
4622 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

A Multistage Framework With Mean Subspace
Computation and Recursive Feedback for Online

Unsupervised Domain Adaptation
Jihoon Moon , Graduate Student Member, IEEE, Debasmit Das , Member, IEEE,

and C. S. George Lee , Life Fellow, IEEE

Abstract—In this paper, we address the Online Unsupervised
Domain Adaptation (OUDA) problem and propose a novel
multi-stage framework to solve real-world situations when the
target data are unlabeled and arriving online sequentially in
batches. Most of the traditional manifold-based methods on the
OUDA problem focus on transforming each arriving target data
to the source domain without sufficiently considering the tem-
poral coherency and accumulative statistics among the arriving
target data. In order to project the data from the source and
the target domains to a common subspace and manipulate the
projected data in real-time, our proposed framework institutes
a novel method, called an Incremental Computation of Mean-
Subspace (ICMS) technique, which computes an approximation
of mean-target subspace on a Grassmann manifold and is proven
to be a close approximate to the Karcher mean. Furthermore, the
transformation matrix computed from the mean-target subspace
is applied to the next target data in the recursive-feedback stage,
aligning the target data closer to the source domain. The compu-
tation of transformation matrix and the prediction of next-target
subspace leverage the performance of the recursive-feedback
stage by considering the cumulative temporal dependency among
the flow of the target subspace on the Grassmann manifold. The
labels of the transformed target data are predicted by the pre-
trained source classifier, then the classifier is updated by the
transformed data and predicted labels. Extensive experiments
on six datasets were conducted to investigate in depth the effect
and contribution of each stage in our proposed framework
and its performance over previous approaches in terms of
classification accuracy and computational speed. In addition,
the experiments on traditional manifold-based learning models
and neural-network-based learning models demonstrated the
applicability of our proposed framework for various types of
learning models.

Index Terms—Mean subspace, subspace prediction, Grass-
mann manifold, online domain adaptation, unsupervised domain
adaptation.

I. INTRODUCTION

DOMAIN Adaptation (DA) [1] has been a research area
of growing interest to overcome real-world domain shift

Manuscript received 23 August 2021; revised 21 February 2022 and
6 May 2022; accepted 13 June 2022. Date of publication 1 July 2022; date
of current version 12 July 2022. This work was supported in part by the
National Science Foundation under Grant IIS-1813935. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Raymond Fu. (Corresponding author: Jihoon Moon.)
Jihoon Moon and C. S. George Lee are with the Elmore Family School

of Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907 USA (e-mail: moon92@purdue.edu; csglee@purdue.edu).
Debasmit Das is with Qualcomm Technologies Inc., San Diego,

CA 92121 USA (e-mail: debadas@qti.qualcomm.com).
Digital Object Identifier 10.1109/TIP.2022.3186537

issues. The goal of DA is to learn a model from the source
domain with sufficient labeled data to maintain the perfor-
mance of the learned model in the target domain, which
has a different distribution from the source domain. The
Unsupervised DA (UDA) problem [2]–[5], which is a branch
of DA problem, assumes that the target data are completely
unlabeled, and the Online DA problem [6] tackles the DA
problem when a learning system receives streaming target data
in an online fashion.
Recently many studies have been conducted on the Online

Unsupervised Domain Adaptation (OUDA) problem, which
faces the challenges of both online DA and unsupervised DA
problems. The OUDA problem assumes that the target data are
unlabeled and arriving sequentially in an online fashion. This
problem is challenging since it has to overcome the distribution
shift between the source and the target domains while the
target data is not given as an entire batch. Throughout this
paper, we use the term mini-batch to indicate a bunch of
consecutive target samples arriving at each timestep.
Early works tackled the OUDA problem by projecting the

source and the target data to a manifold. Bitarafan et al. [7]
computed a transformation matrix that aligned each arriving
target mini-batch closer to the source domain. Target samples
are then merged to the source domain once pseudo-labels
of those target mini-batches are predicted. Hoffman et al. [8]
adopted an additional loss term for optimization that mini-
mized the difference among the target mini-batches at adjacent
timesteps. However, these approaches did not sufficiently
consider the temporal dependency among the entire sequence
of target mini-batches.
Majority of recent studies have tackled the OUDA problem

by updating the model as the target mini-batch arrives. Some
studies augmented the input data using the pseudo labels
of previous target data, while others focused on updating
the weights of the neural network based on the statistics
(e.g., covariance, entropy etc.) of unlabeled target data. These
approaches are valid under the assumption that the target
domain shifts gradually [9]. If the source and the target distrib-
utions are significantly different, updating the learning system
with the target data leads to catastrophic forgetting [10].
Previously, we have proposed a multi-stage framework for

the OUDA problem [11], which computes the transformation
matrix from target data to the source domain in an online fash-
ion. The framework also considered the accumulative statistics

1941-0042 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4623

as well as temporal dependency among the entire sequence
of target mini-batches. The proposed method incrementally
computes the average of the low-dimensional subspaces from
the target mini-batches, followed by the computation of a
transformation matrix from the mean-target subspace to the
source subspace. This transformation matrix aligns the target
samples closer to the source domain, which leverages the
performance of the model trained on the source domain.
In this paper, we further extend this multi-stage OUDA

framework, taking into account the domain shift of the evolv-
ing target domain as well as the shift between the source
and the target domains. In addition to computing the average
subspace of target subspaces on a Grassmann manifold [11],
we also consider the flow of the target subspaces on the
Grassmann manifold. Utilizing this flow, our proposed frame-
work computes robust mean-target subspaces and precise
transformation matrices. The next-target subspace is predicted
by extrapolation of the geodesic from previous mean-target
subspaces. This prediction technique provides the robustness
of online domain adaptation for noisy target subspaces. The
recursive feedback stage leverages the performance of our
proposed framework by transforming the next arriving target
mini-batch. The transformed target mini-batch is represented
by a subspace that is closer to the source domain, hence
improving the performance of online domain adaptation.
In addition, transformation matrix from the target domain
to the source domain is computed cumulatively, considering
intermediate domains between the source and the successive
target subspaces. Moreover, the classifier in our proposed
framework is adaptive, whereas the source classifier in our
previous work [11] is not changing. This adaptive classifier
leverages the performance of online adaptation by including
the knowledge from the arriving target data.
We also validate the efficiency of the incremental mean-

target-subspace computation technique on a Grassmann man-
ifold, called an Incremental Computation of Mean-Subspace
(ICMS) [11]. We have also proved that the computed mean-
subspace is close to the Karcher mean [12]–one of the
most common and efficient methods related to the mean on
manifolds–while maintaining significantly low-computational
burden as compared to the Karcher-mean computation.
We have also empirically shown in experiments that ICMS
is faster than the Karcher-mean computation. This efficient
computation of a close approximate to the Karcher mean
makes the online feedback computation of the OUDA problem
possible. Extensive computer simulations were performed to
validate and analyze the proposed multi-stage OUDA frame-
work. In the computer simulations, we further analyzed in
depth each stage of the proposed framework to investigate
how those stages contribute to solving the OUDA problem.
In summary, the contributions of this paper are efficient

computation of mean-target subspace on a Grassmann man-
ifold, robustness on noisy online domain adaptation task
using recursive feedback and next-target-subspace prediction,
consideration of cumulative temporal consistency using the
flow of target domain on the Grassmann manifold, and
adaptivity of classifier that is suitable for online domain
adaptation.

The remainder of this paper is organized as follows.
Section II briefly introduces related works. Section III formally
describes the OUDA problem and our proposed multi-stage
OUDA framework for solving it. Section IV describes the
details of the proposed ICMS computation as well as the math-
ematical proof of subspace convergence. Section V describes
the experimental simulations and results, and Section VI sum-
marizes the findings and conclusions of the paper.

II. RELATED WORK

Among many approaches proposed for the UDA prob-
lem, the subspace-based approaches for the UDA prob-
lem focused on the alignment of the projected data on a
common subspace of the source and the target domains.
Long et al. [13] proposed the concept of Maximum Mean
Discrepancy (MMD)–a metric that minimized the distance
between mean points on Reproducing Kernel Hilbert Spaces
(RHKS) [14]. Fernando et al. [4] suggested the Subspace
Alignment (SA) technique that aligned the subspaces of the
source and the target domains, and then minimized the distance
between these two domains.
Other approaches utilized a common subspace to project

the data from the source and the target domains, but they did
not directly align the projected data. Gong et al. [2] proposed
a Geodesic Flow Kernel (GFK) technique that computed a
transform matrix using a kernel-based method. This transform
matrix characterizes the transformation of the original data
from the target domain to the source domain on a Grassmann
manifold.
Other previous work attempted to align the source

and the target domains by directly minimizing their sta-
tistical properties. Sun et al. [15] adopted a Correlation
Alignment (CORAL) approach that minimized the domain
discrepancy directly on the original data space by adjusting
the second-order statistics of the source and the target distri-
butions. Zhang et al. [3] suggested the Joint Geometrical and
Statistical Alignment (JGSA) technique–a combined technique
of MMD and SA methods. Wang et al. [16] proposed a Man-
ifold Embedded Distribution Alignment (MEDA) approach
that quantitatively evaluated the marginal and conditional dis-
tributions in domain adaptation. Vascon et al. [5] formulated
the UDA problem as a semi-supervised incremental learning
problem using the Game Theory and suggested a Graph Trans-
duction for Domain Adaptation (GTDA) method. The GTDA
method obtained the optimal classification result on the target
domain using Nash equilibrium [17]. Wulfmeier et al. [18]
adopted Generative Adversarial Networks (GANs) [19] to
align the features across domains.
Recently, more studies on the OUDA problem have

emerged. Wulfmeier et al. [20] extended their previous
work [18] on the UDA problem to the online case using
a GAN-based approach. Unfortunately, their approach was
not applicable to real-time situations since it requires the
training stage of the target data. Bitarafan et al. [7] proposed
an Incremental Evolving Domain Adaptation (EDA) technique
that consisted of the target data transformation using GFK
followed by the source-subspace update using Incremental

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4624 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Partial Least Square (IPLS) [21]. Hoffman et al. [8] proposed
another approach for the OUDA problem, using Continuous-
Manifold-based Adaptation (CMA) that formulated the OUDA
problem as a non-convex optimization problem. Liu et al. [22]
suggested a meta-adaptation framework that utilized meta-
learning [23] to tackle the OUDA problem. More recently,
Kumar et al. [9] theoretically studied gradual domain adap-
tation, where the goal was to adapt the source classifier
given unlabeled target data that shift gradually in distribution.
They proved that self-training leverages the gradual domain
adaptation with small Wasserstein-infinity distance.
Other studies have focused on the applications of the

OUDA problem. Mancini et al. [24] adopted a Batch Nor-
malization [25] (BN) technique to tackle the OUDA problem
for a robot kitting task. Wu et al. [26] tackled the OUDA
problem using memory store and meta-learning on a semantic
segmentation task. Xu et al. [27] suggested an online domain
adaptation method for Deformable Part-based Model (DPM),
which is applicable for Multiple Object Tracking (MOT).
More recently, there have been many studies on tackling

the test-time adaptation task with neural-network-based mod-
els. The test-time adaptation task, in addition to the OUDA
problem setting, assumes that the source data is not accessible
during the test time. The NN-based approaches tackled this
task by updating the model parameters online as unlabeled
target data arrives. Bobu et al. [10] proposed a replay method
to overcome catastrophic forgetting in neural networks.
Wu et al. [28] suggested the Online Gradient Descent (OGD)
and Follow The History (FTH) techniques for tackling the
OUDA problem. Sun et al. [29] proposed the Test-Time-
Training (TTT) approach that utilizes self-supervised auxiliary
task to solve the OUDA problem. They rotated the test images
by 0, 90, 180 and 270 degrees and had the model predicted
the angle of rotation as a four-way classification problem.
Schneider et al. [30] removed the covariate shift between the
source and the target distribution by batch normalization.
Wang et al. [31] updated the model by minimizing the entropy
loss of the unlabeled target data.

III. PROPOSED APPROACH

A. Problem Description

The OUDA problem assumes that the source-domain data
are labeled while the target data are unlabeled and arriv-
ing online in a sequence of mini-batches at each timestep.
As shown in Fig. 1, the goal of the OUDA problem is to
classify the arriving unlabeled target mini-batches with the
model pre-trained by the source data. Formally, the sam-
ples in the source domain XS ∈ RNS×d are given and
labeled as YS ∈ RNS×c, where NS , d , and c indicate
the number of source data, the dimension of the data and
the number of class categories, respectively. The target data
XT = {XT ,1,XT ,2, · · · ,XT ,B} in the target domain T
are a sequence of unlabeled mini-batches that arrive in an
online fashion, where B indicates the number of mini-batches.
As mentioned previously, we use the term mini-batch for the
nth target-data batch XT ,n ∈ RNT ×d , where NT indicates the
number of data in each mini-batch. Subscript (T , n) represents

Fig. 1. Overview of the OUDA problem. Given the classifier trained with
labeled source data (circles) from two classes (orange and blue), the OUDA
problem aims to classify the unlabeled target data (grey triangles) arriving
online in a mini-batch. Our proposed framework focuses on aligning each
target data to the source domain.

TABLE I

NOMENCLATURE OF PROPOSED FRAMEWORK

the nth mini-batch in the target domain. NT is assumed to
be a constant for n = 1, 2, · · · , B and is small compared to
NS . Our goal is to transform each target mini-batch XT ,n to
X′T ,n , which is aligned with the source domain S, in an online
fashion. The transformed target data X′

T ,n can be classified
correctly as ŶT ,n with the classifier pre-trained in the source
domain S. The nomenclature of our paper is summarized in
Table I.

B. Preliminaries: Grassmann Manifold

Throughout this paper, we utilize a Grassmann manifold
G(k, d) [32]–a space that parameterizes all k-dimensional
linear subspaces of d-dimensional vector space Rd . A single
point on G(k, d) represents a subspace that does not depend on
the choice of basis. Formally, for a d×k matrix P of full rank
k and any nonsingular k×k matrix L, the column space col(P)
of set A = {PL|P ∈ V(k, d),L ∈ SO(k)} is a single point on
G(k, d), where V(k, d) is a point on Stiefel manifold [33] and
SO(k) is a special orthogonal group [32]. For simplicity of
notation, we denote this point col(P) as corresponding basis
P ∈ Rd×k throughout this manuscript.

C. Proposed OUDA Framework

The proposed OUDA framework consists of four stages
for processing an incoming nth mini-batch target data: 1)

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4625

Fig. 2. Schematic of the proposed OUDA framework. The proposed framework consists of four stages: 1) Subspace representation, 2) Averaging Mean-target
subspace, 3) Online domain adaptation, and 4) Recursive feedback.

Subspace representation, 2) Averaging mean-target subspace,
3) Online domain adaptation, and 4) Recursive feedback as
shown in Fig. 2. Instead of utilizing the raw samples from
both source and target domains, Stage one embeds those
samples XS and XT ,n to low-dimensional subspaces (i.e.
k-dimensional subspace of Rd) PS and PT ,n , respectively, for
faster computation of transformation matrix from the target
domain T to the source domain S.
Stage two computes the mean of target subspaces PT ,n

embedded in a Grassmann manifold using our novel Incre-
mental Computation of Mean Subspace (ICMS) method. The
proposed ICMS technique is an efficient method of computing
the mean of target subspaces and its computed mean is a valid
approximate of the Karcher mean [12]. The nth target subspace
PT ,n can be further compensated as P′T ,n by target-subspace
prediction as discussed in a later subsection. Stage three is
the online domain adaptation and it computes a transform
matrix Gn that aligns each arriving target mini-batch to the
source domain. Gn can be replaced with the matrix Gc,n that
is computed with a cumulative computation technique. Stage
four provides recursive feedback by feeding Gn back to the
next mini-batch XT ,n+1. Each stage is briefly described next.

1) Subspace Representation: The goal of our proposed
OUDA framework is to find the transformation matrix
G = {G1,G2, · · · ,GB} that transforms the set of target
mini-batches XT = {XT ,1,XT ,2, · · · ,XT ,B} to X′T =
{X′T ,1,X′T ,2, · · · ,X′T ,B} so that the transformed target data
X′T ,n = XT ,nGn (n = 1, 2, · · · , B) are well aligned to the
source domain, where Gn ∈ Rd×d indicates the transforma-
tion matrix from XT ,n to X′T ,n . Since all the computations
must be conducted online, we prefer not to use methods
that compute Gn directly on the original high-dimensional
data space. Hence, we embed those samples, XS and XT ,n ,
in low-dimensional subspaces PS = f (XS) ∈ Rd×k and
PT ,n = f (XT ,n) ∈ Rd×k , respectively, where d represents
the dimension of the original data and k represents the
dimension of the subspace. As mentioned above, we represent
the subspace as a corresponding basis matrix. f (·) can be any
low-dimensional representation, but in this paper we adopt the
Principal Component Analysis (PCA) algorithm [34] to obtain
PS and PT since it is simple and fast for online domain
adaptation and is suitable for both labeled and unlabeled
data.

2) Averaging Mean-Target Subspace: Since a subspace is
represented as a single point on a Grassmann manifold, PS
and PT ,1,PT ,2, · · · ,PT ,n are represented as (n + 1) points
on G(k, d). Since all the samples in the source domain S are
given, XS can be compressed to a low-dimensional subspace
PS by conducting the embedding technique only once. For
the target domain T , however, each mini-batch XT ,n should
be represented as a low-dimensional subspace PT ,n in every
timestep as it arrives. Since a single mini-batch is assumed
to contain a small number of the target samples (i.e., NT is
small), it does not sufficiently represent the target domain.
To find a subspace that generalizes the target domain

T , we compute the mean-target subspace PT ,n of n tar-
get subspaces PT ,1,PT ,2, · · · ,PT ,n . Traditionally, Karcher
mean [12] is utilized as the mean of subspaces represented on
a Grassmann manifold. Unfortunately, computing the Karcher
mean is an iterative process, which is not suitable for online
domain adaptation. Thus, we propose a novel computation
technique, called Incremental Computation of Mean-Subspace
(ICMS), to compute the mean-target subspace PT ,i online for
every i = 1, 2, · · · , n, · · · , B . Different from the iterative
process in computing the Karcher mean, the proposed ICMS
technique incrementally computes the mean-target subspace
efficiently to satisfy the online computational demand and
its computed mean is a close approximate to the Karcher
mean. Formally, when the nth mini-batch XT ,n arrives and
is represented as a subspace PT ,n , we incrementally compute
the mean-target subspace PT ,n using PT ,n and PT ,n−1, where
PT ,n−1 is the mean subspace of (n − 1) target subspaces
PT ,1,PT ,2, · · · ,PT ,n−1. We mathematically prove that the
computed mean from the ICMS computation is close to the
Karcher mean in Section IV. PT ,n can be rectified to P

′
T ,n

using the next-target subspace prediction, which is described
in Section IV-D.
3) Online Domain Adaptation: After the mean-target sub-

space PT ,n is computed using the proposed ICMS technique,
we compute the transformation matrix Gn that transforms the
mini-batch XT ,n to X′T ,n , where X′T ,n = XT ,nGn . We adopt
the method proposed by Bitarafan et al. [7] to compute the
matrix Gn from PT ,n and the source subspace PS using
the GFK method [2]. The transformed mini-batch X′T ,n is
aligned closer to the source domain S compared to the original
mini-batch XT ,n . This X′

T ,n is classified by the classifier

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4626 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 3. Detailed schematic of the proposed ICMS technique. As the mean-
target subspace PT ,n (red dot) is computed, the geodesic flow from PS (green
dot) to PT ,n is obtained for computing the transformation matrix Gn (grey
arrow). Transformed target data X′T ,n are then projected (red arrow) to a
projective space, where the source data XS are projected (green arrow).

pre-trained with the samples from the source domain S. Note
that Gn ∈ Rd×d transforms the original mini-batch XT ,n
and not the subspace PT ,n . We exploit this Gn when the
(n + 1)th mini-batch XT ,n+1 arrives. Gn can be replaced
with the transformation matrix Gc,n , which is obtained by
cumulative computation and is described in Section IV-F.
4) Recursive Feedback: Followed by the computation of

the transformation matrix, we institute a recursive feedback
stage that applies the transformation matrix to the next target
mini-batch before inputting it to the subspace representation
stage. This feedback stage aligns the next target mini-batch
closer to the source domain before inputting into the sub-
space representation stage, which leverages the performance
of adaptation. It is crucial to note that the feedback stage at
time step n affects the (n + 1)th target mini-batch. Formally,
we feed Gn back to XT ,n+1 as Xpre

T ,n+1 = XT ,n+1Gn before
inputting XT ,n+1 to the first stage of the proposed OUDA
framework. The pre-processed target data Xpre

T ,n+1 is aligned
closer to the source subspace S than XT ,n+1. Combined with
next-target subspace prediction, the recursive feedback stage
leverages the performance of online domain adaptation when
the target domains are noisy. In the next section, we describe
the detailed procedure of the proposed ICMS technique and
online domain adaptation.

IV. INCREMENTAL COMPUTATION OF MEAN-SUBSPACE

FOR ONLINE DOMAIN ADAPTATION

The main contribution of the proposed OUDA framework is
the ICMS computation technique followed by online domain
adaptation. The proposed ICMS technique incrementally com-
putes the mean-target subspace efficiently on a Grassmann
manifold and its computed mean is close to the Karcher mean.
The proposed ICMS computation also satisfies the online
computational demand of the OUDA problem.
Figure 3 shows the detailed schematic of the proposed

ICMS technique. In Fig. 3, as the nth target mini-batch XT ,n
is represented as the nth target subspace PT ,n on a Grass-
mann manifold, the mean-target subspace PT ,n is efficiently

computed on the Grassmann manifold. The transformation
matrix Gn is computed from the mean-target subspace PT ,n
and the source subspace PS . Using this transformation matrix
Gn , the transformed target data X′T ,n is aligned with the
source domain. With this alignment, the classifier trained on
the source data performs well for the arriving target data.
We first review the geodesic flow on a Grassmann manifold,

and then discuss the derivation and computation of ICMS and
its convergence, and finally its utilization for online domain
adaptation.

A. Geodesic Flow on a Grassmann Manifold

A geodesic is the shortest-length curve between two points
on a manifold [35]. The geodesic flow on a Grassmann
manifold G(k, d) that starts from a point P1 is given by
!(t) = Q exp (tB)J, where the matrix Q = [P1 R1] ∈ SO(d),
and Q is termed as an Orthogonal Completion of P1 such

that QTP1 = J and J =
[

Ik
Od−k,k

]
. Here the matrices Ik

and Od−k,k denote k × k identity matrix and (d − k)× k
zero matrix, respectively. Using the geodesic parameterization
with a single parameter t [35], the geodesic flow from P1
to P2 on a Grassmann manifold G(k, d) is parameterized as
" : t ∈ [0, 1] −→ "(t) ∈ G(k, d):

"(t) = P1U1#(t) − R1U2$(t) (1)

under the two constraints that "(0) = P1 and "(1) = P2,
where #(t) and $(t) = [$1(t)TOT]T are diagonal and
block diagonal matrices whose elements are cos (tθi,n) and
sin (tθi,n), respectively.R1 denotes the orthogonal complement
to P1, namely RT

1 P1 = O. Two orthonormal matrices U1 ∈
Rk×k and U2 ∈ R(d−k)×(d−k) are given by the following
Generalized Singular-Value Decompositions (GSVD) [36],

QTP2 =
(
U1 0
0 U2

)(
#(t)

−$(t)

)
VT , (2)

where #(t) ∈ Rk×k and $(t) = [$1(t)TOT]T ∈ R(d−k)×k

are diagonal and block diagonal matrices, respectively, and
$1(t) ∈ Rk×k and O ∈ R(d−2k)×k .

B. Mean-Target Subspace Computation–ICMS

Since computing the Karcher mean is a time-consuming,
iterative process and not suitable for online domain adaptation,
we propose a novel technique, called Incremental Computation
of Mean-Subspace (ICMS), for computing the mean-target
subspace of n target subspaces on a Grassmann manifold.
The proposed ICMS is inspired by the geometric interpre-

tation of computing the mean of n points on the Euclidean
space. As shown in Fig. 4(a), it is geometrically intuitive to
compute the mean point Xn of n points X1,X2, · · · ,Xn in an
incremental way when the points are on the Euclidean space.
If the mean point Xn−1 of (n − 1) points X1,X2, · · · ,Xn−1
as well as the nth point Xn are given, the updated mean
point Xn can be computed as Xn = {(n − 1)Xn−1 + Xn}/n.
From a geometric perspective, Xn is the internal point, where

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4627

Fig. 4. Mean-target subspace computation. (a) Geometric interpretation of
computing the mean point of n points in the Euclidean space. (b) Computation
of mean-target subspace PT ,n on a Grassmann manifold.

the distances from Xn to Xn−1 and to Xn have the ratio of
1 :(n − 1):

|Xn−1Xn| =
|Xn−1Xn|

n
. (3)

We adopt this geometric perspective of ratio concept to
the Grassmann manifold. However, Eq. (3) is not directly
applicable to a Grassmann manifold since the distance between
two points on the Grassmann manifold is not an Euclidean
distance. In Fig. 4(b), we update the mean-target subspace
PT ,n of n target subspaces when the previous mean subspace
PT ,n−1 of (n−1) target subspaces and the nth subspace PT ,n
are given. PT ,n is the introspection point that divides the
geodesic flow from PT ,n−1 to PT ,n to the ratio of 1 :(n − 1).
Following Eq. (1), the geodesic flow from PT ,n−1 to PT ,n is
parameterized as "n : t ∈ [0, 1] −→ "n(t) ∈ G(k, d):

"n(t) = PT ,n−1U1,n#n(t) − RT ,n−1U2,n$n(t) (4)

under the constraints of "n(0)= PT ,n−1 and "n(1)= PT ,n .
RT ,n−1 ∈ Rd×(d−k) denotes the orthogonal complement to
PT ,n−1; that is, R

T
T ,n−1PT ,n−1 = 0. Two orthonormal matri-

ces U1,n ∈ Rk×k and U2,n ∈ R(d−k)×(d−k) are defined similar
to Eq. (2) and given by the following pair of singular-value
decompositions (SVDs),

P
T
T ,n−1PT ,n = U1,n#nVT

n (5)

R
T
T ,n−1PT ,n = −U2,n$nVT

n (6)

where #n ∈ Rk×k and $n = [$T
1,nO

T]T ∈ R(d−k)×k are
diagonal and block diagonal matrices, respectively, and $1,n ∈
Rk×k and O ∈ R(d−2k)×k .
When the nth target mini-batch XT ,n arrives and is repre-

sented as the subspace PT ,n , we incrementally compute the
mean-target subspace PT ,n using PT ,n and PT ,n−1, where
PT ,n−1 is the mean subspace of (n − 1) target subspaces
PT ,1,PT ,2, · · · ,PT ,n−1. Finally, utilizing "n(t) in Eq. (4), we
obtain PT ,n = "n(

1
n) and the mean-target subspace of n target

subspaces PT ,n = "n(
1
n) can be incrementally computed as:

PT ,n = PT ,n−1U1,n#n(
1
n
) − RT ,n−1U2,n$n(

1
n
). (7)

Note that n refers to the nth mini-batch in the target domain.
Since 0 ≤ 1

n ≤ 1, #n(
1
n) and $n(

1
n) are well defined.

C. Convergence of Mean-Target Subspace

In this subsection, we prove that the ICMS-based com-
puted mean in Eq. (7) on a Grassmann manifold is a valid
approximation to the Karcher mean. The proof is conducted
by induction on n.
We assume that the mean-subspace PT ,n−1 of (n − 1)

subspaces PT ,1,PT ,2, · · · ,PT ,n−1 on a Grassmann manifold
G is close to the Karcher mean. We then want to show that
PT ,n , the computed mean subspace of n subspaces PT ,1,
PT ,2, · · · ,PT ,n , is also close to the Karcher mean by showing
that:

n∑

i=1

−−−−−−→
PT ,nPT ,i ' 0. (8)

Satisfying Eq. (8) is sufficient to prove that the computed
mean subspace PT ,n is close to the Karcher mean. Since
the n subspaces PT ,1, PT ,2, · · · ,PT ,n and the computed
mean subspace PT ,n are assumed to be close, these subspaces
approximately follow the geometrical property in the Euclid-
ean space.
For a large n > N , the tangent spaces of the manifold G

at the two points PT ,n−1 and PT ,n are similar. Therefore, Eq.
(8) can be rewritten as follow:

n∑

i=1

−−−−−−→
PT ,nPT ,i =

n−1∑

i=1

−−−−−−→
PT ,nPT ,i +

−−−−−−→
PT ,nPT ,n

=
n∑

i=1

(
−−−−−−−−→
PT ,nPT ,n−1 +

−−−−−−−→
PT ,n−1PT ,i)

+
−−−−−−→
PT ,nPT ,n

' (n − 1)
−−−−−−−−→
PT ,nPT ,n−1 +

−−−−−−→
PT ,nPT ,n . (9)

Let the geodesic flow from PT ,n−1 to PT ,n be given as
"n(t) = Qn−1 exp (tB)J. The matrix Qn−1 ∈ SO(d) such

that Q
T
n−1PT ,n−1 = J and J =

[
Ik

Od−k,k

]
, where B is a

skew-symmetric matrix. The mean subspace PT ,n is a point
on the geodesic as PT ,n = "n(

1
n). To prove Eq. (9), we re-

parameterize the two geodesics S1(t) and S2(t) starting from
PT ,n to PT ,n−1 and PT ,n , respectively:

S1(t) = "n(
1 − t
n

) = Qn−1 exp (
1 − t
n

B)J

= Qn−1 exp (
B
n
) exp (t (−B

n
))J (10)

S2(t) = "n(
(n − 1)t + 1

n
) = Qn−1 exp (

(n − 1)t + 1
n

B)J

= Qn−1 exp (
B
n
) exp (t (−n − 1

n
)B)J. (11)

From these two equations, we can derive that
Ṡ1(t) = − 1

n "̇n(
1−t
n) and Ṡ2(t) = n−1

n "̇n(
(n−1)t+1

n).
Hence, the first and third terms in Eq. (9) can be rewritten as:

−−−−−−−−→
PT ,nPT ,n−1 = Ṡ1(0) = −1

n
"̇n(

1
n
) (12)

−−−−−−→
PT ,nPT ,n = Ṡ2(0) =

n − 1
n

"̇n(
1
n
). (13)

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4628 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 5. Prediction of next-target subspace. The (n + 1)th target subspace
P̂T ,n+1 (green dot) is an extrapolation of the geodesic from the (n − 1)th

mean-target subspace PT ,n−1 to the nth mean-target subspace PT ,n . The
(n+1)th target subspace PT ,n+1 can then be compensated to P′T ,n+1 (black
dot).

Substituting Eqs. (12) and (13) into Eq. (9), we obtain

(n − 1)
−−−−−−−−→
PT ,nPT ,n−1 +

−−−−−−→
PT ,nPT ,n = 0. (14)

Hence,
n∑

i=1

−−−−−−→
PT ,nPT ,i ' 0 for ∀n > N!

Thus, the mean subspace computed by ICMS is close to the
Karcher mean.

D. Next-Target Subspace Prediction

The target subspace PT ,n is computed at every timestep as
the nth mini-batch XT ,n arrives. However, XT ,n may be noisy
due to many factors such as imbalanced data distribution and
data contamination, leading to an inaccurate target subspace
PT ,n and the mean-target subspace PT ,n . To rectify this
inaccurate target subspace, we predict the next-target subspace
from the flow of the mean target subspaces. Formally, we pro-
pose to compute the prediction of next-target subspace P̂T ,n+1
by using the previous and current mean-target subspaces
PT ,n−1 and PT ,n , respectively, as shown in Fig. 5. For the
OUDA problem with continuously changing environment, we
assume that the mean-target subspace may shift according to a
continuous curve on the Grassmann manifold. We compute the
velocity matrix An of the geodesic from the previous mean-
target subspace PT ,n−1 to the current mean-target subspace
PT ,n . We then obtain the prediction of the next-target subspace
P̂T ,n+1 by extrapolating the curve from the obtained velocity
matrix An . The velocity matrix is computed by utilizing the
technique proposed by Gopalan et al. [37]. We first compute
the orthogonal completion Qn−1, Qn of the mean-target sub-
spaces PT ,n−1, PT ,n , respectively. As in Eq. (2), GSVD of
QT

n−1PT ,n is computed as:

QT
n−1PT ,n =

(
U′

1,n 0
0 U′

2,n

) (
#′

n
−$′

n

)
V′T

n . (15)

The principal angle between PT ,n−1 and PT ,n is computed
from &n = arccos (#′

n). Hence, the velocity matrix of the
geodesic from PT ,n−1 to PT ,n is as follows:

An = U′
2,n&nU′T

1,n. (16)

The predicted next-target subspace P̂T ,n+1 of (n + 1)th mini-
batch is the subspace obtained by the extrapolation of the

Algorithm 1 Prediction of Next-Target Subspace

geodesic from the nth mean-target subspace PT ,n with velocity
matrix An:

P̂T ,n+1 = Qn

(
U′

1,n #′
n

−U′
2,n $′

n

)
. (17)

The procedure of computing the next-target subspace P̂T ,n+1
is described in Algorithm 1.
The predicted next-target subspace P̂T ,n+1 is compensated

to P′T ,n+1 as the actual target subspace of (n+1)th mini-batch
PT ,n+1 arrives. The compensated target subspace P′T ,n+1 is
the introspection of the prediction P̂T ,n+1 and the observation
PT ,n+1.

E. Online Domain Adaptation

In this stage, we compute the transformation matrix Gn
using the GFK method [2]. The transformation matrix Gn is
computed from the source subspace PS and the nth mean-
target subspace PT ,n ; that is, Gn = GFK (PS ,PT ,n). After
computing the mean-target subspace PT ,n , we parameterize a
geodesic flow from PS to PT ,n as !n : t ∈ [0, 1] −→ !n(t) ∈
G(k, d):

!n(t) = PSU3,n'n(t) − RSU4,n(n(t) (18)

under the constraints of !n(0) = PS and !n(1) = PT ,n .
RS ∈ Rd×(d−k) denotes the orthogonal complement to PS ;
that is, RT

SPS = 0. Two orthonormal matrices U3,n ∈ Rk×k

and U4,n ∈ R(d−k)×(d−k) are given by the GSVD [36],

QT
SPT ,n =

(
U3,n 0
0 U4,n

) (
'n(t)

−(n(t)

)
WT

n . (19)

Based on the GFK, the transformation matrix Gn from the
target domain to the source domain is found by projecting and
integrating over the infinite set of all intermediate subspaces
between them:

∫ 1

0
(!n(α)

T xi)T (!n(α)
T x j)dα = xTi Gnx j . (20)

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4629

Fig. 6. Cumulative computation of transformation matrix Gc,n . Gc,n is
obtained by integrating over the area bounded by the source subspace PS ,
(n − 1)th mean-target subspace PT ,n−1 and nth mean-target subspace PT ,n
(enclosed and colored area). The subspace inside the area is parameterized as
!n(α,β).

From the above equation, we can derive the closed form of
Gn as:

Gn =
∫ 1

0
!n(α)!n(α)

T dα. (21)

We adopt this Gn as the transformation matrix to the
preprocessed target data as X′T ,n = Xpre

T ,nGn , which better
aligns the target data to the source domain. Xpre

T ,n is the target
data fed back from the previous mini-batch.

F. Cumulative Computation of Transformation Matrix, Gc,n

The proposed ICMS method updates the mean-target sub-
space as each target mini-batch arrives, but the transformation
matrix Gn is still computed by merely utilizing the source
subspace PS and the mean-target subspace PT ,n . To obtain
the transformation matrix that embraces the cumulative tem-
poral dependency, we propose a method of computing the
cumulative transformation matrix Gc,n . As shown in Fig. 6,
we compute the cumulative transformation matrix Gc,n by
considering the variation of the mean-target subspaces caused
by two consecutive mini-batches. The cumulative transfor-
mation matrix Gc,n is computed based on the area bounded
by the three points PS , PT ,n−1, and PT ,n on the manifold.
In the OUDA problem, it is assumed that the target domain
is shifted continuously but slowly. Hence, the principal angle
&n(0) between the source subspace PS and the previous
mean-target subspace PT ,n−1 changes linearly to the principal
angle &n(1) between the source subspace PS and the current
mean-target subspace PT ,n . The principal angle between PS
and the intermediate subspace is denoted as follows:

&n(β) = &n(0)+ (&n(1) − &n(0))β. (22)

To consider all the intermediate subspaces inside the boundary
area, double integration is conducted for the computation
instead of using Eq. (20):

∫ 1

0

∫ 1

0
(!n(α,β)

T xi)T (!n(α,β)
T x j)dαdβ = xTi Gc,nx j .

(23)

Algorithm 2 Cumulative Transformation Matrix Gc,n Com-
putation

Hence, Gc,n is computed as:

Gc,n =
∫ 1

0

∫ 1

0
!n(α,β)!n(α,β)

T dαdβ =
∫ 1

0
Gn(β)dβ.

(24)

Different from the offline domain-adaptation problem [2],
the transformation matrix Gn depends on the parameter β:

Gn(β) = [PSU3,n RSU4,n]
[
'1,n(β) '2,n(β)
'2,n(β) '3,n(β)

] [
UT
3,nP

T
S

UT
4,nR

T
S

]
.

(25)

The computed Gn(β) is then integrated over the parameter β,
as shown in the bottom part of Fig. 6. Utilizing the GFK
technique [2], the diagonal elements of matrices '1,n(β),
'2,n(β), and '3,n(β) are, respectively:

λ1i,n (β) = 1+ sin 2θi,n(β)
2θi,n(β)

,

λ2i,n (β) =
cos 2θi,n(β) − 1

2θi,n(β)
,

λ3i,n (β) = 1 − sin 2θi,n(β)
2θi,n(β)

. (26)

Substituting Eq. (25) into Eq. (24), only the second matrix
of the right-hand side of Eq. (25) should be integrated with
respect to β. Thus,

Gc,n = [PSU3,nRSU4,n]
[
,1,n ,2,n
,2,n ,3,n

] [
UT
3,nP

T
S

UT
4,nR

T
S

]
, (27)

where the diagonal elements of matrices ,1, ,2, and ,3 are,
respectively:

δ1i,n = 2 − 2
9

{
θi,n(1)2 + θi,n(1)θi,n(0)+ θi,n(0)2

}
,

δ2i,n = −1
2

{
θi,n(1)+ θi,n(0)

}
,

δ3i,n = 2
9

{
θi,n(1)2 + θi,n(1)θi,n(0)+ θi,n(0)2

}
. (28)

The computation of the cumulative transformation matrix Gc,n
is summarized in Algorithm 2.

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4630 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 7. Schematic of subspace prediction and cumulative computation of
transformation matrix Gc,n .

G. Overall Procedure

The overall procedure of our proposed multi-stage OUDA
framework is outlined in Algorithm 3. As shown in Fig. 7,
the prediction of the i th target subspace P̂T ,i is computed
from the (i − 2)th and (i − 1)th mean-target subspaces
PT ,i−2 and PT ,i−1, respectively, whereas the i th cumulative
transformation matrix Gc,i is computed from the (i −1)th and
i th mean-target subspaces PT ,i−1 and PT ,i , respectively.

V. EXPERIMENTAL RESULTS

We performed extensive computer simulations on five
small-scale datasets [7] and one large-scale dataset [38] to
validate the performance of our proposed multi-stage OUDA
framework in the context of data classification. We first evalu-
ated the major components of the proposed OUDA framework,
namely the ICMS technique and the recursive feedback with
cumulative computation of the transformation matrix, Gc,n ,
and the next-target subspace prediction. We then verified
the effect of adaptive classifier in our proposed framework.
We also analyzed how the various factors such as the num-
ber of source data NS , the target mini-batch NT , and the
dimension of projected subspace k would affect the classi-
fication performance. To show the validity of our proposed
framework, we illustrated the convergence of our proposed
ICMS technique and visualized the projected features. We then
validated the performance of our proposed OUDA framework
by comparing it to other manifold-based traditional methods
in the context of data classification. We selected two existing
manifold-based traditional methods for comparisons–Evolving
Domain Adaptation (EDA) [7] and Continuous Manifold
Alignment (CMA) [8]. The CMA method has two variations
depending on the domain adaptation techniques–GFK [2] and
Statistical Alignment (SA) [4].
Furthermore, we also conducted experiments on test-time

adaptation tasks [31], comparing the performance of our
proposed framework with recent Neural-Network-(NN)-based
learning models.

A. Datasets

The six datasets [7] that we have selected are–the Traffic
dataset, the Car dataset, the Waveform21 dataset, the Wave-
form40 dataset, the Weather dataset, and the CIFAR-10-C
dataset. These datasets provide a large variety of time-variant
images and signals to test upon. The Traffic dataset includes
images captured from a fixed traffic camera observing a road

Algorithm 3 Proposed Multi-Stage OUDA Framework

TABLE II

THE TABLE OF DATASETS

over a 2-week period. This dataset consists of 5412 instances
of 512-dimensional (d = 512) GIST features [39] with two
classes as either “heavy traffic” or “light traffic”. The Car
dataset contains images of automobiles manufactured between
1950 and 1999 acquired from online databases. This Car
dataset includes 1770 instances of 4096-dimensional (d =
4096) DeCAF [40] features with two classes as “sedans” or
“trucks.” Figure 8(a) depicts example images of sedans or
trucks from 1950’s to 1990’s. Figure 8(b) depicts the same
road but the scene changes as the environment changes from
the morning (left) to afternoon (middle) and night (right).
The Waveform21 dataset is composed of 5000 wave instances
of 21-dimensional features with three classes. The Wave-
form40 dataset is the second version of the Waveform21 with
additional features. This dataset consists of 40-dimensional
features. The Weather dataset includes 18159 daily readings of
attributes such as temperature, pressure and wind speed. Those
attributes are represented as 8-dimensional features with two
classes as “rain” or “no rain.” The CIFAR-10-C dataset is
an extension of CIFAR-10 dataset that includes 10 categories
of images of 50,000 train images and 10,000 test images.
The CIFAR-10 dataset is turned into CIFAR-10-C dataset
with 15 types of corruptions at 5 severity levels [38]. The
information of these six datasets is summarized in Table II.
Dimension of the subspace was assigned as k = 100 for
the datasets of which d is greater than 200, or k = d

2
otherwise.

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4631

TABLE III

AVERAGE CLASSIFICATION ACCURACY (%) AND COMPUTATION TIME (SEC) WITH VARIOUS MEAN-SUBSPACE COMPUTATION METHODS

Fig. 8. Image samples of the (a) Car and (b) Traffic datasets.

B. Analysis of Various Methods on Mean Subspace
Computation

One of the characteristics in our proposed OUDA frame-
work is the ICMS technique that computes the mean-target
subspace incrementally. In this subsection, we verify that the
ICMS technique is the most efficient method for computing
the mean-target subspace as compared to the other methods
on mean-subspace computation–the incremental averaging and
the Karcher mean. The incremental averaging on a subspace
simply computes the average matrix Gn of n matrices Gi
obtained from each target mini-batch as Gn = (1− 1

n)Gn−1+
1
nGn , where Gn−1 is the average matrix of previous (n − 1)
matrices. The Karcher mean is the computation of the mean
point of multiple points on a subspace. To validate the compu-
tation efficiency of the proposed ICMS technique, we evalu-
ated the computation time of our proposed OUDA framework
using the ICMS technique and the next-target subspace pre-
diction as compared to the existing EDA method [7]. We also
measured the classification accuracy and the computation time
of our proposed framework, replacing the ICMS technique
with computation of the incremental averaging or the Karcher
mean. The metric for classification accuracy [7] is the average
classification accuracy for a set of mini-batches B:

A(B) =
∑|B|

τ=1 a(τ)

|B| , (29)

where A(B) is the average classification accuracy of |B| mini-
batches and a(τ) is the accuracy for the τ th mini-batch.
In this subsection, the feedback stage was not included in
our proposed framework since we focused on comparing the
methods of mean-subspace computation. Their comparisons of
average classification accuracy and computation time on five
datasets are shown in Table III.
As shown in Table III, the mean-subspace computation

based on the ICMS technique reached the highest average clas-

sification accuracy for the Traffic, the Car and the Waveform21
datasets. For the Waveform40 and the Weather datasets, the
accuracy with the ICMS computation was less than the accu-
racy of other methods by 0.19% and 0.43%, respectively. Inter-
estingly, the mean-subspace-based methods, not depending on
the type of mean-subspace, resulted in comparable or higher
average classification accuracy compared to the EDA method.
For the Traffic and Weather datasets, the mean-subspace-
based methods showed the average classification accuracy
at least 68.54% and 68.48%, respectively, which were less
than the accuracy of the EDA method by 0.66% and 1.85%,
respectively. In the case of the Car, the Waveform21 and
the Waveform40 datasets, the mean-subspace-based methods
showed the average classification accuracy at least 85.12%,
82.34% and 80.71%, which were higher than the accuracy
of EDA by 3.18%, 13.60% and 20.73%, respectively. These
results indicated that averaging the subspace leverages the
performance of domain adaptation. The incremental averaging
might be a reasonable alternative when fast computation is
required at the cost of a small dip in recognition performance.
In terms of computation time, our proposed ICMS method

was significantly faster than the EDA method and the
Karcher-mean computation method for most of the datasets.
The reason for this difference on computation time was due
to the fact that the Karcher mean was computed in an itera-
tive process. Since the feature dimension of the Car dataset
was 4096, which was significantly higher than the feature
dimension of the other datasets, the computation time of ICMS
was longer than that of the incremental averaging. Especially,
the computation time of the Karcher mean computation for
the Car dataset was longer than 4 weeks (2.42 × 106 sec)
and computational burden was tremendous, which led to
tremendous computational burden. These results indicated that
our proposed ICMS-based framework is suitable for solving
the online data classification problem.

C. Effect of ICMS With Additional Components

In this subsection, we investigated the performance of the
ICMS technique combined with other components in our
framework that considers the cumulative temporal dependency
among the arriving target data. Coupled with the ICMS tech-
nique, we consider the cumulative computation of transforma-
tion matrix (Cumulative), the next-target-subspace prediction
(NextPred), and recursive feedback (FB) to compensate the
arriving target mini-batch XT ,n , the target subspace PT ,n+1,
and the transformation matrix Gn to the pre-aligned target
mini-batch Xpre

T ,n , the next-target-subspace prediction P′T ,n+1,
and the cumulative transformation matrix Gc,n , respectively.
The NextPred component is suitable for noisy target domain,
whereas the Cumulative component is beneficial for gradually

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4632 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE IV

AVERAGE CLASSIFICATION ACCURACY A(B) (%) OF THE ICMS METHOD
WITH RECURSIVE FEEDBACK

evolving target domain. Hence, it is not desirable to include
both the NextPred component and the Cumulative component
(i.e. ICMS + FB + NextPred + Cumul) in our proposed
framework. We thus selected three recursive feedback variants
to combine with the ICMS technique:
(i) ICMS + Cumulative–ICMS computation and cumula-

tive computation of the transformation matrix Gc,n;
(ii) ICMS + NextPred – ICMS computation and the next-

target-subspace prediction;
(iii) ICMS + FB + NextPred–ICMS computation and the

next-target-subspace prediction with recursive feedback.

We then compared the average classification accuracy on
these three variants of recursive feedback combined with the
ICMS technique. Since the average classification accuracy
depends on the feature dimension k, we plotted the classi-
fication results versus the subspace dimension k as shown in
Fig. 9, varying from 5% to 50% of the data dimension d . For
the Waveform40 dataset (see Fig. 9(a)), the average classifica-
tion accuracy of (ICMS + FB + NextPred) outperformed that
of other variants as the value of k increased. When the value of
k was small, the average classification accuracy of (ICMS +
Cumulative) was the highest among other variants. This result
indicated that the effect of recursive feedback on the average
classification accuracy is marginal when k is small.
For the Traffic dataset (see Fig. 9(b)), the average classi-

fication accuracy of (ICMS + Cumulative) was higher than
that of other variants for most k values. However, the average
classification accuracy of (ICMS + FB + NextPred) was the
highest for k = 96, and this accuracy was the highest among
the accuracies of all the variants. This result showed that
recursive feedback significantly leverages the classification
performance with proper subspace dimension k.
Table IV showed the average classification accuracy for

the ICMS method coupled with 3 recursive feedback variants
of our proposed framework when the values of subspace
dimension k were set to the default values in Table II. For the
Traffic dataset, the average classification accuracy of (ICMS +
Cumulative) was the highest among the 3 variants of our
proposed framework. This result was shown in Fig. 9(b),
where the average classification accuracy of (ICMS + FB +
NextPred) decreased after the value of k = 96. The average
classification accuracy of (ICMS + NextPred) was the highest
(71.19%) for the Waveform40 dataset. This result was shown
in Fig. 9(a) for k = 20.
For the Car, Wave21, and Weather datasets, the average clas-

sification accuracies of (ICMS + FB + NextPred) were lower
than that of (ICMS + NextPred). The reason for these results
is that adjacent target mini-batches lacked strong temporal
dependency (the Car dataset) and the subspace dimension k
was too small (the Wave21 and Weather datasets). Hence,

Fig. 9. Effects of averaging target subspace and recursive feedback on the
Waveform40 and the Traffic datasets.

we concluded that the recursive feedback stage improves
the classification accuracy when the subspace dimension is
large enough and the target mini-batches have strong temporal
dependency.

D. Effect of Next-Target-Subspace Prediction and Recursive
Feedback

In this subsection, we demonstrated the effect of next-target-
subspace prediction and recursive feedback in our proposed
framework. To verify the robustness of subspace prediction
and recursive feedback, we measured the corruption errors on
four variants for comparison–ICMS, ICMS + FB, ICMS +
NextPred, ICMS + FB + NextPred. To conduct experiments
on a large-scale dataset with noisy domain, we blended several
corruption levels of images in CIFAR-10-C dataset. Specif-
ically, we replaced 20% of the target images of corruption
level 5 with corruption level 1. As shown in Table V, the
errors of (ICMS + FB) and (ICMS + NextPred) showed lower
corruption errors than ICMS [11], and the error of (ICMS
+ FB + NextPred) was the lowest among all the variants.
From these results, we concluded that subspace prediction
and recursive feedback stages increase the robustness of our
OUDA framework when the target subspaces are noisy.

E. Effect of Cumulative Computation of Transformation
Matrix

Transformation matrix computed by our proposed frame-
work aligns target data closer to the source domain. Espe-
cially, the transformation matrix obtained by cumulative
computation showed significant improvement for gradually
evolving target domains. To validate the effectiveness of
cumulative computation, we measured the classification error
of images in CIFAR-10-C dataset, changing the corruption

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4633

TABLE V

CORRUPTION ERROR (%) ON NOISY CIFAR-10-C DATASET

TABLE VI

CORRUPTION ERROR (%) ON CIFAR-10-C DATASET WITH GRADUALLY CHANGING SEVERITY LEVEL

TABLE VII

CORRUPTION ERROR (%) ON CIFAR-10-C DATASET FOR NON-NN-BASEDMETHODS (SEVERITY LEVEL 5)

level from 1 to 5. To compare the results on different evolving
velocity of the target domain, we set the increment of corrup-
tion level as 1 for one group and 2 for another. As shown
in Table VI, the cumulative computation of transformation
matrix component lowered the corruption error from 20.92%
to 19.12% and 23.48% to 22.27% in group 1 and group 2,
respectively. From these results, we concluded that cumulative
computation of transformation matrix is effective when the
source and the first target is similar and the target domain is
gradually changing.

F. Classifier Update for Non-Neural-Network-Based Methods

In this subsection, we verified the effect of non-NN-based
adaptive classifier on our proposed framework. For fair com-
parisons, we measured the average classification accuracy
of variants of our framework (described in Section V-C)
with and without classifier adaptation. The number of source
data was 10% of the number of entire data sample and the
batch-size of the target data was NT = 2. The classifier
was updated by each target mini-batch with predicted pseudo-
labels. Tables VIII and IX showed the average classification
accuracy of our framework for the Traffic and the Weather
datasets, respectively. For all the variants of our proposed
ICMS method, the classification accuracy of adaptive classifier
was higher, from 0.21% to 3.88%, than that of the source
classifier. These results showed that the adaptive classifier
leveraged the performance of our proposed framework.
Table VII showed the effect of adaptive SVM classifier for

the CIFAR-10-C dataset. Our method (ICMS-SVM) improved
the test-time adaptation compared to the classifier trained on
the first target mini-batch. For all the corruption types, errors
of the ICMS-SVM method were lower than that of the first
target, from 7.51% to 27.20%. These results showed that the
ICMS technique improves the online adaptation for large-scale
datasets.

G. Online Classification Accuracy of Proposed Framework

To further understand the characteristics of our proposed
OUDA framework for online classification performance, we
investigated the effect of each stage toward the performance

TABLE VIII

AVERAGE CLASSIFICATION ACCURACY A(B) (%) OF THE ICMS METHOD
WITH ADAPTIVE CLASSIFIER ON TRAFFIC DATASET

TABLE IX

AVERAGE CLASSIFICATION ACCURACY A(B) (%) OF THE ICMS METHOD
WITH ADAPTIVE CLASSIFIER ON WEATHER DATASET

of proposed framework. For consistency, we selected the same
ICMS method combined with 3 recursive feedback variants as
in the previous subsection. In addition to the average accuracy
A(B) metric, we also compared the classification accuracy
as each target mini-batch arrived by plotting a(τ) versus the
number of mini-batches |B| (see Fig. 10). Figure 10 indicated
that our proposed framework and its variants outperformed the
EDA method for most of the datasets. In Fig. 10(a), a sudden
drift occurred from the 100th mini-batch to the 900th mini-
batch, which resulted in an abrupt decrease of the accuracy.
After the 900th mini-batch, the accuracy was recovered as
the number of arriving mini-batch increased. For the Car
dataset, the average accuracy was slightly decreased since
the target data were evolving in a long time-horizon (i.e.,
from 1950 to 1999), which resulted in more discrepancies
between the source and the target domains. In terms of the
gap between the highest and the lowest accuracies, the Traffic
and Waveform40 datasets showed more gap (15% to 25%)
compared to other datasets (5% to 10%). We concluded that
the computation of transformation matrix (Cumulative) and
recursive feedback (FB) showed more significant effect for
dynamic datasets.

H. Convergence of Computed Mean-Target Subspace

In this subsection, we empirically demonstrated the con-
vergence of mean-target subspace computed by the ICMS
technique. To prove that the mean-target subspace converges

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4634 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 10. Classification accuracy of each mini-batch a(τ) (%) computed by
the baseline and variants of the proposed framework.

to a fixed subspace, we computed and plotted the geodesic
distance between the source subspace PS and the mean-target
subspace PT ,n (i.e., d(PS ,PT ,n)). Furthermore, we observed
the stability of ICMS technique by showing that the geo-
desic distance [41] between two consecutive mean-target
subspaces PT ,n−1 and PT ,n (i.e., d(PT ,n−1,PT ,n)) con-
verged to zero as the number of arriving target mini-batches
increased. Figures 11(a) and 11(c) showed the geodesic dis-
tances between the source subspace PS and the mean-target
subspace PT ,n for the Waveform21 and the Car datasets,
respectively. Their geodesic distances converged to a con-
stant. Similarly, Figures 11(b) and 11(d) showed the geodesic
distances between the two consecutive mean-target subspaces
PT ,n−1 and PT ,n for the Waveform21 and the Car datasets,
respectively. These geodesic distances converged to zero.
Thus, the convergence of the above geodesic distances val-
idated the proposed ICMS technique for computing the mean-
target subspace.

I. Parameter Sensitivity

We also visualized the effect of both parameters k and
NT by measuring the accuracy corresponding to their various
values. Figures 12(a) showed that the classification accuracy
significantly depended on the value of k while it remained
relatively stable with the values of NT . From Fig. 12(b),
the classification accuracy was the highest when k and NT
were small, but the difference between the highest and the
lowest accuracies was 4.5%, which was relatively negligible
compared to Fig. 12(a).

J. Comparison With Existing Manifold-Based Traditional
Methods

We compared the average classification accuracy of the
proposed OUDA framework with two existing manifold-based

Fig. 11. Geodesic distances between two subspaces. Figures (a) and (b) used
the Waveform21 dataset. Figures (c) and (d) used the Car dataset.

Fig. 12. Sensitivity analysis on k and batchsize on (a) Traffic (b) Car dataset.

traditional methods–Evolving Domain Adaptation (EDA) [7]
and Continuous Manifold Alignment (CMA) [8]. The CMA
method has two variations depending on the domain adaptation
techniques–GFK [2] and SA [4]. Among the variants of our
proposed OUDA framework, we selected the (ICMS + FB +
NextPred) variant for comparison with EDA and CMA meth-
ods. This (ICMS + FB + NextPred) variant uniquely shows
major contributions of the ICMS technique combined with
recursive feedback in our proposed framework. In the com-
parison, we assigned the parameter values of the (ICMS +
FB + NextPred) variant the same as those of EDA and
CMA methods. The batch-size of the arriving target data
was NT = 2. Except for the EDA method that adopted the
Incremental Semi-Supervised Learning (ISSL) technique for
classifying the unlabeled target data, all other approaches
adopted the basic Support-Vector-Machine [42] classifiers for
target-label prediction.
The results of comparison on the five datasets are shown in

Table X. In Table X, our proposed OUDA framework obtained
a higher average classification accuracy than traditional meth-
ods (i.e., CMA+GFK, CMA+SA, and EDA methods) for all
the five datasets. For these five datasets, the highest average
classification accuracy among the traditional methods were
69.00%, 82.73%, 74.65%, 79.66%, 64.79%. The average
classification accuracy of our proposed OUDA framework for
the respective five datasets were 69.28%, 83.78%, 81.9%,

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

MOON et al.: MULTISTAGE FRAMEWORK WITH MEAN SUBSPACE COMPUTATION AND RECURSIVE FEEDBACK FOR OUDA 4635

TABLE X

OVERALL ACCURACY A(B) (%) OF THE TRADITIONAL METHODS AND
THE PROPOSED OUDA FRAMEWORK

TABLE XI

AVERAGE CORRUPTION ERROR (%) ON CIRAR-10-C DATASET FOR
NN-BASED METHODS (SEVERITY LEVEL 5)

82.02%, and 69.48%. This result demonstrated that our pro-
posed OUDA framework outperformed the other traditional
methods on the data classification problem for all the datasets.

K. Comparison With Neural-Network-Based Methods

We compared the corruption error (%) with several
NN-based-online-adaptation methods–classifier with no adap-
tation with target data (Source), Test Entropy Minimization
(Tent) [31], and Test-Time Normalization (BN) [30]. To uti-
lize our framework on test-time adaptation tasks, we first
extracted the features before the classifier module of NN.
Our proposed framework then transforms these features and
input the transformed features through the classifier. Since the
source data are not accessible in test-time adaptation tasks, our
framework aligns the arriving target data to the initial target
domain instead of the source domain. For the experiments on
corruption, we used Wide Residual Network with 28 layers
(WRN-28-10) [43] and Residual Network with 26 layers
(ResNet26) [44] on the CIFAR-10-C dataset. Dimensions
of the features extracted from WRN-28-10 and ResNet26
were 640 and 256, respectively. These extracted features
were transformed by our proposed framework. We optimized
the parameters of WRN-28-10 with Adam optimizer [45],
where the batchsize and learning rate were 200 and 0.001,
respectively. For ResNet26, the batchsize and learning rate
were 128 and 0.001, respectively. The classification errors for
various types of corruption are shown in Table XI.
For both WRN-28-10 and ResNet26, our ICMS-NN

showed the lowest error among the NN-based methods. For
WRN-28-10 and ResNet26, the corruption errors of ICMS-NN
were 18.24% and 14.1%, respectively. In terms of the dif-
ference of errors, our ICMS was more effective for non-NN
models than NN models. This is due to the characteristic of
ICMS, which computes the transformation matrix based on
the GFK technique. However, the errors of NN-based methods
(BN, Tent, and ICMS-NN) were lower than the non-NN-based
methods (First Target, ICMS-SVM) for most of the corruption
types, which indicate that the NN-based models adapted
with target data better than the non-NN-based models. These
results showed that our proposed framework leverages the test-
time-adaptation task for both NN-based and non-NN-based
models.

VI. CONCLUSION AND FUTURE WORK

We have proposed a multi-stage framework for tackling
the OUDA problem, which includes a novel technique of
incrementally computing the mean-target subspace on a Grass-
mann manifold. We have proved that the mean-target subspace
computed by the ICMS method is a valid close approxima-
tion to the Karcher mean with efficient computation time.
To achieve more robust online domain adaptation, we proposed
to utilize subspace prediction and cumulative computation
of transformation matrix by considering the flow of target
subspaces on the Grassmann manifold. We also verified that
the adaptive classifier improves the performance of online
adaptation. Extensive experiments on various datasets demon-
strated that our proposed OUDA framework outperforms
existing traditional manifold-based methods and NN-based
learning methods in terms of classification performance and
computation time. Moreover, contribution of each stage in
our proposed framework has been analyzed by comparing
the variants of our proposed method with or without each
stage. Future work includes extension of the proposed ICMS
technique and the OUDA framework to more challenging
domain adaptation applications.

ACKNOWLEDGMENT

The authors would like to extend their sincere thanks to
Hyeonwoo Yu and Sanghyun Cho for valuable discussions
and suggestions. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. They also gratefully acknowledge the
support of NVIDIA Corporation for the donation of a TITAN
XP GPU used for this research.

REFERENCES

[1] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE Signal Process. Mag.,
vol. 32, no. 3, pp. 53–69, May 2015.

[2] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2066–2073.

[3] J. Zhang, W. Li, and P. Ogunbona, “Joint geometrical and statistical
alignment for visual domain adaptation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1859–1867.

[4] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2013, pp. 2960–2967.

[5] S. Vascon, S. Aslan, A. Torcinovich, T. V. Laarhoven, E. Marchiori, and
M. Pelillo, “Unsupervised domain adaptation using graph transduction
games,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,
pp. 1–8.

[6] A. Gaidon and E. Vig, “Online domain adaptation for multi-object
tracking,” 2015, arXiv:1508.00776.

[7] A. Bitarafan, M. S. Baghshah, and M. Gheisari, “Incremental evolving
domain adaptation,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 8,
pp. 2128–2141, Aug. 2016.

[8] J. Hoffman, T. Darrell, and K. Saenko, “Continuous manifold based
adaptation for evolving visual domains,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 867–874.

[9] A. Kumar, T. Ma, and P. Liang, “Understanding self-training for gradual
domain adaptation,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020,
pp. 5468–5479.

[10] A. Bobu, E. Tzeng, J. Hoffman, and T. Darrell, “Adapting to con-
tinuously shifting domains,” in Proc. 6th Int. Conf. Learn. Rep-
resent. (ICLR), Vancouver, BC, Canada, 2018. [Online]. Available:
https://openreview.net/forum?id=BJsBjPJvf

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

4636 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

[11] J. H. Moon, D. Das, and C. S. G. Lee, “Multi-step online unsupervised
domain adaptation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2020, pp. 41172–41576.

[12] H. Karcher, “Riemannian center of mass and mollifier smoothing,”
Commun. Pure Appl. Math., vol. 30, no. 5, pp. 509–541, Sep. 1977.

[13] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2015, pp. 97–105.

[14] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces
in Probability and Statistics. Cham, Switzerland: Springer, 2011.

[15] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proc. AAAI. Conf. Artif. Intell., vol. 30, no. 1, 2016,
pp. 2058–2065.

[16] J. Wang, W. Feng, Y. Chen, H. Yu, M. Huang, and P. S. Yu, “Visual
domain adaptation with manifold embedded distribution alignment,” in
Proc. 26th ACM Int. Conf. Multimedia, Oct. 2018, pp. 402–410.

[17] J. F. Nash, Jr., “Equilibrium points in n-person games,” Proc. Nat. Acad.
Sci. USA, vol. 36, no. 1, pp. 48–49, 1950.

[18] M. Wulfmeier, A. Bewley, and I. Posner, “Addressing appearance
change in outdoor robotics with adversarial domain adaptation,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 1551–1558.

[19] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neu.
Inf. Proc. Syst. (NIPS), 2014, pp. 2672–2680.

[20] M. Wulfmeier, A. Bewley, and I. Posner, “Incremental adversarial
domain adaptation for continually changing environments,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1–9.

[21] X.-Q. Zeng and G.-Z. Li, “Incremental partial least squares analysis of
big streaming data,” Pattern Recognit., vol. 47, no. 11, pp. 3726–3735,
Nov. 2014.

[22] H. Liu, M. Long, J. Wang, and Y. Wang, “Learning to adapt to evolving
domains,” in Proc. Adv. Neu. Inf. Proc. Syst. (NIPS), vol. 33, 2020,
pp. 22338–22348.

[23] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2017, pp. 1126–1135.

[24] M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, and B. Caputo, “Kitting
in the wild through online domain adaptation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1103–1109.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2015, pp. 448–456.

[26] Z. Wu, X. Wang, J. Gonzalez, T. Goldstein, and L. Davis, “ACE:
Adapting to changing environments for semantic segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 2121–2130.

[27] J. Xu, D. Vazquez, K. Mikolajczyk, and A. M. Lopez, “Hierarchical
online domain adaptation of deformable part-based models,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 5536–5541.

[28] R. Wu, C. Guo, Y. Su, and K. Q. Weinberger, “Online adaptation to label
distribution shift,” in Proc. Adv. Neu. Inf. Proc. Syst. (NIPS), vol. 34,
2021, pp. 11340–11351.

[29] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-
time training with self-supervision for generalization under distribution
shifts,” in Proc. Int. Conf. Mach. Learn. (ICML), 2020, pp. 9229–9248.

[30] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and
M. Bethge, “Improving robustness against common corruptions by
covariate shift adaptation,” in Proc. Adv. Neu. Inf. Proc. Syst. (NIPS),
vol. 33, 2020, pp. 11539–11551.

[31] D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” in Proc. 9th Int.
Conf. Learn. Represent. (ICLR), Virtual Event, Austria, 2021. [Online].
Available: https://openreview.net/forum?id=uXl3bZLkr3c

[32] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,” SIAM J. Matrix Anal. Appl., vol. 20,
no. 2, pp. 303–353, 1998.

[33] I. M. James, The Topology of Stiefel Manifolds, vol. 24. Cambridge,
U.K.: Cambridge Univ. Press, 1976.

[34] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[35] K. A. Gallivan, A. Srivastava, X. Liu, and P. Van Dooren, “Efficient
algorithms for inferences on Grassmann manifolds,” in Proc. IEEE
Workshop Stat. Signal Process., Oct. 2003, pp. 315–318.

[36] C. C. Paige and M. A. Saunders, “Towards a generalized singular value
decomposition,” SIAM J. Numer. Anal., vol. 18, no. 3, pp. 398–405,
1981.

[37] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for object
recognition: An unsupervised approach,” in Proc. Int. Conf. Comput.
Vis., Nov. 2011, pp. 999–1006.

[38] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations,” 2019,
arXiv:1903.12261.

[39] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[40] J. Donahue et al., “DeCAF: A deep convolutional activation feature
for generic visual recognition,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 647–655.

[41] J. Hamm and D. D. Lee, “Grassmann discriminant analysis: A unifying
view on subspace-based learning,” in Proc. 25th Int. Conf. Mach. Learn.,
2008, pp. 376–383.

[42] J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300,
Jun. 1999.

[43] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proc.
Brit. Mach. Vis. Conf. (BMVC), Sep. 2016, pp. 87.1–87.12.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Represent. (ICLR), Y. Bengio and
Y. LeCun, Eds., San Diego, CA, USA, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

Jihoon Moon (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in electrical and
computer engineering from the Seoul National Uni-
versity, South Korea, in 2013 and 2015, respectively.
He is currently pursuing the Ph.D. degree with the
Elmore Family School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN,
USA. His current research interests include online
domain adaptation, computer vision, and robotics.

Debasmit Das (Member, IEEE) received the
B.Tech. degree in electrical engineering from the
IIT Roorkee, in 2014, and the Ph.D. degree from
the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN,
USA, in 2020. He is currently a Senior Machine
Learning Researcher with Qualcomm AI Research,
Qualcomm Technologies Inc., San Diego, CA, USA,
investigating efficient and personalized learning
solutions. He is an Associate Editor of Wiley Applied
AI Letters and he also regularly reviews machine

learning articles for IEEE, ACM, Springer, and Elesevier journals.

C. S. George Lee (Life Fellow, IEEE) received the
B.S.E.E. and M.S.E.E. degrees from Washington
State University, Pullman, Washington, and
the Ph.D. degree from Purdue University,
West Lafayette, IN, USA. He is a Professor of
electrical and computer engineering with Purdue
University. He has coauthored two graduate
textbooks, Robotics: Control, Sensing, Vision, and
Intelligence (McGraw-Hill, 1986) and Neural Fuzzy
Systems: A Neuro-Fuzzy Synergism to Intelligent
Systems (Prentice-Hall, 1996). His current research

interests include transfer learning and skill learning, human-centered robotics,
and neuro-fuzzy systems. He was a recipient of the IEEE Third Millennium
Medal Award, the Saridis Leadership Award, and the Distinguished Service
Award from the IEEE Robotics and Automation Society.

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2022 at 00:53:12 UTC from IEEE Xplore. Restrictions apply.

