
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

COMPACT: Flow-Based Computing on Nanoscale

Crossbars with Minimal Semiperimeter and

Maximum Dimension
Sven Thijssen1, Sumit Kumar Jha2, and Rickard Ewetz3

1,2Department of Computer Science, 3Department of Electrical and Computer Engineering
1,3University of Central Florida, Orlando, USA, 2University of Texas at San Antonio, San Antonio, USA

sven.thijssen@knights.ucf.edu, sumit.jha@utsa.edu, rickard.ewetz@ucf.edu

Abstract—In-memory computing is a promising solution strat-
egy for data-intensive applications to circumvent the von Neu-

mann bottleneck. Flow-based computing is the concept of per-
forming in-memory computing using sneak paths in nanoscale
crossbar arrays. The limitation of previous work is that the
resulting crossbar representations have large size. In this paper,
we present a framework called COMPACT for mapping Boolean
functions to crossbar representations with minimal semiperime-
ter (the number of wordlines plus bitlines) and/or maximum
dimension (the maximum of the wordlines or bitlines). The
COMPACT framework is based on an analogy between binary
decision diagrams (BDDs) and nanoscale memristor crossbar
arrays. More specifically, nodes and edges in a BDD correspond
to wordlines/bitlines and memristors in a crossbar array, re-
spectively. The relation enables a Boolean function represented
by a BDD with n nodes and an odd cycle transversal of size
k to be mapped to a crossbar with a semiperimeter of n+k.
The k extra wordlines/bitlines are introduced due to crossbar
connection constraints, i.e. wordlines (bitlines) cannot directly
be connected to wordlines (bitlines). Moreover, there exists a
trade-off between the semiperimeter and maximum dimension.
Consequently, COMPACT can sometimes reduce the maximum
dimension by slightly increasing the length of the semiperimeter.
We also extend COMPACT to handle multi-output functions
using shared binary decision diagrams (SBDDs) and alignment
constraints on the inputs and outputs. Compared with the state-
of-the-art mapping technique, the semiperimeter and maximum
dimension are reduced with 55% and 85%, respectively. The area,
power consumption, and computation delay are reduced with
89%, 19%, 56%, respectively.

Index Terms—flow-based, in-memory, computing, memristor,
crossbar, synthesis

I. INTRODUCTION

Many modern computer architectures are based on the

concepts defined in First draft of a report on the EDVAC by

von Neumann [1]. These computer architectures suffer from

the von Neumann bottleneck. This bottleneck is an inevitable

consequence of the data transfer between separated memory

units and processing units [2]. The in-memory computing

paradigm aims to solve this bottleneck by unifying memory

storage and computation.

In 1971, L. Chua introduced a new circuit element, which he

called memristor [3]. In 2008, Hewlett Packard Laboratories

was the first to finally develop a physical model of this fourth

This work was in part supported by NSF awards CCF-1755825,
CNS-1908471, and CCF-1822976.

fundamental circuit element [4]. This led to the development of

new computing paradigms using memristors, such as material-

based implication logic (IMPLY) [5], memory-aided logic

(MAGIC) [6] and flow-based computing [7]. Each of these

approaches have their respective strengths and weaknesses.

For IMPLY-based logic, a major drawback is the number of

complex computational steps required to synthesize a Boolean

function [8], [9]. More specifically, parallelism is inherently

limited for IMPLY-based logic, resulting in long, sequential

executions of a Boolean function. IMPLY logic is a non-

stateful logic, which entails that intermediate evaluations de-

pend upon previous intermediate evaluations, resulting in an

almost sequential evaluation. On the other hand, the paral-

lelism within the MAGIC-style is fundamentally limited [10].

MAGIC relies on NOR operations to evaluate a Boolean

function. Also here, the stateful logic requires consecutive

intermediate evaluations. This dependency also results in long

sequential evaluations.

The flow-based computing paradigm is based on taking

advantage of the natural flow of electrical current. By pro-

gramming the resistance of memristors in a crossbar based

on Boolean variables, Boolean functions can be evaluated by

applying a high potential to the bottom most wordline and

measuring the output current from a predefined wordline. The

function evaluates to true if and only if there exists at least one

path from the input to the output containing only memristors

in the low resistive state.

Flow-based computing has been explored based on negation

normal form (NNF) [7], disjunctive normal form (DNF),

conjunctive normal form (CNF) [11], simulated annealing [12]

and satisfiability modulo theories (SMT) [13]. Unfortunately,

these initial methods were computationally expensive or re-

sulted in crossbar representations with large size. More specif-

ically, the work in [14] is only capable of synthesizing 1-bit

adders, and the work in [15] results in large crossbar designs.

To overcome these shortcomings, recent studies are based

on mapping binary decision diagrams (BDDs) to crossbars

using inductive staircase structures. The mapping of BDDs

in the form of reduced ordered binary decision diagrams

(ROBDD) and free binary decision diagrams (FBDD) has

been explored [16], [17], [18], [19]. The staircase structures

span from the bottom-left corner to the top-right corner of the

crossbar. These inductive techniques are promising because

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

(a) Verilog code (b) ROBDD (c) Crossbar design D (d) Crossbar instance I (e) Evaluation f = 1

Fig. 2. Overview of the flow-based computing paradigm

crossbars. Computing within the paradigm is performed using

a one-time costly initialization phase and an efficient and fast

evaluation phase, which is illustrated in Figure 2.

In the initialization phase, a Boolean function f is converted

into a crossbar representation D. The Boolean function f

is specified using a Verilog, BLIF or PLA file. A Boolean

function f = (a∧b)∨c is shown in Figure 2(a). Next, a BDD

representation of f is constructed using ABC/CUDD [23],

which is shown in Figure 2(b). Previous work mainly utilized

BDDs in the form of ROBDDs [16]. The next step is to

map the BDD into a crossbar representation D. This involves

assigning each memristor in the crossbar to logical ‘0’ or ‘1’

or a Boolean variable {a,b,c} or the negation of a Boolean

variable {¬a,¬b,¬c}. An input port and an output port are

also assigned to the crossbar. A crossbar representation that

realizes the BDD in Figure 2(b) is shown in Figure 2(c).

In the evaluation phase, the Boolean function is evaluated

using the crossbar representation and an instance of the

Boolean variables. The first step is to program the memristors

in the crossbar based on the instance of the Boolean variables.

Memristors in the crossbar are programmed to have low (high)

resistance if the assigned logic expression is true (false). In the

example, the crossbar instantiation for a = 1, b = 1 and c = 0
is shown in Figure 2(d). Next, an input voltage Vin is applied

to the bottom most wordline and f is evaluated by measuring

the output voltage Vout across a sensing resistor, which is

connected to ground. In the example, it can be observed that

there exists a path from the input to the output that only

contains memristors with low resistance. Therefore, the output

voltage is high and the Boolean function f evaluates to true,

which is shown in Figure 2(e).

III. PROBLEM FORMULATION

The COMPACT framework aims to design a valid crossbar

representation D for a Boolean function φ. A crossbar rep-

resentation D is a valid representation of a Boolean function

φ if and only if for every instance of the Boolean variables,

there exists a path from the input to the output using only

memristors in the low resistive state when φ evaluates to true.

We propose to find valid crossbar designs that minimize the

following objective:

γS + (1− γ)D, (1)

where γ is a user-defined parameter within [0, 1]. S and D

are semiperimeter and maximum dimension of the crossbar

design, respectively. The parameter γ is to balance the two

terms in the objective. The maximum dimension D is defined

as max(R,C) where R is the number of rows (wordlines),

and C is the number of columns (bitlines). Similarly, S is

defined to be equal to R + C. There are two special cases

for the parameter γ. If γ is equal to one, the semiperimeter

is minimized without regard to the maximum dimension D.

When γ is equal to zero, then the maximum dimension is

minimized without regard to the semiperimeter.

The motivation for including the semiperimeter S in the

objective is to synthesize crossbars as small as possible. The

motivation for including the maximum dimension D is that

manufactured crossbars tend to be square [24].

We further introduce constraints for the alignment of the in-

puts and outputs. In flow-based computing, the inputs and the

outputs are assigned to wordlines. More specifically, the input

is assigned to the bottom-most nanowire and the output(s) are

assignment to the top-most nanowire(s).

Note that it is trivial to modify our problem formulation and

COMPACT to handle specified constraints on the rows and

columns. For such problem formulations, COMPACT would

generate a valid design D or return that the specified design

constraints are infeasible.

IV. ANALOGY BETWEEN BDDS AND CROSSBARS

The COMPACT framework in this paper is based on the

observation that an analogy exists between BDDs and mem-

ristor crossbars. More specifically, the nodes and edges within

a BDD correspond to the bitlines/wordlines and memristors in

a crossbar, respectively. Theoretically, a BDD with n nodes

can be mapped to a crossbar with a semiperimeter of n.

However, a memristor crossbar places inherent constraints

on the connections realized by the memristors; wordlines

cannot be connected directly to wordlines and bitlines cannot

be connected directly to bitlines. Therefore, extra hardware

resources (intermediate bitlines or wordlines) are needed to

realize such connections. One way to circumvent the connec-

tion constraint problem is to map each node to both a wordline

and a bitline. However, this leads to a crossbar representation

with a semiperimeter of 2n. The COMPACT framework aims

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

to find smaller crossbar designs by mapping as few nodes

as possible to both wordlines and bitlines while resolving

the connection constraints. In fact, COMPACT is capable of

assigning the fewest possible BDD nodes to both wordlines

and bitlines, which results in crossbar representations with

minimal semiperimeter. On the other hand, the crossbar design

with minimal semiperimeter may be highly unbalanced. We

observe that it may be necessary to resolve the connection

constraints using additional hardware (bitlines/wordlines) to

find more square-like crossbar designs.

V. THE COMPACT FRAMEWORK

The flow of the COMPACT framework is shown in Figure 3

and illustrated with an example in Figure 4. The input to the

framework is a Boolean multi-input single-output function rep-

resented using a ROBDD, which is illustrated in Figure 4(a).

The output of the framework is a crossbar representation D
of the Boolean function. COMPACT is extended to multi-

input multi-output functions with alignment constraints in

Section VII.

The main steps of COMPACT are graph pre-processing,

VH-labeling and crossbar mapping. In the graph pre-

processing step, the BDD is converted into a graph repre-

sentation. In the VH-labeling step, each node in the graph

is assigned a label V , H or V H , indicating if they will be

mapped to a vertical bitline (V), horizontal wordline (H),

or both a vertical bitline and a horizontal wordline (V H).

The labels V H are introduced to handle the connection

constraints imposed by the nanoscale crossbar. In the

crossbar mapping step, nodes in the graph are bound to specific

wordlines/bitlines according to the assigned labels. The edges

in the graph are correspondingly assigned to memristors in the

crossbar.

Fig. 3. Overview of the COMPACT framework

A. Graph pre-processing

In this section, the input BDD is converted into an undi-

rected graph G. This is performed by first removing ter-

minal node ‘0’ and its incoming edges. The zero can be

removed because flow-based computing aims to only capture

the ‘1’ output. Finally, the graph representation is obtained

by mapping each node/edge in the BDD to an node/edge in

an undirected graph. The resulting graph G of the BDD in

Figure 4(a) is shown in Figure 4(b).

Fig. 4. Example of the COMPACT framework

B. VH-labeling

The input to the VH-labeling step is the undirected graph

G. The step involves assigning a label V , H , or V H to

each node in the graph. The labeled graph G is illustrated

in Figure 4(c). The labels are introduced to ensure that all

edges in the graph can later be realized using a memristor

in the subsequent crossbar mapping step, i.e., preemptively

handling the connection constraints. The labeling solution

directly defines both the semiperimeter S and the maximum

dimension D. In this section, we define the VH-labeling

problem as an mathematical optimization problem. Next, we

provide two solutions to solving the VH-labeling problem in

Section VI.

The VH-labeling problem: Let G = (U,E) be the

undirected graph, where U is a set of vertices and E is a

set of edges E, serving as input to the VH-labeling step. The

VH-labeling problem consists of assigning a label {V ,H ,V H}
to each node in the graph such that the connection constraints

are satisfied. First, we introduce an objective that minimizes

the semiperimeter S by minimizing the number of V H labels.

Next, we provide a solution to minimize the weighted sum of

the semiperimeter S and the maximum dimension D.

We formally define the VH-labeling problem for minimizing

the semiperimeter S as follows:

min | {v | v = L−1(V H)} |

s.t. ¬(L(u) = V ∧ L(v) = V), (u, v) ∈ E (2)

¬(L(u) = H ∧ L(v) = H), (u, v) ∈ E

where u and v are vertices in U . L : U → {V,H, V H} is the

label given to node v.

The objective directly minimizes the number of V H labels,

which explicitly defines the semiperimeter S of the resulting

crossbar representation. The semiperimeter is equal to n+k

if the graph has n nodes and k V H labels. The area is

implicitly optimized by minimizing the semiperimeter. The

two constraints ensure that no adjacent nodes in the graph G

are assigned (V ,V) or (H ,H) labels, as it would be impossible

to connect the corresponding bitlines or wordlines using a

memristor.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

For the second method, the weighted objective of both the

semiperimeter S and the maximum dimension D is minimized.

The weighted objective is rewritten across multiple lines for

clarity. The constraints are the same as in Eq 2.

min γS + (1− γD)

S = | {v | v = L−1(V H)} |,

D = max(R,C), (3)

R = | {v | v = L−1(H) ∨ v = L−1(V H)} |,

C = | {v | v = L−1(V) ∨ v = L−1(V H)} |,

C. Crossbar mapping

In the crossbar mapping step, we bind the graph G to a

crossbar representation D according to the assigned labels,

which ensures that the connection constraints can be satisfied.

The mapping is performed by using a node assignment step

and an edge assignment step. In the node assignment step, each

node in the graph is assigned to a bitline, wordline, or both

a bitline and a wordline according to the label in the graph,

i.e., nodes labeled V (H) are assigned to bitlines (wordlines).

Nodes labeled V H are assigned to both a bitline and a

wordline. However, these wordlines and bitlines are supposed

to be connected. Therefore, we also program the memristor

in the intersection of the corresponding wordline and bitline

to have low resistance or ‘1’. The crossbar representation

following the node assignment step is shown in Figure 4(d).

In the edge assignment step, each edge in the graph is

mapped to a memristor in the crossbar such that it connects

the bitlines and wordlines that correspond to the nodes in

the graph. Following the node assignment step, the edge

assignment step maps the variables and their negations onto the

crossbar representation, as shown in Figure 4(e). The output

is a crossbar design D for a Boolean function φ using the

COMPACT framework.

VI. SOLVING THE VH-LABELING PROBLEM

In Section VI-A, we solve the VH-labeling problem while

minimizing the semiperimeter based on Eq 2. In Section VI-B,

we solve the VH-labeling problem while minimizing the

weighted objective based on Eq 3. The first solution method

provides an intuitive approach to solve the VH-problem using

graph theory. The second approach leverages the theoretical

insights of the first approach and solves the problem using a

MIP formulation.

A. Minimal semiperimeter

In this section, we provide an optimal algorithm to solve the

VH-labeling problem, which results in crossbar representations

with the minimal semiperimeter. Next, we provide the proof

of correctness.

Fig. 5. Example of the VH-labeling for a minimal semiperimeter

1) The algorithm: If G is bipartite, it is trivial to determine

an optimal solution to Eq 2 using 2-coloring. The colors would

be the labels V and H . If G is not bipartite, no 2-coloring

exists [25]. Hence, not every pair of adjacent nodes can be

given a label V and H . Consequently, a V H label must be

assigned to at least one node. A necessary condition for a

graph to be bipartite is that it does not contain an odd-length

cycle [25].

Our optimal solution to the VH-labeling problem lies in

the observation that solving Eq 2 is equivalent to finding the

largest induced bipartite subgraph GB of the graph G. The

nodes in G that are not part of GB are the nodes labeled V H .

The nodes in GB can trivially be labeled V and H using

2-coloring. Moreover, finding the largest induced bipartite

subgraph is equivalent to the odd-cycle transversal problem.

Definition 1 (Odd Cycle Transversal). The odd cycle transver-

sal (OCT) of an undirected graph G = (V,E) is a set X ⊆ V ,

|X| ≤ k, such that V −X is a bipartite graph [26].

We use lemma 1 to find such odd cycle transversal for G.

Lemma 1. A graph G = (V,E) with |V | = n has an odd

cycle transversal X , |X| ≤ k, if and only if P = G�K2 has

a vertex cover V C(P) such that |V C(P)| ≤ n+ k [26].

We leverage this solution method to finding a minimum

vertex cover of P and thus to finding a smallest odd cycle

transversal of G. Graph G. In Figure 5(b), we show the graph

P = G�K2, i.e. the Cartesian product of G in Figure 5(a) with

K2. K2 is a graph with two nodes connected by an edge. The

resulting graph P contains two duplicates of graph G. Above

this, a node’s two duplicates are connected by an edge. If the

nodes in K2 are given a name 0 and 1, then the name of a

node in P is the concatenation of the node’s respective name

in G and either 0 or 1. For example, node a in graph G is

duplicated in two nodes, a0 and a1 in graph P . A vertex cover

W = V C(G) for a graph G = (U,E) is a set of nodes W ⊆ U

such that for each edge e = (u, v) ∈ E at least one node u or

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

v is in W . The minimum vertex cover problem can be solved

using integer linear programming (ILP) [27]. The minimum

vertex cover of P in Figure 5(b) is shown in Figure 5(c).

If both products v0 and v1 of a node v are present in the

vertex cover W , then v belongs to the odd cycle transversal

X of G. It can be observed that both b0 and b1 belong to the

vertex cover in Figure 5(d), which results in that the node is

part of the OCT and is labeled V H in Figure 5(e). Finally,

the largest induced bipartite subgraph GB is obtained by only

considering the nodes in G which are not labeled V H . The

labeling of GB is performed using traditional 2-coloring, as

shown in Figure 5(f).

2) The proof: The COMPACT framework is based on the

analogy between a nanoscale crossbar and a BDD. Given that

a crossbar is a bipartite graph where the nanowires correspond

to the nodes in the undirected graph G of the BDD, and given

that the memristors correspond to the edges in the undirected

graph G of the BDD, the framework finds the largest induced

bipartite subgraph GB of G. The nodes in GB are labeled

using a 2-coloring. Each color corresponds to a label V or

H, denoting whether the node will be assigned to a vertical

nanowire or a horizontal nanowire, respectively. Nodes outside

GB belong to an odd cycle transversal X of the undirected

graph G.

The nodes belonging to the OCT X are given a label

VH and are consequently mapped to both a horizontal and a

vertical nanowire. Since the ILP formulation in Eq 2 results in

the smallest odd cycle transversal X using a minimum vertex

cover, then by definition the number of nodes labeled VH is

minimal. This completes the proof.

�

B. Weighted objective

In the following sections, we discuss solving the VH-

labeling problem with the weighted objective. In the Sec-

tion VI-B1, we introduce a MIP formulation for solving Eq 3.

In Section VI-B2, we analyze why the MIP formulation is

capable of finding crossbar designs with smaller maximum

dimension.

1) The MIP formulation: In this section, we provide a MIP

formulation to solve the VH-labeling problem in Eq 3. For

each node i ∈ U , we introduce variables xV
i and xH

i . When

xV
i = 1, then the node will be mapped vertically (bitline).

When xH
i = 1, then the node will be mapped horizontally

(wordline). When both xV
i = 1 and xH

i = 1, then the node

will be mapped both vertically and horizontally. Next, the MIP

problem is formulated, as follows:

min γS + (1− γ)D

s.t. S =
∑

i∈U

xV
i + xH

i

R =
∑

i∈U

xV
i ,

C =
∑

i∈U

xH
i , (4)

D ≥ R,

D ≥ C,

xV
i + xH

j ≥ 2− 2xij , ∀(i, j) ∈ E

xH
i + xV

j ≥ 2− 2(1− xij), ∀(i, j) ∈ E

where xV
i , x

H
i ∈ {0, 1}, ∀i ∈ U , γ ∈ [0, 1], S ∈ N, D ∈ N,

and U is the set of nodes for the undirected graph G. xij ∈
{0, 1} is a binary helper variable for each edge (i, j) ∈ E.

The objective in Eq 4 directly minimizes the objective in

Eq 2 and Eq 3. The first five constraints in Eq 4 are used to

define S and D based on the variables xV
i and xH

i . The last

two constraints are used to handle the the constraints in Eq 2

(connection constraints). Now we elaborate further on these

two constraints.

The main idea is that the connection between node i and

node j for an edge (i, j) must be either an V-H or an H-V

connection. The helper variable xij specifies if the connection

is of type V-H or H-V. Basically, xij will select to activate

one of the following two constraints:

xV
i + xH

j ≥ 2 (5)

xH
i + xV

j ≥ 2 (6)

2) Analysis of MIP formulation: In Section VI-A, we have

introduced an algorithm for constructing crossbar designs

with minimal semiperimeter. However, the resulting crossbar

designs may be highly unbalanced (rectangular). Below, we

discuss two cases for which the maximum dimension can

be reduced using the MIP formulation. In the first case,

the maximum dimension is reduced without increasing the

semiperimeter. In the second case, the maximum dimension

is reduced while increasing the length of the semiperimeter.

In the first case, we observe that the 2-coloring solution

of the induced bipartite subgraph GB may not be unique.

Consequently, different 2-coloring solutions for GB may result

in different maximum dimension but the same semiperimeter,

which is illustrated with an example in Figure 6. If we remove

the V H-node in Figure 6(a) and Figure 6(b), then we obtain

two components in GB . One possible 2-coloring solution is

shown in Figure 6(a). The solution results in a semiperimeter

S of seven and a maximum dimension D of five. However,

we can relabel the top node from V to H , as illustrated

in Figure 6(b). The resulting VH-labeling results in a more

balanced solution with a semiperimeter S of seven but a

maximum dimension of only four. In general, there exists

an opportunity to reduce the maximum dimension when the

induced subgraph GB has two or more components. The MIP

formulation is capable of finding the most balanced 2-coloring

solution, which minimizes the maximum dimension.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

(a) |S| = 7 and |D| = 5 (b) |S| = 7 and |D| = 4

Fig. 6. Unbalanced design to more balanced design by changing the 2-
coloring

In the second case, we label additional nodes with V H

such that we obtain a new, but smaller induced bipartite

subgraph GB . Remember from Eq 2 that the number of V H-

nodes directly determines the semiperimeter. Thus, increasing

the number of V H-nodes increases the semiperimeter. On

the other hand, the smaller induced subgraph may provide

opportunities to find VH-labeling solutions with an more

even distribution of V and H labels. In Figure 7(a), the

semiperimeter S = 16 and the maximum dimension D = 10.

In Figure 7(b), both the root node and the terminal node are

labeled with V H , such that we obtain a crossbar design with

semiperimeter S = 18 and maximum dimension D = 9.

Indeed, we have increased the semiperimeter S with the reward

of finding a design with smaller maximum dimension D. The

MIP formulation is intrinsically capable of performing this

type of optimization.

(a) S = 16 and D = 10 (b) S = 18 and D = 9

Fig. 7. Unbalanced design to balanced design by adding V H-nodes

C. Scalability

Finding an odd cycle transversal is NP-hard [28], [29]. Even

though ILP solvers, such as CPLEX [30], are backed by years

of research and are capable of solving complex problems in

reasonable amount of time, it can be a hard task to find

an optimal solution and to prove that the found solution is

optimal. Finding an integer solution is even more challenging

than finding a non-integer solution to the problem. Many ILP

solvers allow the user to define a time limit for the task at

hand. The solver will then return the best integer solution it has

found and the best bound (non-integer solution). The relative

gap is a measure of how good the integer solution is compared

with the best bound. When the best integer solution and best

bound converge, the ILP solver has found an optimal solution.

Using the ILP formulation, one can always find a feasible

solution: the trivial solution where all nodes are labeled V H .

Of course, one is usually interested in alternative solutions

with better properties.

VII. EXTENSION TO FUNCTIONS WITH MULTIPLE OUTPUTS

In Section VII-A, we will extend COMPACT from single-

output functions to multi-output functions. A multi-output

function can be represented by multiple ROBDDs or a single

SBDD. In Section VII-B, additional constraints are introduced

for the alignment of the inputs and the outputs.

A. Multiple ROBDDs vs single SBDDs

Previous work on flow-based computing for multi-input

multi-output functions relied on splitting the function into

many multi-input single-output functions. Next, each multi-

input single-output function was converted into a ROBDD,

merged by its terminal node 1 and mapped ta crossbar de-

sign. These individual crossbar designs are aligned along the

diagonal, as illustrated in Figure 8(a). We observe that we can

also directly convert the multi-input multi-output function into

a SBDD [21], as illustrated in Figure 8(b). Next, the single

SBDD can directly be mapped into a crossbar design. This

may result in smaller crossbar designs as some parts of the

single-output BDDs can be shared across multiple outputs.

(a) ROBDD (b) SBDD

Fig. 8. Multiple ROBDDs versus a single SBDD

We observe that in Figure 8 that the outputs are placed

on any wordline. However, for flow-based computing, these

wordlines will be permuted with the top-most nanowires.

Also, the bottom-most wordlines of each sub-crossbar for each

Boolean function will be placed to the bottom-most wordline

through permutation.

B. Alignment of inputs and outputs

Flow-based computing relies on sensing resistors connected

to wordlines. This requires each output of a multi-input multi-

output function to be mapped to a wordline. Above this,

leaf nodes of the SBDD will be mapped to the bottom-most

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

wordline. These requirements can be met by adding new

constraints to the MIP formulation.

Let T ⊆ U denote the set of terminal nodes and let R ⊆ U

denote the set of root nodes. For BDDs, T = {1}. Then we

can add the following two constraints:

xH
i = 1, ∀i ∈ R

xH
i = 1, ∀i ∈ T (7)

The first and second constraint in Eq 7 force the root nodes

and the terminal nodes, respectively, to be given at least a

label H . This entails that the root nodes and terminal nodes

can be mapped either horizontally when xV
i is set to zero, or

vertically, when xV
i is also set to one.

VIII. EXPERIMENTAL EVALUATION

The COMPACT framework is implemented in Python and

the experiments have been conducted on a machine with

an Intel Core i9-9900X processor at 3.50GHz, 125GB of

RAM memory, and Ubuntu 20.04 as operating system. We

evaluate the effectiveness of the COMPACT framework using

nine circuits of the ISCAS85 benchmark suite [31] and eight

circuits of the EPFL control benchmarks [32]. A summary of

the properties of the circuits is shown in Table I. The source

code is publicly available on GitHub1.

We evaluate COMPACT in terms of hardware utilization,

power consumption, computation delay, and synthesis time.

The alignment constraints are included by default. Hardware

utilization is evaluated in terms of the crossbar dimensions,

i.e. in terms of rows, columns, semiperimeter, maximum

dimension, and area. The synthesis time is the run-time of

COMPACT in the one-time initialization phase. Power con-

sumption is proportional to the number of rows of the crossbar

design and computation delay is the number of time-steps

required to evaluate the Boolean function in the evaluation

phase. The number of time steps is equal to the number of

rows plus one. One time step per wordline is required to

program the devices [33] and one time step is required to

evaluate the Boolean function. Note that we have verified that

all the crossbar designs are valid using SPICE simulations and

the memristor model in [33].

1https://github.com/sventhijssen/compact

TABLE I
OVERVIEW OF INPUT CIRCUITS.

Benchmark Inputs Outputs Nodes Edges

ISCAS85

c432 36 7 1291 2578
c499 41 32 111146 222164
c880 60 26 4431 8858

c1355 41 32 111146 222164
c1908 33 25 28224 56348
c2670 233 140 6764 12970
c3540 50 22 59265 118442
c5315 178 123 14362 28232
c7552 207 108 90651 180870

EPFL control

arbiter 256 129 25109 50214
cavlc 10 11 436 868
ctrl 7 26 89 174
dec 8 256 512 1020
i2c 147 142 1204 2404

int2float 11 7 159 314
priority 128 8 772 1540
router 60 30 219 434

First, we evaluate the influence of the user-defined pa-

rameter γ on the solution space in Section VIII-A. Then,

for multi-output functions, we evaluate the crossbar designs

for SBDDs and ROBDDs in Section VIII-B. We compare

COMPACT with the state-of-the-art flow-based computing

algorithm in Section VIII-D. An analysis of the scalability is

made in Section VIII-C. We compare COMPACT with other

in-memory computing paradigms in Section VIII-E.

A. Evaluation of γ

The user-defined parameter γ allows us to change the

amount of pressure towards finding a solution with minimal

semiperimeter or towards finding a solution with maximum

dimension. In Table II, we evaluate COMPACT in terms of

number of rows, columns, maximum dimension, semiperime-

ter, and synthesis time for different values of γ. The table

only contains those benchmarks for which we find an optimal

solution within three hours.

First, we compare COMPACT using γ = 0 and γ = 0.5.

We observe that the maximum dimension D has decreased

with 0.2% for γ = 0 compared with γ = 0.5. This is

due to the fact that the maximum dimension D is being

minimized by balancing the number of rows and the number

of columns. However, the semiperimeter S for γ = 0 has

increased with 3.6% compared with γ = 0.5. The latter can

be explained due to the fact for γ = 0, the semiperimeter may

be extended by introducing additional VH labels as long as

the maximum dimension is not increased. It is expected that

such solutions will be found because it is easier to resolve the

connection constraints if additional VH labels are introduced.

Consequently, it is not surprising that many of the crossbar

designs synthesized with γ = 0 are square (or close to

square). We observe that all except for the benchmark dec

have an equal number of rows and columns. We conclude it

is advantageous to set γ equal to 0.5 instead of 0.

Next, we compare COMPACT using γ = 0.5 with γ = 1.

We observe that the normalized average of the maximum

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

TABLE II
SOLUTIONS IN TERMS OF NUMBER OF ROWS, COLUMNS, MAXIMUM DIMENSION, SEMIPERIMETER, AND SYNTHESIS TIME FOR DIFFERENT VALUES OF γ .

THE BENCHMARKS ARE THOSE FOR WHICH AN OPTIMAL SOLUTION CAN BE FOUND WITHIN THREE HOURS.

γ = 0 γ = 0.5 γ = 1

Benchmark
Rows Columns Max Dim Semi Time Rows Columns Max Dim Semi Time Rows Columns Max Dim Semi Time
(num) (num) (num) (num) (h) (num) (num) (num) (num) (h) (num) (num) (num) (num) (h)

cavlc 233 233 233 466 0.0 236 225 236 461 0.0 239 220 239 459 0.0
ctrl 54 54 54 108 0.0 54 47 54 101 0.0 55 45 55 100 0.0
dec 341 255 341 596 0.0 341 170 341 511 0.0 341 170 341 511 0.0
i2c 658 658 658 1316 0.0 658 658 658 1316 0.0 677 627 677 1304 0.0
int2float 90 90 90 180 0.0 90 90 90 180 0.0 85 95 95 180 0.0
priority 449 449 449 898 0.0 449 449 449 898 0.0 440 458 458 898 0.0
router 121 121 121 242 0.0 120 121 121 241 0.0 122 119 122 241 0.0

Normalized 0.998 1.036 1.000 1.000 1.021 0.997

TABLE III
SOLUTIONS IN TERMS OF NUMBER OF ROWS, COLUMNS, MAXIMUM DIMENSION, SEMIPERIMETER, AND SYNTHESIS TIME FOR MULTIPLE ROBDDS AND

A SINGLE SBDD FOR γ = 0.5.

Benchmark

ROBDD SBDD
Nodes Rows Cols Max Dim Semi Time Nodes Rows Cols Max Dim Semi Time
(num) (num) (num) (num) (num) (h) (num) (num) (num) (num) (num) (h)

ISCAS85

c432 1414 833 833 833 1666 3.00 1291 528 528 528 1056 3.00
c499 111146 67639 67639 67639 135278 10.30 111146 67639 65981 67639 133620 10.30
c880 5776 3339 3339 3339 6678 3.03 4431 1883 1798 1883 3681 3.01
c1355 111146 65812 65812 65812 131624 10.49 111146 65812 64209 65812 130021 10.49
c1908 30605 16000 16000 16000 32000 3.41 30605 16000 16061 16061 32061 3.41
c2670 8250 4126 4126 4126 8252 3.06 8250 4126 4153 4153 8279 3.06
c3540 59265 32598 32598 32598 65196 5.14 59265 32598 32590 32598 65188 5.14
c5315 15454 7925 7925 7925 15850 2.43 15454 7925 7926 7926 15851 2.43
c7552 33983 18440 18440 18440 36880 3.55 33983 18440 18438 18440 36878 3.55

EPFL control

arbiter 42092 24914 24914 24914 49828 4.35 25109 10301 10310 10310 20611 3.55
cavlc 602 311 311 311 622 0.02 436 199 210 210 409 0.02
ctrl 243 101 101 101 202 0.01 89 34 41 41 75 0.00
dec 2560 1024 1024 1024 2048 0.00 512 170 341 341 511 0.00
i2c 2698 1312 1312 1312 2624 0.06 1204 545 545 545 1090 0.02
int2float 227 121 121 121 242 0.00 159 68 68 68 136 0.01
priority 913 512 512 512 1024 0.01 772 322 322 322 644 0.02
router 283 127 127 127 254 0.01 219 99 98 99 197 0.01

Normalized 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.71 0.73 0.73 0.72 0.88

dimension D has increased with 2.1% compared with the

solutions for γ = 0.5. On the other hand, the normalized

semiperimeter S has decreased with 0.3%. This is what we

would expect, considering that γ = 1 only minimizes S while

γ = 0.5 minimizes a weighted combination of the semiperime-

ter S and the maximum dimension D. Now we analyze the

results on a few circuits in detail. For the circuits int2float,

priority, and router, we observe that γ = 0.5 reduces the

maximum dimension without a penalty on the semiperimeter.

For example, the maximum dimension is reduced from 458
to 449 on priority. This stems from that the MIP formulation

determines more balanced 2-coloring solutions without intro-

ducing any additional V H-nodes. For the other circuits, except

for dec, we observe that the maximum dimension is reduced

at the expense of increasing the length of the semiperimeter.

In particular, the maximum dimension is reduced with 3, 1,

and 19 at the expense of increasing the semiperimeter with 2,

1, and 12, respectively.

Based on the results in Table II, we conclude that the

best crossbar designs are obtained using γ = 0.5. It seems

advantageous to increase the average semiperimeter with about

3% in order to reduce the the average maximum dimension

with about 2%. Therefore, we set the default value for γ to

be 0.5 in the remainder of the experimental evaluation.

For the circuits cavlc and int2float, we sweep γ between

0 and 1 and examine all non-dominated crossbar designs

in Figure 9. A crossbar design is non-dominated if no

other crossbar design is obtained with a smaller number

of rows and a smaller number of columns. The number

of rows and columns is shown on the x-axis and y-axis,

respectively. For the circuit cavlc, we find the following

non-dominated solutions (233, 233), (233, 232), (234, 229),
(236, 225), (238, 221), and (239, 220). On the circuit int2float,

we found the non-dominated solutions (90, 90), (90, 89), and

(92, 87).

B. Evaluation of multiple ROBDDs vs single SBDD

In Table III, we compare the hardware utilization of COM-

PACT for both multiple ROBDDs and a single SBDD. We

observe that the number of nodes in the SBDD is smaller than

or equal to the total number of nodes in the merged ROBDDs.

This leads to crossbar designs with fewer rows and columns,

and thus smaller semiperimeter and area for COMPACT using

SBDDs. COMPACT using SBDDs reduces the number of

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

ACKNOWLEDGMENT

The authors acknowledge support from the National Science

Foundation awards #2113307, the DARPA cooperative agree-

ment #HR00112020002, and ONR grant #N000142112332.

The views, opinions and/or findings expressed are those of

the authors and should not be interpreted as representing the

official views or policies of the Department of Defense or the

U.S. Government.

REFERENCES

[1] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals of

the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] J. Backus, “Can programming be liberated from the von neumann style?:
A functional style and its algebra of programs,” Communications of the

ACM, vol. 21, no. 8, pp. 613–641, 1978.

[3] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions

on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[5] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on VLSI Systems,
vol. 22, no. 10, pp. 2054–2066, 2013.

[6] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[7] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Com-
putation of boolean formulas using sneak paths in crossbar computing,”
Apr. 19 2016. US Patent 9,319,047.

[8] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective bdd opti-
mization for rram based circuit design,” in 2016 IEEE 19th International

Symposium on Design and Diagnostics of Electronic Circuits & Systems

(DDECS), pp. 1–6, IEEE, 2016.

[9] E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis
methods for memristors,” in 2012 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 2441–2444, IEEE, 2012.

[10] N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky,
“mmpu—a real processing-in-memory architecture to combat the von
neumann bottleneck,” in Applications of Emerging Memory Technology,
pp. 191–213, Springer, 2020.

[11] A. Velasquez and S. K. Jha, “Parallel computing using memristive
crossbar networks: Nullifying the processor-memory bottleneck,” in
2014 9th International Design and Test Symposium (IDT), pp. 147–152,
IEEE, 2014.

[12] D. Chakraborty, S. Raj, S. L. Fernandes, and S. K. Jha, “Input-aware
flow-based computing on memristor crossbars with applications to edge
detection,” IEEE Journal on Emerging and Selected Topics in Circuits

and Systems, vol. 9, no. 3, pp. 580–591, 2019.

[13] A. Velasquez and S. K. Jha, “Fault-tolerant in-memory crossbar comput-
ing using quantified constraint solving,” in 2015 33rd IEEE International

Conference on Computer Design (ICCD), pp. 101–108, IEEE, 2015.

[14] Z. Alamgir, K. Beckmann, N. Cady, A. Velasquez, and S. K. Jha, “Flow-
based computing on nanoscale crossbars: Design and implementation of
full adders,” in 2016 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 1870–1873, IEEE, 2016.

[15] A. Velasquez and S. K. Jha, “Automated synthesis of crossbars for
nanoscale computing using formal methods,” in Proceedings of the

2015 IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH´ 15), pp. 130–136, IEEE, 2015.

[16] D. Chakraborty and S. K. Jha, “Automated synthesis of compact cross-
bars for sneak-path based in-memory computing,” in Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2017, pp. 770–775,
IEEE, 2017.

[17] A. U. Hassen, D. Chakraborty, and S. K. Jha, “Free binary decision
diagram-based synthesis of compact crossbars for in-memory comput-
ing,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 5, pp. 622–626, 2018.

[18] D. Chakraborty, S. Raj, J. C. Gutierrez, T. Thomas, and S. K. Jha,
“In-memory execution of compute kernels using flow-based memristive
crossbar computing,” in 2017 IEEE International Conference on Reboot-

ing Computing (ICRC), pp. 1–6, IEEE, 2017.

[19] A. U. Hassen, S. A. Khokhar, H. A. Butt, and S. K. Jha, “Free bdd
based cad of compact memristor crossbars for in-memory computing,” in
2018 IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH), pp. 1–7, IEEE, 2018.
[20] R. E. Bryant, “Graph-based algorithms for boolean function manipula-

tion,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[21] S.-i. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagram
with attributed edges for efficient boolean function manipulation,” in
ACM/IEEE DAC 1990, pp. 52–57, IEEE, 1990.

[22] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pp. 476–488, IEEE, 2015.
[23] A. Berkeley, “A system for sequential synthesis and verification,” 2009.
[24] D. B. Strukov and R. S. Williams, “Four-dimensional address topology

for circuits with stacked multilayer crossbar arrays,” Proceedings of the

National Academy of Sciences, vol. 106, no. 48, pp. 20155–20158, 2009.
[25] D. B. West, Introduction to Graph Theory, vol. 2. Prentice hall Upper

Saddle River, NJ, 1996.
[26] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx,

M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,
vol. 4. Springer, 2015.

[27] V. V. Vazirani, Approximation Algorithms. Springer Science & Business
Media, 2013.

[28] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-

ity of computer computations, pp. 85–103, Springer, 1972.
[29] C. Lund and M. Yannakakis, “The approximation of maximum subgraph

problems,” in International Colloquium on Automata, Languages, and

Programming, pp. 40–51, Springer, 1993.
[30] “Cplex optimizer.”
[31] F. Brglez, P. Pownall, and R. Hum, “Accelerated atpg and fault grading

via testability analysis,” in Proceedings of IEEE Int. Symposium on

Circuits and Systems, pp. 695–698, 1985.
[32] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational

benchmark suite,” in Proceedings of the 24th International Workshop on

Logic & Synthesis (IWLS), no. CONF, 2015.
[33] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor

spice model and crossbar simulation based on devices with nanosecond
switching time,” in The 2013 International Joint Conference on Neural

Networks (IJCNN), pp. 1–7, IEEE, 2013.
[34] D. Bhattacharjee, A. Chattopadhyay, S. Dutta, R. Ronen, and S. Kvatin-

sky, “Contra: area-constrained technology mapping framework for mem-
ristive memory processing unit,” in Proceedings of the 39th International

Conference on Computer-Aided Design, pp. 1–9, 2020.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3138356, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

Sven Thijssen is a Ph.D. student in Computer
Science at the University of Central Florida (UCF).
Sven received his bachelor’s degree in Informatics
from KU Leuven, Belgium, in 2018, and his master’s
degree in Computer Science from UCF in 2021.
His research interests are in-memory computing and
beyond von Neumann computing. In 2020 he has
received the ORCGS Doctoral Fellowship from UCF
and in 2021 he has received a best paper nomination
at DATE.

Sumit K. Jha is Professor of Computer Science
at the University of Texas San Antonio (UTSA).
Dr. Jha received his Ph.D. in Computer Science
from Carnegie Mellon University. Before joining
Carnegie Mellon, he graduated with B.Tech (Hon-
ors) in Computer Science and Engineering from
the Indian Institute of Technology Kharagpur. Dr.
Jha has worked on R&D problems at Microsoft
Research India, General Motors, INRIA France and
the Air Force Research Lab Information Directorate.
His research has been supported by the National

Science Foundation (NSF), DARPA, the Office of Naval Research (ONR), the
Air Force Office of Scientific Research (AFOSR), the Oak Ridge National
Laboratory (ORNL), the Royal Bank of Canada, the Florida Center for
Cybersecurity, the Air Force Research Laboratory (AFRL), and National
Nuclear Security Administration (NNSA). He is a full member of the Sigma
Xi and is a recipient of the IEEE Orlando Engineering Educator Excellence
Award. Dr. Jha was awarded the prestigious Air Force Young Investigator
Award and his research has led to four Best Paper awards.

Rickard Ewetz received the M.S. degree, in Applied
Physics and Electrical Engineering, from Linkopings
Universitet in 2011. He received the Ph.D. degree in
Electrical and Computer Engineering from Purdue
University in 2016. Currently, he is an assistant pro-
fessor in the Electrical and Computer Engineering
Department at the University of Central Florida.
His research interests include physical design and
computer-aided design for in-memory computing
using emerging technologies. He has best paper
nominations from ASP-DAC 2019 and DATE 2021.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

