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Abstract Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobi-
lized surface-attached biofilms. These different phenotypic states play key roles in agriculture, envi-
ronment, industry, and medicine; hence, it is critically important to be able to predict the conditions
under which bacteria transition from one state to the other. Unfortunately, these transitions depend
on a dizzyingly complex array of factors that are determined by the intrinsic properties of the indi-
vidual cells as well as those of their surrounding environments, and are thus challenging to describe.
To address this issue, here, we develop a generally-applicable biophysical model of the interplay
between motility-mediated dispersal and biofilm formation under positive quorum sensing control.
Using this model, we establish a universal rule predicting how the onset and extent of biofilm forma-
tion depend collectively on cell concentration and motility, nutrient diffusion and consumption,
chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quanti-
tatively predicting and controlling biofilm formation in diverse and complex settings.

Editor's evaluation

In this work, the authors develop a continuum description of biofilm formation from initially
planktonic cells. The coupled partial differential equations that encode the dynamics of the cell
populations, nutrients and autoinducers contain many parameters, but it is shown that only two
dimensionless combinations of them are needed to understand the threshold for biofilm formation.
This work should be of broad interest to a wide range of researchers in biophysics and cell biology.

Introduction

Dating back to their discovery by van Leeuwenhoek over three centuries ago, it has been known
that bacteria typically exist in one of two phenotypic states: either as motile, planktonic cells that
self-propel using e.g., flagella or pili (“animalcules ... moving among one another”; Van Leewen-
hoeck, 1677), or as immobilized, surface-attached biofilms (“little white matter ... in the scurf of
the teeth”; Leewenhoeck, 1684). These different states have critical functional implications for
processes in agriculture, environment, industry, and medicine. For example, motility-mediated
dispersal of planktonic cells enables populations to escape from harmful conditions and colonize
new terrain (Adler, 1966a; Adler, 1966b; Saragosti et al., 2011; Fu et al., 2018; Cremer et al.,
2019; Bhattacharjee et al., 2021)—underlying infection progression, drug delivery to hard-to-
reach spots in the body, food spoilage, interactions with plant roots in agriculture, and bioremedia-
tion of environmental contaminants (Balzan et al., 2007; Chaban et al., 2015; Datta et al., 2016;
Harman et al., 2012; Ribet and Cossart, 2015; Siitonen and Nurminen, 1992; Lux et al., 2001;
O’Neil and Marquis, 2006; Gill and Penney, 1977; Shirai et al., 2017; Thornlow et al., 2015;
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Toley and Forbes, 2012, Dechesne et al., 2010; Souza et al., 2015; Turnbull et al., 2001; Watt
et al., 2006; Babalola, 2010; Adadevoh et al., 2016; Adadevoh et al., 2018; Ford and Harvey,
2007; Wang et al., 2008; Reddy and Ford, 1996; Martinez-Calvo et al., 2021). In addition, the
formation of immobilized biofilms can initiate antibiotic-resistant infections, foul biomedical devices
and industrial equipment, or conversely, help sequester and remove contaminants in dirty water
(Davey and O‘toole, 2000; Hall-Stoodley et al., 2004; Mah et al., 2003; O'Toole and Stewart,
2005; Fux et al., 2005; Nicolella et al., 2000; Donlan and Costerton, 2002; Davies et al., 1998).
Hence, extensive research has focused on understanding bacterial behavior in either the planktonic
or biofilm state.

For example, studies of planktonic cells have provided important insights into bacterial motility—
which can be either undirected (Berg, 2018; Berg, 2004, Bhattacharjee and Datta, 2019a; Bhat-
tacharjee and Datta, 2019b) or directed in response to e.g., a chemical gradient via chemotaxis
(Adler, 1966b; Adler, 1966a; Saragosti et al., 2011; Fu et al., 2018; Cremer et al., 2019; Bhattacha-
rjee et al., 2021; Keller and Segel, 1971, Odell and Keller, 1976; Keller and Odell, 1975; Lauffen-
burger, 1991; Seyrich et al., 2019, Croze et al., 2011, Amchin et al., 2022). These processes are
now known to be regulated not just by intrinsic cellular properties, such as swimming kinematics and
the amplitude and frequency of cell body reorientations, but also by the properties of their environ-
ment, such as cellular concentration, chemical/nutrient conditions, and confinement by surrounding
obstacles (Berg, 2018; Berg, 2004; Bhattacharjee and Datta, 2019a; Bhattacharjee and Datta,
2019b; Adler, 1966b; Adler, 1966a; Saragosti et al., 2011; Fu et al., 2018; Cremer et al., 2019,
Bhattacharjee et al., 2021; Keller and Segel, 1971; Odell and Keller, 1976; Keller and Odell,
1975, Lauffenburger, 1991, Seyrich et al., 2019, Croze et al., 2011; Amchin et al., 2022). Thus,
the manner in which planktonic bacteria disperse can strongly vary between different species and
environmental conditions.

Similarly, studies of biofilms under defined laboratory conditions have also provided key insights—
such as by revealing the pivotal role of intercellular chemical signaling in biofilm formation (Nadell
et al., 2008; Bassler and Losick, 2006, Davey and O’toole, 2000; Hall-Stoodley et al., 2004). In this
process, termed quorum sensing, individual cells produce, secrete, and sense freely diffusible auto-
inducer molecules, thereby enabling different bacteria to coordinate their behavior (Davies et al.,
1998; Sakuragi and Kolter, 2007, Bassler and Losick, 2006; Miller and Bassler, 2001; Herzberg
et al., 2006; Laganenka et al., 2018, McLean et al., 1997; Paul et al., 2009). For example, in many
cases, quorum sensing positively controls biofilm formation (Herzberg et al., 2006; Laganenka et al.,
2018; Davies et al., 1998; Sakuragi and Kolter, 2007; McLean et al., 1997; Gonzéalez Barrios et al.,
2006; Yarwood et al., 2004; Koutsoudis et al., 2006, Waters and Bassler, 2005; Parsek and Green-
berg, 2005; Jayaraman and Wood, 2008; Hentzer et al., 2003; Kirisits and Parsek, 2006): auto-
inducer accumulation above a threshold concentration upregulates the expression of genes involved
in biofilm formation, ultimately driving a transition from the planktonic to the biofilm state (Nadell
et al., 2008). Again, however, the cellular factors that control this transition, such as the autoinducer
production rate, diffusivity, and threshold concentration, can strongly vary between different species
and environmental conditions.

Because planktonic dispersal and biofilm formation both depend on a dizzyingly complex array of
factors, these distinct processes are typically studied in isolation. Thus, while each is well understood
on its own, quantitative prediction of the conditions under which a population of planktonic bacteria
transitions to the biofilm state—or instead, continues to disperse away and remains in the planktonic
state—remains challenging. Here, we address this challenge by developing a mathematical model
that describes essential features of motility-mediated dispersal of planktonic cells and autoinducer-
mediated biofilm formation together. Using numerical simulations of this model, we systematically
examine the influence of cellular concentration, motility, and chemotactic sensing; nutrient availability,
diffusion, and consumption; and autoinducer production, diffusion, and accumulation on biofilm
formation. Guided by these results, we establish a potentially-universal biophysical threshold that
unifies the influence of all these factors in predicting the onset and extent of biofilm formation across
different species and environmental conditions. Our work therefore provides a theoretical foundation
for the prediction and control of biofilm formation in diverse and complex settings, and yields new
quantitative predictions to guide future experiments.

Moore-Ott et al. eLife 2022;11:e76380. DOI: https://doi.org/10.7554/eLife.76380 2 of 24


https://doi.org/10.7554/eLife.76380

ELlfe Research article Computational and Systems Biology | Physics of Living Systems

Results

Development of the governing equations

As an illustrative example, and to connect our model to recent experiments of bacterial dispersal
(Bhattacharjee et al., 2021), we consider a rectilinear geometry with a starting inoculum of plank-
tonic cells at a maximal concentration b; 5 and of width xj. In general, the continuum variable b(x, )
describes the number concentration of bacteria, where x is the position coordinate and ¢ is time,
and the subscripts {1,2} represent planktonic or biofilm-associated cells, respectively. Following
previous work (Lauffenburger, 1991, Keller and Segel, 1971, Adler, 1966a; Croze et al., 2011;
Fu et al., 2018, Bhattacharjee et al., 2021), we consider a sole diffusible nutrient that also acts as
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Figure 1. Competition between motility-mediated dispersal and autoinducer-mediated biofilm formation. (A) Schematic of chemotactic dispersal:
planktonic bacteria (green) consume nutrient (purple) and establish a local gradient that they, in turn, direct their motion in response to. (B) Schematic
of positive quorum sensing-controlled biofilm formation: accumulation of produced autoinducer (red) above a threshold concentration causes cells

to transition to the biofilm state (blue). (C) Results of an example simulation of Equations 1-4 showing the dynamics of the nutrient, planktonic cells,
autoinducer, and biofilm cells from top to bottom, quantified by the normalized concentrations c/cg, b1/b1 p, ala®, balb o, respectively; ¢, by, and
a* represent the initial nutrient concentration, initial bacterial concentration, and autoinducer threshold for biofilm formation, respectively. The position
coordinate is represented by the normalized position x/xg, where xq is the width of the initial cellular inoculum. Different shades indicate different

time points as listed. The inoculum initially centered about the origin consumes nutrient (purple), establishing a gradient that drives outward dispersal
by chemotaxis (outward moving green curves); the cells also produce autoinducer (red) concomitantly. At ¢ &~ 13 h, sufficient autoinducer has been
produced to trigger biofilm formation at the origin; at even longer times (t 2 16 h), nutrient depletion limits autoinducer production at this position.
However, accumulation of autoinducer by the dispersing planktonic cells triggers partial biofilm formation at x/xg /= 6 as well. This competition
between dispersal and biofilm formation leads to a final biofilm fraction of f'= 21% at the final time of t = 20 h. An animated form of this figure is shown
in Video 1. The values of the simulation parameters are given in Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 1:
Source data 1.

Figure supplement 1. The exact nature of the temporal dynamics of the arrest in motility while transitioning to the biofilm state does not appreciably
influence our model results.

Figure supplement 1—source data 1.
Figure supplement 2. The details of the initial inoculum shape do not appreciably influence our model results.

Figure supplement 2—source data 1.
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the chemoattractant, with a number concentration represented by the continuum variable c(x, 7) with
diffusivity Dc. Initially, nutrient is replete throughout the system at a constant concentration ¢j. The
bacteria then consume the nutrient at a rate b;x1g(c), where 1 is the maximum consumption rate per
cell and the Michaelis-Menten function g(c) = 4 quantifies the nutrient dependence of consump-
tion relative to the characteristic concentration c.p,, (Croze et al., 2011, Monod, 1949, Cremer et al.,
2019; Woodward et al., 1995; Shehata and Marr, 1971; Schellenberg and Furlong, 1977, Cremer
et al., 2016).

As time progresses, the bacteria thereby establish a local nutrient gradient that they respond
to via chemotaxis (Figure 1A). In particular, planktonic cells disperse through two processes: undi-
rected active diffusion with a constant diffusivity D, (Berg, 2018), and directed chemotaxis with a

drift velocity . = xV log (1112//:) that quantifies the ability of the bacteria to sense and respond

to the local nutrient gradient (Keller and Segel, 1970; Keller and Segel, 1971; Odell and Keller,
1976; Keller and Odell, 1975) with characteristic bounds ¢_ and ¢, (Cremer et al., 2019; Sourjik
and Wingreen, 2012; Shimizu et al., 2010; Tu et al., 2008; Kalinin et al., 2009, Shoval et al., 2010;
Lazova et al., 2011; Celani et al., 2011; Fu et al., 2018; Dufour et al., 2014; Yang et al., 2015; Cai
et al., 2016; Chen and Jin, 2011) and a chemotactic coefficient ;. The planktonic cells also prolif-
erate at a rate bvy,g(c), where 7 is the maximal proliferation rate per cell. Finally, as the planktonic
bacteria consume nutrients, they produce and secrete a diffusible autoinducer, with a number concen-
tration represented by a(x, 1) and with diffusivity D,, at a maximal rate k; per cell. Motivated by some
previous work (Hense et al., 2012, Hense and Schuster, 2015; Kirisits et al., 2007, Bollinger et al.,
2001; Duan and Surette, 2007; Mellbye and Schuster, 2014; De Kievit et al., 2001; Pérez-Osorio
et al., 2010), we take this process (hereafter referred to as ‘production’ for brevity) to also be nutrient-
dependent via the same Michaelis-Menten function g(c) for the results presented in the main text, but
we also consider the alternate case of ‘protected’ nutrient-independent production in the supplemen-
tary materials. Following previous work (Koerber et al., 2002; Ward et al., 2001; Ward et al., 2003),
we also model natural degradation of autoinducer as a first-order process with a rate constant /.

As autoinducer is produced, it binds to receptors on the surfaces of the planktonic cells with a
second-order rate constant «, as established previously (Koerber et al., 2002; Ward et al., 2001;
Ward et al., 2003). Motivated by experiments on diverse bacteria, including the prominent and well-
studied species Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa (Davies et al.,
1998; Sakuragi and Kolter, 2007, Bassler and Losick, 2006; Miller and Bassler, 2001; Herzberg
et al.,, 2006; Laganenka et al., 2018, McLean et al., 1997; Paul et al., 2009; Gonzalez Barrios
et al.,, 2006; Yarwood et al., 2004; Koutsoudis et al., 2006; Waters and Bassler, 2005; Parsek
and Greenberg, 2005; Jayaraman and Wood, 2008; Hentzer et al., 2003; Kirisits and Parsek,
2006), we assume that planktonic cells transition to the biofilm state at a rate 7! when the local
autoinducer concentration exceeds a threshold value a* (Figure 1B). Because our focus is on this
transition, we assume that it is irreversible, and that cells in the biofilm lose motility. However, they still
continue to consume nutrient, proliferate, and produce autoinducer with maximal rates k5, 72, and k;
per cell, respectively; additional behaviors such as subsequent production of extracellular polymeric
substances or transitioning back to the planktonic state can be incorporated as future extensions to
this model.

Hence, while planktonic cells can disperse via active diffusion and chemotaxis, their dispersal is
hindered—and biofilm formation is instead promoted—when autoinducer accumulates sufficiently, as
schematized in Figure 1A-B. The central goal of this paper is to examine the processes underlying
this competition between dispersal and biofilm formation. Our model is thus summarized as:

Planktonic : 221 = D1V?by — V- (bi¥e) + bim1g(c)
ot —

Motility Proliferation 1)
— by "M (a—a")
~—_—

Biofilm formation

C o oby _ 1 «
Biofilm : o = bayag(c) +bi7 H (a —a ) 2)
Proliferation Biofilm formation
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where H is the Heaviside step function describing the transition from the planktonic to biofilm state.
To explore the competition between motility-mediated dispersal and autoinducer-mediated biofilm
formation, we then numerically solve this system of coupled equations using values of all parame-
ters—which are either intrinsic descriptors of cellular physiology or are solely/additionally influenced
by the local environment—that are derived from experiments (Supplementary file 1). Further details
are provided in the Materials and methods. Additional simulations indicate that the results obtained
are not appreciably influenced by variations in the exact nature of how our model treats the arrest in
planktonic cell motility while transitioning to the biofilm state (Figure 1—figure supplement 1) or the
initial inoculum shape (Figure 1—figure supplement 2).

Representative numerical simulations

The results of a prototypical example are shown in Figure 1C and Video 1. Consumption by the
planktonic cells (green curves) rapidly establishes a steep nutrient gradient (purple) at the leading
edge of the inoculum. This gradient forces the planktonic cells to then move outward via chemotaxis.

O

Video 1. Animated form of Figure 1C: Results of an example simulation of Equations 1-4 showing the dynamics
of the nutrient, planktonic cells, autoinducer, and biofilm cells from top to bottom, quantified by the normalized
concentrations c/co, b1/by o, ala®, and by/by g, respectively; co, by o, and a* represent the initial nutrient
concentration, initial bacterial concentration, and autoinducer threshold for biofilm formation, respectively. The
position coordinate is represented by the normalized position x/xq, where X is the width of the initial cellular
inoculum. The inoculum initially centered about the origin consumes nutrient (purple), establishing a gradient
that drives outward dispersal by chemotaxis (outward moving green curves); the cells also produce autoinducer
(red) concomitantly. At ¢ & 13 h, sufficient autoinducer has been produced to trigger biofilm formation at the
origin; at even longer times (t = 16 h), nutrient depletion limits autoinducer production at this position. However,
accumulation of autoinducer by the dispersing planktonic cells triggers partial biofilm formation at x/xg ~ 4 as
well. This competition between dispersal and biofilm formation leads to a final biofilm fraction of f=21% at

the final time of t = 20 h. The values of the simulation parameters are given in Supplementary file 2. The video
displays the profiles every 30 min, to retain a manageable file size; however, the temporal step size in the actual
simulations is 0.1 s.

https://elifesciences.org/articles/76380/figures#video’
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Figure 2. Faster nutrient consumption limits autoinducer production, leading to complete dispersal. Retion as

in Figure 1C, but for planktonic cells with faster nutrient consumption (larger ). Panels and colors show the
same quantities as in Figure 1C. The inoculum initially centered about the origin consumes nutrient (purple),
establishing a gradient that drives outward dispersal by chemotaxis (outward moving green curves); the cells also
produce autoinducer (red) concomitantly. However, nutrient is depleted at this position more rapidly, limiting
autoinducer production; as a result, the population continues to disperse in the planktonic state and the final
biofilm fraction is f = 0%. An animated form of this figure is shown in Video 2. The values of the simulation
parameters are given in Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1.

Figure supplement 1. Slower nutrient consumption allows greater autoinducer production, leading to more
biofilm formation.

Figure supplement 1—source data 1.

In particular, they self-organize into a coherent front that expands from the initial inoculum and
continually propagates, sustained by continued consumption of the surrounding nutrient—consistent
with the findings of previous studies of planktonic bacteria (Bhattacharjee et al., 2021). In this case,
however, the cells also concomitantly produce autoinducer that accumulates into a growing plume
(red). In some locations, the autoinducer eventually exceeds the threshold a*, thus driving the forma-
tion of an immobilized biofilm (blue). Hence, at long times, f= 21% of the overall population is biofilm-
associated, while the remaining 1 — f = 79% continues to disperse in the planktonic state.

Because the processes underlying motility-mediated dispersal and autoinducer-mediated biofilm
formation are highly species- and environment-dependent, the values of the parameters in Equations
1-4 can span broad ranges—giving rise to different emergent behaviors under different conditions.
Our simulations provide a way to examine how these behaviors depend on cellular concentration
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Video 2. Animated form of Figure 2: Results of the
same simulation as in Video 1, but for planktonic cells
with faster nutrient consumption (larger k1). Panels and
colors show the same quantities as in Video 1. The
inoculum initially centered about the origin consumes
nutrient (purple), establishing a gradient that drives
outward dispersal by chemotaxis (outward moving
green curves); the cells also produce autoinducer (red)
concomitantly. However, nutrient is depleted at this
position more rapidly, limiting autoinducer production;
as a result, the population continues to disperse in the
planktonic state and the final biofilm fraction is f = 0%.
The values of the simulation parameters are given in
Supplementary file 2. The video displays the profiles

©

Video 3. Animated form of Figure 2—figure
supplement 1: Results of the same simulation as in
Video 1, but for planktonic cells with slower nutrient
consumption (smaller 1). Panels and colors show the
same quantities as in Video 1. The inoculum initially
centered about the origin slowly consumes nutrient
(purple), establishing a slight gradient that allows
partial planktonic dispersal (green curves moving
outward); the cells also produce autoinducer (red)
concomitantly. Because nutrient is consumed slowly,
autoinducer production is not limited, resulting in
partial biofilm formation (blue). Autoinducer has
sufficiently accumulated above the threshold after

t = 14 h, which causes a population of biofilm cells to

every 30 min, to retain a manageable file size; however,
the temporal step size in the actual simulations is 0.1 s.

form at the origin (x/xg = 0). After 20 h, the biofilm
population continues to grow, and additionally,
autoinducer concentration exceeds the threshold
concentration at x/xg =~ 10. Thus, we see a second
population of biofilm cells form, centered at x/xg =~ 10.
The slower nutrient consumption results in a greater
final biofilm fraction than in Video 1—here, f = 52%.
The values of the simulation parameters are given in
Supplementary file 2. The video displays the profiles
every 30 min, to retain a manageable file size; however,
the temporal step size in the actual simulations is 0.1 s.

https://elifesciences.org/articles/76380/figurestvideo?

and motility, quantified by {b19,D1,x1,¢—,c+},
nutrient availability and consumption, quantified
by { D¢, co, k1, K2, Cchar }, cellular proliferation, quan-
tified by {v1,7}, and autoinducer produc-
tion, availability, and sensing, quantified by
{Da, k1, k2, A\, a, 7,a" }. For example, implementing
the same simulation as in Figure 1C, but for cells
with faster nutrient consumption, yields a popu-
lation that completely disperses in the planktonic
state (the fraction of the population in the biofilm state at the final time of t =20 h is f= 0%, as shown
in Figure 2 and Video 2). Conversely, when cells consume nutrient slower, a larger fraction of the
population forms an immobilized biofilm (f = 52%, Figure 2—figure supplement 1 and Video 3).

Given that the competition between motility-mediated dispersal and autoinducer-mediated biofilm
formation depends sensitively on such a bewildering array of cellular and environmental factors, we
ask whether these dependencies can be captured by simple, generalizable, biophysical rules. Nondi-
mensionalization of Equations 1-4 yields characteristic quantities and dimensionless groups that can
parameterize these dependencies, as detailed in Appendix 1; however, given the large number of
such groups, we seek an even simpler representation of the underlying processes that could unify the
influence of all these different factors. To do so, we examine the fundamental processes underlying
biofilm formation in our model.

https://elifesciences.org/articles/76380/figures#video3

Availability of nutrient for autoinducer production

When autoinducer production is nutrient-dependent, we expect that a necessary condition for biofilm
formation is that enough nutrient is available for sufficient autoinducer to be produced to eventually
exceed the threshold a*. To quantify this condition, we estimate two time scales: 7, the time taken
by the population of planktonic cells to deplete all the available nutrient locally, and 74, the time at
which produced autoinducer reaches the threshold for biofilm formation. While 7; and 7, can be
directly obtained in each simulation, we seek a more generally-applicable analytical expression for
both, solely using parameters that act as inputs to the model. In particular, for simplicity, we consider
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nutrient consumption and autoinducer production, both occurring at their maximal rates x; and &y,
respectively, by an exponentially-growing population of planktonic cells that are uniformly distributed
in a well-mixed and fixed domain. Integrating Equations 3 and 4 then yields (Appendix 2)

4=y In(1 + B1 ) (5)
=7 1= G (1= 7). )

Three key dimensionless quantities, denoted by the tilde (7) notation, emerge from this calculation.
The first, 310 = 71/ (b1ok1/co), describes the yield of new cells produced as the population consumes
nutrient—quantified by the rates of cellular proliferation and nutrient consumption, 71 and b; gk1/co,
respectively (Amchin et al., 2022). The second, 7] = aa*/k;, describes the competition between auto-
inducer loss and production, quantified by their respective rates aa™ and k, at the single-cell scale.
The third, ;o = aby/y1, describes the loss of autoinducer due to cell-surface binding as the popu-
lation continues to grow, quantified by the population-scale rates of autoinducer loss and cellular
proliferation, aby and -, respectively; for simplicity, this quantity neglects natural degradation of
autoinducer, given that the degradation rate is relatively small, with A < aby.

The ratio between Equations 5 and 6 then defines a nutrient availability parameter, D = 1y/7,.
When D is large, produced autoinducer rapidly reaches the threshold for biofilm formation before
the available nutrient is depleted; by contrast, when D is small, nutrient depletion limits autoin-
ducer production. Hence, we hypothesize that D > D* specifies a necessary condition for biofilm
formation, where D* is a threshold value of order unity. The simulations shown in Figures 1C and 2
and Figure 2—figure supplement 1 enable us to directly test this hypothesis. Consistent with our
expectation, the simulation in Figure 1C is characterized by D = 0.33, near the expected threshold
for biofilm formation; as a result, f=21%. When consumption is faster as in Figure 2 (D = 0.033),
the available nutrient is rapidly depleted; thus, cells disperse away before sufficient autoinducer is
produced to initiate biofilm formation, and f= 0%. Conversely, when nutrient consumption is slow
as in Figure 2—figure supplement 1 (D = 3.1), nutrient continues to be available for autoinducer
production, eventually driving biofilm formation, with a larger fraction f = 52%.

Taken together, these results support our hypothesis that D > D* ~ 1 is a necessary condition
for biofilm formation. It is not, however, a sufficient condition: repeating the simulation of Figure 1C
but for faster-moving cells yields a population that rapidly disperses without forming a biofilm at all
(f = 0%, Figure 3A and Video 4)—despite having the same value of D = 0.33. Thus, our mathematical
description of the conditions that determine biofilm formation is, as yet, incomplete.

Competition between motility-mediated dispersal and autoinducer
accumulation

The results shown in Figure 3 indicate that the ability of planktonic bacteria to move, which is not
incorporated in the nutrient consumption parameter D, also plays a key role in regulating whether a
biofilm forms. Indeed, close inspection of Figure 3A hints at another necessary condition for biofilm
formation: as shown by the magnified view in Figure 3B (e.g., at t = 4 h), the leading edge of the
dispersing planktonic cells extends beyond the plume of produced autoinducer. Therefore, we expect
that even when sufficient nutrient is available for autoinducer production (D > D* ~ 1), autoinducer
production must be rapid enough to reach the threshold for biofilm formation before cells have
dispersed away. To quantify this condition, we estimate the the time 7. at which the motile plank-
tonic cells begin to ‘outrun’ the growing autoinducer plume. Specifically, we quantify the dynamics of
the leading edge positions of the chemotactic front of planktonic cells and the autoinducer plume,
X1 edge(t) @and X, cdge (1), respectively. The front position x ¢qge(?) is known to depend on cellular motility,
nutrient diffusion, and nutrient consumption in a non-trivial manner (Berg, 2004; Cremer et al., 2019,
Fu et al., 2018, Amchin et al., 2022), and we are not aware of a way to compute this quantity a priori
from input parameters; instead, we extract this sole quantity from each simulation by identifying
the largest value of x at which by > 1074b1,0. While the plume position x,cqee(?) can also be directly
obtained in each simulation, we again develop a more generally applicable analytical expression by
assuming that the autoinducer continually diffuses from the initial inoculum: x4 cdge(r) = Xo + v/2Dat.
Then, 7 can be directly determined as the time at which x; ¢qec(r) begins to exceed x4 cdge(?).

Moore-Ott et al. eLife 2022;11:e76380. DOI: https://doi.org/10.7554/eLife.76380 8 of 24


https://doi.org/10.7554/eLife.76380

ELlfe Research article Computational and Systems Biology | Physics of Living Systems

A Enhanced motility
1 _I 1 1 1 1 1 1 1 1 1
s
T
€ 05} -
g 8h
=)
4
145 20 h I
4 o 1 - 1 1 1 1 1 1 1 N
_I 1 1 1 1 1 1 1 1 1 i
s Oh
=2
5
gosf Complete dispersal |
o
g 4h, 8h, 14h, 20 h
< I ’ / B
o o
or, 1 1 1 1 1 1 1 1 1
_I 1 1 1 1 1 1 1 1 1 i
s
S
I
o}
é 05 .
£ 8h 14 h 20 h B
3, —_— JF —
L —
oy 1 1 1 1 1 1 1 1 1 f—
_I 1 1 1 1 1 1 1 1 1 i
=
=
=)
g 05 No biofilm E
2 4h, 8h, 14h, 20 h /
b ¥ ¥ ¥ ¥
L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Position, z/z,
B
- 0.08 T T T T T T T
-5? —
0.06 |- i
= — 20 h
£0.04 14 h -
S 8h
<£002F |oh 4h
8
S
L L L L L L L L
1 1 1 1 1 1 1 1
= 04 e
S
g 8h 14 h 20 h
S 02 .
e)
£
S
2 of
L L L L L L L L
0 10 20 30 40 50 60 70
Position, /o

Figure 3. Enhanced motility enables cells to disperse before sufficient autoinducer accumulates, leading to
complete dispersal. (A) Results of the same simulation as in Figure 1C, but for faster-moving planktonic cells
(larger Dy and X). Panels and colors show the same quantities as in Figure 1C. The inoculum initially centered
about the origin consumes nutrient (purple), establishing a gradient that drives outward dispersal by chemotaxis
(outward moving green curves); the cells also produce autoinducer (red) concomitantly. More rapid dispersal
enables the planktonic cells to ‘outrun’ the growing autoinducer plume, as shown by the extended and magnified
view in (B). As a result, the population continues to disperse in the planktonic state and the final biofilm fraction is
f=0%. An animated form of this figure is shown in Video 4. The values of the simulation parameters are given in
Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure 3 continued on next page
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Figure 3 continued
Source data 1.

Figure supplement 1. Diminished motility enables autoinducer to accumulate, resulting in increased biofilm
formation.

Figure supplement 1—source data 1.

The ratio between 7. thereby determined and 74, the time required for produced autoinducer to
reach the threshold for biofilm formation (Equation 6), then defines a cellular dispersal parameter,
J = 7elta. When J is large, autoinducer accumulation is sufficiently rapid to drive biofilm formation;
by contrast, when J is small, the planktonic cells rapidly disperse without forming a biofilm. Hence,
we hypothesize that 7 > J* specifies another necessary condition for biofilm formation, where J*
is, again, a threshold value of order unity. The simulations shown in Figures 1C and 3A enable us
to directly test this hypothesis. Consistent with our expectation, the simulations in Figure 1C and
Figure 2—figure supplement 1 are characterized by J = 1.6, near the expected threshold for
biofilm formation; as a result, f> 0 in both cases. Furthermore, implementing the same simulation
as Figure 1C (with the same D = 0.33) but for slower-moving cells, characterized by a larger J =120,
yields a population that forms an even larger biofilm fraction f= 82% (Figure 3—figure supplement
1 and Video 5). Conversely, when cellular dispersal is faster as in Figure 3, characterized by a smaller
J =0.1, the cells disperse away before sufficient autoinducer is produced to initiate biofilm formation,
and f= 0%. Taken together, these results support our hypothesis that 7 > J* ~ 1 is another neces-
sary condition for biofilm formation.

A universal biophysical threshold for biofilm formation
Thus far, we have shown that the two conditions D > D* and J > J* are both necessary for biofilm
formation. Is the combination of both sufficient

to fully specify the conditions required for biofilm
formation? To test this possibility, we implement

Video 4. Animated form of Figure 3: Results of the
same simulation as in Video 1, but for faster-moving
planktonic cells (larger Dy and x1). Panels and

colors show the same quantities as in Video 1. The
inoculum initially centered about the origin consumes
nutrient (purple), establishing a gradient that drives
outward dispersal by chemotaxis (outward moving
green curves); the cells also produce autoinducer
(red) concomitantly. More rapid dispersal enables the
planktonic cells to ‘outrun’ the growing autoinducer
plume, as shown by the extended and magnified view
in (B). As a result, the population continues to disperse
in the planktonic state and the final biofilm fraction is
f=0%. The values of the simulation parameters are
given in Supplementary file 2. The video displays
the profiles every 30 min, to retain a manageable file
size; however, the temporal step size in the actual
simulations is 0.1 s.
https://elifesciences.org/articles/76380/figures#video4

o

Video 5. Animated form of Figure 3—figure
supplement 1: Results of the same simulation as in
Video 1, but for slower-moving planktonic cells (smaller
D and x1). Panels and colors show the same quantities
as in Video 1. The inoculum initially centered about
the origin consumes nutrient (purple), establishing

a slight gradient—however, because the motility
parameters are diminished, the planktonic population
(green) remains around the origin. The planktonic

cells produce autoinducer (red) concomitantly, and
after 1 h, the autoinducer concentration exceeds the
threshold concentration. Thus, some of the planktonic
cells transition to biofilm cells, centered at the origin.
Both the biofilm cells and planktonic cells continue to
grow, produce autoinducer, and consume nutrient; the
planktonic cells do not disperse due to their diminished
motility, resulting in a larger fraction of biofilm cells
(f = 82%) than in Video 1. The values of the simulation
parameters are given in . The video displays the profiles
every 30 min, to retain a manageable file size; however,
the temporal step size in the actual simulations is 0.1 s.
https://elifesciences.org/articles/76380/figures#video5

Moore-Ott et al. eLife 2022;11:e76380. DOI: https://doi.org/10.7554/eLife.76380

10 of 24


https://doi.org/10.7554/eLife.76380
https://elifesciences.org/articles/76380/figures#video4
https://elifesciences.org/articles/76380/figures#video5

eLife

Computational and Systems Biology | Physics of Living Systems

10,983 numerical simulations of Equations 1-4 exploring the full physiological ranges of the input
parameters that describe cellular, nutrient, and autoinducer properties for diverse bacterial species/
strains and environmental conditions (Supplementary file 1). For each simulation, we compute D,
J, and f. Remarkably, despite the extensive variability in the values of the underlying parameters, all
the results cluster between two states parameterized by D and 7, as shown in Figure 4A: motility-
mediated dispersal without biofilm formation (f = 0%, green points) when either D < D* or J < J*,
and biofilm formation without dispersal (f = 100%, blue points) when both D > D* and T > T Many
different combinations of the input parameters yield the same D, I yet, no matter the input values
of these parameters, which vary over broad ranges for different cells and environmental conditions,
(D, J) uniquely specify the resulting biofilm fraction f for all points, as shown in Figure 4B-C—indi-
cating that these two dimensionless parameters reasonably encompass all the factors determining
biofilm formation within our model. We observe some exceptions at the boundary between these two
states, likely because the simplifying assumptions underlying the derivation of the D and J param-
eters begin to break down. Nevertheless, the boundary between both states, summarized by the
relation D*/D + J*1J ~ 1with D* and J* both ~ 1 (black curve), thus specifies a universal biophysical
threshold for biofilm formation.

Discussion

The transition from the planktonic to biofilm state is known to depend on a large array of factors
that describe cellular concentration, motility, and proliferation; nutrient availability and consumption;
and autoinducer production, availability, and sensing—all of which can vary considerably for different
strains/species of bacteria and environmental conditions. Therefore, quantitative prediction of the
onset of biofilm formation is challenging. The biophysical model presented here provides a key step
toward addressing this challenge. In particular, for the illustrative case we consider—in which cells can
either disperse through active motility, retaining them in the planktonic state, or form an immobilized
biofilm when exposed to sufficient autoinducer—we have shown that the onset of biofilm formation
is uniquely specified by a biophysical threshold set by the two dimensionless parameters D (quanti-
fying nutrient availability) and 7 (quantifying bacterial dispersal). Importantly, within the formulation
of our model, this threshold is universal: many different combinations of cellular and environmental
factors are described by the same (D, J), and thus, yield the same onset of biofilm formation. There-
fore, given a bacterial strain and set of environmental conditions, extensions of our model could help
provide a way to predict whether a biofilm will form a priori. Indeed, because the factors that define
D and J can be directly measured, our work now provides quantitative principles and predictions (as
summarized in Figure 4) to guide future experiments.

For generality, our model also incorporates proliferation, nutrient consumption, and autoin-
ducer production by cells after they have transitioned to the biofilm state. Hence, within our model,
biofilm-produced autoinducer could also drive surrounding planktonic cells to transition to the biofilm
state. In this case, we expect that the long-time fraction of the population in the biofilm state, f,
will also depend on nutrient depletion and autoinducer production by the growing biofilm. Indeed,
performing a similar calculation as that underlying the nutrient availability parameter, D, yields a third
dimensionless parameter, S = Ta2/Ta2: here, 745 and 7,, describe the times at which biofilm cells
have depleted all the available nutrient and produced enough autoinducer to reach the threshold for
biofilm formation, respectively (Appendix 2). Thus, we hypothesize that, while the onset of biofilm
formation is specified by (D, J), the final extent of biofilm that has formed will also be described by
S. The results shown in Figures 1-4C have a fixed S = 50, which describes the case of a biofilm that
produces autoinducer rapidly; repeating these simulations for the opposite case of slow autoinducer
production by biofilm cells, with S = 1/50, yields the state diagram shown in Figure 4D. In agreement
with our hypothesis, while the transition to the biofilm state (black line) is not appreciably altered
by the change in S, the transition to complete biofilm formation (f= 1) is more gradual in this case
(compare Figure 4A,B,D,E). Moreover, we note that our analysis thus far has focused on the case
in which autoinducer production is nutrient-dependent; however, this process may sometimes be
nutrient-independent (Narla et al., 2021). In this case, we expect that our overall analysis still applies,
but with the onset of biofilm formation specified by only the dispersal parameter J—as confirmed in
Figure 4—figure supplement 1.
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Figure 4. The two states of complete dispersal by planktonic cells (green) and complete formation of a biofilm (blue) can be universally described

by three dimensionless parameters. (A) State diagram showing the fraction of biofilm formed, f, at the final time (¢ = 20 h) for different values of

the nutrient availability and cellular dispersal parameters, D and 7, respectively. The state diagram summarizes the results of 10,983 simulations

of Equations 1-4 exploring the full range of parameter values describing different bacterial species/strains and different environmental conditions
(Supplementary file 1). Each point represents the mean value of f obtained from multiple simulations with different parameter values, but with similar
D and J (identical within each bin defined by the spacing between points). (B) represents the same data, but each point represents the standard
deviation of the values of f obtained from the same simulations. Despite the vastly differing conditions explored in each simulation, they cluster into
the two states of planktonic dispersal (green) and biofilm formation (blue) when parameterized by D and J. The boundary between the two states can

Figure 4 continued on next page
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Figure 4 continued

be described by the relation D*/D + J*1J ~ 1, as shown by the black line; this relation combines the transition between the two states that occurs at
both D* ~ 1and J* ~ 1. Away from this boundary, all simulations for the same D and J collapse to have the same biofilm fraction f, as shown by
the points in (B) and examples (i)-(iii) and (v) in (C)—confirming the universality of our parameterization. Near the boundary, we observe some slight
differences between simulations, as shown in (B) and examples (iv) and (vi) in (C). The values of the simulation parameters for the examples in (C) are
given in Source Data file 1. The data in (A-C) correspond to a fixed value of the third dimensionless parameter § = 50, which describes the case of
biofilm cells that produce autoinducer rapidly; repeating these simulations for the opposite case of slow autoinducer production by biofilm cells

(S = 1/50) yields the state diagram shown in (D), but for 14,351 simulation runs; again, (E) shows the standard deviation of the corresponding values

of f. As shown by (D-E), while the transition between the two states (black line) is unaffected by the change in S, the transition to complete biofilm
formation is more gradual. Together, the three parameters D, J,and S provide a full description of the onset and extent of biofilm formation across

vastly different conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1.

Source data 2.

Source data 3.

Figure supplement 1. In the case of ‘protected’ nutrient-independent autoinducer production, the transition from planktonic to biofilm states occurs
at, J ~ lindependent of D.

Figure supplement 1—source data 1.
Figure supplement 2. Simulation results are not appreciably influenced by our choice of discretization.

Figure supplement 2—source data 1.

Possible extensions of our work

The transition from the planktonic to biofilm state is highly complex and, in many cases, has
features that are unique to different species of bacteria. Nevertheless, our model provides a
minimal description that can capture many of the essential features of biofilm formation more
generally—thereby providing a foundation for future extensions of our work, some of which are
described below.

1. For simplicity, our model considers only one spatial dimension; however, fascinating new effects
may arise in higher-dimensional implementations of our model. For example, in our prior work
modeling the collective migration of planktonic bacteria in the absence of quorum sensing-
mediated biofilm formation, we found that variations in the shape of the cellular front orthogonal
to the main propagation direction ‘smooth out’ over time (Alert et al., 2022, Bhattacharjee
et al., 2022). In particular, cells at outward-bulging parts of the front are exposed to more
nutrient, which diminishes their ability to respond to the nutrient gradient via chemotaxis and
thus slows them down. As a result, the migrating front eventually smooths to a flat shape whose
subsequent dynamics can then be described using just one spatial dimension, just as in our
treatment here. However, we expect that this behavior could be altered in interesting new ways
when the cells can additionally produce and sense autoinducer and thereby transition to the
biofilm state, as is the case here. In this case, we speculate that because cells at outward-bulging
parts of the front are exposed to more nutrients and have a weaker chemotactic response,
autoinducer production and accumulation will be more rapid relative to cellular dispersal. That
is, at these parts of the front, 7. and 7. will be shorter and longer, respectively, causing the
dispersal parameter J to be larger locally. Thus, our model would predict biofilm formation
to occur first at these parts of the front, potentially also influencing subsequent dispersal and
biofilm formation at other locations along the front. Therefore, while our conclusions here could
be the same locally at different parts of the front, the global behavior of the population could be
different—potentially giving rise to e.g., spatially-heterogeneous biofilm formation.

2. As an illustrative example, our model considers the case in which cells produce a single autoin-
ducer; however, some quorum sensing systems utilize multiple autoinducers (Miller and Bassler,
2001; Miller et al., 2002; Pesci et al., 1997), which could be described using additional field
variables and equations similar to Equation 4. Moreover, while we take the nutrient to be the
sole chemoattractant, in some cases, autoinducers can also act as chemoattractants (Laganenka
et al., 2016), which could also be described in our framework by e.g., introducing autoinducer-
dependent chemotaxis in the drift velocity in Equation 1.

3. Our model considers positive quorum sensing control in which planktonic cells transition to the
biofilm state in a step-like fashion when the local autoinducer concentration exceeds a threshold
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value. That is, when planktonic cells encounter sufficiently concentrated autoinducer, the diffu-
sivity and chemotactic coefficient transition in a step-like fashion from the constant values D
and x, respectively, to zero after the time duration 7, for simplicity. In real systems, the change
in cellular motility may not be as temporally abrupt. Future work could address a more gradual
loss of motility in our theoretical framework by, for example, considering a cellular diffusivity
and chemotactic coefficient that gradually transition from their planktonic values to zero over a
non-zero time scale. Given that the same cells would be transitioning from the motile planktonic
to immotile biofilm state—but in this case with the introduction of a time-varying diffusivity and
chemotactic coefficient—we expect that the long-time biofilm fraction f will be similar, and
only the spatial profile of the biofilm population may be altered. Hence, we expect that our
main findings summarized in Figure 4 will be unaffected by such a change. Indeed, performing
the same representative simulation shown in Figure 1C, but with both motility parameters D
and x| smoothly transitioning to zero in time, shows nearly identical results (Figure 1—figure
supplement 1)—confirming our expectation that the temporal nature of the arrest in motility
does not appreciably influence our model results and conclusions.

. While we take the transition to the biofilm state as being irreversible, this is often not the case

(Barraud et al., 2006; Kaplan, 2010, Abdel-Aziz, 2014). Longer-time transitions back to the
planktonic state could be described using additional terms similar to the last terms of Equations
1; 2, but with the opposite sign. Similar modifications could be made to describe other species
of bacteria (e.g., Vibrio cholerae) that utilize the opposite case of negative quorum sensing
control, in which biofilm cells instead transition to the planktonic state when the autoinducer
accumulates above a threshold value (Hammer and Bassler, 2003; Bridges and Bassler, 2019).

. Biofilms are often formed by multiple different microbial species, whereas our model describes

biofilm formation by a single species, for simplicity. Nevertheless, we expect that our theoret-
ical framework can be extended by following reasoning similar to that described in this paper,
but with the introduction of additional equations and variables in the governing Equations 1-4
to describe the distinct cell and chemical types, as appropriate. For example, if the different
species i consume and respond to distinct nutrients ¢;, and secrete and respond to distinct
autoinducers q;, each species could be described in isolation using our same governing Equa-
tions 1-4, but now extended to incorporate the distinct variables ¢;, a;, b1;, and by ;. Then,
directly following our approach, each species would be described by its own dimensionless
parameters D; and J;, with D*/D; + T*1.7; ~ 1 again specifying the threshold for biofilm forma-
tion for each. We hypothesize that the composition of the final two-species biofilm community
would then be given by the combination of each single-species biofilm. Alternatively, in the case
that the different species consume and respond to the same nutrient ¢, and secrete and respond
to the same autoinducer a, our Equations 1-4 could again be extended to consider the cellular
parameters specific to each species i. In this approach, however, biofilm formation by each of
the species cannot be described in isolation, because they are coupled through the nutrient
and autoinducer dynamics. Instead, the calculations of the characteristic time scales 74, 74, and
7. would need to be extended, following our approach, to now reflect contributions from all
the different species. We hypothesize that the overall multi-species community would then be
described by one set of governing dimensionless parameters (D, .7), and D*/D+ J*/J ~ 1
would again specify a universal biophysical threshold for the onset of biofilm formation for the
overall community—but the composition of the final multi-species biofilm that results above this
threshold may not be uniquely specified by (D, 7).

. Biofilm formation may be regulated by other, non-quorum sensing-based, processes not consid-

ered in our model. For example, the intracellular accumulation of secondary signaling molecules
such as cyclic di-GMP can also regulate biofilm formation (Valentini and Filloux, 2016; Simm
et al., 2004; Jenal et al., 2017; Rémling et al., 2013; Hengge, 2009; Krasteva et al., 2010;
Baraquet and Harwood, 2013; Trampari et al., 2015; Davis et al., 2013; Boehm et al., 2010;
Russell et al., 2013). In some cases, this process may be controlled by quorum sensing (Waters
et al., 2008) and thus could be described by our model, while in others, it is controlled by other
cues such as e.g., contact with surfaces, which would need to additionally be incorporated into
our theoretical framework.

. Finally, we note that our model is deterministic—describing the cellular processes of motility,

nutrient consumption, proliferation, and autoinducer production, availability, and sensing using
the parameters {D1,X1,C—,C+, K1, K2, Cchars V1> V25 K1, k2, o, T,a™ }, respectively. Each of these is
taken to be single-valued in each of our simulations. However, these parameters can have a
distribution of values arising from e.g., inherent cell-to-cell variability. Because these values
define the governing D and J that specify the threshold for biofilm formation in our model, we
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expect that variability in the parameter values would broaden the planktonic-to-biofilm tran-
sition predicted by our model. That is, we expect the transition specified by the black curve
in Figure 4A to be smeared out, similar to what is seen in Figure 4D, though due to a funda-
mentally different reason—with biofilm formation arising in some cases at lower (D, J) than
predicted by the black curve. Indeed, similar behavior was recently observed in a distinct model
of biofilm formation on flat surfaces (Sinclair et al., 2022). Exploring the influence of such vari-
ations by using a more probabilistic approach in our theoretical framework will thus be a useful
direction for future research.

Materials and methods
To numerically solve the continuum model described by Equations 1-4, we follow the experimentally
validated approach used in our previous work (Bhattacharjee et al., 2021, Amchin et al., 2022).
Specifically, we use an Adams-Bashforth-Moulton predictor-corrector method in which the order of
the predictor and corrector are 3 and 2, respectively. Because the predictor-corrector method requires
past time points to inform future steps, the starting time points must be found with another method;
we choose the Shanks starter of order 6 as described previously (Rodabaugh and Wesson, 1965;
Shanks, 1966). For the first and second derivatives in space, we use finite difference equations with
central difference forms in rectilinear coordinates. The temporal and spatial resolution of the simula-
tions are dr = 0.1 s and dx = 20 um, respectively; furthermore, we constrain our analysis to simulations
for which the peak of the overall bacteria population moves slower than dx/§z. Repeating represen-
tative simulations with different spatial and temporal resolution indicates that even finer discretiza-
tion does not appreciably alter the results (Figure 4—figure supplement 2). Thus, our choice of
discretization is sufficiently finely-resolved such that the results in the numerical simulations are not
appreciably influenced by discretization. Furthermore, performing the same representative simulation
shown in Figure 1C, but with the shape of the initial inoculum changed from a Gaussian profile to a
step function with the same maximum cellular concentration and width, shows nearly identical results
(Figure 1—figure supplement 2)—suggesting that our results are robust to variations in this initial
condition chosen. Further probing the mathematical structure of our biophysical model to examine
additional influences of initial conditions and explore the possibility of oscillatory solutions, closed
orbits, or singularities would be a fascinating direction for future work.

To connect the simulations to our previous experiments (Bhattacharjee et al., 2021), we choose
a total extent of 1.75 x 10* pum for the size of the entire simulated system, with no-flux conditions for
the field variables by, by, ¢, and a applied to both boundaries at x =0 and 1.75 x 10* um. As in the
experiments, we initialize each simulation with a starting inoculum of planktonic cells with a Gaussian
profile defined by the maximum concentration b; o at x = 0 and a full width at half maximum of 100 ym.
Nutrient is initially uniform at a fixed concentration ¢, and the autoinducer and biofilm concentrations
are initially zero, throughout. Furthermore, following previous work (Amchin et al., 2022; Dell’Ar-
ciprete et al., 2018; Volfson et al., 2008; Farrell et al., 2013; Klapper and Dockery, 2002; Head,
2013), we also incorporate jammed growth expansion of the population in which growing cells push
outward on their neighbors when the total concentration of bacteria is large enough. In particular,
whenever the total concentration of bacteria (planktonic and biofilm) exceeds the jamming limit of
0.95 cells ,um73 at a location x;, the excess cell concentration is removed from x; and added to the
neighboring location, x; + dx, where dx represents the spatial resolution of the simulation, retaining
the same ratio of planktonic to biofilm cells in the new location. We repeat this process for every loca-
tion in the simulated space for each time step.

We run each simulation for a total simulated duration of ¢, = 20 h. At this final time, we use the

simulation data to directly compute f= sz{lxb%, ' of t >
state. We also compute the values of the dimensionless parameters D, 7, and S using the equations
presented in the main text. We note that the autoinducer production time 7, (Equation 6) is only finite
for 7 = aa®/k; < 1; when 7 > 1, the rate of autoinducer loss exceeds that of autoinducer production,
and thus the time required to reach the threshold for biofilm formation diverges. Because both D and
J are defined as my/m, and 7e/7a, respectively, for simulations with 7 > 1, we represent them on the
state diagrams in Figure 4 and Figure 4—figure supplement 1 at (D, 7) = (1072,107?), the smallest

values shown on the diagrams. All of these simulations have f=0, as expected. Furthermore, to

the total fraction of the population in the biofilm
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ensure that fgn, is sufficiently long, we (i) only perform simulations with 7, and 7, smaller than g,
and (ii) do not include simulations with = 0 but 7. = 7y, for which sufficient time has not elapsed for
planktonic cells to chemotactically disperse.
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Appendix 1

Nondimensionalizing the governing equations

The governing equations Equations 1-4 are described by six variables: those describing the
concentrations of planktonic bacteria (b;), biofilm bacteria (b;), nutrient (c), autoinducer molecules
(a), as well as the one-dimensional space (x), and time (f) coordinates. Additional constants for
our equations are highlighted in Supplementary file 1, with initial conditions b;(t =0) = by,
c(t=0) = ¢p, and xj as the width of the initial planktonic inoculum. We define the dimensionless
variables b, = Z—‘l, by = Z—z, =g, a=4 i=%,andi= %, where the tilde () notation indicates a
dimensionless quantity and the dimensional quantities By, By, C, A, X, and T are not specified a
priori. Thus, in nondimensional form, Equations 1-4 can be represented as:

. Ob b ey Xt . (5 1+¢/c_
Planktonic : 5 = ~(X2I/T) Vb 7~(X21/T) V- (b1V log ( T )) -
+b1(11T)g@) — bi(r™ ' TYH (a — a*/A)
o Oy . T,

Biofilm : 5 - (12Dbrg(@) + (B1/B)(r™ b1 H (a — a*/A) (S2)

. ac D, ~a. - - _
Nutrient : 5 = (XZ;T) Vzc — ((Bl/C)IilTbl + (Bz/C)Iiszz) g(©) (S3)
X2IDy, X2/chiy, X*IDe, X2 IDaryy vy ', e, e, hka, ’ b,f'zkz Sl (B! (s4)

where g(¢) = E+§char. Given that the characteristic autoinducer concentration a* arises in the argument
of the Heaviside step function in Equations S1 and S2, we choose A = a*. Moreover, given that the
planktonic cells have a characteristic concentration b; oy defined by the initial inoculum, we choose
By = by . The fraction of the population in the biofilm state is defined as f= b/ (b2 + b1); thus, to
ensure that f=f for simplicity, we also choose B, = B| = b; . Finally, given that the nutrient has a
characteristic concentration ¢, defined by the initial saturation, we choose C = ¢(. With these choices
of characteristic quantities, multiple length and time scales emerge as possible choices for X and T,
respectively:

Length scale:/TDy, v/TDa, \/TD¢, \/TD4

, X2IDy, X2/chiy, X*IDe, X*IDa, vy ' '
Time scale:

*

Co Co a a* —1 —1
by, oki’ b1, ok2? b1, oki? by, oka? N ’(aﬁI*O)

Each such choice will lead to the emergence of many different dimensionless groups characterizing
this problem. Nevertheless, all these different groupings are accounted for in the dimensionless
parameters D, J, and S described in the main text, with the exception of quantities involving
the nutrient diffusivity D, planktonic-to-biofilm transition rate 7~! and the natural autoinducer
degradation rate \, which have corresponding time scales that are much smaller than the other time
scales of the systems considered here and are neglected from our analysis for simplicity.
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Appendix 2

Derivation of the dimensionless parameters D and s

We first estimate the time 7, taken for cells to deplete available nutrient through consumption. To do
so, for simplicity, we consider a population of planktonic cells exponentially growing at the maximal
rate 1, uniformly distributed in a well-mixed and fixed domain (i.e., neglecting motility-mediated
spreading), and consuming nutrient at the maximal rate ;. Thus, % = —k1by ge™"; integrating this
equation from ¢ = 0 (with ¢ = ¢p) to 1 = 74 (with ¢ = 0) yields Equation 5 of the main text.

We use a similar approach to estimate the time 7, taken for produced autoinducer to reach the
threshold for biofilm formation a*. In particular, we consider the same population of planktonic cells
secreting autoinducer at the maximal rate k;. We neglect natural degradation of autoinducer, given
that the degradation rate is relatively small compared to binding to the cell surface receptors with
a second-order rate constant o, that is, A < aby. The rate of autoinducer production and loss are
then given by by ge" x ki and by ge”" x aa, respectively, ultimately yielding ‘fi—“ = b1 e (k| — aa).
Integrating this equation from ¢ = 0 (with a = 0) to 7 = 74 (with a = a”) then yields Equation 6 of the
main text. Notably, this analytical solution for the time scale 7, is only defined for 7 = aa™/k; < 1,
when 7 > 1, the rate of autoinducer loss exceeds that of autoinducer production and secretion, and
thus the time required to reach the threshold for biofilm formation diverges. Finally, the ratio of 7
and 7, thus derived yields the nutrient availability parameter D as described in the main text.

Thus far, we have only considered nutrient consumption by planktonic bacteria. However, cellular
proliferation, autoinducer production, and nutrient consumption can also occur for cells after they
have transitioned to the biofilm state, causing biofilm-produced autoinducer to also drive surrounding
planktonic cells to transition to the biofilm state. Hence, we repeat the same calculations for 7, and 74
as described above, but now for a population of cells in the biofilm state (still with the characteristic
concentration b; o defined in our model), exponentially growing at the maximal rate -y, and consuming
nutrient at the maximal rate ;. In this case, % = —kyby g€, and integrating this equation from ¢ = 0
(with ¢ = cp) to t = 742 (with ¢ = 0) yields 745 = 75 " In(1 + B2,0), where 29 = 72/ (b1 gkalco) describes
the yield of new biofilm cells produced as the population consumes nutrient. For the calculation of
autoinducer production, we adopt a similar approach as that described above to calculate 74, but
now assuming that the biofilm surface receptors are saturated (i.e., neglecting autoinducer loss). As
a result, % = by pkpe. Integrating this equation from ¢ = 0 (with a = 0) to ¢ = 7, (with a = a*) finally
yields 7,, = fy;l In (1 + 52,0), where 52,0 = me# The ratio of 74, and 7, thus derived then yields

the parameter S as described in the main text.
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