)→ Th(V |X\Zi−1

)→ Th(N(Zi\Zi−1)/(X\Zi−1) ⊕ V |Zi\Zi−1
).

For i = n, we have X \ Zi = ∅ and hence the left-hand Thom space is con-
tractible; by induction on i it thus suffices to show that if E is a vector bundle
on Zi \ Zi−1, then Th(E) ∈ Spc(S)puretate≥d

∗ . But Zi \ Zi−1 is a disjoint union
of affine spaces, so N ⊕ V |Zi\Zi−1

is trivial by Quillen–Suslin [Qui76], and the
result follows. �

Remark A.4. The assumption that S is the spectrum of a field was used
twice in the above proof:
(1) to know that there is a Bruhat decomposition of G/P into affine space cells,

and
(2) to know that vector bundles on affine spaces are trivial.
For usual symplectic and special linear Grassmannians, (1) holds over Z (and
hence any base). Result (2) will hold over any base S such that the Bass–Quillen
conjecture holds (i.e., any vector bundle on AnS is extended from S) and such
that all vector bundles on S are trivial, e.g., S = Spec(Z) (by Lindel’s theorem
— see, e.g., [AHW17, Th. 5.2.1]). In fact, in order to establish Theorem A.1
we only need the stable analog. Since Thom spectra of vector bundles only
depend on their classes in homotopy K-theory [BH21, Rem. 16.11], this holds
over any base.

Proof of Theorem A.1. Since the spectra MGL,MSL,MSp are stable un-
der base change, we may assume that S = Spec(Z). Each of these spectra is
obtained as

colim
i

Th(Vi 	Ork(Vi))
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for suitable Grassmannians (usual, special linear or symplectic) Xi and vector
bundles Vi on them. We have

Th(Vi 	Ork(Vi)) ' Σ∞Th(Vi) ∧ S−2rk(Vi),−rk(Vi)

∈ Σ∞Spc(S)
puretate≥rk(Vi)
∗ ∧ S−2rk(Vi),−rk(Vi)

⊂ SH(S)puretate≥0;

here we have used Remark A.4 for the first containment. This concludes the
proof. �

Appendix B. A vanishing result for algebraic cobordism

We are confident that the following result is well known, but we could not
locate a reference.

Theorem B.1. Let X be essentially smooth over a semi-local principal
ideal domain, and let S ⊂ N denote the set of positive residue characteristics
of X . Then for i > 0, we have

MGL2∗+i,∗(X)[1/S] = 0.

Proof. The slice tower for MGL[1/S] of the form

MGL[1/S] = f0(MGL)[1/S]← f1(MGL)[1/S]← · · ·

has increasing connectivity and subquotients given by Σ2∗,∗HZ[1/S] ⊗ L2∗
(where L2t is the degree 2t part of the Lazard ring). This follows by combining
[Spi10, proof of Th. 4.7], [Spi18, Th. 11.3] and [SS18, Prop. 3.7]. Induction up
to tower thus reduces to proving the same result for motivic cohomology. By
construction,

Hp,q(X,Z) = CHq(X, 2q − p)
and hence it is enough to show that CH∗(X,−i) = 0 for i > 0. This follows
from the fact that CHq(X,−i) = H−i(z

q(X)), where zq(X) is a complex con-
centrated in non-negative degrees [Lev01, middle of p.3]. (This is where we use
that the base is semi-local.) �

Appendix C. Motivic cohomology

The motivic cohomology of a point with finite coefficients can be computed
as a consequence of the Beilinson–Lichtenbaum and Bloch–Kato conjectures.
These were established by Voevodsky, Rost and others [Voe03a], [Voe11]. For
a textbook treatment, see [HW19]. We collect some of their results here.

Theorem C.1. Let k be a field of exponential characteristic e and n > 0

coprime to e.
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(1) The cycle class map induces an equivalence LétZ/n(d) ' Létµ
⊗d
n , as com-

plexes of sheaves on Smk .
(2) The induced map Z/n(d) → Létµ

⊗d
n induces an equivalence Z/n(d) '

τ≥−dLétµ
⊗d
n , the truncation as complexes of Nisnevich sheaves on Smk .

(3) There is a canonical isomorphism Hm
ét (k, µ

⊗m
n ) ' KM

m (k)/n.

Proof.
(1) This is well known; see, e.g., [MVW06, Th. 10.3].
(2) The case n = ` is [HW19, Th. C]. The general case follows from this since

Z/n is a sum of iterated extensions of Z/` (for various `).
(3) By (2), we have Hm

ét (k, µ
⊗m
n ) ' Hm,m(k,Z/m). This is the same as

Hm,m(k,Z)/n by [MVW06, Th. 3.6], which is KM
m (k)/n by [MVW06,

Th. 5.1]. �

Corollary C.2. Using the assumptions above,
(1) We have

πp,q(HZ/n) ' H−pét (k, µ⊗−qn ) for 0 ≥ p ≥ q , and ' 0 else.

(2) Suppose that k contains a primitive n-th root of unity. Then

π∗,∗(HZ/n) ' H∗ét(k,Z/n)[τ ] ' KM
∗ (k)/n[τ ].

Here H∗ét(k,Z/n) ' KM
∗ (k)/n is placed in bidegree (−∗,−∗), and |τ | =

(0,−1).

Proof. In (2) we have µ⊗rn ' Z/n for all r. The element τ corresponds to

1 ∈ H0
ét(k, µ

⊗1
n ) ' H0

ét(k,Z/n) ' Z/n.

Both (1) and (2) are now a direct consequences of Theorem C.1. �
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