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ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL
UNIVERSALITY

By OANH NGUYEN and VAN VU

Abstract. We investigate the local distribution of roots of random functions of the form Fn(z) =∑n
i=1 ξiφi(z), where ξi are independent random variables and φi(z) are arbitrary analytic functions.

Starting with the fundamental works of Kac and Littlewood-Offord in the 1940s, random functions of
this type have been studied extensively in many fields of mathematics.

We develop a robust framework to solve the problem by reducing, via universality theorems,
the calculation of the distribution of the roots and the interaction between them to the case where ξi
are Gaussian. In this special case, one can use the Kac-Rice formula and various other tools to obtain
precise answers.

Our framework has a wide range of applications, which include the most popular models of
random functions, such as random trigonometric polynomials and all basic classes of random algebraic
polynomials (Kac, Weyl, and elliptic). Each of these ensembles has been studied heavily by deep and
diverse methods. Our method, for the first time, provides a unified treatment for all of them.

Among the applications, we derive the first local universality result for random trigonometric
polynomials with arbitrary coefficients. When restricted to the study of real roots, this result ex-
tends several recent results, proved for less general ensembles. For random algebraic polynomials,
we strengthen several recent results of Tao and the second author, with significantly simpler proofs.
As a corollary, we sharpen a classical result of Erdös and Offord on real roots of Kac polynomials,
providing an optimal error estimate. Another application is a refinement of a recent result of Flasche
and Kabluchko on the roots of random Taylor series.

1. Introduction. Let n be a positive integer or ∞. Let φ1, . . . ,φn be deter-
ministic functions and ξ1, . . . ,ξn be independent random variables. Consider the
random function/series

Fn =
n∑

i=1

ξiφi.(1)

A fundamental task is to understand the distribution of and the interaction between
the roots (both real and complex) of Fn. For several decades, this task has been
carried out in many different areas of mathematics such as analysis, numerical
analysis, probability, mathematical physics; see [3, 14, 17, 23, 26, 34, 51, 61], for
example.

The most studied subcases are when φi = cixi (in which case Fn is a random
algebraic polynomial) and φi = ci cos ix (in which case Fn is a random trigono-
metric polynomial); here and later, the ci are deterministic coefficients that may
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2 O. NGUYEN AND V. VU

depend on i and n. In fact, these classes split further, according to the values
of ci. For instance, three important classes of random algebraic polynomials are:
Kac polynomials (ci = 1), Weyl polynomials (ci =

1√
i!
) and elliptic polynomials

(ci =
√(n

i

)
). For random trigonometric polynomials, most papers seem to focus

on the case ci = 1. A very significant part of the literature on random functions
focuses on these special classes.

Even for these classical cases, the problem is already hard; see [1, 2, 10, 19, 29,
30, 44, 53, 54, 58] for a partial list of recent developments. It requires a full book
to discuss the results and methods concerning random polynomials, but one feature
stands out. The distributions of the roots in different classes are quite different, and
the methods to study them are often specialized.

In this paper, we aim to develop a robust framework to solve the general prob-
lem. The leading idea is to utilize universality theorems to reduce the problem of
calculating the distribution of the roots and the interaction between them to the case
where the ξi are Gaussian. In the Gaussian case, the answers can be (or, for most
ensembles, have already been) computed in a precise form, using the Kac-Rice for-
mula and various other tools which make use of special properties of Gaussian ran-
dom variables and Gaussian processes; see, for instance [14, 24, 26, 46, 49, 51, 58].
In particular, when the ξi are complex Gaussian variables, Fn is called a Gaussian
analytic function, and we refer to Sodin’s paper [51] for an in-depth survey.

Universality theorems of this type have recently been proved in [11, 58] by the
authors, Do and Tao for many classes of random algebraic polynomials of various
types, using complex machinery (see also [31, 35, 44, 45, 55] for related works
concerning global universality). The method built in these papers is sensitive. It
does not apply to random trigonometric polynomials and many other ensembles.

In this paper, we are going to establish a new and general condition which
guarantees universality for a wide class of random functions. This class contains
all popular random functions. Among others, it covers all classical random alge-
braic polynomials (such as those considered in [11, 58] and many others). Quite
remarkably, it also covers random trigonometric polynomials with general coeffi-
cients, whose behavior is totally different. (For readers not familiar with the theory
of random functions, let us point out that random trigonometric polynomials typi-
cally have Θ(n) real roots while Kac polynomials have only Θ(logn).)

We would like to emphasize the simplicity and robustness of our approach.
Proofs of local universality results have been, so far, considerably complex and
long. Furthermore, different ensembles require proofs which are different in at least
a few key technical aspects. Our proofs, based on new observations, are quite sim-
ple and robust. The proof for the general theorem is only a few pages long. Next,
and more importantly, we can deduce universality results for completely different
ensembles of random functions from this general theorem in an identical way using
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(essentially) one simply stated lemma. In each ensemble considered, we either ob-
tain completely new results or a short, new proof of the most current result, many
times with a quantitative improvement. The length of the paper is due to the num-
ber of applications. The reader is invited to read Section 2.4 for a discussion of our
method and a comparison with the previous ones.

Let us now briefly discuss the applications. Consider two random functions
Fn =

∑n
i=1 ξiφi and F̃n =

∑n
i=1 ξ̃iφi, where ξi and ξ̃i can have different distribu-

tions. We show (under some mild assumptions) that the local statistics of the roots
of the two functions are asymptotically the same. In practice, we can set ξ̃i to be
Gaussian, and thus reduce the study to this case. The local information can be used
to derive certain global properties; for instance, the number of roots in a large re-
gion (which has been partitioned into many local cells) is simply the sum of the
numbers of roots in each cell.

• We study random trigonometric polynomials in Section 3. We derive (to the
best of our knowledge) the first local universality of correlation for this class. Our
setting is more flexible than most previous works on this topic, as we allow a large
degree of freedom in choosing the deterministic coefficients ci.

While we do not find comparable previous local universality results for random
trigonometric polynomials, we can still make some comparisons to previous works
by restricting to the popular sub-problem of estimating the density of the real roots.
For this problem, our universality result yields new estimates which extend several
existing results, some of which are quite recent and have been proved by totally
different methods; see Section 3 for details.

• In Section 4, we discuss Kac polynomials. We derive a short proof for a
strengthening of a recent result of Tao and the second author [58]. By almost the
same argument, one could also recover the main result of Do and the authors [11]
which applies for generalized Kac polynomials. As a corollary, we obtain a more
precise version of the classical result of Erdös and Offord [15] on the number of
real roots.

• In Section 5, we study Weyl series. Our universality result here provides
an exact estimate for the expectation of the number of roots in any fixed domain
B. Previous to our result, such an estimate was only known for sets of the form
rB, where r is a parameter tending to infinity, thanks to a very recent work of
Kabluchko and Zaporozhets [30].

• In Section 6, we apply our results to random elliptic polynomials. We give
a short proof of a recent result from [58], which generalizes an earlier result of
Bleher and Di [6].

• The above applications already cover all traditional classes of random func-
tions in the literature. To illustrate the generality of our result, in Section 7, we
present one more application, concerning random series with regularly varying co-
efficients, a class defined and studied by Flasche and Kabluchko very recently [20].
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• While revising this paper, we became aware of a recent work [21] which has
some overlaps with ours. We made a brief comparison at the end of Section 7.

• Additionally, after this work had been announced, the framework that we
develop here has been applied to the following papers.

– In [8], Mei-Chu Chang, Hoi Nguyen and the authors study the number of
intersections between random eigenfunctions of general eigenvalues and a given
smooth curve in flat tori.

– In [12], Yen Do and the authors study random orthonormal polynomials.
In most applications, we will work out corollaries concerning the problem of

counting real roots. While our results yield much more than just the density func-
tion of real roots, we focus on this subproblem since it is, traditionally, one of
the most natural and appealing problems in the field. (Technically speaking, the
study of zeros of random analytic functions started with papers of Littlewood-
Offord and Kac in the 1940s, studying the number of real roots of Kac polyno-
mials.) Our corollaries provide many new contributions to the existing vast litera-
ture on this subject. As a matter of fact, our results allow us to study any level set
La := {z ∈ C : Fn(z) = a} for any fixed a (the roots form the level set L0) at no
extra cost.

The rest of the paper is organized as follows. In the next section, we first de-
scribe our goal, namely, what we mean by universality. We then establish the gen-
eral condition that guarantees universality, and comment on its strength. We next
state the general universality theorems along with a discussion of the main ideas in
the proof.

The next 5 sections (Sections 3–7) are devoted to the applications mentioned
above. We state universality theorems for various classes of random functions, and
derive corollaries concerning the density of both real and complex roots. In Section
8, we prove the general universality theorems stated in Section 2. The rest of the
paper is devoted to the verification of the applications in Sections 3–7. We also
include a short appendix at the end of the paper, which contains the proofs of a few
lemmas (some of which were proved elsewhere), for the sake of completeness.

Acknowledgments. The authors would like to thank Asaf Ferber and Yuval
Peres for helpful remarks that led to some simplifications of our proofs. We thank
the anonymous referees for their helpful suggestions. Part of this work was done
at VIASM (Hanoi), and the authors would like to thank the institute for its support
and hospitality.

2. Universality theorems. In the first subsection, we describe the tradi-
tional way to compare local statistics of the roots. Next, we provide the assump-
tions under which our theorems hold, and comment on their strength. The precise
statements come in the final subsection.

The notation 1E denotes the indicator of an event E; it takes value 1 if E holds
and 0 otherwise.
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2.1. Comparing local statistics. For simplicity, let us first focus on the
complex roots of Fn. These roots form a random point set on the plane.

The first interesting local statistics is the density. In order to understand the
density around a point z, we consider the unit disk B(z,1) centered at z. In practice,
the radius of the disk is chosen so that the number of roots in it is typically of order
Θ(1). The expected number of roots in the disk can be written as

∑

i

Ef
(
ζi
)

where ζ1,ζ2, . . . are the roots of Fn, and f is the indicator function of B(z,1); in
other words, f(x) = 1 if x ∈B(z,1) and zero otherwise.

If one is interested in the pairwise correlation between the roots near z, then it
is natural to look at

∑

i,j

Ef
(
ζi,ζj

)

where f(x,y) is the indicator function of B(z,1)2 := B(z,1)×B(z,1); in other
words, f(x,y) = 1 if both x,y ∈B(z,1) and zero otherwise.

In general, the k-wise correlation can be computed from
∑

i1,...,ik

Ef
(
ζi1 , . . . ,ζik

)

where f(x1, . . . ,xk) is the indicator function of B(z,1)k . A good estimate for these
quantities tells us how the nearby roots repel or attract each other.

Even more generally, one can study the interaction of roots near different cen-
ters by looking at

∑

i1,...,ik

Ef
(
ζi1 , . . . ,ζik

)

where f(x1, . . . ,xk) is the indicator function of B(z1,1)×B(z2,1) · · ·×B(zk,1)
with B(zi,1) being the unit disk centered at zi.

Now, consider another random function

F̃n =
n∑

i=1

ξ̃iφi

where the ξ̃i are independent random variables distributed differently from the ξi.
We end up with two sets of quantities

∑

i1,...,ik

Ef
(
ζi1 , . . . ,ζik

)
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and

∑

i1,...,ik

Ef
(
ζ̃i1 , . . . , ζ̃ik

)

where the ζ̃i are the roots of F̃n.
We would like to show (under certain assumptions) that these two quantities

are asymptotically the same, namely

∣∣∣∣∣
∑

i1,...,ik

Ef
(
ζi1 , . . . ,ζik

)
−
∑

i1,...,ik

Ef
(
ζ̃i1 , . . . , ζ̃ik

)
∣∣∣∣∣≤ δn(2)

for some δn tending to zero as n goes to infinity.
For technical convenience, we will replace the indicator function f by a

smoothed approximation. This makes no difference in applications. On the other
hand, our results hold for any smoothed test function f , which may have nothing
to do with the indicator function.

If one cares about the real roots, one replaces the disk B(z,1) by the interval of
length 1 centered at a real number z. In general, instead of the product B(z1,1)×
B(z2,1) · · ·×B(zk,1), one can consider a mixed product of disks and intervals.
This enables one to understand the interaction between nearby roots of both types
(complex and real).

One, of course, could have made the previous discussion using the notion of
correlation functions. However, we find the current format direct and intuitive. We
refer to [26] or [58] for more detailed discussions concerning local statistics using
correlation functions.

2.2. Assumptions. Before stating the result, let us discuss the assumptions.
There are two types of assumptions. The first is for the random variables ξi and ξ̃i.
The second concerns the deterministic functions φi.

For the random variables, our assumption is close to minimal. In the case that
both ξi and ξ̃i are real, our simplest assumption is

Condition C0. The random variables ξ1, . . . ,ξn, ξ̃1, . . . , ξ̃n are independent real
random variables with the same mean Eξi = Eξ̃i for each i, variance one, and
(uniformly) bounded (2+ ε) central moments, for some constant 0 < ε< 1.

In fact, we can relax the assumption of matching means and variances, allowing
a finite number of exceptions. If the ξi and ξ̃i are complex, the matching mean and
variance need to be adjusted to address both real and imaginary parts.

Condition C1. Two sequences of random variables (ξ1, . . . ,ξn) and (ξ̃1, . . . , ξ̃n)
are said to satisfy this condition if the following hold, for some constants N0,τ > 0
and 0 < ε< 1.
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(i) Uniformly bounded (2+ε) central moments: The random variables ξi (and
similarly ξ̃i), 1 ≤ i ≤ n, are independent (real or complex, not necessarily identi-
cally distributed) random variables with unit variance (namely, E|ξi−Eξi|2 = 1),
and bounded (2+ ε) central moments, namely E|ξi−Eξi|2+ε ≤ τ .

(ii) Matching moments to second order with finitely many exceptions: For any
i≥N0, for all a,b ∈ {0,1,2} with a+ b≤ 2,

ERe
(
ξi
)a Im

(
ξi
)b

= ERe
(
ξ̃i
)a Im

(
ξ̃i
)b
,

and for 0 ≤ i < N0,
∣∣Eξi−Eξ̃i

∣∣≤ τ .
It is trivial that Condition C1 contains Condition C0 as a special case. We

find it rewarding to go with the more general, but slightly technical, assumption
(ii), which allows non-matching means, as it leads to an interesting phenomenon
that changing a finite number of terms in Fn(z) does not influence the asymptotic
distribution of the roots. Among other benefits, this allows us to generalize all
results to level sets {z ∈ C : Fn(z) = a} for any fixed a; see Remark 3.7 for more
details.

We now turn to the assumption on the deterministic functions φi. The state-
ment of our theorems will involve two parameters, an error term 0 < δn < 1 (see
(2)) and a region Dn ⊂ C, from which the base points z1, . . . ,zk are chosen. As
their subscripts indicate, both δn and Dn can depend on n. In most of our appli-
cations, δn tends to zero with n but it is not required. When n = ∞ for example,
δ∞ can be any parameter in (0,1). The assumptions below are tailored to these two
parameters, δn and Dn.

For two sets A,B ⊂ C, define A + B := {a + b : a ∈ A, b ∈ B}. Let
k,C1,α1,A,c1,C be positive constants. We say that Fn satisfies Condition
C2 with parameters (k,C1,α1,A,c1,C) if the following holds.

Condition C2. (1) For any z ∈ Dn, Fn is analytic on the disk B(z,2) with
probability 1 and

ENk+21
N≥δ

−C1
n

≤ C,

where N is the number of zeros of Fn in the disk B(z,1). We note that throughout
this paper, if Fn is identically 0, we adopt the (admittedly artificial) convention that
Fn has no roots in C.

(2) Anti-concentration: For every z ∈ Dn, with probability at least 1−CδAn ,
there exists z′ ∈B(z,1/100) for which |Fn(z′)|≥ exp(−δ−c1

n ).
(3) Boundedness: For any z ∈Dn, with probability at least 1−CδAn , |Fn(w)|≤

exp(δ−c1
n ) for all w ∈B(z,2).
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(4) Delocalization: For every z ∈Dn+B(0,1), it holds that
∑n

j=1 |φj(z)|2 )= 0
and for every i= 1, . . . ,n,

|φi(z)|√∑n
j=1 |φj(z)|2

≤ Cδα1
n .

(5) Derivative growth: For any real number x ∈Dn+B(0,1),

n∑

j=1

|φ′j(x)|2 ≤ Cδ−c1
n

n∑

j=1

|φj(x)|2,

n∑

j=1

sup
z∈B(x,1)

|φ′′j (z)|2 ≤ Cδ−c1
n

n∑

j=1

|φj(x)|2,

and

n∑

j=1

|Eξj| sup
z∈B(x,1)

|φ′′j (z)|≤ Cδ−c1
n

√√√√
n∑

j=1

|φj(x)|2.

Remark 2.1. While Condition C2 still involves the random variables ξi, in the
verification of these conditions, we only need to use basic information about the
mean of these variables. On the other hand, the type of arguments one needs to use
in the verification depends strongly on the functions φi.

Remark 2.2. The last Condition C2(5) is important only in the study of real
roots; in particular, it is used to prove the repulsion of the real roots (Lemma 8.5).
It can be ignored in the study of complex roots.

Let us now comment on the verification of Condition C2 in practice.

Remark 2.3. Typically, we assume δn tends to zero with n. We transform the
functions so that the expectation of N is of order 1 where N is the number of roots
of Fn in a disk B(z,1), z ∈ Dn. With this in mind, the first condition is a large
deviation estimate on N and can be proved using standard large deviation tools
combined with classical complex analytic estimates such as Jensen’s inequality.
The third condition (boundedness) is also a large deviation statement and can be
dealt with using standard tools, since for any fixed w, Fn(w) is a sum of indepen-
dent random variables.

The two Conditions C2(4) and C2(5) are deterministic properties of the func-
tions φi and hold for many natural classes of functions. The forth condition (delo-
calization) simply says that in the vector (φi(z))n1 , no coordinate dominates. The
fifth condition asserts that the first and second derivatives of φi do not exceed the
value of the function itself by a large multiplicative factor, in an average sense.
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Checking these conditions is usually a routine task. Furthermore, the proof allows
us to easily modify these conditions, if necessary.

The second (anti-concentration) condition is the one that may require some
work. However, this condition is trivial if (some of) the random variables ξi have
continuous distributions with bounded density. For instance, if φ1 = 1 (constant
function) and ξ1 has a continuous distribution with bounded density, then the re-
quired anti-concentration property holds trivially by conditioning on the rest of the
random variables (which can have arbitrary distributions). There is a sizable liter-
ature focusing on continuous ensembles, and our results allow us to recover, in a
straightforward manner, a number of existing results, whose original proofs were
quite technical; see Sections 4 and 6 for examples.

2.3. Results. Given the assumptions discussed in the previous section, we
are now ready to state our universality theorems.

Definition 2.4. For any function G : Rk → R and any natural number a, we
define ‖!aG‖∞ to be the supremum over x∈Rk of the absolute value of all partial
derivatives of total order a of G at x. For a function G : Rk×Cl → C, we define
‖!aG‖∞ to be the maximum of ‖!aG1‖∞ and ‖!aG2‖∞, where G1,G2 : Rk+2l →
R are the real and imaginary parts of G:

G1
(
x1, . . . ,xk,u1, . . . ,ul,v1, . . . ,vl

)
= Re

(
G
(
x1, . . . ,xk,u1 + iv1, . . . ,ul+ ivl

))
,

G2
(
x1, . . . ,xk,u1, . . . ,ul,v1, . . . ,vl

)
= Im

(
G
(
x1, . . . ,xk,u1 + iv1, . . . ,ul+ ivl

))
.

THEOREM 2.5. (General complex universality) Assume that the coefficients ξi
and ξ̃i satisfy Condition C1 for some constants N0,τ,ε. Let α1,C1 be positive con-
stants and k be a positive integer. Set A := 2kC1 +

α1ε
60 and c1 := α1ε

105k2 . Assume
that there exists a constant C > 0 such that the random functions Fn and F̃n sat-
isfy Conditions C2(1)–C2(4) with parameters (k,C1,α1,A,c1,C). Then there exist
positive constants C ′, c depending only on the constants in Conditions C1 and C2
(but not on δn, Dn and n) such that the following holds.

For any complex numbers z1, . . . ,zk in Dn and any function G : Ck → C sup-
ported on

∏k
i=1B(zi,1/100) with continuous derivatives up to order 2k+ 4 and

‖!aG‖∞ ≤ 1 for all 0 ≤ a≤ 2k+4, we have

∣∣∣E
∑

G
(
ζi1 , . . . ,ζik

)
−E

∑
G
(
ζ̃i1 , . . . , ζ̃ik

)∣∣∣≤ C ′δcn,(3)

where the first sum runs over all k-tuples (ζi1 , . . . ,ζik) of the roots ζ1,ζ2, . . . of Fn,
and the second sum runs over all k-tuples (ζ̃i1 , . . . , ζ̃ik) of the roots ζ̃1, ζ̃2, . . . of F̃n.

As an example for the summation in (3), if k = 2 and Fn only has two roots ζ1

and ζ2, then the first sum is G(ζ1,ζ1)+G(ζ1,ζ2)+G(ζ2,ζ1)+G(ζ2,ζ2).



10 O. NGUYEN AND V. VU

THEOREM 2.6. (General real universality) Assume that φi(R)⊂ R and ξi and
ξ̃i are real random variables that satisfy Condition C1 for some constants N0,τ,ε.
Let α1,C1 be positive constants and k, l be nonnegative integers with k+ l ≥ 1.
Set A = 2(k+ l+ 2)(C1 + 2)+ α1ε

60 and c1 =
α1ε

109(k+l)4 . Assume that there exists a

constant C > 0 such that the random functions Fn and F̃n satisfy Condition C2
with parameters (k+ l,C1,α1,A,c1,C). Then there exist positive constants C ′, c
depending only on k, l and the constants in Conditions C1 and C2 (but not on δn,
Dn and n) such that the following holds.

For any real numbers x1, . . . ,xk, complex numbers z1, . . . ,zl, all of which are
in Dn, and any function G : Rk ×Cl → C supported on

∏k
i=1[xi − 1/100,xi +

1/100]×
∏l

j=1B(zj,1/100) with continuous derivatives up to order 2(k+ l)+ 4
and ‖!aG‖∞ ≤ 1 for all 0 ≤ a≤ 2(k+ l)+4, we have

∣∣∣E
∑

G
(
ζi1 , . . . ,ζik ,ζj1 , . . . ,ζjl

)
−E

∑
G
(
ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl

)∣∣∣≤ C ′δcn,

where the first sum runs over all (k+ l)-tuples (ζi1 , . . . ,ζik ,ζj1 , . . . ,ζjl) ∈ Rk ×
Cl
+ of the roots ζ1,ζ2, . . . of Fn, and the second sum runs over all (k+ l)-tuples

(ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl) ∈ Rk×Cl
+ of the roots ζ̃1, ζ̃2, . . . of F̃n.

Remark 2.7. The specific values of A and c1 in both theorems are chosen for
the sake of explicitness. The theorems hold for any bigger A and any smaller c1.
The constant c in both theorems can be chosen to be c1, namely α1ε

105k2 and α1ε
109(k+l)4 ,

respectively. We make no attempt to optimize these constants.

2.4. Main ideas and technical novelties.

2.4.1. Main ideas. Let us consider the simplest setting where k = 1, l = 0
and we need to show

n∑

i=1

EG
(
ζi
)
=

n∑

i=1

EG
(
ζ̃i
)
+O

(
δcn
)
,

where the ζi (and the ζ̃i) are the roots of Fn (and F̃n, respectively) and G is a
(smooth) test function supported on a disk B(z0,1/100).

Our starting point is the Green’s formula, which asserts that

G(0) =
1

2π

∫

C
log |z|∆G(z)dz.

By change of variables, this implies that for all i,

G(ζi) =
1

2π

∫

C
log |z− ζi|∆G(z)dz,
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which, in turn, yields

∑

i

EG
(
ζi
)
=

1
2π

E
∫

C
log

∣∣∣∣∣

n∏

i=1

(
z− ζi

)
∣∣∣∣∣∆G(z)dz

=
1

2π
E
∫

B(z0,1/100)
log
∣∣Fn(z)

∣∣∆G(z)dz.

An obvious, and major, technical difficulty here is that the logarithmic function
has a singularity at 0. This, naturally, leads to the anti-concentration issue that we
discussed earlier, namely we need to bound the probability that |Fn(z)| is close to
zero. Condition C2(2) has been introduced to address this issue.

Let us assume, for a moment, that the singularity problem has been handled
properly (we will discuss the anti-concentration property shortly). Then, by using
Conditions C2(1)–C2(3), we can show that the function Fn is nice enough that we
can replace log |Fn| by K(Fn) where K is a bounded smooth function. The key
argument of this part is to bound the error term, which turns out to be relatively
simple.

The task is now reduced to showing that

E
∫

B(z0,1/100)
K
(
Fn(z)

)
∆G(z)dz−E

∫

B(z0,1/100)
K
(
F̃ (z)

)
,G(z)dz =O

(
δc
)
.

Because of the boundedness of G, for each z ∈ B(z0,1/100), it suffices to
show that

EK
(
Fn(z)

)
−EK

(
F̃ (z)

)
=O

(
δc
)
.

Since for each fixed z, Fn(z) is a sum of independent random variables, the
desired bound can be viewed, in some sense, as a quantitative version of the Cen-
tral Limit Theorem. We will actually prove it by the Lindeberg swapping method,
which, by now, is a standard tool for proving local universality.

Generalizing the whole scheme to the general case of k and l requires several
additional technical steps, but the spirit of the method remains the same.

2.4.2. Comparison with earlier papers [11, 58]. Our method differs from
that of [58] at essential steps. The first key idea in [58] is to handle the integral

1
2π

E
∫

B(z0,1/100)
log
∣∣Fn(z)

∣∣∆G(z)dz

by a random Riemann sum. One tries to approximate this integration by c
m(f(z1)+

· · ·+f(zm)), where zi are iid random points sampled from the disk, m is a properly
chosen parameter which tends to infinity with n, c is a normalizing constant, and
f := log |Fn|∆G.
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With that approach, one faces two major technical tasks. The first (and harder
one) is to control the error term in the approximation. This leads to the problem of
estimating the variance in the sampling process. The other task is to prove a com-
parison estimate for the random vector (f(z1), . . . ,f(zm)), where we now view the
points z1, . . . ,zm as fixed, with the randomness coming from Fn(z). This, again,
can be done using a Lindeberg type argument (applying to high dimensional set-
ting).

Our new proof avoids this sampling argument completely, making the argu-
ment much shorter and more direct. For instance, the proof of Theorem 2.5, barring
some lemmas in the appendix, is now only 3 pages.

Let us now discuss the critical anti-concentration property. In practice, it has
been a major issue to prove that a random function satisfies the anti-concentration
phenomenon in some way. (As pointed out earlier, this is needed in order to address
the singularity problem concerning the logarithmic function.)

In earlier papers [58, 11], every class of random (algebraic) polynomials re-
quired a different proof. In [58], for Weyl and elliptic polynomials, the authors
used Littlewood-Offord arguments for lacunary sequences. In the same paper, the
proof for Kac polynomials required a much more sophisticated argument, based on
the Inverse Littlewood-Offord theory (see Nguyen-Vu [42]) and a weak version of
the quantitative (Gromov) rigidity theorem (see Shalom-Tao [50]). However, this
proof does not hold for the derivatives of Kac polynomials and random polynomi-
als with slowly growing coefficients. In order to handle these classes, in [11], the
authors needed to use a beautiful result on log-integrability by Nazarov-Nishry-
Sodin [39], a very recent development. However, none of these tools works for
random trigonometric polynomials, whose roots behave quite differently.

An important new point in our proof is that we require a much weaker anti-
concentration property than in previous papers. We only require that Fn(z), as a
random variable, satisfies the anti-concentration for only one point z in the whole
neighborhood, while in [58] one requires anti-concentration to hold for most points
in the same neighborhood. (Notice that since we are taking an integration with re-
spect to z, this earlier requirement from [58] looks natural.) The key to this ob-
servation is our Lemma 8.2, which asserts that under favorable conditions, a lower
bound on |Fn(w)| guarantees a weaker, but still useful, lower bound for |Fn(z)|
for any z in a neighborhood of w.

Building upon this new observation, we have developed a novel method (based
on old results of Turán and Halász) to verify the anti-concentration property in a
simple and robust manner. This effort leads to Lemma 9.2, which we can use,
in a rather straightforward way, to prove the desired anti-concentration property
for all ensembles of random functions discussed in this paper (including all the
algebraic polynomials discussed above, random trigonometric polynomials with
general coefficients, and a very recent ensemble studied by Flasche-Kabluchko
[20]).
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3. Application: Universality for random trigonometric polynomials. In
this section, we apply our theorems to study random trigonometric polynomials of
the following form

Pn(x) =
n∑

j=0

cjξj cos(jx)+
n∑

j=1

djηj sin(jx)

where cj and dj are deterministic coefficients, and ξ0,ξ1, . . . ,ξn and η1, . . . ,ηn are
independent random variables with unit variance. All of the cj ,dj ,ξj and ηj may
depend on n.

Most of the existing literature deals with the special case ci = di = 1 or ci = 1,
di = 0 for every i. The generality of our study enables us to consider more general
coefficients. All we need to assume about the coefficients ci,di is the following:

Condition C3. There exist positive constants τ1, c and an interval I0 ⊂
{1, . . . ,n} of size at least cn such that

|ci|≥ τ1 max
0≤j≤n

{
|cj |, |dj |

}
for all i ∈ I0.(4)

With regard to the random variables, we assume that they have mean 0, except
for finitely many of them whose mean can be as large as n1/2+o(1). Specifically, we
assume

Condition C4. There is a constant N0 ≥ 0 such that for i≥N0, Eξi = Eηi = 0
and for 0 ≤ i < N0, |Eξi|≤ nτ0 , and |Eηi|≤ nτ0 , where τ0 := 1/2+10−11ε.

The ε in this condition is the ε in Condition C1. The constant τ0 is not opti-
mal but we make no attempt to improve it. We use the same notation N0 in both
Condition C4 and Condition C1, as we can always replace two different N0 by
their maximum. The assumption that I0 is an interval is only used in the following
simple lemma.

LEMMA 3.1. Let I0 be an interval in {1, . . . ,n} of length βn, for some constant
β > 0. Then there is a constant β′ > 0 such that for any real number a, the set I0

contains a subset Ja of size at least β′n, where mink∈Z{|2aj− (2k+ 1)π|} ≥ β′

for all j ∈ Ja.

Let

P̃n(x) =
n∑

j=0

cj ξ̃j cos(jx)+
n∑

j=1

dj η̃j sin(jx)

where ξ̃0, ξ̃1, . . . , ξ̃n and η̃1, . . . , η̃n are some other independent random variables.

THEOREM 3.2. (Universality for trigonometric polynomials) Let k, l be non-
negative integers. Assume that the real coefficients ci and di satisfy Condition
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C3 and the two sequences of real random variables (ξ0, . . . ,ξn,η1, . . . ,ηn) and
(ξ̃0, . . . , ξ̃n, η̃1, . . . , η̃n) satisfy Conditions C1 and C4. Then for any positive constant
C, there exist positive constants C ′, c depending only on C,k, l and the constants
in Conditions C1, C3, and C4 such that the following holds.

For any real numbers x1, . . . ,xk, and complex numbers z1, . . . ,zl such that
| Im(zj)|≤C/n for all 1 ≤ j ≤ l, and for any function G : Rk×Cl →C supported
on
∏k

i=1[xi−1/n,xi+1/n]×
∏l

j=1B(zj ,1/n) with continuous derivatives up to
order 2(k+ l)+4 and ‖!aG‖∞ ≤ na for all 0 ≤ a≤ 2(k+ l)+4, we have
∣∣∣E
∑

G
(
ζi1 , . . . ,ζik ,ζj1, . . . ,ζjl

)
−E

∑
G
(
ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl

)∣∣∣≤ C ′n−c,

where the first sum runs over all (k+ l)-tuples (ζi1 , . . . ,ζik ,ζj1 , . . . ,ζjl) ∈ Rk ×
Cl
+ of the roots ζ1,ζ2, . . . of Pn, and the second sum runs over all (k+ l)-tuples

(ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl) ∈ Rk×Cl
+ of the roots ζ̃1, ζ̃2, . . . of P̃n.

To the best of our knowledge, the above theorems seem to be the first uni-
versality results concerning local statistics of the roots of random trigonometric
polynomials. To make a comparison to existing literature, let us focus on the dis-
tribution of real roots, which is the case k = 1, l = 0 in Theorem 3.2.

The number of real roots has been a main focus of the study of random trigono-
metric polynomials. The Gaussian setting has been investigated by a number of re-
searchers, including Dunnage [13], Sanbandham [48], Das [9], Wilkins [60], Edel-
man and Kostlan [14] and many others. One can compute an exact answer for the
expectation using either Kac-Rice formula or Edelman-Kostlan formula [14].

For the non-Gaussian case, little has been known until very recently. Angst
and Poly [1], in a recent preprint, proved the asymptotics of the mean number of
roots of Pn in a fixed interval [a,b] under the assumptions of finite fifth moment
and a Cramer-type condition. Their approach introduced a novel way to work with
the Kac-Rice formula which had been considered to be difficult in discrete set-
tings. Using an approach originated by Erdös-Offord [15] and later developed by
Ibragimov-Maslova [27] [28], Flasche [19] extended the result in [1] with assump-
tions on the first two moments only. Let NPn(a,b) denote the number of real roots
of Pn in an interval [a,b].

THEOREM 3.3. (Flasche [19]) Let u∈R and 0 ≤ a< b≤ 2π be fixed numbers.
Let Pn(x) = u

√
n+

∑n
j=0 ξj cos(jx)+

∑n
j=1ηj sin(jx) where ξj and ηj , j ∈ N,

are iid random variables with mean 0 and variance 1. Then

lim
n→∞

ENPn(a,b)

n
=

b−a

π
√

3
exp
(
− u2

2

)
.

Notice that in this theorem, the interval [a,b] contains a linear number of roots.
For smaller intervals, a few years ago, Azaı̈s and coauthors [2] showed that if ξi and
ηi are iid with a smooth density function, then in an interval of size Θ(1/n), the
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number of real zeros converges in distribution to that of a suitable Gaussian process
(and is thus universal). In an even more recent paper [29], Iksanov-Kabluchko-
Marynych removed the assumption of smooth density, using a different method.

THEOREM 3.4. (Iksanov-Kabluchko-Marynych [29]) Let

Pn(x) =
n∑

j=0

ξj cos(jx)+
n∑

j=1

ηj sin(jx)

where (ξj ,ηj), j ∈N, are iid real random vectors with mean 0 and unit covariance
matrix. Let (sn) be any sequence of real numbers and [a,b] ⊂ R a fixed interval.
Then

NPn

(
sn+

a

n
,sn+

b

n

)
d−→

n→∞
NZ(a,b)

where (Z(t))t∈R is the stationary Gaussian process with mean 0 and covariance
matrix

Cov
(
Z(t),Z(s)

)
=






sin(t− s)

t− s
if t )= s

1 if t= s.

In all of these previous works, the coefficients ci,di are: ci = di = 1 or ci = 1,
di = 0. Our setting is more general, as we only require a linear fraction of the ci to
be sufficiently large and allow the rest of the (smaller) coefficients to be arbitrary.

Our result implies the following corollary concerning the number of real roots.

THEOREM 3.5. Under the assumptions of Theorem 3.2, there exist positive
constants C and c such that for any n and for any numbers an < bn, we have

∣∣ENPn(an, bn)−ENP̃n
(an, bn)

∣∣

(bn−an)n
≤ Cn−c

(
1+

1
(bn−an)n

)
.

By using the Kac-Rice formula (Proposition 10.1) for the Gaussian case, we
obtain the following precise estimate.

COROLLARY 3.6. Let C,ε and τ1 be positive constants. Let −C ≤ un ≤C be
a deterministic number. Let

Pn(x) = un

√√√√
n∑

i=0

c2
i +

n∑

j=0

cjξj cos(jx)+
n∑

j=1

cjηj sin(jx)

where ξj and ηj , j ≤ n, are independent (not necessarily identically distributed)
real random variables with mean 0, variance 1 and (2+ ε)-moments bounded by
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C , and the real coefficients cj satisfy condition C3. Then for any numbers an < bn,
we have

ENPn(an, bn) =
bn−an
π

√√√√
∑n

j=0 c
2
jj

2

∑n
j=0 c

2
j

exp
(
− u2

n

2

)
+O

(
n−c
)(
(bn−an)n+1

)

where the positive constant c and the implicit constant depend only on C,ε and τ1.

This corollary extends both Theorems 3.3 and 3.4 in the sense that it holds for
general coefficients ci,di and intervals of all scales. It does not seem that the meth-
ods used in these papers can cover the same range. On the other hand, our random
coefficients are required to have bounded (2+ε)-moments. It is an interesting open
problem to see to what extent this assumption is necessary.

Remark 3.7. In the proof, we will show that Corollary 3.6 holds for a more
general case in which

Pn(x) =

√√√√
n∑

i=0

c2
i

(
un+

N0∑

j=0

ujn
−α cos(jx)+

N0∑

j=1

vjn
−α sin(jx)

)

+
n∑

j=0

cjξj cos(jx)+
n∑

j=1

cjηj sin(jx)

(5)

where N0,α> 0 are any constants and −C ≤ uj ,vj ≤C are deterministic numbers
that can depend on n. This means that the result is applicable to not only the number
of zeros of Pn but also the number of intersections between Pn and a deterministic
trigonometric polynomial

Q(x) :=

√√√√
n∑

i=0

c2
i

(
u′n+

N0∑

j=0

ujn
−α cos(jx)+

N0∑

j=1

vjn
−α sin(jx)

)

where u′n, uj and vj are bounded deterministic numbers. To see this, one only
needs to apply the result to the random polynomial Pn−Q.

Now let us go back to the special case with ci = di = 1

Pn(x) =
n∑

i=0

ξi cos(ix)+
n∑

i=1

ηi sin(ix).

By applying Corollary 3.6 directly to the derivatives of Pn, we get the follow-
ing result.

COROLLARY 3.8. Let k be a nonnegative integer and C be a positive constant.
Assume that the random variables ξi and ηi, i≤n, are independent (not necessarily
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identically distributed) real random variables with mean 0, variance 1 and (2+ε)-
moments bounded by C . For any numbers an < bn, the expected number of real
zeros of the kth derivative of Pn in an interval [an, bn] is

EN
P (k)
n
(an, bn) =

√
2k+1
2k+3

(bn−an)n

π
+O

(
n−c
)(
(bn−an)n+1

)

where the positive constant c and the implicit constant depend only on k,C and ε.

The key to our proof is the new technique to verify anti-concentration, which
we discussed at the end of the Introduction (see also Remark 2.3) and at the end of
the previous section. For details, see Section 9.

4. Application: Universality for Kac polynomials. In this section, we ap-
ply our result to Kac polynomials,

Pn(x) =
n∑

i=0

ξix
i

where ξ0,ξ1, . . . ,ξn are iid copies of a real random variable ξ with mean zero and
unit variance. This is perhaps the most studied model of random polynomials. In-
deed, the starting point of the theory of random functions was a series of papers in
the early 1900s examining the number of real roots of the Kac polynomials.

The first rigorous work on random polynomials was due to Bloch and Polya in
1932 [7], who considered the Kac polynomial with ξ being Rademacher, namely
P(ξ = 1) = P(ξ = −1) = 1/2. In what follows, we denote by Nn,ξ the number
of real roots of Pn(x). Next came the ground-breaking series of papers by Little-
wood and Offord [37, 38, 36] in the early 1940s, which, to the surprise of many
mathematicians at the time, showed that Nn,ξ is typically poly-logarithmic in n.

THEOREM 4.1. (Littlewood-Offord) For ξ being Rademacher, Gaussian, or
uniform on [−1,1],

logn
log logn

≤Nn,ξ ≤ log2n

with probability 1− o(1).

During more or less the same time, Kac [32] discovered his famous formula
for the density function ρ(t) of Nn,ξ

ρ(t) =

∫ ∞

−∞
|y|p(t,0,y)dy,

where p(t,x,y) is the joint probability density of Pn(t) = x and the derivative
P ′
n(t) = y.
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Consequently,

ENn,ξ =

∫ ∞

−∞
dt

∫ ∞

−∞
|y|p(t,0,y)dy.(6)

In the Gaussian case (ξ is Gaussian), one can compute the joint distribution of
Pn(t) and P ′

n(t) rather easily. Kac showed in [32] that

ENn,Gauss =
1
π

∫ ∞

−∞

√
1

(t2 −1)2 +
(n+1)2t2n

(t2n+2 −1)2 dt=

(
2
π
+ o(1)

)
logn.

In his original paper [32], Kac thought that his formula would lead to the same
estimate for ENn,ξ for all other random variables ξ. It has turned out not to be
the case, as the right-hand side of (6) is often hard to compute, especially when
ξ is discrete (Rademacher for instance). Technically, the computation of the joint
distribution of Pn(t) and P ′

n(t) is easy in the Gaussian case, thanks to special
properties of the Gaussian distribution, but can pose a great challenge in general.
Kac admitted this in a later paper [33] in which he managed to push his method to
treat the case ξ being uniform in [−1,1], using analytic tools. A further extension
was made by Stevens [56], who evaluated Kac’s formula for a large class of ξ
having continuous and smooth distributions with certain regularity properties (see
[56, p. 457] for details). Since the distributions are smooth, the two later results
follow rather easily from our universality results; see the discussion at the end of
the last section and Remark 2.3; we leave the routine verification as an exercise for
the interested reader.

The computation of ENn,ξ for discrete random variables ξ required a con-
siderable effort. It took more than 10 years until Erdös and Offord [15] found a
completely new approach to handle the Rademacher case, proving the following.

THEOREM 4.2. [15] Let ξi be iid Rademacher random variables. Then

Nn,ξ =
2
π

logn+ o
(
(logn)2/3 log logn

)

with probability at least 1− o
( 1√

log logn

)
.

The argument of Erdös and Offord is combinatorial and very delicate, even by
today’s standards. Their main idea is to approximate the number of roots by the
number of sign changes in Pn(x1), . . . ,Pn(xk) where (x1, . . . ,xk) is a carefully
chosen deterministic sequence of points of length k= ( 2

π +o(1)) logn. The authors
showed that with high probability, almost every interval (xi,xi+1) contains exactly
one root, and used this fact to prove Theorem 4.2.

Our main result in this section is the following universality statement.
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THEOREM 4.3. (Universality for Kac polynomials) Let k, l be nonnegative
integers with k+ l≥ 1. Assume that ξ0, . . . ,ξn and ξ̃0, . . . , ξ̃n are real random vari-
ables with mean 0, satisfying Condition C1 and the polynomials Pn, P̃n are Kac
polynomials with respect to these variables. Then there exist positive constants
C ′, c depending only on k, l and the constants in Condition C1 such that the fol-
lowing holds.

For every 0 < θn < 1, for any real numbers x1, . . . ,xk, and complex numbers
z1, . . . ,zl with 1−2θn≤ |xi|, |zj |≤ 1−θn+1/n for all i,j, and for any function G :
Rk×Cl →C supported on

∏k
i=1[xi−10−3θn,xi+10−3θn]×

∏l
j=1B(zj ,10−3θn)

with continuous derivatives up to order 2(k+ l)+4 and ‖!aG‖∞ ≤ (θn+1/n)−a

for all 0 ≤ a≤ 2(k+ l)+4, we have
∣∣∣E
∑

G
(
ζi1 , . . . ,ζik ,ζj1, . . . ,ζjl

)
−E

∑
G
(
ζ̃i1 , . . . , ζ̃ik , ζ̃j1, . . . , ζ̃jl

)∣∣∣

≤ C ′θcn+C ′n−c,

where the first sum runs over all (k+ l)-tuples (ζi1 , . . . ,ζik ,ζj1, . . . ,ζjl) ∈ Rk ×
Cl
+ of the roots ζ1,ζ2, . . . of Pn, and the second sum runs over all (k+ l)-tuples

(ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl) ∈ Rk×Cl
+ of the roots ζ̃1, ζ̃2, . . . of P̃n.

Remark 4.4. Theorem 4.3 provides universality result for the polynomial Pn

on the disk B(0,1+ 1/n). For the complement of this disk, consider Qn(z) :=
znPn(z−1) which is another Kac polynomial. Since the roots of Qn are just the
reciprocal of the roots of Pn, the universality of Qn in B(0,1) implies the univer-
sality of Pn outside the disk B(0,1).

As a corollary, we get the following result on the number of real roots of these
polynomials which recovers the main result of Do and the authors in [11].

COROLLARY 4.5. Let C be a positive constant. Assume that the random vari-
ables ξi are independent (not necessarily identically distributed) real random vari-
ables with mean 0, variance 1 and (2+ ε)-moments bounded by C . Then

ENPn(R) =
2
π

logn+O(1)

where the implicit constant depends only on C and ε.

Theorem 4.3 strengthens an earlier result of Tao and the second author [58].
The result in [58] only covers the bulk of the spectrum, namely the region 1−n−ε≤
|x|≤ 1+n−ε. Restricting to the number of real roots, it yields

ENPn(R) =O(logn)

instead of the more precise (and optimal) estimate in Corollary 4.5. Another new
feature is that our result also yields sharp estimates for the size of level sets {z ∈C :
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Pn(z) = a}, for any fixed a, since we can allow that in Theorem 4.3 and Corollary
4.5, ξ0 (and in fact any finite number of ξi) has non-zero, bounded mean. Our proofs
work automatically under this extension. A version of Corollary 4.5 is obtained
earlier in [41] using a different approach that combines the local universality in the
bulk and a comparison of the number of real roots of Pn with that of Pn′ for n′

much larger than n.
The proof in [58] made use of a deep anti-concentration lemma [58,

Lemma 14.1] whose proof relies on the Inverse Littlewood-Offord theory and
a weak quantitative version of Gromov’s theorem. The proof we will provide
here is simple and almost identical to the one used to treat random trigonometric
polynomials in the last section. For random variables having continuous distri-
butions (such as the cases treated by Kac and Stevens mentioned above), the
anti-concentration property (see Remark 2.3) is immediate.

Remark 4.6. One can routinely modify the proofs of Theorem 4.3 and Corol-
lary 4.5 to show that these results hold for more general settings. For example, the
proofs can be used to show that these results apply for

Pn(x) =
n∑

i=0

ciξix
i

where ξi are independent (not necessarily identically distributed) random variables
satisfying Condition C1 with zero mean and the deterministic coefficients ci grow
polynomially. Specifically, these results hold for derivatives of the Kac polynomials
of any given order. We leave the details to the interested reader. The aforementioned
results for this general version were proven in the previous work [11] using much
more involved tools and arguments.

We defer the proofs of Theorem 4.3 and Corollary 4.5 to Section 11.

5. Application: Universality for Weyl series. In this section, we discuss
an application of our main theorems to Weyl series

P (z) =
∞∑

j=0

ξjzj√
j!

where ξj are independent complex random variables satisfying the matching condi-
tion C1 with the ξ̃j being standard complex Gaussian random variables with density
1
πe

−|z|2 . In the literature, Weyl series are also referred to as flat series.

The flat series P̃ (z) =
∑∞

j=0
ξ̃jzj√

j! is also known as the flat Gaussian analytic
function and has been studied intensively over the past few decades. See, for exam-
ple, [26, 51, 52], and the references therein. Using the Edelman-Kostlan formula
[14], one can show that for any Borel set B ⊂ C, the expected number of roots of
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P̃ in B is

ENP̃ (B) =
1
π
m(B)(7)

where m(B) is the Lebesgue measure of B.
For general random variables, to compare the distribution of the roots of P with

that of P̃ , Kabluchko and Zaporozhets (2014) [30] showed that with probability 1,
the rescaled empirical measure µr defined by

µr(A) =
1
r

∑

ζ:P (ζ)=0

1ζ∈√rA

converges vaguely as r → ∞ to the measure 1
πm(·), which is, as mentioned above,

the corresponding measure for P̃ . We recall that a sequence of measures (µr) is
said to converge vaguely to a measure µ if limr→∞

∫
fdµr =

∫
fdµ for every con-

tinuous, compactly supported function f .
The aforementioned result of [30] is about the rescaled measures µr. Thus,

it provides an asymptotically sharp estimate on the number of roots of P in large
domains of the form

√
rB where r→∞ and B is a fixed “nice” measurable domain,

but does not give estimates for the number of roots in domains with fixed area, as
in (7).

Using our framework, we obtain the following result at the local scale.

THEOREM 5.1. (Universality for random flat series) Assume that the complex
random variables ξj satisfy the matching condition C1 with the ξ̃j being standard
complex Gaussian random variables and the random variables Re(ξ0), Im(ξ0),
Re(ξ1), Im(ξ1), . . . are independent. Then there exist positive constants C,c de-
pending only on the constants in Condition C1 such that the following holds.

For any complex number z0 and for any function G : C → C supported on
B(z0,1) with continuous derivatives up to order 6 and ‖!aG‖∞ ≤ 1 for all 0 ≤
a≤ 6, we have ∣∣E

∑
G(ζ)−E

∑
G(ζ̃)

∣∣≤ C|z0|−c,

where the first sum runs over all the roots ζ1,ζ2, . . . of P , and the second sum runs
over all the roots ζ̃1, ζ̃2, . . . of P̃ .

As a corollary, we obtain a sharp estimate on the number of roots in regions
with a fixed area.

COROLLARY 5.2. For any constant C > 0, let B be an angular square B =
{Reiθ : R ∈ [r,r+ 1],θ ∈ [θ0,θ0 +C/r]} for some numbers r > 0 and θ0. Under
the assumption of Theorem 5.1, we have

ENP (B) =
1
π
m(B)+O(r−c) as r → ∞,
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where c and the implicit constant only depend on C and the constants in Condition
C1.

The angular square B can be replaced by a disk, square, or any other nice
domains whose indicator functions can be well approximated by smooth functions,
with only a nominal modification of the proof. Thus, we have a generalization of
(7) for flat series with general random coefficients.

To the best of our knowledge, Theorem 5.1 and Corollary 5.2 are new. We
present a short proof of these results in Section 12.

6. Application: Universality for elliptic polynomials. In this section, we
briefly illustrate how to apply our framework to elliptic polynomials

Pn(z) =
n∑

i=0

√(
n

i

)
ξiz

i.

where ξj are independent real random variables satisfying the matching condition
C1 with the ξ̃j being standard real Gaussian random variables.

For the Gaussian case, the polynomial P̃n(z) =
∑n

i=0

√(n
i

)
ξ̃izi has exactly

√
n real roots in expectation (see, for example, [5, 14]). In their paper [6], among

other results, Bleher and Di extended this result to the non-Gaussian setting.

THEOREM 6.1. [6, Theorem 5.3] Let ξj be iid random variables with mean
0 and variance 1. Assume furthermore that they are continuously distributed with
sufficiently smooth density. Then

lim
n→∞

ENPn(R)√
n

= 1.

We refer the reader to the original paper [6] for the precise description of “suf-
ficiently smooth”. The same result with this assumption being removed is obtained
in a recent work of Flasche-Kabluchko [21].

Later, Tao and the second author in [58, Theorem 5.6] showed that the same
result holds when the random variables ξj are only required to be independent with
mean 0, variance 1, and finite (2 + ε)-moments. Here we apply our framework
to recover these results assuming the more flexible Condition C1, which allows
a constant number of ξj to have non-zero means. Let us first start with a local
universality result.

THEOREM 6.2. (Universality for random elliptic polynomials) Assume that
the real random variables ξj are independent and satisfy the matching condition
C1 with the ξ̃j being standard real Gaussian random variables. Then there exist
positive constants C,c depending only on the constants in Condition C1 such that
the following holds.
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For any real number x0 with n−1/2+ε ≤ |x0|≤ 1 and for any function G : C→
C supported on [x0 −1/

√
n,x0 +1/

√
n] with continuous derivatives up to order 6

and ‖!aG‖∞ ≤ na/2 for all 0 ≤ a≤ 6, we have

∣∣∣E
∑

G(ζ)−E
∑

G(ζ̃)
∣∣∣≤ Cn−c,

where the first sum runs over all roots ζ1,ζ2, . . . of Pn, and the second sum runs
over all the roots ζ̃1, ζ̃2, . . . of P̃n.

Remark 6.3. If Pn satisfies the assumptions of Theorem 6.2, so does the poly-

nomial Qn(z) = znPn
( 1
z

)
=
∑n

i=0

√(n
i

)
ξn−izi. And since the roots of Qn are

just the reciprocals of the roots of Pn, from the conclusion of Theorem 6.2 for
Qn, one can obtain the corresponding universality result of Pn on the domain
1 ≤ |x0|≤ n1/2−ε.

Thanks to this remark, our result proves universality on the domain n−1/2+ε ≤
|x0|≤n1/2−ε. By showing that the contribution outside of this domain is negligible,
we obtain the following more quantitative version of Theorem 6.1.

COROLLARY 6.4. Under the assumption of Theorem 6.2, we have

ENPn(R) =
√
n+O

(
n1/2−c

)

where c and the implicit constant only depend on the constants in Condition C1.

We give a short proof of these results in Section 13. We note that a correspond-
ing statement can be made concerning the expected number of real roots on a fixed
interval [a,b]⊂ R, using the same proof.

7. Application: Universality for random Taylor series. Let Γ denote the
Gamma function. In a recent paper [20], Flasche and Kabluchko considered the
following random series

P (x) =
∞∑

k=0

ξkckx
k

where the ck are real deterministic coefficients such that

c2
k =

kγ−1

Γ(γ)
L(k)

for some constant γ > 0 and some function L : (0,∞)→ R satisfying L(t)> 0 for
sufficiently large t and limt→∞

L(λt)
L(t) = 1 for all λ> 0. For example, L(x) is some

power of logx.
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We follow the terminology in [20] and call such a function L a slowly varying
function and the function P a random series with regularly varying coefficients.
The following is the main result of [20].

THEOREM 7.1. [20, Theorem 1.1] Assume that the random variables ξk are
iid real random variables with zero mean and unit variance. Then

lim
r↑1

ENP [0,r]
− log(1− r)

=

√
γ

2π
.

We reprove Theorem 7.1 under the (slightly different) assumption that the
random variables ξk are independent (not necessarily identically distributed) real
random variables with zero mean, unit variance, and uniformly bounded (2+ ε)-
moments. As usual, we allow that a few random variables have non-zero bounded
mean, and so our result also applies to level sets. Our method also yields a polyno-
mial rate of convergence.

As before, we obtain this as a corollary of a stronger theorem establishing the
local universality of the roots. Let

P̃ (x) =
∞∑

k=0

ξ̃kckx
k

where the ξ̃k are independent standard Gaussian.

THEOREM 7.2. (Universality for random series with regularly varying coeffi-
cients) Let k, l be nonnegative integers with k+ l≥ 1. Assume that the real random
variables ξj are independent and satisfy the matching condition C1 with the ξ̃j be-
ing standard real Gaussian random variables. There exist positive constants C ′, c
depending only on the constants in Condition C1 such that the following holds.

Let 0 < δ < 1, and let x1, . . . ,xk be real numbers and z1, . . . ,zl be complex
numbers satisfying 1−2δ ≤ |xi|, |zj |≤ 1−δ for all relevant i,j. Let G :Rk×Cl →
C by a function supported on

∏k
i=1[xi− 10−3δ,xi+ 10−3δ]×

∏l
j=1B(zj ,10−3δ)

with continuous derivatives up to order 2(k+ l)+ 4 and ‖!aG‖∞ ≤ δ−a for all
0 ≤ a≤ 2(k+ l)+4. Then

∣∣∣E
∑

G
(
ζi1 , . . . ,ζik ,ζj1 , . . . ,ζjl

)
−E

∑
G
(
ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl

)∣∣∣≤ C ′δc,

where the first sum runs over all (k+ l)-tuples (ζi1 , . . . ,ζik ,ζj1 , . . . ,ζjl) ∈ Rk ×
Cl
+ of the roots ζ1,ζ2, . . . of P , and the second sum runs over all (k+ l)-tuples

(ζ̃i1 , . . . , ζ̃ik , ζ̃j1 , . . . , ζ̃jl) ∈ Rk×Cl
+ of the roots ζ̃1, ζ̃2, . . . of P̃ .

COROLLARY 7.3. Under the assumption of Theorem 7.2, there exist positive
constants C ′ and c such that the following hold.
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(1) For any r ∈ (0,1),

∣∣ENP [0,r]−ENP̃ [0,r]
∣∣ ≤ C

where NP [0,r] and NP̃ [0,r] are the number of real roots of P and P̃ in [0,r],
respectively.

(2) We have

lim
r↑1

ENP [0,r]
− log(1− r)

=

√
γ

2π
.

We prove Theorem 7.2 and Corollary 7.3 in Section 14.
After this paper has been finished, the authors become aware of a very recent

and interesting result of Flasche-Kabluchko [21] in which a completely different
method is developed to study systematically the elliptic polynomial, Weyl poly-
nomial, flat random analytic function, and hyperbolic random analytic function.
As Flasche and Kabluchko mentioned in their paper, a similar approach has been
applied to random trigonometric polynomials [19] and random Taylor series [20].
Here we draw a quick comparison of the results.

• The results in [21] prove the universality of the density functions, while our
results prove universality of all correlation functions. The authors of [21] do not
seem to be aware of our paper (which was put on the arxiv several months earlier)
and made a comparison with [58]. However, the main result of [58] is also about
universality of all correlation functions, but this critical point has been ignored.

• [21] and related papers require that the random variables are identically dis-
tributed with finite second moment; our method requires (2+ ε)-moment, but the
variables do not need to be iid.

• The results in [19, 20, 21] provide the limits as n→ ∞. Our results prove the
limits with quantitative error terms.

• Our method allows the coefficients to fluctuate. Specifically, in most of the
applications in the above sections, a result stated for a random function

F (x) =
∑

k

ξkφk(z)

can readily be generalized (with no significant changes in the proofs) to a random
function

G(x) =
∑

k

ckξkφk(z),

where ck are deterministic coefficients that can take any values in the interval
[1/2,2] (say). In this respect, the method in [21] which relies on assumptions such
as [21, Equation (6)] may be more susceptible to coefficients’ fluctuations.
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8. Proof of Theorems 2.5 and 2.6. Before starting the proofs, let us men-
tion two Jensen’s inequalities that we use several times in this manuscript. It will be
clear in the context which Jensen’s inequality is used. The first, and perhaps more
popular, Jensen’s inequality relates the value of a convex function of an integral to
the integral of that convex function. In particular, for any convex function φ on the
real line and any real integrable random variable X, we have

φ
(
E(X)

)
≤ Eφ(X).

The second Jensen’s inequality provides an upper bound on the number of roots
of an analytic function. Assume that f is an analytic function on an open domain
that contains the closed disk B̄(z,R). Then for any r < R, we have

N
(
B(z,r)

)
≤

log M
m

log R2+r2

2Rr

(8)

where N(B(z,r)) is the number of roots (including multiplicities) of f in the open
disk B(z,r) and M = maxw∈B̄(z,R) |f(w)|, m = maxw∈B̄(z,r) |f(w)|. For com-
pleteness, we include a short proof of this inequality in Appendix 15.5.

8.1. Proof of Theorem 2.5. We first state a few lemmas. The first lemma
reduces the theorem to the case when the function G splits, namely G is a product
of functions of a single variable. In many applications, G automatically takes this
form. This lemma was proved in [58]. We include a short proof in Appendix 15.1.

LEMMA 8.1. If Theorem 2.5 holds for every function G of the form

G(w1, . . . ,wm) =G1(w1) · · ·Gk(wk)(9)

where for each 1 ≤ i≤ k, Gi : C→ C is a function supported in B(zi,1/50) with
continuous derivatives up to order 3 and ‖!aGi‖∞ ≤ 1 for all 0 ≤ a ≤ 3, then it
holds for any function G satisfying the hypothesis of Theorem 2.5. Similarly for
Theorem 2.6.

The next lemma plays a critical role in our approach, as it shows that the sin-
gularity problem at 0 (see the discussion in the last subsection of Section 2) can be
dealt with assuming anti-concentration at a single point.

LEMMA 8.2. Let 0< δn, c2 < 1 and let Fn be an entire function with |Fn(w)|≥
exp(−δ−c2

n ) for some complex number w and |Fn(z)| ≤ exp(δ−c2
n ) for all z ∈

B(w,3/2). Then

∫

B(w,1/2)

∣∣ log |Fn(z)|
∣∣2dz ≤ 7202 × δ−6c2

n .
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The constant 7202 = 518400 is for explicitness and plays no specific role. Both
this and the constant 6 in the exponent can be reduced but we make no attempt to
optimize these constants. The proof follows from ideas in [11] and is included in
Appendix 15.2.

The following lemma shows that the logarithm function satisfies a universality
property. It is a variant of a lemma in [58] and we include the proof in Appendix
15.3.

LEMMA 8.3. (Log-comparability) Assume that the coefficients ξi and ξ̃i satisfy
Condition C1 for some constants N0,ε,τ . Let α1 be a positive constant and k be
a positive integer. Assume that there exists a constant C > 0 such that the random
functions Fn and F̃n satisfy Condition C2(4) with parameters α1 and C . There exist
positive constants α0 and C ′ such that for any z1, . . . ,zk ∈Dn+B(0,1/10), and
function K : Ck → C with continuous derivatives up to order 3 and ‖!aK‖∞ ≤
δ−α0
n for all 0 ≤ a≤ 3, we have

∣∣EK
(

log
∣∣Fn(z1)

∣∣, . . . , log
∣∣Fn(zk)

∣∣)−EK
(

log
∣∣F̃n(z1)

∣∣, . . . , log
∣∣F̃n(zk)

∣∣)∣∣

≤ C ′δα0
n .

Remark 8.4. Following the proof, one can set α0 =
3α1ε
103 .

Proof of Theorem 2.5. By Lemma 8.1, we can assume that the function G has
the form (9). We need to show that

∣∣∣∣∣E
k∏

j=1

(
∑

i

Gj(ζi)

)

−E
k∏

j=1

(
∑

i

Gj(ζ̃i)

)∣∣∣∣∣≤ C ′δcn,(10)

for some constant c > 0. By Green’s formula, we have

∑

i

Gj(ζi) =

∫

C
log
∣∣Fn(z)

∣∣Hj(z)dz =

∫

B(zj ,1/10)
log
∣∣Fn(uj)

∣∣Hj(uj)duj ,(11)

where Hj(z) =
1

2π,Gj(z). Note that supp(Hj) ⊂ B(zj ,1/10) and ‖Hj‖∞ ≤ 1
for all z ∈ C, thanks to the assumption on G in Theorem 2.5. (As usual, ‖f‖∞ =
supz∈C |f(z)|.) When Fn is identically 0, we assume by convention that the left-
hand side and the right-hand side are 0.

Let A be a sufficiently large constant and c1 be a sufficiently small positive
constant. For this proof, it suffices to set c1 := α0

300k2 and A := 2kC1 +
α1ε
60 . This

choice, together with the value of α0 in Remark 8.4, yields the explicit values of A
and c1 in the theorem.

Let c̄1 :=100kc1. The power c in (10) can be chosen (quite generously) to be c1.
Let K : R→ R be a smooth function with the following properties:
• K is supported on the interval [−2δ−c̄1

n ,2δ−c̄1
n ].
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• K(x) = x for all x ∈ [−δ−c̄1
n ,δ−c̄1

n ].
• ‖K(a)‖∞ =O(δ−c̄1

n ) for all 0 ≤ a≤ 3 (where K(l) is the lth derivative of K).
• |K(x)|≤ |x| for all x ∈ R.
Let Γ :=

∏k
j=1B(zj,1/10) and H(u) :=

∏k
j=1Hj(uj) for u := (u1, . . . ,uk).

By (11), we have

E
k∏

j=1

(
∑

i

Gj(ζi)

)
= E

∫

Γ
H(u)

k∏

j=1

log |Fn(uj)|du=A1 +A2

where

A1 := E
∫

Γ
H(u)

k∏

j=1

K
(

log |Fn(uj)|
)
du,

A2 := E
∫

Γ
H(u)




k∏

j=1

log |Fn(uj)|−
k∏

j=1

K
(

log |Fn(uj)|
)


du.

Let Ã1 and Ã2 be the corresponding terms for F̃n. Our goal is to show that

A1 +A2 − Ã1 − Ã2 =O
(
δcn
)
.(12)

By Lemma 8.3, we have A1 − Ã1 = O(δc̄1
n ). We next show that both A2 and

Ã2 are of order O(δc1
n ). It suffices to consider A2, as the treatment of Ã2 is similar.

Let A0 be the event on which the following two properties hold.
• For all 1 ≤ j ≤ k, |Fn(z′j)|≥ exp(−δ−c1

n ) for some z′j ∈B(zj ,1/100).
• |Fn(z)|≤ exp(δ−c1

n ) for all z ∈B(zj,2).
By Conditions C2(2) and C2(3), P(Ac

0) ≤ CδAn , where Ac
0 is the complement

of A0. We next break up A2 as follows

A2 = E
∫

Γ
H(u)




k∏

j=1

log |Fn(uj)|−
k∏

j=1

K
(

log |Fn(uj)|
)


du1A0

+E
∫

Γ
H(u)

k∏

j=1

log |Fn(uj)|du1Ac
0
−E

∫

Γ
H(u)

k∏

j=1

K
(

log |Fn(uj)|
)
du1Ac

0

=: A3 +A4 −A5.

For A5, since ‖K‖∞ ≤ 2δ−c̄1
n by construction and A≥ 2kc̄1, we have

|A5|≤ 2δ−kc̄1
n P

(
Ac

0
)
≤ 2CδA−kc̄1

n =O
(
δc̄1
n

)
=O

(
δc1
n

)
.

To bound A4, from (11) and the boundedness of Hj , we have
∣∣∣∣
∫

B(zj ,1/100)
log |Fn(uj)|Hj(uj)duj

∣∣∣∣≤NFn

(
B(zj,1/100)

)
=: Nj .
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By Hölder’s inequality for products,

|A4|≤
k∏

j=1

(
ENk

j 1Ac
0

)1/k
.

We bound each term on the right using Hölder’s inequality as follows

ENk
j 1Ac

0
≤ δ−kC1

n P
(
Ac

0
)
+
(
ENk+1

j 1
Nj≥δ

−C1
n

)k/(k+1)(P
(
Ac

0
))1/(k+1)

.

In our setting, A ≥ kC1 + (k + 1)c̄1, the first term on the right-hand
side is O(δc1

n ). Moreover, Condition C2(1) implies that the second term is
O(P(Ac

0)
1/(k+1)) =O(δc1

n ). Thus, A4 =O(δc1
n ).

Finally, to bound A3, we let B be the (random) set of all u ∈ Γ on which
| log |Fn(uj)|| ≥ δ−c̄1

n for some j. Notice that if u = (u1, . . . ,uk) /∈ B, then
K(log |Fn(uj)|) = log |Fn(uj)| by the properties of K and the definition of B.
Moreover, for u ∈B, |K(log |Fn(uj)|)|≤ | log |Fn(uj)|| as |K(x)|≤ |x| for all x.
It follows that

|A3|≤ 2E
∫

Γ

∣∣∣∣∣

k∏

j=1

log
∣∣Fn(uj)

∣∣
∣∣∣∣∣1B(u)du1A0 .(13)

By Hölder’s inequality, the right-hand side is at most

2



E
∫

Γ

∣∣∣∣∣

k∏

j=1

log |Fn(uj)|

∣∣∣∣∣

2

du1A0




1/2 [

E
∫

Γ
1B(u)du1A0

]1/2

.

By Lemma 8.2, on the event A0, we have
∫

B(zj ,1/100)

∣∣ log |Fn(uj)|
∣∣2duj =O

(
δ−6c1
n

)
.(14)

It follows that

∫

Γ

∣∣∣∣∣

k∏

j=1

log
∣∣Fn(uj)

∣∣
∣∣∣∣∣

2

du=O
(
δ−6kc1
n

)
.

On the other hand, by the definition of B,

∫

Γ
1B(u)du1A0 =O

(

1A0

k∑

j=1

∫

B(zj ,1/100)
1| log |Fn(uj)||≥δ

−c̄1
n

duj

)

.

Furthermore,
∫

B(zj ,1/100)
1| log |Fn(uj)||≥δ

−c̄1
n

duj ≤ δ2c̄1
n

∫

B(zj ,1/100)

∣∣ log |Fn(z)|
∣∣2dz.
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Using (14), we obtain

E
∫

Γ
1B(u)du1A0 =O

(
δ2c̄1
n δ−6kc1

n

)
.

It follows that

|A3|=O
((
δ−6kc1
n × δ2c̄1

n δ−6kc1
n

)1/2
)
=O

(
δc̄1−6kc1
n

)
=O

(
δc1
n

)

as we set c̄1 > 7kc1. The bounds on |A3|, |A4| and |A5| together imply |A2| =
O(δc1

n ), concluding the proof. "

8.2. Proof of Theorem 2.6. By Lemma 8.1, it suffices to assume that G
can be decomposed into functions of single variables, namely

G(x1, . . . ,xk,z1, . . . ,zl) =H1(x1) . . .Hk(xk)G1(z1) . . .Gl(zl)

where the Hi : R → C and Gj : C → C are smooth functions supported on [xi−
1/50,xi+1/50] and B(zj ,1/50) (respectively) and satisfying

|!aHi(x)|, |!aGj(z)|≤ 1

for any x ∈ R, z ∈ C and 0 ≤ a≤ 3.
In other words, one needs to show that

∣∣∣∣∣E
(

k∏

i=1

Xi

)(
l∏

j=1

Yj

)
−E

(
k∏

i=1

X̃i

)(
l∏

j=1

Ỹj

)∣∣∣∣∣≤ C ′δc̄n,(15)

for some constants C ′, c̄ > 0, where

Xi=
∑

ζs∈R
Hi(ζs), X̃i=

∑

ζ̃s∈R

Hi(ζ̃s), Yj=
∑

ζs∈C+

Gj(ζs), Ỹj=
∑

ζ̃s∈C+

Gj(ζ̃s).

(We use c̄ instead of c to denote the exponent on the right-hand side, since we
reserve c for the exponent in Theorem 2.5, which we will use in the proof.)

The proof follows the ideas in [58]. The first step is to show that the number of
complex zeros near the real axis is small with high probability. Let c be the constant
exponent in Theorem 2.5 corresponding to k+ l. Following Remark 2.7, we can
set c= α1ε

105(k+l)2 .
With this choice of c, we set c2 := c

100 = α1ε
107(k+l)2 and γ := δc2

n . Let us also
recall that in the statement of this theorem (Theorem 2.6), c1 =

α1ε
109(k+l)4 , which is

much smaller than c2: c1 =
c2

100(k+l)2 .

LEMMA 8.5. Under the assumptions of Theorem 2.6, we have

P
(
NFnB(x,γ)≥ 2

)
=O

(
γ3/2), for all x ∈ R∩

(
Dn+B(0,1/50)

)
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where the implicit constant depends only on the constants in Conditions C1 and
C2 but not on n,δn,Dn and x.

The power 3/2 in the above lemma is not critical, we only need something
strictly greater than 1.

Assuming this lemma, the rest of the proof is relatively simple. For every 1 ≤
i≤ k, consider the strip Si := [xi−1/50,xi+1/50]× [−γ/4,γ/4]. We can cover
Si by O(γ−1) disks of the form B(x,γ), where x ∈ [xi− 1/50,xi + 1/50]. Since
Fn has real coefficients, if z is a root of Fn in Si\R, so is it conjugate z̄. Using
Lemma 8.5 and the union bound, we obtain

P
(
there is at least 1 (or equivalently 2) root(s) in Si\R

)

=O
(
γ−1γ3/2)=O

(
γ1/2).

(16)

Define Hi(z) :=Hi(Re(z))φ
( 4Im(z)

γ

)
, where φ : R→ [0,1] is a smooth func-

tion that is supported on [−1,1], with φ(0) = 1 and
∥∥φ(a)

∥∥
∞ =O(1) for all 0 ≤ a≤

3. It is easy to see that Hi is a smooth function supported on Si with ‖Hi‖∞ ≤ 1,
and

∥∥!aHi

∥∥
∞ =O(γ−a) for 0 ≤ a≤ 3.

Set Xi :=
∑

sHi(ζs) and Di := Xi −Xi. By the definitions of Xi and Xi,
Di =

∑
ζs/∈RHi(ζs). Our general strategy is to use Xi to approximate Xi, then

apply Theorem 2.5 to Xi and finish the proof using a triangle inequality.
From (16), Di = 0 with probability at least 1−O(γ1/2). Notice that by the

definition of Di and the fact that ‖Hi‖∞ ≤ 1,

|Di|≤NFnB(xi,1/5).(17)

By (17) and Jensen’s inequality (8),

|Di|≤NFnB(xi,1/5) =O
(

log max
w∈B(xi,2)

|Fn(w)|− log max
z∈B(xi,1/5)

|Fn(z)|
)
.

By Conditions C2(2) and C2(3), with probability at least 1 − O(δAn ),
there exists z ∈ B(xi,1/100) such that both terms on the right-hand side are
of order O(δ−c1

n ). Therefore, with probability at least 1 − O(δAn ), we have
|Di| ≤ NFnB(xi,1/5) ≤ C ′δ−c1

n for some constant C ′. For the rest of this proof,
we denote Ni :=NFnB(xi,1/5).

Our next step is to bound E |Di|k+l. To start, we have

E |Di|k+l ≤ E
(
|Di|k+l1

Ni≤C ′δ
−c1
n

)
+E

(
Nk+l

i 1
Ni>C ′δ

−c1
n

)
.(18)

Since Di = 0 with probability at least 1−O(γ1/2),

E
(
|Di|k+l1

Ni≤C ′δ
−c1
n

)
=O

(
δ−c1(k+l)
n γ1/2)=O

(
δ−c1(k+l)+c2/2
n

)
=O

(
δc1(k+l)2

n

)

because c2 ≥ 4c1(k+ l)2.
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For the second term in (18), we further break up the event Ni > C ′δ−c1
n into

two events

Ω1 := δ−C1
n ≥Ni > C ′δ−c1

n and Ω2 := δ−C1
n ≤Ni

where C1 is the constant in the statement of Theorem 2.6. We have

ENk+l
i 1Ω1 ≤ δ−C1(k+l)

n P(Ω1) =O
(
δA−C1(k+l)
n

)
=O

(
δc1(k+l)2

n

)
.

Moreover, by Hölder’s inequality,

ENk+l
i 1Ω2 ≤ P

(
Ω2
) 2

k+l+2
(
ENk+l+2

i 1Ω2

) k+l
k+l+2

=O
(
δA/(k+l+2)
n

)(
ENk+l+2

i 1Ω2

) k+l
k+l+2 .

Under the assumption of Theorem 2.6, Condition C2(1) holds for the parameter
k+ l, which provides ENk+l+2

i 1Ω2 =O(1). As we set A to be much larger than c1,
it is easy to check that

ENk+l
i 1Ω2 =O

(
δA/(k+l+2)
n

)
=O

(
δc1(k+l)2

n

)
.

Thus,

E
(
NFnB(xi,1/5)

)k+l1
NFnB(xi,1/5)≥C ′δ

−c1
n

=O
(
δA/(k+l+2)
n

)

=O
(
δc1(k+l)2

n

)
.

(19)

Combining all these bounds with (18), we obtain

E|Di|k+l =O
(
δc1(k+l)2

n

)
.

Moreover, from the above bounds, we get

E|Xi|k+l ≤ ENk+l
i = ENk+l

i 1
Ni≤C ′δ

−c1
n

+ENk+l
i 1Ω1 +ENk+l

i 1Ω2

=O
(
δ−c1(k+l)
n

)
,

where the main contribution comes from the first term. Similarly, E|Xi|k+l =

O(δ−c1(k+l)
n ).
Next, for each 1 ≤ j ≤ l, let Gj(z) :=Gj(z)ϕ(Im(z)/γ) where ϕ is a smooth

function on R supported on [1/2,∞) with ϕ = 1 on [1,∞) and
∥∥∥ϕ(a)

∞

∥∥∥ = O(1) for
all 0 ≤ a≤ 3.

Set Yj :=
∑

sGj(ζs). By similar reasoning, we have E|Yj − Yj|k+l =

O(δc1(k+l)2

n ) and

max
{

E|Yj|k+l,E|Yj|k+l
}
=O

(
δ−c1(k+l)
n

)
.
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Now, we show that the difference

E

∣∣∣∣∣∣

(
k∏

i=1

Xi

)(
l∏

j=1

Yj

)

−
(

k∏

i=1

Xi

)(
l∏

j=1

Yj

)∣∣∣∣∣∣

is small. Using the “telescopic sum” argument, we decompose the difference inside
the absolute value sign into the sum of k+ l differences, in each of which exactly
one of the X1, . . . ,Xk,Y1, . . . ,Yj is replaced by its counterpart, and then use the
triangle inequality to finish. Let us bound the first difference; the argument for the
rest is the same. By Hölder’s inequality and the previous bounds on Di,Xi,Yi etc,
we have

E

∣∣∣∣∣∣
X1

(
k∏

i=2

Xi

)(
l∏

j=1

Yj

)
−X1

(
k∏

i=2

Xi

)(
l∏

j=1

Yj

)∣∣∣∣∣∣

≤
(
E|D1|k+l

) 1
k+l

k∏

i=2

(
E|Xi|k+l

) 1
k+l

l∏

j=1

(
E|Yj|k+l

) 1
k+l

=O

(
δc1(k+l)
n

∏

k+l−1 terms

δ−c1
n

)
=O

(
δc1
n

)
.

Thus,

E

∣∣∣∣∣∣

(
k∏

i=1

Xi

)(
l∏

j=1

Yj

)

−
(

k∏

i=1

Xi

)(
l∏

j=1

Yj

)∣∣∣∣∣∣
=O

(
δc1
n

)
.

We can obtain the same bound for the corresponding terms of F̃n. Finally, from
Theorem 2.5, we have

∣∣∣∣∣∣
E

(
k∏

i=1

Xi

)(
l∏

j=1

Yj

)
−E

(
k∏

i=1

X̃i

)(
l∏

j=1

Ỹj

)∣∣∣∣∣∣
=O

(
δc1
n

)
.

The desired estimate now follows from the triangle inequality.

Proof of Lemma 8.5. The first step is to use Theorem 2.5 to reduce to the
Gaussian case. Borrowing ideas from [26, Chapter 2], we handle the Gaussian
case using Rouché’s theorem and various probabilistic estimates based on some
properties of the Gaussian distribution.

For this proof, we let ξ̃1, . . . , ξ̃n be Gaussian random variables with unit vari-
ance and satisfying Eξ̃i = Eξi for each 1 ≤ i≤ n.

Let H : C→ [0,1] be a nonnegative smooth function supported on B(x,2γ),
such that H = 1 on B(x,γ) and |!aH|≤ Cγ−a for all 0 ≤ a≤ 8.
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Applying Theorem 2.5 to H , we obtain

P
(
NFnB(x,γ)≥ 2

)
≤ E

∑

i )=j

H(ζi)H(ζj)

≤ E
∑

i )=j

H(ζ̃i)H(ζ̃j)+O
(
δcnγ

−8).
(20)

The definition of γ guarantees (via a trivial calculation) that O(δcnγ
−8) =

O(γ3/2), with room to spare. Thus, it remains to show

E
∑

i )=j

H(ζ̃i)H(ζ̃j) =O
(
γ3/2).(21)

Set N :=NF̃n
B(x,2γ); we bound the LHS of (21) from above by

EN 21
N≥C ′δ

−c1
n

+EN(N−1)1
N<C ′δ

−c1
n

.(22)

Using the same argument as in the proof of (19), we can show that

EN 21
N≥C ′δ

−c1
n

=O
(
δA/(k+l+2)
n

)
=O

(
γ3/2).

Thus, it remains to show that EN(N −1)1
N<C ′δ

−c1
n

=O(γ3/2). Since

EN(N −1)1
N<C ′δ

−c1
n

≤C ′2δ−2c1
n P(N ≥ 2),

it suffices to prove

P(N ≥ 2) = P
(
NF̃n

B(x,2γ)≥ 2
)
=O

(
δ2c1
n γ3/2).(23)

Thus, we have reduced the problem to the Gaussian setting. Let g(z) :=
F̃n(x) + F̃ ′

n(x)(z − x) and p(z) := F̃n(z)− g(z). By Condition C2(4), for any
fixed x, we have F̃n(x)F̃ ′

n(x) )= 0 with probability 1. So, g(z) has exactly one
root. Thus, by Rouché’s theorem,

P
(
NF̃n

B(x,2γ)≥ 2
)
≤ P

(
min

z∈∂B(x,2γ)
|g(z)| ≤ max

z∈∂B(x,2γ)
|p(z)|

)
.

In the rest of the proof, we bound the right-hand side. We are going to show
that with (appropriately) high probability, minz∈∂B(x,2γ) |g(z)| is not too small and
maxz∈∂B(x,2γ) |p(z)| is not too large.

For every z ∈B(x,4γ), we have p(z) =
∑n

j=1 ξ̃jvj(z) where vj(z) = φj(z)−
φj(x)+ (z−x)φ′j(z). Thus

|vj(z)|≤ |z−x|2 sup
w∈B(x,2γ)

∣∣φ′′j (w)
∣∣ =O

(
γ2 sup

w∈B(x,2γ)
|φ′′j (w)|

)
.
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By Condition C2(5),

|Ep(z)|=O

(

γ2
n∑

j=1

|Eξ̃j| sup
w∈B(x,1)

|φ′′j (z)|
)

=O



δ2c2−c1
n

√√√√
n∑

j=1

|φj(x)|2



 ,

(24)

and

Var(p(z)) =O

(

γ4
n∑

i=1

sup
w∈B(x,2γ)

|φ′′j (w)|2
)

=O

(

δ4c2−c1
n

n∑

j=1

|φj(x)|2
)

=O
(
δ4c2−c1
n Var

(
F̃n(x)

))
.

(25)

Set t := δ2c2−c1
n

√
Var(F̃n(x)). The previous estimates show that |Ep(z)| =

O(t) and Var(p(z)) = O(t2δc1
n ) for all z ∈ B(x,4γ). We will show the following

concentration inequality

P
(

max
z∈∂B(x,2γ)

|p(z)−Ep(z)|≥ 1
2
t

)

=O(1)exp
(
− t2

100maxz∈B(x,4γ) Var(p(z))

)
=O

(
γ16/10δ2c1

n

)
.

(26)

Set p̄(z) := p(z)−Ep(z). For any z ∈ ∂B(x,2γ), by Cauchy’s integral for-
mula,

|p̄(z)|≤
∫ 2π

0

|p̄(x+4γeiθ)|
|z−x−4γeiθ|

4γ
dθ

2π
≤ 2

∫ 2π

0
|p̄(x+4γeiθ)|dθ

2π

≤ max
w∈B(x,4γ)

√
Var(p(w))

∫ 2π

0

|p̄(x+4γeiθ)|√
Var(p̄(x+4γeiθ))

dθ

2π
.

Hence, by Markov’s inequality,

P
(

max
z∈∂B(x,2γ)

|p̄(z)| ≥ t
)

≤ Eexp




(∫ 2π

0

∣∣p̄(x+4γeiθ)
∣∣

10
√

Var
(
p̄(x+4γeiθ)

)
dθ

2π

)2


e−t2/100maxz∈B(x,4γ) Var(p(z)).
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Using Jensen’s inequality for convex functions and Fubini’s theorem, we ob-
tain

Eexp




(∫ 2π

0

|p̄(x+4γeiθ)|
10
√

Var(p̄(x+4γeiθ))

dθ

2π

)2




≤
∫ 2π

0
Eexp

(
|p̄(x+4γeiθ)|2

100Var(p̄(x+4γeiθ))

)
dθ

2π
.

The right-hand side is O(1) by basic properties of the Gaussian distribution. (No-
tice that p(z), for any fixed z is a Gaussian random variable.) This proves (26).
Using the bound |Ep(z)| = O(t) for all z ∈ B(x,2γ), one concludes that with
probability at least 1−O(γ16/10δ2c1

n ),

max
z∈∂B(x,2γ)

|p(z)|≤Kt,(27)

for some constant K > 0.
Now, we address g(z); since g is a linear function with real coefficients, we

have

min
z∈∂B(x,2γ)

|g(z)| = min{|g(x−2γ)|, |g(x+2γ)|},

which reduces the task to obtaining lower bounds for the two end points only.
Note that g(x+2γ) is normally distributed with standard deviation

√
Var
(
g(x+2γ)

)
=

√√√√
n∑

j=1

(
φj(x)+2γφ′j(x)

)2 ≥

√√√√
n∑

j=1

φ2
j(x)−2γ

√√√√
n∑

j=1

φ′2j (x)

≥ 1/2

√√√√
n∑

j=1

φ2
j(x)

wherein the last two inequalities, we used the triangle inequality and then Condi-
tion C2(5). Note that by the definition of t,

√√√√
n∑

j=1

φ2
j(x) =

√
Var
(
F̃n(x)

)
= tδ−2c2+c1

n .

Since g(x+2γ), as a random variable, is a real Gaussian with density bounded

by 1
2
√

Varg(x+2γ)
≤ δ

2c2−c1
n
t , we have for any constant K > 0,

P
(
|g(x+2γ)|≤Kt

)
=O

(
δ2c2−c1
n

)
=O

(
δ2c1
n γ3/2).
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In the last inequality we used the fact that c2 is set to be much larger than c1;
see the paragraph following (15).

We can prove a similar statement for g(x−2γ). Thus we can conclude that for
any constant K > 0,

P
(

min
z∈∂B(x,2γ)

|g(z)| ≤Kt

)
=O

(
δ2c1
n γ3/2).(28)

Combining (28) and (27), we conclude the proof of Lemma 8.5. "

9. Proof of Theorem 3.2. In this section, we prove Theorem 3.2 by apply-
ing Theorem 2.6. By dividing the coefficients ci and di by their maximum modulus,
it suffices to assume that max0≤j≤n{|cj |, |dj |} = 1. For the sake of simplicity, we
assume all random variables have mean 0; the more general setting in Condition
C4 can be dealt with via a routine modification.

Our crucial new ingredient is the following lemma, which is a generalization
of a classical result of Turán [59].

LEMMA 9.1. [40, Chapter I] For i=
√
−1, let

p(t) =
h∑

k=0

ake
iλkt, ak ∈C, λ0 < λ1 < · · ·< λh ∈ R.

Then for any interval J ⊂R and any measurable subset E ⊂ J of positive measure,
we have

max
t∈J

|p(t)|≤
(
C|J |
|E|

)h

sup
t∈E

|p(t)|

where C is an absolute constant.

We shall apply Theorem 2.6 to the function F2n+1(z) := Pn(104Cz/n) and
the number of summands is 2n+1 in place of n (so we only care about Fk where
k is odd). The corresponding parameters are δ2n+1 := 1/n, and D2n+1 := {z :
| Im(z)|≤ 1/104}. The functions φi in (1) are

φ1(z) = c0,φ2(z) = c1 cos(z), . . . ,φn+1(z) = cn cos(nz),

φn+2(z) = d1 sin(z), . . . ,φ2n+1(z) = dn sin(nz)

and the random variables ξ1, . . . ,ξ2n+1 in (1) will be ξ0, . . . ,ξn,η1, . . . ,ηn, respec-
tively. The constant 104 is chosen rather arbitrarily, any sufficiently large constant
would work.

To deduce Theorem 3.2 from Theorem 2.6, for this model, we set α1 = 1/2
and C1 to be any constant larger than 1. We only need to show that for any posi-
tive constants A,c1, there exists a constant C for which Condition C2 holds with
parameters (k,C1,α1,A,c1,C).
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For Condition C2(1), notice that the periodic function Pn has at most 2n com-
plex zeros in the region [a,a+ 2π)×R ⊂ C for any a ∈ R. Indeed, let w = eiz

then

wnP (z) =
1
2

(
n∑

k=0

ξk
(
wn+k+wn−k

)
− i

n∑

k=1

ηk
(
wn+k−wn−k

)
)

which is a polynomial of degree 2n in w and has at most 2n zeros. For each w there
is only one z in the above region that corresponds to w. Thus this condition holds
trivially for any constant C1 > 1, as the left-hand side of Condition C2(1) becomes
zero.

Now we address (the critical) Condition C2(2). We will prove the following
stronger statement that for every positive constants c1,A, there exists a constant
C ′ such that the following holds. For every complex number z0, there exists a real
number x such that |x− z0|≤ | Im(z0)|+ 1

n and

P
(
|P (x)|≤ exp(−nc1)

)
≤ C ′n−A.

Let x0 = Re(z0) and I = [x0 − 1
n ,x0 +

1
n ]. By conditioning on the random

variables ηi and replacing A by 2A, it suffices to show that there exists x ∈ I for
which

sup
Z∈R

P




∣∣∣∣∣

n∑

j=0

cjξj cos(jx)−Z

∣∣∣∣∣≤ e−nc1



≤ C ′n−A/2.(29)

Now let us recall the definition of I0 in Condition C3. We would like to point out
that in this part of the proof, we only use the fact that the size of I0 is of order
Θ(n).

We shall prove a more general version which will be useful for all of the re-
maining models in this manuscript.

LEMMA 9.2. Let E be an index set of size N ∈ N, and let (ξj)j∈E be inde-
pendent random variables satisfying the moment Condition C1(i). Let (ej)j∈E be
deterministic (real or complex) coefficients with |ej | ≥ ē for all j and for some
number ē ∈ R+. Then for any A ≥ 1, any interval I ⊂ R of length at least N−A,
there exists an x ∈ I such that

sup
Z∈R

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



=OA
(
N−A/2)

where the implicit constant depends only on A and the constants in Condition
C1(i).
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Assuming this Lemma, we condition on the random variables (ξj)j /∈I0 and
apply the Lemma with E := I0,ej := cj ,N := |I0| =Θ(n) to obtain (29) directly
with ē=Θ(1).

Proof of Lemma 9.2. We will prove Lemma 9.2 in three steps. In the first (and
most important) step, we handle the case where ξi are iid Rademacher. In the sec-
ond step, we handle the case where the ξi have symmetric distributions. In the final
step, we address the most general setting.

Step 1. ξi are iid Rademacher (that is, P(ξi = 1) = P(ξi = −1) = 1/2). The
key ingredient in this step is the following inequality, which is a variant of a result
of Halász [25]; see also [57, Cor. 7.16], [43, Cor. 6.3] for relevant estimates. Before
stating the result, we recall a definition of multi-sets: a multi-set is a collection of
unordered elements in which each element can appear more than once.

LEMMA 9.3. Let ε1, . . . ,εn be independent Rademacher random variables. Let
a1, . . . ,an be real numbers and l be a fixed integer. Assume that there is a constant
a > 0 such that for any two different multi-sets {i1, . . . , il′} and {j1, . . . , jl′′} where
l′+ l′′ ≤ 2l, |ai1 + · · ·+ail′ −aj1 − · · ·−ajl′′ |≥ a. Then

sup
Z∈R

P




∣∣∣∣∣

n∑

j=1

ajεj −Z

∣∣∣∣∣≤ an−l



=Ol

(
n−l
)
.

For the sake of completeness, we present a short proof of this lemma in Ap-
pendix 15.4.

There exists a subset E ′ ⊂ E of size at least half the size of E such that either
for all i ∈ E ′, |Re(ei)|≥ ē/2 or for all i ∈ E ′, | Im(ei)|≥ ē/2. Since

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2





≤ P




∣∣∣∣∣
∑

j∈E
Re(ej)ξj cos(jx)−Re(Z)

∣∣∣∣∣≤ ēN−16A2





and

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2





≤ P




∣∣∣∣∣
∑

j∈E
Im(ej)ξj cos(jx)− Im(Z)

∣∣∣∣∣≤ ēN−16A2



 ,
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we can, by conditioning on the (ξj)j /∈E ′ and replacing E by E ′, assume that the ei
are real and Z is real. This allows us to apply Lemma 9.3.

In order to apply Lemma 9.3, we first show that there exists an x ∈ I such that
for every 2 distinct multi-sets {i1, . . . , iA′} and {j1, . . . , jA′′} in E with A′+A′′ ≤
2A, we have

∣∣∣∣∣

A′∑

t=1

eit cos(itx)−
A′′∑

t=1

ejt cos(jtx)

∣∣∣∣∣> ēN−16A2
NA.(30)

Let us fix such two multi-sets and let

h(x) :=
A′∑

t=1

eit cos(itx)−
A′′∑

t=1

ejt cos(jtx).

Let E := {x ∈ I : |h(x)|≤ ēN−16A2
NA}. Since h can be written in terms of expo-

nential polynomials with 4A frequencies, we can apply Lemma 9.1 to obtain

max
[0,2π]

|h|≤
(

C ′

|E|

)4A

sup
E

|h|.(31)

By the definition of E, the right-hand side is bounded from above by

(
C ′

|E|

)4A

ēN−16A2
NA.

To bound the left-hand side from below, observe from orthogonality of the func-
tions coskx that

2πmax
[0,2π]

|h|2 ≥
∫ 2π

0
|h|2dx≥ πē2,(32)

as all |ei| with i ∈ E is at least ē.
Therefore, from (31), we get |E| = OA(N−4A+1/4). Since there are only

O(N 2A) choices for the sets A′ and A
′′
, we conclude that every x in I , except for

a set of Lebesgue measure at most OA(N−2A+1/4) = oA(|I|), satisfies (30).
To conclude the proof, we use (30) with Lemma 9.3. By setting a :=

ēN−16A2
NA and l :=A, Lemma 9.3 gives

sup
Z∈C

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



=OA
(
N−A

)
.(33)

This proves Lemma 9.2 for the Rademacher case.

Step 2. In this step, we consider the case where random variables ξj have
symmetric distributions. In this case, (ξj)j and (ξjεj)j have the same distribution
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where εj are independent Rademacher random variables that are independent of
the ξj . Thus, the claimed statement is equivalent to

sup
Z∈R

P




∣∣∣∣∣
∑

j∈E
ejξjεj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



=OA
(
N−A/2)(34)

for some x ∈ I .
The natural way to prove this is to use the (standard) conditioning argument,

one fixes all ξj and uses the Rademacher variables as the only random source,
going back to Step 1. However, the situation here is more delicate, as x may not
be the same in each evaluation of ξj . We handle this extra complication by proving
the stronger statement that

−
∫

I
sup
Z∈R

P




∣∣∣∣∣
∑

j∈E
ejξjεj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



dx=OA
(
N−A/2)(35)

where −
∫
I fdx := 1

|I|
∫
I fdx.

The left-hand side is at most

−
∫

I
E(ξj) sup

Z∈R
P(εj)




∣∣∣∣∣
∑

j∈E
ejξjεj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



dx.

By Fubini’s theorem, it suffices to show that

E(ξj)−
∫

I
sup
Z∈R

P(εj)




∣∣∣∣∣
∑

j∈E
ejξjεj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



dx=OA
(
N−A/2).(36)

We first show that with high probability, there are Θ(N) indices j ∈ E such
that |ξj| = Θ(1), which is needed to guarantee (32). Assume, for a moment, that
P(|ξj|< d)≥ 1−d for some small positive constant d. Since the random variables
ξj are symmetric, they have mean 0. Using the boundedness of the (2+ ε) central
moment of ξj (Condition C1), and the fact that ξj has variance 1, we have

E|ξj |2 = 1 = E|ξj|21|ξj |<d+E|ξj|21|ξj |≥d ≤ d2 +dε/(2+ε)
(
E|ξj|2+ε

)2/(2+ε)

≤ d2 +dε/(2+ε)τ 2/(2+ε).

Thus, if d is small enough (depending on τ and ε), we have a contradiction.
Hence, there is a constant d > 0 such that P(|ξj|< d)≤ 1−d. Now, by Chernoff’s
inequality, with probability at least 1− e−Θ(N), there are at least Θ(N) indices
j ∈ E for which |ξj| ≥ d. On the event that this happens, we condition on the εj
where |ξj |< d and use Step 1 to conclude that outside a subset of I of measure at
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most OA(N−2A+1/4), we have

sup
Z∈C

P(εj)




∣∣∣∣∣
∑

j∈E
ejξjεj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2



=OA
(
N−A

)
.

Therefore, the left-hand side of (36) is at most

e−Θ(N)−
∫

I
1dx+OA

(
N−2A+1/4/|I|

)
+OA

(
−
∫

I
N−Adx

)
=OA

(
N−A+1/4)

=OA
(
N−A/2),

completing the proof for this case.

Step 3. Finally, we address the general case. Let ξ′j be independent copies of ξj ,
j ∈ E . Then the variables ξ′′j := ξj−ξ′j are symmetric and have uniformly bounded
(2+ ε)-moments. By Step 2, we have



P




∣∣∣∣∣
∑

j∈E
ejξj cos(jx)−Z

∣∣∣∣∣≤ ēN−16A2








2

≤ P




∣∣∣∣∣
∑

j∈E
ejξ

′′
j cos(jx)

∣∣∣∣∣ ≤ 2ēN−16A2



≤OA
(
n−A

)

wherein the last inequality, we decompose the disk B(0,2ēN−16A2
) into O(1)

disks of radius ēN−16A2
(not necessarily centered at 0) before applying Step 2.

Taking square root of both sides, we obtain Lemma 9.2. "

The remaining conditions are easy to check. Condition C2(3) follows from the
following lemma.

LEMMA 9.4. For any positive constants A, c1 and C , we have, with probability
at least 1−O(n−A), logM ≤ nc1 , where M := max{|P (z)| : | Im(z)|≤ C/n}.

Proof. For every 1 ≤ j ≤ n, we have |eijz|= e−j Im(z) ≤ eC . And so,

max
|Im(z)|≤C/n,1≤j≤n

{
|cosjz|, |sin jz|

}
≤ eC .(37)

Let B be the event on which |ξj| ≤ nA/2+1 for all 0 ≤ j ≤ n. Notice that on the
complement Bc of B, logM = o(nc1) for any constant c1 > 0. By Chebyshev’s
inequality (exploiting the fact that E|ξi|2 = 1) and the union bound, we have

P(Bc)≤ n

nA+2 = o
(
n−A

)
,

completing the proof. "
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Finally Condition C2(4) follows from the following lemma:

LEMMA 9.5. For any constant C , there exists a constant C ′ > 0 such that for
every z with | Im(z)|≤ C/n,

|cj ||cos(jz)|√
S

≤ C ′n−1/2, for all 0 ≤ j ≤ n,(38)

and

|dj ||sin(jz)|√
S

≤ C ′n−1/2, for all 0 ≤ j ≤ n,(39)

where S :=
∑n

j=0 |cj |2|cosjz|2 +
∑n

j=1 |dj |2|sinjz|2.

Proof. Write z =: a+ ib. Without loss of generality, assume that b ≥ 0. By
(37), |cos(jz)| ≤ C and |sin(jz)| ≤ C for all 0 ≤ j ≤ n, so it suffices to show
S :=Ω(n). To achieve this bound on S, it suffices to show that I0 contains a subset
J of size Θ(n) such that

|cos(jz)| ≥ c∗ for all j ∈ J , for some positive constant c∗.(40)

Since b≥ 0 and j ≥ 0, we have

2|cos(jz)| = ejb|e−2jb+2ija+1|≥ |wj +1|

where w := e−2b+2ia. By Condition C3 and Lemma 3.1, we can find a subset J of
I0 of size Θ(n) such that

min
k∈Z

{
|2aj− (2k+1)π|

}
≥ c

for some constant c > 0 and all j ∈ J . We can assume, without loss of generality,
that c≤ 1/10 and this guarantees |cos(2aj)+1|≥ c2/4.

Consider j ∈ J , if 1− e−2jb ≥ c2/10 then by the triangle inequality,

|wj +1|= |e−2jbe2iaj +1|≥ 1− |e−2jbe2iaj |= |e−2jb−1|≥ c2/10.

In the opposite case, e−2jb ≥ 1− c2/10 > .99. Keeping in mind that c≤ 1/10, we
have

|wj +1|≥ e−2jb|e2iaj +1|− |e−2jb−1|≥ .99c2/4− c2/10 ≥ c2/10.(41)

Thus, we achieved (40) with c∗ = c2/10. "

Finally, using Conditions C3, C4 and (40), it is a routine to prove that the
repulsion Condition C2(5) holds. That completes the proof.
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10. Proof of Theorem 3.5 and Corollary 3.6. As before, by rescaling the
coefficients, we can assume that max0≤j≤n{|cj |, |dj |} = 1. Before going to the
proofs, let us state a version of the Kac-Rice formula for Gaussian processes. Note
that a Gaussian process P (t), t∈ (a0, b0) is a random variable P : Ω×(a0, b0)→R
with Ω being a probability space such that for each ω ∈ Ω, P (ω, ·) is a continuous
function on (a0, b0) and for each k ∈ N, t1, . . . , tk ∈ (a0, b0), (P (·, t1), . . . ,P (·, tk))
is a Gaussian random vector.

PROPOSITION 10.1. [17, Theorem 2.5] Let P (t), t ∈ (a0, b0) be a real, differ-
entiable Gaussian process. Let

P(t) = Var
(
P (t)

)
, Q(t) = Var

(
P ′(t)

)
, R(t) = Cov

(
P (t),P ′(t)

)
,

ρ(t) =
R(t)√
P(t)Q(t)

, m(t) = EP (t), and η(t) =
m′(t)−ρ(t)m(t)

√
Q(t)/P(t)√

Q(t)(1−ρ2(t))
.

Assume that m′(t) is continuous and the joint normal distribution for P (t) and
P ′(t) has non-singular covariance matrix for each t, then for any interval [a,b] ⊂
(a0, b0), we have

ENP (a,b)

=

∫ b

a

√
Q(t)

(
1−ρ2(t)

)

P φ

(
m(t)√
P(t)

)(
2φ
(
η(t)

)
+η(t)

(
2Φ
(
η(t)

)
−1
))
dt

where φ(t) and Φ(t) are the standard normal density and distribution functions,
respectively.

Proof of Theorem 3.5. By triangle inequality, we can assume that ξ̃j and η̃j
are Gaussian random variables. Let c be the constant in Theorem 3.2 with α1 =
1/2,k = 1, l = 0. As in Remark 2.7, we can set c = ε

2·109 . Let α = c/7. It suffices
to show that for every interval (an, bn) of size at most 1/n, we have

∣∣ENPn(an, bn)−ENP̃n
(an, bn)

∣∣=O
(
n−α/2).(42)

If bn − an ≥ 1/n, we simply divide the interval (a,b) into 0(bn − an)n1+ 1
intervals of size at most 1/n each and then apply (42) to each interval and then
sum up the bounds.

Let 2 := (bn − an)/2. Let G be a smooth function on R with support
in
[
an+bn

2 − 2− n−1−α, an+bn
2 + 2+ n−1−α

]
such that 0 ≤ G ≤ 1, G = 1 on[an+bn

2 − 2, an+bn
2 + 2

]
, and

∥∥G(a)
∥∥

∞ ≤ Cn6α+a for all 0 ≤ a≤ 6.
By the definition of G, we have

ENPn(an, bn)≤ E
∑

G(ζi)≤ ENPn

(
an−n−1−α, bn+n−1−α

)
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where ζi are the real roots of Pn. Similarly,

ENP̃n
(an, bn)≤ E

∑
G(ζ̃i)≤ ENP̃n

(
an−n−1−α, bn+n−1−α

)
.

Applying Theorem 3.2 (with k = 1, l = 0) to the function G/n6α, we get

E
∑

G(ζi) = E
∑

G(ζ̃i)+O
(
n−c+6α)= E

∑
G(ζ̃i)+O

(
n−α

)
.

Since α= c/7, we obtain

ENPn(an, bn)≤ ENP̃n
(an−n−1−α, bn+n−1−α)+O

(
n−α

)

≤ ENP̃n
(an, bn)+2IP̃n

+O
(
n−α

)
,

where IP̃n
:= supx∈R ENP̃n

(x − n−1−α,x). We will show later that IP̃n
=

O(n−α/2), which gives the upper bound ENPn(an, bn) ≤ ENP̃n
(an, bn) +

O(n−α/2).
Let us quickly address the lower bound ENPn(an, bn) ≥ ENP̃n

(an, bn)−
O(n−α/2). If 2 > n−1−α, we can argue as for the upper bound. In the case
2 ≤ n−1−α, the desired bound follows from the observation that ENPn(an, bn) ≥
0 ≥ IP̃n

−O(n−α/2) ≥ ENP̃n
(an, bn)−O(n−α/2). The upper and lower bounds

together give (42).
To prove the stated bound on IP̃n

, we use Proposition 10.1, which asserts that
for every x ∈ R,

ENP̃n
[x−n−α−1,x]≤

∫ x

x−n−α−1

√
S
P2 dt+

∫ x

x−n−α−1

|m′|P+ |m|R
P3/2

dt,(43)

where
• m(t) := EP̃n(t)
• P(t) := Var(P̃n) =

∑n
k=0 c

2
k cos2(kt)+d2

k sin2(kt)
• Q(t) := Var(P̃ ′

n) =
∑n

k=0k
2c2

k sin2(kt)+k2d2
k cos2(kt)

• R(t) := Cov(P̃n, P̃ ′
n) =

∑n
k=0k cos(kt)sin(kt)(−c2

k+d2
k)

• S(t) = P(t)Q(t)−R2(t).
Observe that the covariance matrix of (Pn(t),P ′

n(t)) is non-singular if and only
if S(t) )= 0. Since the deterministic function S(t) only has finitely many zeroes in
[x−n−α−1,x]+ (−ε∗,ε∗) (where we add (−ε∗,ε∗) only to make the interval big-
ger to apply Proposition 10.1, ε∗ can be any positive number), we can decompose
this interval into subintervals whose interiors do not contain any zero of S , and
use linearity of expectation if necessary. This way, we can assume that the joint
distribution of P̃n and P̃ ′

n is non-singular, as required in Proposition 10.1.
From (37) and (40), there is a constant K > 0 such that for every t ∈R,

P ≥ n

K
, Q≤Kn3, and R≤Kn2 ≤KnP.
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From here, we obtain (for all t) that S
P2 ≤ Q

P ≤Kn2.
Moreover, from Condition C4, we have |m(t)|≤Knτ0 and |m′(t)|≤Kn1/2+τ0

(notice that m(t) = 0 if all atom random variables have zero mean; the upper
bounds here come from the bound on the expectations). It follows that

|m′|P+ |m|R
P3/2

≤Kn1/2+τ0 .

Using the above estimates, we conclude that the integrand on the right-hand
side of (43) is bounded (in absolute value) by O(n1/2+τ0). Since the length of
the interval in the integration is n−α−1, the integral is of order O(nτ0−α−1/2) =
O(n−α/2), as τ0 −1/2 = ε

1011 ≤ α/2. "

Proof of Corollary 3.6. As promised in Remark 3.7, we will prove the desired
statement for Pn as in (5). Applying Theorem 3.5 with

P̃n(x) := un

√√√√
n∑

i=0

c2
i +

N0∑

j=0

ujn
1/2−α cos(jx)+

N0∑

j=1

vjn
1/2−α sin(jx)

+
n∑

j=0

cj ξ̃j cos(jx)+
n∑

j=1

cj η̃j sin(jx)

where ξ̃j and η̃j are iid standard Gaussian, it suffices to prove that the desired
estimate holds for P̃n. Applying Proposition 10.1 to P̃n, we obtain

ENP̃n
(an, bn)

=

∫ bn

an

√∑n
i=0 c

2
i i

2
∑n

i=0 c
2
i

φ



 m(x)√∑n
i=0 c

2
i



[2φ(q(x))+ q(x)
(
2Φ
(
q(x)

)
−1
)]
dx

where

m(x) := un

√√√√
n∑

i=0

c2
i +

N0∑

j=0

ujn
1/2−α cos(jx)+

N0∑

j=1

vjn
1/2−α sin(jx)

and q(x) := m′(x)√∑n
i=0 c

2
ii

2
.

In our setting,
∑n

i=0 c
2
i = Θ(n),

∑n
i=0 c

2
i i

2 = Θ(n3), and so m(x)√∑n
i=0 c

2
i

= un+

O(n−α) and q(x) =O(n−1). Therefore, by the boundedness of the functions Φ, φ
and φ′, we get

φ



 m(x)√∑n
i=0 c

2
i



= φ(un)+O
(
n−α

)
,
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and

2φ(q(x))+ q(x)
(
2Φ
(
q(x)

)
−1
)
= 2φ(0)+O

(
n−1).

It follows that

ENP̃n
(an, bn) = 2

√∑n
i=0 c

2
i i

2
∑n

i=0 c
2
i

(bn−an)φ(un)φ(0)

+O

(

n−α

√∑n
i=0 c

2
i i

2
∑n

i=0 c
2
i

(bn−an)

)

= 2

√∑n
i=0 c

2
i i

2
∑n

i=0 c
2
i

(bn−an)φ(un)φ(0)

+O
(
n−α(bn−an)n

)
.

Plugging in φ(x) = 1√
2π
e−x2/2, we obtain

ENPn(an, bn) =
bn−an
π

√√√√
∑n

j=0 c
2
jj

2

∑n
j=0 c

2
j

exp
(
−u2

n

2

)
+O

(
n−c
(
(bn−an)n+1

))

where the positive constant c and the implicit constant depend only on α,N0,K,τ1,
ε, completing the proof. "

11. Proof of Theorem 4.3 and Corollary 4.5.

Proofs of Theorem 4.3. Let us first consider the case 0 < θn < 1
K for some

sufficiently large constant K > 0. Let δn = θn+1/n.
We apply Theorem 2.6 to the random function Fn(z) := Pn(zθn/10) and the

domain Dn := {z : 1−2θn ≤ |zθn/10| ≤ 1− θn+1/n}.
For this model, one can choose α1 = 1/2 and C1 = 1. The main task is to show

that for any positive constants A,c1, there exists a constant C for which Conditions
C2(1)–C2(5) hold with parameters (k+ l,C1,α1,A,c1,C). Conditions C2(4) and
C2(5) can be checked by a simple algebraic manipulation, which we leave as an
exercise. To verify Condition C2(3), notice that for any M > 2, if we condition on
the event Ω′ on which |ξi|≤M(1+ δn/2)i for all i, then for all z ∈Dn+B(0,2),

|Fn(z)|=O(M)
n∑

i=0

(
1+ δn/2

)i
(1− δn+2/n)i =O

(
Mδ−1

n

)
.(44)

Thus, for every M > 2, we have

P
(
|Fn(z)|=O

(
Mδ−1

n

))
=1−O

(
n∑

i=0

1
M(1+ δn/2)i

)
=1−O

(
1

Mδn

)
.(45)
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Setting M = δ−A−1
n , we obtain Condition C2(3).

To prove Condition C2(2), we show that for any constants A and c1 > 0, there
exists a constant B > 0 such that the following holds. For every z0 with 1−2θn ≤
|z0|≤ 1− θn+1/n, there exists z = z0eiθ where θ ∈ [−δn/100,δn/100] such that
for every 1 ≤M ≤ nδn,

P
(
|Pn(z)|≤ e−δ

−c1
n e−BM

)
≤ BδAn

MA
.(46)

Setting M = 1, we obtain Condition C2(2).
By writing z0 = reiθ0 , the bound (46) follows from a more general anti-

concentration bound: there exists θ ∈ I := [θ0 − δn/100,θ0 + δn/100] such that

sup
Z∈C

P
(∣∣Pn

(
reiθ

)
−Z

∣∣≤ e−δ
−c1
n e−BM

)
≤ BδAn

MA
.

Since the probability of being confined in a complex ball is bounded from
above by the probability of its real part being confined in the corresponding interval
on the real line, it suffices to show that

sup
Z∈R

P




∣∣∣∣∣

Mδ−1
n /2∑

j=0

ξjr
j cosjθ−Z

∣∣∣∣∣≤ e−δ
−c1
n e−BM



≤ BδAn
MA

.

This is, in turn, a direct application of Lemma 9.2 with N := Mδ−1
n /2 and

ē := e−2M ≤ rj for all 0 ≤ j ≤Mδ−1
n /2.

Finally, to prove Condition C2(1), from (45), (46), and Jensen’s inequality, we
get for every 1 ≤M ≤ nδn

P
(
N ≥ δ−c1

n +BM
)
=O

(
δAn
MA

)

where N =NFnB(w,2), w ∈Dn.
Let A = k+ l+ 2, c1 = 1 and M = 1,2,22, . . . ,2m where m is the largest

number such that 2m ≤ nδn. Combining the above inequality with the fact that
N ≤ n a.s., we get

ENk+l+21N≥δ−1
n

≤ C
m∑

i=1

(
δ−1
n +B2i+1)k+l+2 δAn

2iA
+Cnk+l+2 δ

A
n

2mA

≤ CδA−k−l−2
n =O(1).

This proves Condition C2(1) and completes the proof for θn ≤ 1/K . For θn≥ 1/K ,
note that Jensen’s inequality implies that

NPnB(0,1−1/K) =OK(1) log
maxw∈B(0,1−1/2K) |Pn(w)|

maxw∈B(1−1/K,1/3K) |Pn(w)|
.



ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL UNIVERSALITY 49

Thus, using the bounds (44), (45), (46) for θn = 1− 1/K , we get for every
1 ≤M ≤ n/K ,

P
(
NPnB(0,1−1/2K) ≥BM

)
=O

(
1

MA

)
.

And so, ENPnB(0,1− 1/2K) = O(1). The same holds for P̃n and therefore the
desired result follows. "

Proof of Corollary 4.5. Without loss of generality, we can assume that ξ̃0, . . . ,
ξ̃n are standard Gaussian random variables. As in Remark 4.4, it suffices to restrict
to the roots in the interval [−1,1]. Divide this interval into I0 = {x : |x|≤ 1−1/C}
and I1 = [−1,1]\ I0 and denote by N(0) and N(1) the number of real roots of Pn

in these sets, respectively. We have seen in the proof of Theorem 4.3 that EN(0) =
O(1), and so is Ñ(0) which is the corresponding term for P̃n.

To get EN(1)− EÑ(1) = O(1), we decompose the interval I1 into dyadic
intervals ±[1−1/C,1−1/2C),±[1−1/2C,1−1/4C), . . . ,±[1−2/n,1−1/n),
and finally ±[1 − 1/n,1]. In each of these intervals, say [x,y), we show that
ENPn [x,y)−ENP̃n

[x,y) = O((1−y+1/n)c) for some positive constant c. This
can be routinely done by approximating the indicator function on the interval
[x,y) by a smooth function and applying Theorem 4.3. We omit the details as it is
similar to the proof of Theorem 3.5. "

12. Proof of Theorems 5.1 and Corollary 5.2.

Proof of Theorem 5.1. Notice that by the Borel-Cantelli lemma, with probabil-
ity 1, there are only a finite number of i such that |ξi|≥ 2i. Thus with probability 1,
the radius of convergence of the series P is infinity and so P is an entire function.

A natural idea is to apply Theorem 2.5 with n = ∞ to the function Fn(z) :=
P (z), with δn := |z0|−1 and Dn := {z0}. (We will skip the redundant subscript
n in the rest of the proof.) However, since VarP (z) = e|z|

2
, |P (z)| is likely to be

of order Θ(e|z|
2/2) in which case Condition C2(3) fails. The idea here is to find a

proper scaling, which, at the same time, preserves the analyticity of F . We set

F (z) :=
P (z)

e|z0|2/2e(z−z0)z̄0
.(47)

A routine calculation shows that VarF (z) =Θ(1).
Furthermore, F is analytic and has the same roots as P . For this model, let

α1 = 1/2 and C1 = 2. The main task is to show that for any positive constants
A,c1, there exists a constant C for which Conditions C2(1)–C2(4) hold with pa-
rameters (k,C1,α1,A,c1,C). We can, without loss of generality, assume that |z0|
is sufficiently large because by Jensen’s inequality, one can show that the expected
number of roots of both P and P̃ in B(0,K), for any constant K, is OK(1).

Condition C2(3) is a direct consequence of the following lemma.
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LEMMA 12.1. For any constant A> 0, there is a constant K > 0 such that for
any M ≥ 2,

P
(

max
z∈B(z0,2)

|F (z)| ≥KMAδ−A−2
)
≤ KδA

MA
.(48)

Proof. Let L= |z0|+1 =Θ(δ−1). Let Ω′ be the event that |ξi|≤MALA
(
1+

1
(L+2M)2

)i for all i≥ 0. Consider its complement Ω′c,

P
(
Ω′c)=O

( ∞∑

i=0

1

M2AL2A
(
1+(L+2M)−2

)2i

)
=O

(
δA

MA

)
.(49)

On the other hand, once Ω′ holds, then for every z ∈B(z0,2),

|P (z)|≤
∞∑

i=0

|ξi||z|i√
i!

≤MALA
∞∑

i=0

(
|z|+ |z|−1

)i
√
i!

=MALAS(w)

where w = |z|+ |z|−1 and S(w) :=
∑∞

i=0
wi
√
i!

. Let x := x(w) = 0w2 −11. We split

into the sum of S1 :=
∑5x−1

i=0
wi
√
i!

and S2 :=
∑∞

i=5x
wi
√
i!

. Since the terms wi
√
i!

are
increasing with i running from 0 to x and then decreasing with i running from x to
∞, we have S1 ≤ 5x wx

√
x!

. Moreover,

|S2|≤
w5x

√
(5x)!

∞∑

i=0

wi
√

(5x)!√
(i+5x)!

≤ w5x
√

(5x)!
S.

By Stirling’s formula (and the fact that x is sufficiently large)

w5x
√

(5x)!
≤

√
(x+2)5xe5x

(5x)5x+1/2
≤ 1

2
.

Hence, S2 ≤ 1
2S, which implies

S ≤ 2S1 ≤ 10x
wx

√
x!

≤ 100w2ew
2/2 =O

(
L2e|z|

2/2).

Thus, on Ω′,

|P (z)| =O
(
MALA+2e|z|

2/2).

By the definition of F ,

|F (z)| =O

(
MALA+2e|z|

2/2

e|z0|2/2eRe((z−z0)z̄0)

)
=O

(
MALA+2)

which, together with (49), yield the desired claim. "
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Write z0 = reiθ0 . To verify Condition C2(2), the idea is to apply Lemma 9.2 to
the entire function

P
(
z0e

iθ
)
=

∞∑

j=0

rj√
j!
ξje

ij(θ+θ0).

Note that when |θ|≤ .01r−1, z0eiθ ∈ B(z0,1/100). Let x0 = 0|z0|2 − 11. For any
M ≥ r, we apply Lemma 9.2 to the set E = {x0,x0 +1, . . . ,x0 +M}, the random
variables (ξj)j∈E , the coefficients ej = rj√

j! and obtain that for any positive constant

A≥ 3, for the interval I = [−M−A,M−A]⊂ [−.01r−1, .01r−1], there exists θ ∈ I
such that

sup
Z∈C

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jθ+ jθ0)−Z

∣∣∣∣∣≤ ex0+MM−16A2



=O
(
M−A/2)

where we use the fact that ex0 ≥ ex0+1 ≥ · · ·≥ ex0+M .
This together with the assumption that Re(ξ0), Im(ξ0),Re(ξ1), Im(ξ1), . . . are

independent imply that

sup
Z∈C

P




∣∣∣∣∣
∑

j∈E
ejξj exp

(
ij(θ+ θ0)

)
−Z

∣∣∣∣∣≤ ex0+MM−16A2



=O
(
M−A/2)

because the distance between two complex numbers is at least the distance between
their real components.

Conditioning on the random variables outside E , we obtain some θ ∈ I such
that with probability at least 1−O(M−A/2),

∣∣P
(
z0e

iθ
)∣∣≥ ex0+MM−16A2

,

which implies

∣∣F
(
z0e

iθ
)∣∣≥ ex0+MM−16A2

exp(r2/2)
∣∣exp

(
r2
(
eiθ−1

))∣∣

=
rx0+MM−16A2

√
(x0 +M)!exp(r2/2)

∣∣exp
(
r2
(
eiθ−1

))∣∣ .

For θ ∈ I , |r2(eiθ −1)|=O(r2M−A) =O(1). Thus, by Stirling’s formula,

∣∣F
(
z0e

iθ
)∣∣=Ω

(
1
r

rMM−16A2

√
(x0 +1) · · ·(x0 +M)

)
= Ω

(
M−16A2

r

(
r2

r2 +M

)M/2
)
.
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In other words, we have proved that for every constant A≥ 3, for every M ≥
r = |z0|, there exists z ∈B(z0,1/100) for which

P

(

|F (z)| =OA

(
M−16A2

r

(
r2

r2 +M

)M/2
))

=OA
(
M−A/2).(50)

Setting M = 2r3, we obtain Condition C2(2) (note that r = δ−1).
Combining (48) and (50) and Jensen’s inequality, we get that there exists a

constant K depending only on A such that for any M ≥ r,

P
(
NF
(
B(z0,1)

)
≥M2)≤ K

MA
.

Thus,

ENk+2
F

(
B(z0,1)

)
1NF (B(z0,1))≥r2

≤
∞∑

M=r

ENk+2
F

(
B(z0,1)

)
1M2≤NF (B(z0,1))≤(M+1)2.

As the right-hand side is at most O(1)
∑∞

M=r
K(M+1)2k+4

MA = O(1) by setting A =
2k+6, Condition C2(1) follows.

Finally for Condition C2(4), note that |z|i/
√
i! is maximized at i= 0|z|2 −11.

By Stirling’s formula, at this i, |z|i/
√
i! =O

(√∑
j |z|2j/j!

|z|1/2

)
. "

Proof of Corollary 5.2. As before, we simply approximate the indicator func-
tion 1B above and below by smooth test functions f and g whose derivatives up
to order 6 are bounded by O(r6a) for a sufficiently small constant a and

∫
C(f −

g)dm=O(r−a). Applying Theorem 5.1 to the function f , we obtain

ENP (B)≤ E
∑

ζ:P (ζ)=0

f(ζ) = E
∑

ζ̃:P̃ (ζ̃)=0

f(ζ̃)+O
(
r−c+6a)

= ENP̃ (B)+O
(
r−a+ r−c+6a)

where c is the constant in Theorem 5.1. By choosing a= c/12, we get ENP (B) =
ENP̃ (B)+O(rc/12). And similarly, applying Theorem 5.1 to the function g, we
get the corresponding lower bound. This completes the proof. "

13. Proof of Theorem 6.2 and Corollary 6.4.

Proof of Theorem 6.2. We have VarPn(z) = (|z|2 + 1)n. As in the proof of
Theorem 5.1, we will apply the framework in Section 2 to the function

Fn(z) =
Pn(z/

√
n)

(
|x0|2 +1

)n/2 exp
(n(z/√n−x0)x̄0

(|x0|2+1)

) ,
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δn =n−1 and Dn = {
√
nx0}. We have VarF (z) =Θ(1). Note that the denominator

is chosen so that VarF (z) = Θ(1), F is analytic, and F (z) = 0 if and only if
P (z/

√
n) = 0. We will first show that Theorem 2.5 holds, and then we show that

the conclusion of Theorem 2.6 also holds. For Theorem 2.5, it suffices to show
that there exist positive constants C1,α1 such that for any positive constants A,c1,
there exists a constant C for which Conditions C2(1)–C2(4) hold with parameters
C1,α1,A,c1,C . For this model, one can choose α1 = ε/4 and C1 = 1. Condition
C2(3) follows from the following. For any constants A,c1 > 0, we have

P
(

max
z∈B(

√
nx0,2)

|F (z)|≥ Cen
c1√n

)
≤ Cn

en
c1(51)

for some constant C depending only on A and c1.
Indeed, let Ω′ be the event on which |ξi| ≤ en

c1 for all i ≥ 0. The probability
of its complement is bounded from above by

P
(
Ω′c)≤ Cn

en
c1 .

On Ω′, for every z ∈B(x0,2/
√
n), we have

|P (z)|≤
n∑

i=0

√(
n

i

)
|ξi||z|i ≤ en

c1√n

√√√√
n∑

i=0

(
n

i

)
|z|2i

= en
c1√n

√
VarP (z).

(52)

Thus,

|F (z)| ≤Cen
c1√n.

For Condition C2(2), note that the sequence
√(n

i

)
|x0|i increases from i= 1 to

i0 = 01+ (n−1)x2
0

1+x2
0
1 and then decreases. For n−1/2+ε ≤ |x0|≤ 1, we have n2ε

4 ≤ i0 ≤
n+1

2 . Condition C2(2) follows by showing that for any constants A,c1 > 0, there
exists a constant C and an angle θ ∈ [−1/(100

√
n),1/(100

√
n)] such that

P
(
|F (

√
nx0e

iθ)|≤ Ce−nc1)≤ Cn−A.(53)

We apply Lemma 9.2 to the set E = {i0, i0 + 1, . . . , i0 +m} where m = nc1/2

logn , the

random variables (ξj)j∈E , the coefficients ej =
√(n

j

)
rj where r = |x0|, and the

interval I = [−m−A′
,m−A′

] where A′ = 5A/c1. We have

1 ≤ ej
ej+1

≤
√
j+1

r
√
n− j

≤ n1/2,
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for all j ∈ E , which implies

ei0+m ≥ ei0n
−m/2.

Moreover, we have since ei0 is the largest term, VarP (x0)≤ ne2
i0

, and so,

ei0+m ≥
√

VarP (x0)√
nnm/2

=

√
VarP (x0)√
nen

c1/2 .

Hence, there exists θ ∈ I such that for all Z ∈C,

P




∣∣∣∣∣
∑

j∈E
ejξj cos(jθ)−Z

∣∣∣∣∣≤
√

VarP (x0)e
−nc1/2

m−16A′2
/
√
n



=O
(
m−A′/2)

=O
(
n−A

)
.

By conditioning on the random variables not in E , we obtain

P
(∣∣Pn

(
x0e

iθ
)∣∣≤

√
VarP (x0)e

−nc1/2
m−16A′2

/
√
n
)
=O

(
n−A

)
.

Since e−nc1/2
m−16A′2

/
√
n=Ω(e−nc1 ), we obtain

P
(∣∣Pn

(
x0e

iθ
)∣∣≤

√
VarP (x0)e

−nc1
)
=O

(
n−A

)
.(54)

That implies (53) and therefore, Condition C2(2) follows.
Combining (51) and (53) and Jensen’s inequality, we get that

P
(
NF
(
B
(√

nx0,1
))

≥ nc1
)
≤ Cn−A.

From this and the fact that NF (B(
√
nx0,1)) is always at most n, Condition C2(1)

follows.
For Condition C2(4), as we have seen above, Ei :=

√(n
i

)
|x0|i is largest

when i0 = 01 +
(n−1)x2

0
1+x2

0
1 ∈ [n

2ε

4 , n+1
2 ]. It suffices to show that the Ei0 =

O(n−ε/4)
√∑

iE
2
i which can be deduced from showing that the consecutive

terms (Ei)
i0+nε/2

i=i0−nε/2 are of the same order, i.e., Ei/Ej =Θ(1). We have for i in the
above window,

E2
i+1

E2
i

=
|x0|(n− i+1)

i+1
=Θ

(
n− i+1
n− i0 +1

i0 +1
i+1

)
=Θ

(
1+

1
nε

)
.

Thus for all i,j in the above window,

Ei

Ej
=Θ

(
1+

1
nε

)nε/2

=Θ(1)
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as needed. So Theorem 2.5 holds for Fn. It’s left to show that the conclusion of
Theorem 2.6 also holds.

Unfortunately, Condition C2(5) doesn’t hold for Fn. Note that this condition
is used in the proof of Theorem 2.6 only to show that (23) which says that for any
x ∈ [n−1/2+ε,1+n−1/2], we have for a sufficiently small constant c,

P
(
NF̃n

B
(√

nx,2n−c
)
≥ 2
)
≤ Cn−16c/10(55)

where F̃n is the corresponding function with standard Gaussian coefficients.
To prove (55), we can instead use the fact that

P
(
NF̃B

(√
nx,2n−c

)
≥ 2
)

≤ P
(
NF̃B

(√
nx,2n−c

)
∩C+ ≥ 1

)
+P
(
NF̃

[√
nx−2n−c,

√
nx−2n−c

]
≥ 2
)

≤
∫∫

B(x,2n−c−1/2)∩C+

ρ(0,1)(z)dz+

∫ x+2n−c−1/2

x−2n−c−1/2

∫ x+2n−c−1/2

x−2n−c−1/2
ρ(2,0)(s,t)dsdt

where ρ(0,1) and ρ(2,0) are the (0,1)- and (2,0)-correlation functions of P̃n

respectively. By [58, Proposition 13.3], these functions are bounded for all
z ∈B(x,2n−c−1/2)∩C+ and s,t ∈ [x−2n−c−1/2,x+2n−c−1/2] as follows

ρ(0,1)(x,y) =O
(
n3/2)(x−y) =O

(
n1−c

)

and

ρ(2,0)(z) =O(n).

Thus,

P
(
NF̃B

(√
nx,2n−c

)
≥ 2
)
=O

(
n−2c)

giving the desired estimate. "

Proof of Corollary 6.4. As mentioned in remark 6.3, it suffices to show that

ENPn [0,1] =
1
4
√
n+O

(
n1/2−c

)
.

We partition the interval [0,1] into 2 intervals I1 := [0,n−1/2+ε] and I2 :=
[n−1/2+ε,1]. On the interval I2 where Theorem 6.2 applies, we further partition it
into equal intervals Ji of length n−1/2. On each of these small intervals Ji, we rou-
tinely approximate its indicator function above and below by smooth test functions
and apply Theorem 6.2 to these functions to obtain

ENPn(Ji)−ENP̃n
(Ji) =O

(
n−c
)
.
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Thus,

ENPn(I2)−ENP̃n
(I2) =O

(
n1/2−c

)
.

It remains to show that the interval I1 is insignificant. Note that NPn(I1) ≤
NPnB(x,3x) where x= n−1/2+ε. By Jensen’s inequality,

NPnB(x,3x)≤ C log
M

|Pn(x)|

where M = max|z|≤4x |Pn(z)|. By (52), on the event Ω′,

M ≤ en
c1√n

√√√√
n∑

i=0

(
n

i

)
|4x|2i = en

ε√
n(16x2 +1)n/2 ≤

√
nen

3ε
.

Thus, P(logM ≥ n3ε) ≤ n
enε . Moreover, by (54), we have P(|Pn(x)| ≤ e−nε

) ≤
n−A. Combining these bounds, we get

P
(
NPnB(x,3x)≥ Cn3ε)≤ Cn−2.

Hence,
ENPnB(x,3x)≤ Cn3ε+n.n−2 ≤ (C+1)n3ε.

This completes the proof. "

14. Proof of Theorem 7.2 and Corollary 7.3.

Proof of Theorem 7.2. The reader may notice that this proof is quite similar to
the proof of Theorem 4.3. We nonetheless present it here for the reader’s conve-
nience.

Let us first consider the case 0 < δ < 1
K for some sufficiently large constant

K > 0.
We apply Theorem 2.6 to the random function F (z) := P (zδ/10) and the

domain D := {z : 1−2δ ≤ |zδ/10| ≤ 1− δ}.
For this random series, we set α1 = min{1/4,γ/2} and C1 = 1. The main task

is to show that for any positive constants A,c1, there exists a constant C for which
Conditions C2(1)–C2(4) hold with parameters (k+ l,C1,α1,A,c1,C).

We use the following crucial property of regularly varying coefficients.

LEMMA 14.1. [18, Theorem 5, p. 423] If c2
k =

kγ−1L(k)
Γ(γ) where L(k) is a slowly

varying function then

lim
a↓0

∞∑

k=0

c2
k(1−at)2k(2at)γ/L

(
1
a

)
= 1

uniformly as long as t stays in a compact subset of (0,∞).
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Moreover, for any positive constant c′ > 0, there exists a constant C > 0 (de-
pending on the function L) such that 1

Ctc′
≤ L(t)≤ Ctc

′
for all t > 0. This simple

observation can be proven using, for example, the Karamata’s representation theo-
rem [4, Proposition 1.3.8, p. 26].

To verify Condition C2(4), we use Lemma 14.1 to get for every w ∈ B(0,
1− δ/2),

∞∑

k=0

c2
k|w|2k = Ω

(
δ−γL(δ−1)

)
= Ω

(
δ−γ+c′

)

while

c2
k|w|2k ≤ Ckγ−1+c′(1− δ)2k =O

(
δ−γ+1−2c′ +1

)
.

Letting c′ sufficiently small, we obtain Condition C2(4).
Condition C2(5) follows immediately from Lemma 14.1.
To verify Condition C2(3), notice that for any M > 2, if we condition on the

event Ω′ on which |ξi| ≤ M(1+ δ/2)i for all i, then for all z ∈ D+B(0,3), by
Lemma 14.1,

|F (z)|=O(M)
∞∑

i=0

(
1+ |ci|2

)
(1+ δ/2)i(1− δ)i =O

(
Mδ−γ−1).(56)

Thus, for every M > 2, we have

P
(
|F (z)| =O

(
Mδ−γ−1))= 1−O

(
n∑

i=0

1
M(1+ δ/2)i

)
= 1−O

(
1

Mδ

)
.(57)

Setting M = δ−A−1, we obtain Condition C2(3).
To prove Condition C2(2), we show that for any constants A and c1 > 0, there

exists a constant B > 0 such that the following holds. For every z0 with 1− 2δ ≤
|z0|≤ 1− δ, there exists z = z0eiθ where θ ∈ [−δ,δ] such that for every M ≥ 1,

P
(
|P (z)|≤ e−δ−c1 e−BM

)
≤ BδA

MA
.(58)

Setting M = 1, we obtain Condition C2(2).
By writing z0 = reiθ0 , the bound (46) follows from a more general anti-

concentration bound: there exists θ ∈ I := [θ0 − δ,θ0 + δ] such that

sup
Z∈C

P
(
|P
(
reiθ

)
−Z|≤ e−δ−c1 e−BM

)
≤ BδA

MA
.

Since the probability of being confined in a complex ball is bounded from
above by the probability of its real part being confined in the corresponding interval
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on the real line, it suffices to show that

sup
Z∈R

P




∣∣∣∣∣

Mδ−1/2∑

j=0

cjξjr
j cosjθ−Z

∣∣∣∣∣≤ e−δ−c1e−BM



≤ BδA

MA
.

This is a direct application of Lemma 9.2.
Finally, to prove Condition C2(1), from (45), (46), and Jensen’s inequality, we

get for every 1 ≤M ≤ nδ

P
(
N ≥ δ−c1 +BM

)
=O

(
δA

MA

)

where N =NFB(w,2), w ∈D.
Setting c1 = 1 and M = 1,2,22, . . ., we get

ENk+21N≥δ−1 ≤ C
∞∑

i=1

(
δ−1 +B2i+1)k+2 δA

2iA
≤ CδA−k−2.

This proves Condition C2(1) and completes the proof for δ ≤ 1/K. For δ ≥ 1/K ,
note that the Jensen’s inequality implies that

NPB(0,1−1/K) =OK(1) log
maxw∈B(0,1−1/2K) |P (w)|

maxw∈B(1−1/K,1/3K) |P (w)| .

Thus, using the bounds (44), (45), (46) for θ = 1−1/K , and apply we get for
every 1 ≤M ,

P
(
NPB(0,1−1/2K)≥BM

)
=O

(
C ′

MA

)
.

And so, ENPB(0,1−1/2K) =O(1). The same holds for P̃ and therefore desired
result follows. "

Proof of Corollary 7.3. To prove the first part of Corollary 7.3, we decom-
pose the interval [0,r] into dyadic intervals [0,1/2], [1− 1/2,1− 1/4), . . ., and fi-
nally ±[1− δ,r]. In each of these interval, say [x,y), we show that ENP [x,y)−
ENP̃ [x,y) =O((1−y)c) for some positive constant c. This can be routinely done
by approximating the indicator function on the interval [x,y) by a smooth function
and apply Theorem 4.3. We omit the detail as it is similar to the proof of Theorem
3.5.

Thanks to the first part, to prove the second part of Corollary 7.3, it suffices to
prove the corresponding statement for P̃ whose coefficients are Gaussian. We adapt
a strategy in [20]. For any interval [a,b]⊂R, by the Kac-Rice formula (Proposition
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10.1), we have

ENP̃ [a,b] =
1
π

∫ b

a

√
f(x)dx

where

f(x) =

(∑∞
k=0 c

2
kx

2k
)(∑∞

k=0 c
2
kk

2x2k−2
)
−
(∑∞

k=0 c
2
kkx

2k−1
)2

(∑∞
k=0 c

2
kx

2k
)2 .

Lemma 14.1 suggests that we make the transformation

fn(t) := f(1−2−nt).

Applying Lemma 14.1 to a = 2−n and t ∈ [1,2], we obtain that uniformly on x=
1−at ∈ [1−21−n,1−2n], as n→ ∞

∞∑

k=0

c2
kx

2k ∼ 2−γ(1−x)−γL(2n),
∞∑

k=0

c2
kkx

2k−1

∼ x−12−γ−1(1−x)−γ−1L(2n)
Γ(γ+1)
Γ(γ)

and
∞∑

k=0

c2
kk

2x2k−2 ∼ x−22−γ−2(1−x)−γ−2L(2n)
Γ(γ+2)
Γ(γ)

where pn ∼ qn means limn→∞
pn
qn

= 1.
Since Γ(γ+ 2) = (γ+ 1)Γ(γ+ 1) = γ(γ+ 1)Γ(γ), we obtain that uniformly

on t ∈ [1,2],

fn(t)∼ γ(2−nt)−2/4.

We have

ENP̃ [1−21−n,1−2−n] =
1
π

∫ 2

1
2−n

√
fn(t)dt.

By uniform convergence, we obtain

ENP̃ [1−21−n,1−2−n]∼
√
γ ln2
2π

.

Taking the Cesáro summation, we obtain

1
n

ENP̃ [0,1−2−n] =
1
n

n∑

k=1

ENP̃ [1−21−k,1−2−k]∼
√
γ ln2
2π

.
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For each r ∈ (0,1), sandwiching ENP̃ [0,r] between ENP̃ [0,1 − 21−n] and
ENP̃ [0,1−2−n] (i.e., n−1 = 0− log2(1− r)1), we get

1
− log(1− r)

ENP̃ [0,r]∼
√
γ

2π
.

as desired. "

15. Appendix.

15.1. Proof of Lemma 8.1. This proof is taken from [58]. We will only
prove the first part of the Lemma relating to Theorem 2.5 as the second part is
similar. By translation, we can assume without loss of generality that z1 = · · · =
zk = 0. Suppose that we have (3) for G in the form (9). Let r0 = 1/100. Then, for
every function G supported in

∏k
j=1B(0,r0) with ‖!aG‖∞ ≤ 1 for all 0 ≤ a ≤

2k+ 4, we view it as a smooth function on the torus (R/(2.2r0)Z)2k. Expanding
G by Fourier series yields

G(w) =
∑

b,c∈Zk

gb,ce
2π

√
−1(bRe(w)+c Im(w)/(2.2r0)),(59)

for w ∈ (R/(2.2r0)Z)2k, where

gb,c =
1

(2.2r0)2k

∫

B(0,r0)k
e−2π

√
−1(bRe(w)+c Im(w))/(2.2r0)G(w)dw,

and the convergence is point-wise (by, for example, [22, Theorem 8.32]).
By integration by parts (or [22, Theorem 8.22e]), we have

|gb,c|≤ C(1+ |b|+ |c|)−2k−4,

where C = Ck.
Let η : R→R be a smooth function supported on [−1.1r0,1.1r0] that equals 1

on [−r0,r0] and ‖η‖∞ ≤ 1, and let

ψb,c,i = e2π
√
−1(bi Re(wi)+ci Im(wi)/(2.2r0))η

(
Re(wi)

)
η
(

Im(wi)
)
,

and

Gb,c(w) = gb,c

k∏

i=1

ψb,c,i(wi).

Since G is supported on [−r0,r0]2k, multiplying both sides of (59) by

k∏

i=1

η
(

Re(wi)
)
η
(

Im(wi)
)
,
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we have

G(w) =
∑

b,c∈Zk

Gb,c(w),

pointwise. We have that ψb,c,i is supported on B(0,2.2r0) and |!aGb,c| ≤ C(1+
|b|+ |c|)3|gb,c|, ∀0 ≤ a≤ 3. We thus have for all m≥ 1
∣∣∣∣∣∣
E
∑

i1,...,ik

Gm
(
ζi1 , . . . ,ζik

)
−E

∑

i1,...,ik

Gm
(
ζ̃i1 , . . . , ζ̃ik

)
∣∣∣∣∣∣

≤Cδcn
∑

b,c∈Zk

(
1+ |b|+ |c|

)3|gb,c|

≤Cδcn
∑

b,c∈Zk

(
1+ |b|+ |c|

)−2k−1
=Cδcn

∞∑

m=0

∑

b,c∈Zk,|b|+|c|=m

(1+m)−2k−1

≤Cδcn

∞∑

m=0

(1+m)−2k−1m2k−1 ≤ Cδcn

∞∑

m=1

m−2 ≤ Cδcn

where Gm =
∑

|b|+|c|≤mGb,c supported in B(0,2r0)k and we recall that the con-
stant C may change from one equation to another. Using Condition C2(1) and the
fact that Gm →G point-wise and |Gm| = O(1), by dominated convergence theo-
rem, we get

lim
m→∞

E
∑

i1,...,ik

Gm
(
ζi1 , . . . ,ζik

)
= E

∑

i1,...,ik

G
(
ζi1 , . . . ,ζik

)
.

And hence the above inequalities hold for G in place of Gm, completing the proof.

15.2. Proof of Lemma 8.2. We follow ideas from [11]; the constant 6 in
the conclusion is adhoc but we make no attempt to optimize it.

From Jensen’s inequality for the number of roots (see the beginning of Section
8), we have

NFn

(
B(w,1)

)
≤ log

5
2

(
logM − log |Fn(w)|

)
< 2
(

logM − log |Fn(w)|
)

where NFn(B(w,1)) is the number of zeros of Fn in B(w,1) and M =
max|w−z|=2 |Fn(z)|.

From this and the assumption of Lemma 8.2, we conclude that

NFn

(
B(w,1)

)
≤ 2δ−c2

n .(60)

By the pigeonhole principle, there exists a radius 1 ≥ r ≥ 1/2 for which Fn

has no zeros in the annulus B(w,r+η)\B(w,r−η) where η = .1δc2
n . We can also
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assume, without loss of generality, that there is no root on the boundary of each
disk.

Let ζ1, . . . ,ζm be the zeros of Fn in the disk B(w,r−η). By (60), m≤ 2δ−c2
n .

Define

f(z) :=
Fn(z)

(z− ζ1) · · · (z− ζm)
.

Since f is an entire function which does not have zeros in the (closed) disk
B(w,r+η), log |f | is harmonic on this disk. For every z with |z−w|= r+η, the
distance from z to any ζi is at least η, so

|f(z)|≤ |Fn(z)|η−m ≤ exp(δ−c2
n )η−m.

It follows that for any z where |z−w|= r+η

log |f(z)|≤ δ−c2
n +m logη−1 ≤ 21δ−2c2

n ,(61)

since

δ−c2
n ≤ δ−2c2

n , m≤ 2δ−c2
n ,η−1 = 10δ−c2

n ≤ e10δ−c2
n .

Because of the harmonicity of log |f |, its maximum is achieved on the boundary,
and so the same bound holds for all z ∈B(w,r+η).

On the other hand, from the lower bound on |F (w)| in the lemma and the fact
that |ζi−w|≤ 1,

log |f(w)|≥ log |Fn(w)|≥−δ−c2
n .(62)

Now, we make a critical use of Harnack’s inequality [47, Chapter 11], which
asserts that if a function G is harmonic on the open disk B(w,R) and is non-
negative continuous on its closure, for some w ∈ C and R > 0, then for every
z ∈B(w,r) with r < R,

G(z) ≤ R+ r

R− r
G(w).

We apply Harnak’s inequality to G(z) := 21δ−2c2
n − log |f | which is nonnega-

tive harmonic on B(w,R) with R := r+η. By this inequality, we conclude that for
all z ∈B(w,r)

21δ−2c2
n − log |f(z)|≤ 2r+η

η

(
21δ−2c2

n − log |f(w)|
)
.(63)

As η = .1δc2
n and r < 1, 2r+η

η ≤ 3η−1 = 30δ−c2
n . By (62), the right-hand side is

at most

30δ−c2
n ×22δ−2c2

n = 660δ−3c2
n .
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It follows that

log |f(z)|≥ 21δ−2c2
n −660δ−3c2

n ≥−660δ−3c2
n .

Together with (61), we have

| log |f(z)||≤ 660δ−3c2
n ∀z ∈B(w,r).(64)

By the triangle inequality and the definition of f ,
∥∥ log |Fn(z)|

∥∥
L2(B(w,r))

≤
∥∥ log |f(z)|

∥∥
L2(B(w,r)) +

m∑

i=1

∥∥ log |z− ζi|
∥∥
L2(B(w,r)).

(65)

Notice that each of the m terms in the sum above is at most
∫

B(0,2r−η)

∣∣ log |z|
∣∣2dz, as |ζi|≤ r−η for all i.

As r < 1, we can further upper bound it by
∫
B(0,2) | log |z||2dz, which is O(1)

(in fact, one can easily show
∫
B(0,2) | log |z||2dz < 30, with room to spare). Since

m≤ 2δ−c2
n , the right-hand side of (65) is at most

660δ−3c2
n +60δ−c2

n ≤ 720δ−3c2
n .

Thus, we have
∥∥ log |Fn(z)|

∥∥
L2(B(w,r)) ≤ 720δ−3c2

n

which implies the claim of the lemma as r ≥ 1/2.

15.3. Proof of Lemma 8.3. To prove Lemma 8.3, we will follow the proofs
in [11] and [58]. We first prove the following.

LEMMA 15.1. Under the assumptions of Lemma 8.3, there exist constants α2 >
0 and C ′ > 0 such that for any z1, . . . ,zk ∈Dn+B(0,1/10) and for any function
L : Ck → C with continuous derivatives up to order 3 and ‖!aL‖∞ ≤ δ−α2

n for all
0 ≤ a≤ 3, we have
∣∣∣∣∣EL

(
Fn(z1)√
V (z1)

, . . . ,
Fn(zk)√
V (zk)

)
−EL

(
F̃n(z1)√
V (z1)

, . . . ,
F̃n(zk)√
V (zk)

)∣∣∣∣∣≤ C ′δα2
n ,

where V (zj) :=
∑n

i=N0
|φi(zj)|2 and N0 is the constant in Condition C1.

Remark 15.2. Following the proof, one can set α2 =
α1ε

4 .
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Proof of Lemma 15.1. To prove this Lemma, we first observe that by replacing
L by

L′(z1, . . . ,zk) := L

(
z1 +

EFn(z1)√
V (z1)

, . . . ,zk+
EFn(zk)√

V (zk)

)
,

if necessary, we can assume that Eξ̃i = 0 for all i and Eξi = 0 for all i > N0. (See
Condition C1.)

We use the Lindeberg swapping argument. Let

Gi0 =
i0∑

i=1

ξ̃iφi(z)+
n∑

i=i0+1

ξiφi(z).

The purpose is to swap the random variables one by one. Under these notations,
G0 = Fn and Gn = F̃n. Put

Ii0 :=

∣∣∣∣∣EL
(

Gi0(z1)√
V (z1)

, . . . ,
Gi0(zk)√
V (zk)

)
−EL

(
Gi0+1(z1)√

V (z1)
, . . . ,

Gi0+1(zk)√
V (zk)

)∣∣∣∣∣ .

Then

I :=

∣∣∣∣∣EL
(

Fn(z1)√
V (z1)

, . . . ,
Fn(zk)√
V (zk)

)
−EL

(
F̃n(z1)√
V (z1)

, . . . ,
F̃n(zk)√
V (zk)

)∣∣∣∣∣≤
n∑

i0=0

Ii0 .

Fix i0 ∈ [N0,n] and let Yj :=
Gi0 (zj)√
V (zj)

− ξi0φi0 (zj)√
V (zj)

for 1 ≤ j ≤ n. Then,

Gi0+1(zj)√
V (zj)

= Yj +
ξ̃i0φi0 (zj)√

V (zj)
. Condition on ξi for i < i0 and ξ̃i for i > i0. The Yj’s

become constants; the only randomness left comes from ξi0 , ξ̃i0 . Define

L̂= L̂i0(w1, . . . ,wk) := L(Y1 +w1, . . . ,Yk+wk).

By the definition of L̂ and the assumption of the lemma,
∥∥!aL̂

∥∥
∞ ≤ Cδ−α2

n for all
0 ≤ a≤ 3.

We are going to estimate

di0 :=

∣∣∣∣∣Eξi0 ,ξ̃i0
L̂

(
ξi0φi0(z1)√

V (z1)
, . . . ,

ξi0φi0(zk)√
V (zk)

)

−Eξi0 ,ξ̃i0
L̂

(
ξ̃i0φi0(z1)√

V (z1)
, . . . ,

ξ̃i0φi0(zk)√
V (zk)

)∣∣∣∣∣.
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Let ai,i0 :=
φi0 (zi)√
V (zi)

and ai0 := (
∑k

i=1 |ai,i0 |2)1/2. Taylor expanding L̂ around

(0, . . . ,0), we obtain

L̂
(
a1,i0ξi0 , . . . ,ak,i0ξi0

)
= L̂(0)+ L̂1 + err1,(66)

where

L̂1 =
dL̂
(
a1,i0ξi0t, . . . ,ak,i0ξi0t

)

dt

∣∣∣∣
t=0

=
k∑

i=1

∂L̂(0)
∂Re(wi)

Re
(
ai,i0ξi0

)

+
k∑

i=1

∂L̂(0)
∂ Im(wi)

Im
(
ai,i0ξi0

)
.

(To avoid confusion, we use ∂ to denote a partial derivative of functions of
multi-variables and d to denote a derivative of function of a single variable.)

From the bounds on the derivatives of L̂, we have

|err1|≤ sup
t∈[0,1]

∣∣∣∣
1
2

d2L̂
(
a1,i0ξi0t, . . . ,ak,i0ξi0t

)

dt2

∣∣∣∣

=O

(
δ−α2
n |ξi0 |2k

k∑

i=1

|ai,i0 |2
)

=O
(
δ−α2
n |ξi0 |2a2

i0

)
.

(67)

Similarly,

L̂
(
a1,i0ξi0 , . . . ,ak,i0ξi0

)
= L̂(0)+ L̂1 +

1
2
L̂2 + err2,(68)

where L̂2 =
d2L̂(a1,i0ξi0

t,...,ak,i0ξi0 t)

dt2

∣∣
t=0 and

|err2|≤ sup
t∈[0,1]

∣∣∣∣
1
6

d3L̂
(
a1,i0ξi0t, . . . ,ak,i0ξi0t

)

dt3

∣∣∣∣

=O



δ−α2
n |ξi0 |3

(
k∑

i=1

|ai,i0 |
)3


=O
(
δ−α2
n |ξi0 |3a3

i0

)
.

(69)

Note that as in (67), L̂2 =O(δ−α2
n |ξi0 |2a2

i0
). Thus,

err2 = err1 −
L̂2

2
=O

(
δ−α2
n |ξi0 |2a2

i0

)
.(70)

Using (69) and (70), we obtain

|err2|=O
(
δ−α2
n

)
min

{
|ξi0 |2a2

i0
, |ξi0 |3a3

i0

}
=O

(
δ−α2
n |ξi0 |2+εa2+ε

i0

)
.(71)
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The expression (68) also holds for ξ̃ in place of ξ; we denote the error term
here by ẽrr2. By the same reasoning, we can show that ẽrr2 satisfies (71).

Take the expectation (with respect to ξi0) of the right-hand side of (68) and
subtract from it the expectation of the corresponding formula (with respect to ξ̃i0).
By Condition C1, ξi0 and ξ̃i0 have matching first and second moments, and so
the expectations of L̂j (j = 1,2) from the two formulae cancel each other out.
Furthermore, L̂(0) is the same in both formulae. Thus, the only thing remaining
after the subtraction are the error terms. Therefore,

di0 ≤
∣∣Eξi0

err2
∣∣+
∣∣Eξ̃i0

ẽrr2
∣∣=O(1)C̃δ−α2

n a2+ε
i0

(
E|ξi0 |2+ε+E|ξ̃i0 |2+ε

)

=O
(
δ−α2
n a2+ε

i0

)
.

Taking expectation with respect to the other variables (which we have condi-
tioned on so far), we obtain Ii0 =O(δ−α2

n a2+ε
i0

) for all N0 ≤ i0 ≤ n.
Now we treat the first few indices 0 ≤ i0 <N0, where ξi0 may have non-zero

mean. Instead of using (66) and (68), we use the mean value theorem to get the
rough bound

L̂
(
a1,i0ξi0 , . . . ,ak,i0ξi0

)
= L̂(0)+O

(
k
∥∥!L̂

∥∥
∞ |ξi0 |

k∑

i=1

|ai,i0 |
)
,(72)

which by the same arguments as above gives Ii0 =O(δ−α2
n ai0).

Since we assume Eξ̃i = 0 for all 1 ≤ i≤ n, Condition C1 implies that |Eξi0 |=
O(1). But as Varξi0 = 1, it follows that E|ξi0 |=O(1).

As k is constant and
∥∥!L̂

∥∥
∞ ≤ δ−α2

n , we have, from (72), that

di0 =O

(

k‖!L̂‖∞

k∑

i=1

|ai,i0 |
)
(
E|ξi0 |+E|ξ̃i0|

)

=O

(

δ−α2
n

k∑

i=1

|ai,i0 |
)

=O

(

δ−α2
n

k∑

i=1

|ai,i0 |2
)1/2

=O
(
δ−α2
n ai0

)
.

Notice that by Condition C2(4), ai0 = O(
√
kδα1

n ) = O(δα1
n ) for all i. Further-

more, by the definition
∑n

i=N0
a2
i0
= k =O(1). Thus, we have

I =O

(
δ−α2
n

n∑

i0=0

a2+ε
i0

+ δ−α2
n

N0∑

i0=0

ai0

)
=O

(
δα1ε−α2
n

)
=O

(
δα2
n

)
,

wherein the last step we used the fact that α2 was set much smaller than α1. "
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Proof of Lemma 8.3. Let α2 be the constant in Lemma 15.1 and set α0 := α2
10 .

Let

K̄(w1, . . . ,wk) :=K

(
w1 +

1
2

log
∣∣V (z1)

∣∣, . . . ,wk+
1
2

log
∣∣V (zk)

∣∣
)

where we recall that V (zj) :=
∑n

i=N0
|φi(zj)|2. We have

∥∥!aK̄
∥∥

∞ ≤ δ−α0
n for all

0 ≤ α≤ 3; we aim to show
∣∣∣∣∣EK̄

(
log

|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)

−EK̄

(
log

|F̃n(z1)|√
V (z1)

, . . . , log
|F̃n(zk)|√
V (zk)

)∣∣∣∣∣=O
(
δα0
n

)
.

(73)

For M := log(δ−3α0
n ), define

Ω1 :=
{
(w1, . . . ,wk) ∈ Rk : min

i=1,...,k
wi <−M

}

and

Ω2 :=
{
(w1, . . . ,wk) ∈ Rk : min

i=1,...,k
wi >−M −1

}
.

By considering the real and imaginary parts of K̄ separately, we can assume
that K̄ : Rk → R .

Let ψ : Rk → [0,1] be a smooth function supported in Ω2 such that ψ = 1 on
the complement of Ω1 and ‖!aψ‖∞ = O(1) for all 0 ≤ a ≤ 3. As M ≥ 1, it is
easy to see that such a function exists. In particular, one can define ψ(x1, . . . ,xk) =
ρ(x1) . . .ρ(xk) where ρ is a smooth function satisfying the corresponding proper-
ties on R.

Let φ := 1−ψ, K1 := K̄φ, and K2 := K̄ψ. Then by the definition K̄ =K1 +
K2. Furthermore, both K1,K2 are smooth functions with suppK1 ⊂ Ω̄1,suppK2 ⊂
Ω̄2 and ‖!aKi‖∞ =O(δ−α0

n ) for i= 1,2 and 0 ≤ a≤ 3.
We now show that the contribution from K1 towards the right-hand side of (73)

is negligible. Notice that

‖K1‖∞ ≤
∥∥K̄
∥∥

∞ ≤C ′δ−α0
n .

This leads to setting H1(w1, . . . ,wk) = C ′δ−α0
n φ(log |w1|, . . . , log |wk|). The func-

tion H1 is a smooth function on Rk with the following properties:
• |K1(log |w1|, . . . , log |wk|)|≤H1(w1, . . . ,wk),
• supp(H1)⊂ {(w1, . . . ,wk) ∈ Rk : mini=1,...,k |wi|≤ e−M},
• ‖!aH1‖∞ =O(δ−10α0

n ) =O(δ−α2) for all 0 ≤ a≤ 3.

Remark 15.3. To verify the last property, notice that the support of H1 is
{(x,y) : |x| ≤ e−M or |y| ≤ e−M}. Moreover, H1 is a constant C ′δ−α0

n in the set
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{(x,y) : |x|≤ e−M−1 or |y|≤ e−M−1} (because φ= 1 on the complement of Ω2).
So we only need to consider the derivatives of H1 in the set {(x,y) : |x|≤ b or |y|≤
e−M}∩{|x| ≥ e−M−1, |y|≥ e−M−1}. On that set, x−1 and y−1 are bounded from
above by eM+1, which is significantly smaller than the bound. (We define α0 and
M with foresight so the claimed bound holds, with room to spare.)

Applying Lemma 15.1, we obtain

E

∣∣∣∣∣K1

(

log
|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)∣∣∣∣∣≤ EH1

(
|Fn(z1)|√
V (z1)

, . . . ,
|Fn(zk)|√
V (zk)

)

≤ EH1

(
|F̃n(z1)|√
V (z1)

, . . . ,
|F̃n(zk)|√
V (zk)

)

+C ′δα0
n .

Since H1(w1, . . . ,wk) = 0 if (log |w1| , . . . , log |wk|) /∈ Ω1 and since the vari-
ables ξ̃i are Gaussian, we have

EH1

(
|F̃n(z1)|√
V (z1)

, . . . ,
|F̃n(zk)|√
V (zk)

)

≤ C ′δ−α0
n P

(
∃i ∈ {1, . . . ,k} :

|F̃n(zi)|√
V (zi)

≤ e−M = δ3α0
n

)

≤ C ′δ−α0
n kδ3α0

n =O
(
δα0
n

)
.

Thus, E
∣∣K1

(
log |Fn(z1)|√

V (z1)
, . . . , log |Fn(zk)|√

V (zk)

)∣∣ ≤ C ′δα0
n . The same bound holds with

Fn replaced by F̃n. To conclude the proof, we need to show that

∣∣∣∣∣EK2

(
log

|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)

−EK2

(
log

|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)∣∣∣∣∣=O
(
δα0
n

)
.

Define H2(w1, . . . ,wk) :=K2(log |w1|, . . . , log |w2|). Since suppK2 ⊂ Ω̄2,

suppH2 ⊂
{
(w1, . . . ,wk) : log |wi|≥−M −1, ∀i

}

=
{
(w1, . . . ,wk) : |wi|≥ C ′δ3α0

n , ∀i
}
.

Thus, H2 is well defined and smooth on Rk. Furthermore, by the definition
of H2, it is not hard to check that ‖!aH2‖∞ = O(δ−10α0

n ) for all 0 ≤ a ≤ 3; see
Remark 15.3.
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Finally, by applying Lemma 15.1, we obtain

∣∣∣∣∣EK2

(
log

|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)

−EK2

(
log

|Fn(z1)|√
V (z1)

, . . . , log
|Fn(zk)|√
V (zk)

)∣∣∣∣∣

=

∣∣∣∣∣EH2

(
|Fn(z1)|√
V (z1)

, . . . ,
|Fn(zk)|√
V (zk)

)

−EH2

(
|Fn(z1)|√
V (z1)

, . . . ,
|Fn(zk)|√
V (zk)

)∣∣∣∣∣=O
(
δα0
n

)
.

This completes the proof. "

15.4. Proof of Lemma 9.3. By rescaling, we can assume that a= nl. Thus,
we need to estimate supZ P

(∣∣∑n
j=1ajεj −Z

∣∣≤ 1
)
.

By Esséen’s inequality [16] (see also [57, Lemma 7.17]), there is an absolute
constant c such that for any real number Z ,

P




∣∣∣∣∣

n∑

j=1

ajεj −Z

∣∣∣∣∣≤ 1



≤ c

∫ 1/2

−1/2
|φ(t)|dt(74)

where

φ(t) = Eexp

(

i2πt
n∑

j=1

ajεj

)

=
n∏

j=1

Eexp
(
i2πtajεj

)
=

n∏

j=1

cos(2πajt).

For every x ∈ R, let ‖x‖R/Z := min{|x−N | : N ∈ Z} be the distance from x
to the set of integers. In the following lemma, we gather a few simple (and well-
known) facts concerning sin and cos, whose proof is left as an exercise.

LEMMA 15.4. We have
• sinθ ≥ 2θ/π for all θ ∈ [0,π/2];
• |cosx|≤ 1−2‖x/π‖2

R/Z ≤ exp(−2‖x/π‖2
R/Z) for all x ∈ R;

• cos(2x)≥ 1−2π2 ‖x/π‖2
R/Z for all x ∈ R;

• There is a constant c > 0 such that for all T ≥ 1,

max

{∣∣∣∣
∫ 1

0
sinTxdx

∣∣∣∣,
∣∣∣∣
∫ 1

0
cosTxdx

∣∣∣∣

}
≤ c/T.
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By (74) and Fubini’s Theorem,

P




∣∣∣∣∣

n∑

j=1

ajεj −Z

∣∣∣∣∣≤ 1



≤ c

∫ 1/2

−1/2
exp

(
−2

n∑

j=1

‖2ajt‖2
R/Z

)
dt

= 2c
∫ ∞

0
|Ax|e−2xdx,

(75)

where Ax := {t ∈ [−1/2,1/2] :
∑n

j=1‖2ajt‖2
R/Z ≤ x} and |Ax| denotes the

Lebesgue measure of Ax. We break the last integral in (75) into two parts,∫ n/4π2

0 |Ax|e−2xdx and
∫ ∞
n/4π2 |Ax|e−2xdx. Since |Ax|≤ 1 for all x,

∫ ∞

n/4π2
|Ax|e−2xdx= e−Ω(n) = o

(
n−l
)

for any fixed l. Thus, this part is negligible and it remains to show

∫ n/4π2

0
|Ax|e−2xdx=O(n−l).(76)

Let us now bound the measure of the set An/4π2 . By Lemma 15.4,

An/4π2 ⊂A :=

{
t ∈ [−1/2,1/2] :

n∑

j=1

cos(4πajt)≥ n/2

}
.

To bound |A|, we first notice that

∫ 1/2

−1/2




n∑

j=1

cos(4πajt)




2l

dt≤
∫ 1/2

−1/2




n∑

j=1

(
ei4πajt+ e−i4πajt

)



2l

dt

=
∑

s1,...,s2l=±1

∑

j1,...,j2l≤n

∫ 1/2

−1/2
ei4πt

∑2l
h=1 shajhdt.

Recall the hypothesis of the lemma that for any two different multi-sets {i1, . . . , il′}
and {j1, . . . , jl′′} where l′+ l′′ ≤ 2l, it holds that |ai1 + · · ·+ail′ −aj1 − · · ·−ajl′′ |≥
a= nl. Thus, for each s1, . . . ,s2l =±1 and j1, . . . , j2l ≤ n, consider the multi-sets
S1 = {jh : sh = 1} and S2 = {jh : sh = −1}. If S1 )= S2 then |

∑2l
h=1 shajh | ≥

nl. In this case, the corresponding term in the above double sum is of the form∫ 1/2
−1/2 e

itT dt for some |T |≥ 2nl. By Lemma 15.4, we have

∫ 1/2

−1/2
ei4πt

∑2l
h=1 shajhdt=O

(
n−l
)
, if S1 )= S2.

If S1 =S2, then |ai1 + · · ·+ail′ −aj1 − · · ·−ajl′′ |= 0 and the corresponding integral
is 1. The number of terms in the double sum with S1 = S2 is at most 22lnl =O(nl)
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while the total number of terms is at most 22ln2l = O(n2l). Putting these cases
together, we obtain

∫ 1/2

−1/2

(
n∑

j=1

cos
(
4πajt

)
)2l

dt=O
(
nl+n2ln−l

)
=O

(
nl
)
.

Hence, |A|=O(n−l) by Markov’s inequality. This implies |An/4π2 |=O(n−l),
which, in turn, yields (76), completing the proof.

15.5. Proof of the second Jensen’s inequality (8). By setting g(w) =
f(R(w+ z)) and prove the corresponding inequality for g, it suffices to assume
that z = 0 and R= 1. Let a1, . . . ,aN be the zeros of f in B̄(0,r). For each a inside
the unit disk D, consider the map

Ta(w) =
w−a

āw−1
.

For |a|≤ r and |w|≤ r, one can show by algebraic manipulation that

|Ta(w)| ≤
2r

1+ r2 < 1.

Moreover, for all |a|< 1 and |w|= 1, we have

|Ta(w)| = |w̄|
∣∣∣∣
w−a

āw−1

∣∣∣∣=
∣∣∣∣
1−aw̄

āw−1

∣∣∣∣= 1.

Let h(w) = f(w)∏N
k=1Tak

(w)
. Then h is an analytic function on D. By maximum

principle, we have for every w0 ∈ rD,

∣∣f(w0)
∣∣(1+ r2

)N

(2r)N
≤ max

w∈rD

∣∣h(w)
∣∣ ≤ max

w∈D

∣∣h(w)
∣∣

= max
w∈∂D

∣∣h(w)
∣∣ = max

w∈∂D

∣∣f(w)
∣∣=M.

Thus, N ≤
log M

|f (w0)|

log 1+r2
2r

for all w0 ∈ rD, completing the proof.
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[53] K. Söze, Real zeroes of random polynomials, I. Flip-invariance, Turán’s lemma, and the Newton-Hadamard

polygon, Israel J. Math. 220 (2017), no. 2, 817–836.
[54] , Real zeroes of random polynomials, II. Descartes’ rule of signs and anti-concentration on the

symmetric group, Israel J. Math. 220 (2017), no. 2, 837–872.
[55] S. Starr, Universality of correlations for random analytic functions, Entropy and the Quantum II, Contemp.

Math., vol. 552, Amer. Math. Soc., Providence, RI, 2011, pp. 135–144.



74 O. NGUYEN AND V. VU

[56] D. C. Stevens, The average number of real zeros of a random polynomial, Comm. Pure Appl. Math. 22
(1969), 457–477.

[57] T. Tao and V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, Cambridge University
Press, Cambridge, 2006.

[58] , Local universality of zeroes of random polynomials, Int. Math. Res. Not. IMRN 2015 (2015),
no. 13, 5053–5139.

[59] P. Turán, Eine neue Methode in der Analysis und deren Anwendungen, Akadémiai Kiadó, Budapest, 1953.
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