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ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL
UNIVERSALITY

By OANH NGUYEN and VAN VU

Abstract. We investigate the local distribution of roots of random functions of the form F,(z) =
S &idi(2), where &; are independent random variables and ¢; (z) are arbitrary analytic functions.
Starting with the fundamental works of Kac and Littlewood-Offord in the 1940s, random functions of
this type have been studied extensively in many fields of mathematics.

We develop a robust framework to solve the problem by reducing, via universality theorems,
the calculation of the distribution of the roots and the interaction between them to the case where &;
are Gaussian. In this special case, one can use the Kac-Rice formula and various other tools to obtain
precise answers.

Our framework has a wide range of applications, which include the most popular models of
random functions, such as random trigonometric polynomials and all basic classes of random algebraic
polynomials (Kac, Weyl, and elliptic). Each of these ensembles has been studied heavily by deep and
diverse methods. Our method, for the first time, provides a unified treatment for all of them.

Among the applications, we derive the first local universality result for random trigonometric
polynomials with arbitrary coefficients. When restricted to the study of real roots, this result ex-
tends several recent results, proved for less general ensembles. For random algebraic polynomials,
we strengthen several recent results of Tao and the second author, with significantly simpler proofs.
As a corollary, we sharpen a classical result of Erdos and Offord on real roots of Kac polynomials,
providing an optimal error estimate. Another application is a refinement of a recent result of Flasche
and Kabluchko on the roots of random Taylor series.

1. Introduction. Letn be a positive integer or . Let ¢1,...,®, be deter-
ministic functions and &1, ...,&, be independent random variables. Consider the
random function/series

() F,=Y &
=1

A fundamental task is to understand the distribution of and the interaction between
the roots (both real and complex) of F;,. For several decades, this task has been
carried out in many different areas of mathematics such as analysis, numerical
analysis, probability, mathematical physics; see [3, 14, 17, 23, 26, 34, 51, 61], for
example.

The most studied subcases are when ¢; = ¢;z* (in which case F}, is a random
algebraic polynomial) and ¢; = ¢;cosix (in which case F;, is a random trigono-
metric polynomial); here and later, the ¢; are deterministic coefficients that may
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2 O.NGUYEN AND V. VU

depend on 7 and n. In fact, these classes split further, according to the values
of ¢;. For instance, three important classes of random algebraic polynomials are:
Kac polynomials (¢; = 1), Weyl polynomials (¢; = ﬁ) and elliptic polynomials

(¢; = (’;‘)) For random trigonometric polynomials, most papers seem to focus
on the case ¢; = 1. A very significant part of the literature on random functions
focuses on these special classes.

Even for these classical cases, the problem is already hard; see [1, 2, 10, 19, 29,
30, 44, 53, 54, 58] for a partial list of recent developments. It requires a full book
to discuss the results and methods concerning random polynomials, but one feature
stands out. The distributions of the roots in different classes are quite different, and
the methods to study them are often specialized.

In this paper, we aim to develop a robust framework to solve the general prob-
lem. The leading idea is to utilize universality theorems to reduce the problem of
calculating the distribution of the roots and the interaction between them to the case
where the &; are Gaussian. In the Gaussian case, the answers can be (or, for most
ensembles, have already been) computed in a precise form, using the Kac-Rice for-
mula and various other tools which make use of special properties of Gaussian ran-
dom variables and Gaussian processes; see, for instance [14, 24, 26, 46, 49, 51, 58].
In particular, when the &; are complex Gaussian variables, F;, is called a Gaussian
analytic function, and we refer to Sodin’s paper [51] for an in-depth survey.

Universality theorems of this type have recently been proved in [11, 58] by the
authors, Do and Tao for many classes of random algebraic polynomials of various
types, using complex machinery (see also [31, 35, 44, 45, 55] for related works
concerning global universality). The method built in these papers is sensitive. It
does not apply to random trigonometric polynomials and many other ensembles.

In this paper, we are going to establish a new and general condition which
guarantees universality for a wide class of random functions. This class contains
all popular random functions. Among others, it covers all classical random alge-
braic polynomials (such as those considered in [11, 58] and many others). Quite
remarkably, it also covers random trigonometric polynomials with general coeffi-
cients, whose behavior is totally different. (For readers not familiar with the theory
of random functions, let us point out that random trigonometric polynomials typi-
cally have ©(n) real roots while Kac polynomials have only O (logn).)

We would like to emphasize the simplicity and robustness of our approach.
Proofs of local universality results have been, so far, considerably complex and
long. Furthermore, different ensembles require proofs which are different in at least
a few key technical aspects. Our proofs, based on new observations, are quite sim-
ple and robust. The proof for the general theorem is only a few pages long. Next,
and more importantly, we can deduce universality results for completely different
ensembles of random functions from this general theorem in an identical way using
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(essentially) one simply stated lemma. In each ensemble considered, we either ob-
tain completely new results or a short, new proof of the most current result, many
times with a quantitative improvement. The length of the paper is due to the num-
ber of applications. The reader is invited to read Section 2.4 for a discussion of our
method and a comparison with the previous ones.

Let us now briefly discuss the applications. Consider two random functions
F,=Y" &¢iand F, =X0 & ¢;, where & and &; can have different distribu-
tions. We show (under some mild assumptions) that the local statistics of the roots
of the two functions are asymptotically the same. In practice, we can set &; to be
Gaussian, and thus reduce the study to this case. The local information can be used
to derive certain global properties; for instance, the number of roots in a large re-
gion (which has been partitioned into many local cells) is simply the sum of the
numbers of roots in each cell.

e We study random trigonometric polynomials in Section 3. We derive (to the
best of our knowledge) the first local universality of correlation for this class. Our
setting is more flexible than most previous works on this topic, as we allow a large
degree of freedom in choosing the deterministic coefficients c;.

While we do not find comparable previous local universality results for random
trigonometric polynomials, we can still make some comparisons to previous works
by restricting to the popular sub-problem of estimating the density of the real roots.
For this problem, our universality result yields new estimates which extend several
existing results, some of which are quite recent and have been proved by totally
different methods; see Section 3 for details.

e In Section 4, we discuss Kac polynomials. We derive a short proof for a
strengthening of a recent result of Tao and the second author [58]. By almost the
same argument, one could also recover the main result of Do and the authors [11]
which applies for generalized Kac polynomials. As a corollary, we obtain a more
precise version of the classical result of Erdos and Offord [15] on the number of
real roots.

e In Section 5, we study Weyl series. Our universality result here provides
an exact estimate for the expectation of the number of roots in any fixed domain
B. Previous to our result, such an estimate was only known for sets of the form
rB, where r is a parameter tending to infinity, thanks to a very recent work of
Kabluchko and Zaporozhets [30].

e In Section 6, we apply our results to random elliptic polynomials. We give
a short proof of a recent result from [58], which generalizes an earlier result of
Bleher and Di [6].

e The above applications already cover all traditional classes of random func-
tions in the literature. To illustrate the generality of our result, in Section 7, we
present one more application, concerning random series with regularly varying co-
efficients, a class defined and studied by Flasche and Kabluchko very recently [20].
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e While revising this paper, we became aware of a recent work [21] which has
some overlaps with ours. We made a brief comparison at the end of Section 7.

e Additionally, after this work had been announced, the framework that we
develop here has been applied to the following papers.

— In [8], Mei-Chu Chang, Hoi Nguyen and the authors study the number of
intersections between random eigenfunctions of general eigenvalues and a given
smooth curve in flat tori.

— In [12], Yen Do and the authors study random orthonormal polynomials.

In most applications, we will work out corollaries concerning the problem of
counting real roots. While our results yield much more than just the density func-
tion of real roots, we focus on this subproblem since it is, traditionally, one of
the most natural and appealing problems in the field. (Technically speaking, the
study of zeros of random analytic functions started with papers of Littlewood-
Offord and Kac in the 1940s, studying the number of real roots of Kac polyno-
mials.) Our corollaries provide many new contributions to the existing vast litera-
ture on this subject. As a matter of fact, our results allow us to study any level set
L,:={z € C: F,(z) = a} for any fixed a (the roots form the level set Lg) at no
extra cost.

The rest of the paper is organized as follows. In the next section, we first de-
scribe our goal, namely, what we mean by universality. We then establish the gen-
eral condition that guarantees universality, and comment on its strength. We next
state the general universality theorems along with a discussion of the main ideas in
the proof.

The next 5 sections (Sections 3—7) are devoted to the applications mentioned
above. We state universality theorems for various classes of random functions, and
derive corollaries concerning the density of both real and complex roots. In Section
8, we prove the general universality theorems stated in Section 2. The rest of the
paper is devoted to the verification of the applications in Sections 3-7. We also
include a short appendix at the end of the paper, which contains the proofs of a few
lemmas (some of which were proved elsewhere), for the sake of completeness.

Acknowledgments. The authors would like to thank Asaf Ferber and Yuval
Peres for helpful remarks that led to some simplifications of our proofs. We thank
the anonymous referees for their helpful suggestions. Part of this work was done
at VIASM (Hanoi), and the authors would like to thank the institute for its support
and hospitality.

2. Universality theorems. In the first subsection, we describe the tradi-
tional way to compare local statistics of the roots. Next, we provide the assump-
tions under which our theorems hold, and comment on their strength. The precise
statements come in the final subsection.

The notation 15 denotes the indicator of an event £ it takes value 1 if £ holds
and 0 otherwise.
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2.1. Comparing local statistics. For simplicity, let us first focus on the
complex roots of F},. These roots form a random point set on the plane.

The first interesting local statistics is the density. In order to understand the
density around a point z, we consider the unit disk B(z, 1) centered at z. In practice,
the radius of the disk is chosen so that the number of roots in it is typically of order
©(1). The expected number of roots in the disk can be written as

ZEf(ci)

where (;,(,... are the roots of F,,, and f is the indicator function of B(z,1); in
other words, f(x) =1if x € B(z,1) and zero otherwise.

If one is interested in the pairwise correlation between the roots near z, then it
is natural to look at

> Ef(G.¢)
i,J

where f(x,y) is the indicator function of B(z,1)? := B(z,1) x B(z,1); in other
words, f(z,y) = 1 if both z,y € B(z,1) and zero otherwise.
In general, the k-wise correlation can be computed from

Z Ef(CvaCZk)

Ulyeen ik

where f(x1,...,xy) is the indicator function of B(z,1)¥. A good estimate for these
quantities tells us how the nearby roots repel or attract each other.

Even more generally, one can study the interaction of roots near different cen-
ters by looking at

> EF(ChnnGy)

where f(z1,...,2}) is the indicator function of B(z1,1) x B(z,1)--+ x B(z,1)
with B(z;, 1) being the unit disk centered at z;.
Now, consider another random function

where the &; are independent random variables distributed differently from the &;.
We end up with two sets of quantities

> EF(ChnGy)

Ul yeenyik
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and

Z Ef(511>>§zk)

Ulyeeny g

where the fz are the roots of F),.
We would like to show (under certain assumptions) that these two quantities
are asymptotically the same, namely

U5k U5k

for some §,, tending to zero as n goes to infinity.

For technical convenience, we will replace the indicator function f by a
smoothed approximation. This makes no difference in applications. On the other
hand, our results hold for any smoothed test function f, which may have nothing
to do with the indicator function.

If one cares about the real roots, one replaces the disk B(z, 1) by the interval of
length 1 centered at a real number z. In general, instead of the product B(zy,1) x
B(z,1)--- x B(zg,1), one can consider a mixed product of disks and intervals.
This enables one to understand the interaction between nearby roots of both types
(complex and real).

One, of course, could have made the previous discussion using the notion of
correlation functions. However, we find the current format direct and intuitive. We
refer to [26] or [58] for more detailed discussions concerning local statistics using
correlation functions.

2.2. Assumptions. Before stating the result, let us discuss the assumptions.
There are two types of assumptions. The first is for the random variables &; and &;.
The second concerns the deterministic functions ¢;.

For the random variables, our assumption is close to minimal. In the case that
both &; and &; are real, our simplest assumption is

Condition CO. The random variables 1 ,...,&,,&1,. .., &, are independent real
random variables with the same mean E¢; = EE; for each i, variance one, and
(uniformly) bounded (2 + ¢) central moments, for some constant 0 < € < 1.

In fact, we can relax the assumption of matching means and variances, allowing
a finite number of exceptions. If the &; and EZ are complex, the matching mean and
variance need to be adjusted to address both real and imaginary parts.

Condition C1. Two sequences of random variables (&1,...,&,) and (£1,...,&,)
are said to satisfy this condition if the following hold, for some constants Ny, 7 > 0
and 0 <e < 1.



ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL UNIVERSALITY 7

(i) Uniformly bounded (2+ €) central moments: The random variables &; (and
similarly &-), 1 <17 < n, are independent (real or complex, not necessarily identi-
cally distributed) random variables with unit variance (namely, E|¢; — E§i|2 =1),
and bounded (2 + ¢) central moments, namely E|¢; — E¢;[*7¢ < 7.

(i) Matching moments to second order with finitely many exceptions: For any
i > Ny, for all a,b € {0,1,2} witha+b < 2,

ERe (&) Im (&) = ERe (&) Im ()",

and for 0 <17 < Ny, !Efi —E{NZ‘ <.

It is trivial that Condition C1 contains Condition CO as a special case. We
find it rewarding to go with the more general, but slightly technical, assumption
(i1), which allows non-matching means, as it leads to an interesting phenomenon
that changing a finite number of terms in F},(z) does not influence the asymptotic
distribution of the roots. Among other benefits, this allows us to generalize all
results to level sets {z € C: F},(z) = a} for any fixed a; see Remark 3.7 for more
details.

We now turn to the assumption on the deterministic functions ¢;. The state-
ment of our theorems will involve two parameters, an error term 0 < 6, < 1 (see
(2)) and a region D,, C C, from which the base points zi,...,z; are chosen. As
their subscripts indicate, both §,, and D,, can depend on n. In most of our appli-
cations, ¢, tends to zero with n but it is not required. When n = oo for example,
J.. can be any parameter in (0, 1). The assumptions below are tailored to these two
parameters, J,, and D,,.

For two sets A,B C C, define A+ B:={a+b:ac Abe B}. Let
k,Cy,aq,A,c1,C be positive constants. We say that F;, satisfies Condition
C2 with parameters (k,C, a1, A, c;,C) if the following holds.

Condition C2. (1) For any z € D,,, F,, is analytic on the disk B(z,2) with
probability 1 and

EN*21 N2501 S,

where N is the number of zeros of F), in the disk B(z, 1). We note that throughout
this paper, if F}, is identically 0, we adopt the (admittedly artificial) convention that
F}, has no roots in C.

(2) Anti-concentration: For every z € D,,, with probability at least 1 — C’é;?,
there exists 2’ € B(z,1/100) for which |F,(2)| > exp(—4,,“").

(3) Boundedness: For any z € D,,, with probability at least 1 — C62), | F, (w)| <
exp(d,,") for all w € B(z,2).
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(4) Delocalization: For every z € Dy, + B(0, 1), it holds that Y, |¢;(2) >0
and forevery i =1,...,n,
|¢i(2)]
> j-1105(2)?

<o

(5) Derivative growth: For any real number x € D,, + B(0,1),

Z|¢j |2 <05 CIZ|¢J 7

sup |¢5j(2)|* < C9, Z EACHI

j=1

n

j=1 ZEB(SCJ)

and

Z\E@ sup |¢)(2)] < €5,

z€B(z,1)

Remark 2.1. While Condition C2 still involves the random variables &;, in the
verification of these conditions, we only need to use basic information about the
mean of these variables. On the other hand, the type of arguments one needs to use
in the verification depends strongly on the functions ¢;.

Remark 2.2. The last Condition C2(5) is important only in the study of real
roots; in particular, it is used to prove the repulsion of the real roots (Lemma 8.5).
It can be ignored in the study of complex roots.

Let us now comment on the verification of Condition C2 in practice.

Remark 2.3. Typically, we assume 9,, tends to zero with n. We transform the
functions so that the expectation of NV is of order 1 where NV is the number of roots
of F,, in a disk B(z,1), z € D,,. With this in mind, the first condition is a large
deviation estimate on N and can be proved using standard large deviation tools
combined with classical complex analytic estimates such as Jensen’s inequality.
The third condition (boundedness) is also a large deviation statement and can be
dealt with using standard tools, since for any fixed w, F},(w) is a sum of indepen-
dent random variables.

The two Conditions C2(4) and C2(5) are deterministic properties of the func-
tions ¢; and hold for many natural classes of functions. The forth condition (delo-
calization) simply says that in the vector (¢;(z))}, no coordinate dominates. The
fifth condition asserts that the first and second derivatives of ¢; do not exceed the
value of the function itself by a large multiplicative factor, in an average sense.
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Checking these conditions is usually a routine task. Furthermore, the proof allows
us to easily modify these conditions, if necessary.

The second (anti-concentration) condition is the one that may require some
work. However, this condition is trivial if (some of) the random variables &; have
continuous distributions with bounded density. For instance, if ¢; = 1 (constant
function) and &; has a continuous distribution with bounded density, then the re-
quired anti-concentration property holds trivially by conditioning on the rest of the
random variables (which can have arbitrary distributions). There is a sizable liter-
ature focusing on continuous ensembles, and our results allow us to recover, in a
straightforward manner, a number of existing results, whose original proofs were
quite technical; see Sections 4 and 6 for examples.

2.3. Results. Given the assumptions discussed in the previous section, we
are now ready to state our universality theorems.

Definition 2.4. For any function G : R¥ — R and any natural number a, we
define || V2G|, to be the supremum over = € R¥ of the absolute value of all partial
derivatives of total order a of G at z. For a function G : R* x C! — C, we define
| VG|, to be the maximum of ||V¢G]|., and ||V?Gy]|.., where G, G, : R¥+2! —
R are the real and imaginary parts of G:

Gl(ajl,...,a:k,ul,...,ul,vl,...,w) :RC(G(ZL‘l,...,I‘k,Ul —I—ivl,...,ul+ivl)),

Gz(ml,...,mk,ul,...,ul,vl,...,vl) :Im(G(xl,...,xk,ul +z’vl,...,ul+z’vl)).

THEOREM 2.5. (General complex universality) Assume that the coefficients &;
and &; satisfy Condition C1 for some constants Ny, T,e. Let oy, Cy be positive con-
stants and k be a positive integer. Set A := 2kCy + G5 and ¢ := %. Assume
that there exists a constant C > 0 such that the random functions F,, and F, sat-
isfy Conditions C2(1)-C2(4) with parameters (k,C,ay, A, c,C). Then there exist
positive constants C', ¢ depending only on the constants in Conditions C1 and C2
(but not on 6,, D,, and n) such that the following holds.

For any complex numbers z\,. ..,z in D, and any function G : C* — C sup-
ported on Hle B(z;,1/100) with continuous derivatives up to order 2k + 4 and

VG, < 1forall 0 <a<2k+4, we have

where the first sum runs over all k-tuples ((;,, ..., (i, ) of the roots (1,(a, ... of Fy,
and the second sum runs over all k-tuples (511 Yee ,fzk) of the roots C1,Ca, ... of Fy,.

As an example for the summation in (3), if £ =2 and F;, only has two roots (;

and (2, then the first sum is G((1,¢1) + G(¢1, (&) + G(G,G) + G((, ().
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THEOREM 2.6. (General real universality) Assume that ¢;(R) C R and &; and
& are real random variables that satisfy Condition CI for some constants Ny, T, €.
Let i, C be positive constants and k,l be nonnegative integers with k+1 > 1.
Set A=2(k+1+2)(C1+2)+ %5 and ¢\ = 1m0y
constant C > 0 such that the mndom functions F,, and F,, satisfy Condition C2
with parameters (k+1,C1,aq,A,c1,C). Then there exist positive constants C', ¢
depending only on k,l and the constants in Conditions C1 and C2 (but not on d,,
D,, and n) such that the following holds.

For any real numbers xy,...,xy, complex numbers zy,..., 2, all of which are
in D, and any function G : RF x C' — C supported on Hle[mi —1/100,z; +
1/100] x Hl,l B(z;,1/100) with continuous derivatives up to order 2(k +1) + 4
and ||V“GHOO <l1forall0<a<2(k+1)+4, we have

. Assume that there exists a

‘EZG(CZ'17"'>Cik7<j17"'>le) _EZG(&JN"'7§ik7g~j17"'7§jl) < C/(chm

where the first sum runs over all (k+1)-tuples (G,...,GirsCjiy---,Gj) € RF x
(Cl+ of the roots (1,(a,... of F,, and the second sum runs over all (k +1)-tuples

(fil,...,@-k,fjl,...,fjl) EIRI“‘/’X(Cl+ of the roots fl,fz,...ofﬁ'n.

Remark 2.7. The specific values of A and ¢; in both theorems are chosen for
the sake of explicitness. The theorems hold for any bigger A and any smaller cr.
The constant ¢ in both theorems can be chosen to be ¢;, namely -~ T kz and

109(k+l)
respectively. We make no attempt to optimize these constants.

2.4. Main ideas and technical novelties.

2.4.1. Main ideas. Let us consider the simplest setting where k =1, =10
and we need to show

ﬁéEG@@::iéEG(@)+o@ﬁ)

i=1
where the (; (and the fi) are the roots of F), (and F},, respectively) and G is a

(smooth) test function supported on a disk B(zp,1/100).
Our starting point is the Green’s formula, which asserts that

G@:i/mmmmm
27T(C

By change of variables, this implies that for all 4,

G(G) = 5 [ Togl: = CIAG(:)d
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which, in turn, yields

1
ZZ:EG((Z-) = gE/Clog

1

= —E/ log‘Fn(z)‘AG(z)dz.
27 ) B(z0,1/100)

n

[IG-¢)

i=1

AG(z)dz

An obvious, and major, technical difficulty here is that the logarithmic function
has a singularity at 0. This, naturally, leads to the anti-concentration issue that we
discussed earlier, namely we need to bound the probability that | F,,(z)] is close to
zero. Condition C2(2) has been introduced to address this issue.

Let us assume, for a moment, that the singularity problem has been handled
properly (we will discuss the anti-concentration property shortly). Then, by using
Conditions C2(1)-C2(3), we can show that the function F}, is nice enough that we
can replace log |F},| by K(F,) where K is a bounded smooth function. The key
argument of this part is to bound the error term, which turns out to be relatively
simple.

The task is now reduced to showing that

E/B(zo,l/loo) K (Fu(2)) AG(2)dz _E/B(zo,l/lo()) K(F(2))AG(z)dz = O(8°).

Because of the boundedness of G, for each z € B(zp,1/100), it suffices to
show that

EK (F,(2)) —EK(F(2)) = 0(8°).

Since for each fixed z, F,,(z) is a sum of independent random variables, the
desired bound can be viewed, in some sense, as a quantitative version of the Cen-
tral Limit Theorem. We will actually prove it by the Lindeberg swapping method,
which, by now, is a standard tool for proving local universality.

Generalizing the whole scheme to the general case of k and [ requires several
additional technical steps, but the spirit of the method remains the same.

2.4.2. Comparison with earlier papers [11, 58]. Our method differs from
that of [58] at essential steps. The first key idea in [58] is to handle the integral

1

—E/ log |F,(2)|AG(2)dz
27 JB(z,1/100) g Fn(2)|AG(2)

by arandom Riemann sum. One tries to approximate this integration by = (f(z1) +
-+++ f(zm)), where z; are iid random points sampled from the disk, m is a properly
chosen parameter which tends to infinity with n, c is a normalizing constant, and
fi=1log|F,|AG.
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With that approach, one faces two major technical tasks. The first (and harder
one) is to control the error term in the approximation. This leads to the problem of
estimating the variance in the sampling process. The other task is to prove a com-
parison estimate for the random vector (f(z1),..., f(zn)), where we now view the
points zj,...,2y, as fixed, with the randomness coming from F,,(z). This, again,
can be done using a Lindeberg type argument (applying to high dimensional set-
ting).

Our new proof avoids this sampling argument completely, making the argu-
ment much shorter and more direct. For instance, the proof of Theorem 2.5, barring
some lemmas in the appendix, is now only 3 pages.

Let us now discuss the critical anti-concentration property. In practice, it has
been a major issue to prove that a random function satisfies the anti-concentration
phenomenon in some way. (As pointed out earlier, this is needed in order to address
the singularity problem concerning the logarithmic function.)

In earlier papers [58, 11], every class of random (algebraic) polynomials re-
quired a different proof. In [58], for Weyl and elliptic polynomials, the authors
used Littlewood-Offord arguments for lacunary sequences. In the same paper, the
proof for Kac polynomials required a much more sophisticated argument, based on
the Inverse Littlewood-Offord theory (see Nguyen-Vu [42]) and a weak version of
the quantitative (Gromov) rigidity theorem (see Shalom-Tao [50]). However, this
proof does not hold for the derivatives of Kac polynomials and random polynomi-
als with slowly growing coefficients. In order to handle these classes, in [11], the
authors needed to use a beautiful result on log-integrability by Nazarov-Nishry-
Sodin [39], a very recent development. However, none of these tools works for
random trigonometric polynomials, whose roots behave quite differently.

An important new point in our proof is that we require a much weaker anti-
concentration property than in previous papers. We only require that F},(z), as a
random variable, satisfies the anti-concentration for only one point z in the whole
neighborhood, while in [58] one requires anti-concentration to hold for most points
in the same neighborhood. (Notice that since we are taking an integration with re-
spect to z, this earlier requirement from [58] looks natural.) The key to this ob-
servation is our Lemma 8.2, which asserts that under favorable conditions, a lower
bound on |F,,(w)| guarantees a weaker, but still useful, lower bound for |F,(z)]
for any z in a neighborhood of w.

Building upon this new observation, we have developed a novel method (based
on old results of Turdn and Haldsz) to verify the anti-concentration property in a
simple and robust manner. This effort leads to Lemma 9.2, which we can use,
in a rather straightforward way, to prove the desired anti-concentration property
for all ensembles of random functions discussed in this paper (including all the
algebraic polynomials discussed above, random trigonometric polynomials with
general coefficients, and a very recent ensemble studied by Flasche-Kabluchko
[20D).
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3. Application: Universality for random trigonometric polynomials. In
this section, we apply our theorems to study random trigonometric polynomials of
the following form

Py(x) = cj&cos(ja) + Y djn;sin(jx)

J=0 J=1

where ¢; and d; are deterministic coefficients, and &o,&,...,&, and 7q,...,7, are
independent random variables with unit variance. All of the ¢;,d;,{; and n; may
depend on n.

Most of the existing literature deals with the special case ¢; =d; =1 or ¢; = 1,
d; = 0 for every i. The generality of our study enables us to consider more general
coefficients. All we need to assume about the coefficients c;,d; is the following:

Condition C3. There exist positive constants 77,c¢ and an interval Zy C
{1,...,n} of size at least cn such that

4) |ci] 2710gagn{|cj|,|dj|} for all i € Zy.

With regard to the random variables, we assume that they have mean 0, except
for finitely many of them whose mean can be as large as n'/2+°(1)_ Specifically, we
assume

Condition C4. There is a constant Ny > 0 such that for i > Ny, E¢; =En; =0
and for 0 < i < Ny, |E&;| <n™, and |[En;| <n™, where 79 := 1/2+ 10" e,

The ¢ in this condition is the € in Condition C1. The constant 7 is not opti-
mal but we make no attempt to improve it. We use the same notation Ny in both
Condition C4 and Condition C1, as we can always replace two different Ny by
their maximum. The assumption that Z; is an interval is only used in the following
simple lemma.

LEMMA 3.1. Let Iy be an interval in {1, ... ,n} of length Bn, for some constant
B > 0. Then there is a constant 3’ > 0 such that for any real number a, the set Ty
contains a subset J, of size at least 'n, where mingez{|2aj — 2k + 1)w|} > 5
forall j € J,.

Let
n n
P,(z) = Z ci&jcos(jx) + Z d;f;sin(jx)
§=0 j=1
where &,&1,...,&, and 7. . , 7}, are some other independent random variables.

THEOREM 3.2. (Universality for trigonometric polynomials) Let k,l be non-
negative integers. Assume that the real coefficients c; and d; satisfy Condition
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C3 and the two sequences of real random variables (&y,...,n,M1,---,0n) and
(€0s- - EnyTits - . -, Tin) satisfy Conditions C1 and C4. Then for any positive constant
C, there exist positive constants C',c depending only on C,k,l and the constants
in Conditions C1, C3, and C4 such that the following holds.

For any real numbers x1,...,x, and complex numbers zy,...,z such that
|Tm(z;)| < C/n forall 1 < j <1, and for any function G : RF x C! — C supported
on [T [wi = 1/n, 2 +1/n] x Hé-:l B(zj,1/n) with continuous derivatives up to
order 2(k+1)+4 and |V°G||., < n® forall 0 < a <2(k+1)+4, we have

‘EZG(CZ-I,...,Cik,CjI,...,le) —EZG(@”...,@k,fjl,...,@l)( <C'ne,

where the first sum runs over all (k +1)-tuples (Ci\y-..,CiyCry---5Ci) € RE
(CNl+ of thf roots {1,@, ... of Py, and the second~ sum runs over all (k+1)-tuples
(Givs-sGigs Cirs--sGjy) € RF x (Cl+ of the roots (1,(a, ... of P,.

To the best of our knowledge, the above theorems seem to be the first uni-
versality results concerning local statistics of the roots of random trigonometric
polynomials. To make a comparison to existing literature, let us focus on the dis-
tribution of real roots, which is the case ¥ = 1,/ = 0 in Theorem 3.2.

The number of real roots has been a main focus of the study of random trigono-
metric polynomials. The Gaussian setting has been investigated by a number of re-
searchers, including Dunnage [13], Sanbandham [48], Das [9], Wilkins [60], Edel-
man and Kostlan [14] and many others. One can compute an exact answer for the
expectation using either Kac-Rice formula or Edelman-Kostlan formula [14].

For the non-Gaussian case, little has been known until very recently. Angst
and Poly [1], in a recent preprint, proved the asymptotics of the mean number of
roots of P, in a fixed interval [a,b] under the assumptions of finite fifth moment
and a Cramer-type condition. Their approach introduced a novel way to work with
the Kac-Rice formula which had been considered to be difficult in discrete set-
tings. Using an approach originated by Erdos-Offord [15] and later developed by
Ibragimov-Maslova [27] [28], Flasche [19] extended the result in [1] with assump-
tions on the first two moments only. Let Np,_ (a,b) denote the number of real roots
of P, in an interval [a,b].

THEOREM 3.3. (Flasche [19]) Let u € R and 0 < a < b < 27 be fixed numbers.
Let Py(x) = uy/n+ 377 o&jcos(ja) + D5 m;sin(jx) where & and n;, j €N,
are iid random variables with mean 0 and variance 1. Then

ENp,(a,b) b—a <u2>

li
m B

= ex

Notice that in this theorem, the interval [a, b] contains a linear number of roots.
For smaller intervals, a few years ago, Azais and coauthors [2] showed that if £; and
7; are iid with a smooth density function, then in an interval of size ©(1/n), the
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number of real zeros converges in distribution to that of a suitable Gaussian process
(and is thus universal). In an even more recent paper [29], Iksanov-Kabluchko-
Marynych removed the assumption of smooth density, using a different method.

THEOREM 3.4. (Iksanov-Kabluchko-Marynych [29]) Let
n n
P,(x)= Zgj cos(jx)+ an sin(jz)
§=0 j=1

where (§5,m;), j €N, are iid real random vectors with mean 0 and unit covariance
matrix. Let (sy) be any sequence of real numbers and [a,b] C R a fixed interval.
Then

a b
Np, <Sn +—85pt _> i> Nz(a,b)
n n n—roe
where (Z(t))er is the stationary Gaussian process with mean 0 and covariance
matrix
sin(t—s) .
Cov(Z(t),Z(s)) = t—s i s
1 ift=s.

In all of these previous works, the coefficients ¢;,d; are: ¢; =d; =1 or ¢; = 1,
d; = 0. Our setting is more general, as we only require a linear fraction of the ¢; to
be sufficiently large and allow the rest of the (smaller) coefficients to be arbitrary.

Our result implies the following corollary concerning the number of real roots.

THEOREM 3.5. Under the assumptions of Theorem 3.2, there exist positive
constants C' and c such that for any n and for any numbers a,, < b,, we have

‘ENPTL (anybn) - Ean (an7bn)‘

(by, —an)n

1
< 14+ —.
<Cn < +(bn—an)n>

By using the Kac-Rice formula (Proposition 10.1) for the Gaussian case, we
obtain the following precise estimate.

COROLLARY 3.6. Let C,e and 1 be positive constants. Let —C < u, < C be
a deterministic number. Let

n n n
Z A+ Z cj&jcos(jz) + Z cjn;sin(jz)
=0 =0 =1

where §; and n;, j < n, are independent (not necessarily identically distributed)
real random variables with mean 0, variance 1 and (2+ ¢)-moments bounded by
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C, and the real coefficients c; satisfy condition C3. Then for any numbers a,, < by,
we have

bn_an

no2i2 2
ENp (ap,b,) = ZJ*O i exp( Y

>0 _7n> +0(n™%) ((bn — an)n +1)

where the positive constant c and the implicit constant depend only on C,e and T.

™

This corollary extends both Theorems 3.3 and 3.4 in the sense that it holds for
general coefficients ¢;, d; and intervals of all scales. It does not seem that the meth-
ods used in these papers can cover the same range. On the other hand, our random
coefficients are required to have bounded (2 + ¢)-moments. It is an interesting open
problem to see to what extent this assumption is necessary.

Remark 3.7. In the proof, we will show that Corollary 3.6 holds for a more
general case in which

n Ny
Zcf (un—i-Zuj “cos(jr) +Zvj “sin(jz )
=0 =0

(5)
+ Z ci€jcos(jz) + Z c;jn;sin(jx)

J=0 J=1

where Np,a > 0 are any constants and —C' < u;,v; < C are deterministic numbers
that can depend on n. This means that the result is applicable to not only the number
of zeros of P,, but also the number of intersections between P,, and a deterministic
trigonometric polynomial

n Ny
> <u§1+2u] “cos(jx +Z”J “sin(jx )
=0 =0

where uﬁl, u; and v; are bounded deterministic numbers. To see this, one only
needs to apply the result to the random polynomial P, — Q.

Now let us go back to the special case with ¢; =d; =1

n n
x) = Z{i cos(ix) + Zm sin(ix).
i=0 i=1
By applying Corollary 3.6 directly to the derivatives of F,,, we get the follow-

ing result.

COROLLARY 3.8. Let k be a nonnegative integer and C' be a positive constant.
Assume that the random variables &; and n;, © < n, are independent (not necessarily
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identically distributed) real random variables with mean 0, variance I and (2+¢)-
moments bounded by C. For any numbers a,, < by, the expected number of real
zeros of the kth derivative of P, in an interval [ay,,by,] is

2k+1 (by, —ap)n .
ENR(lk)(an,bn) “\ 213 - +0(n"%) ((bp— an)n+1)

where the positive constant ¢ and the implicit constant depend only on k,C and e.

The key to our proof is the new technique to verify anti-concentration, which
we discussed at the end of the Introduction (see also Remark 2.3) and at the end of
the previous section. For details, see Section 9.

4. Application: Universality for Kac polynomials. In this section, we ap-
ply our result to Kac polynomials,

P, (x)= Z &t
=0

where &y,&1,...,&, are iid copies of a real random variable ¢ with mean zero and
unit variance. This is perhaps the most studied model of random polynomials. In-
deed, the starting point of the theory of random functions was a series of papers in
the early 1900s examining the number of real roots of the Kac polynomials.

The first rigorous work on random polynomials was due to Bloch and Polya in
1932 [7], who considered the Kac polynomial with £ being Rademacher, namely
P(( =1) =P({ = —1) = 1/2. In what follows, we denote by N,, ¢ the number
of real roots of P, (x). Next came the ground-breaking series of papers by Little-
wood and Offord [37, 38, 36] in the early 1940s, which, to the surprise of many
mathematicians at the time, showed that V,, ¢ is typically poly-logarithmic in n.

THEOREM 4.1. (Littlewood-Offord) For & being Rademacher, Gaussian, or
uniform on [—1,1],

logn

< Ny ¢ <log?
loglogn — g =108 T

with probability 1 —o(1).

During more or less the same time, Kac [32] discovered his famous formula
for the density function p(t) of NV, ¢

p(t) = /: lylp(t,0,y)dy,

where p(t,x,y) is the joint probability density of P, (¢) = x and the derivative
P(t) =y.
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Consequently,

©) EN,.¢ = / dt / ylp(t,0.5)dy.

In the Gaussian case (£ is Gaussian), one can compute the joint distribution of
P,(t) and P (t) rather easily. Kac showed in [32] that

[ 1 (n+1)22n 2
ENn,Gauss: ;/w\/(tz—l)z + (t2n+2—1)2dt: ;—1—0(1) logn.

In his original paper [32], Kac thought that his formula would lead to the same
estimate for ENV,, ¢ for all other random variables &. It has turned out not to be
the case, as the right-hand side of (6) is often hard to compute, especially when
¢ is discrete (Rademacher for instance). Technically, the computation of the joint
distribution of P, (t) and P/ (t) is easy in the Gaussian case, thanks to special
properties of the Gaussian distribution, but can pose a great challenge in general.
Kac admitted this in a later paper [33] in which he managed to push his method to
treat the case £ being uniform in [—1, 1], using analytic tools. A further extension
was made by Stevens [56], who evaluated Kac’s formula for a large class of &
having continuous and smooth distributions with certain regularity properties (see
[56, p. 457] for details). Since the distributions are smooth, the two later results
follow rather easily from our universality results; see the discussion at the end of

the last section and Remark 2.3; we leave the routine verification as an exercise for
the interested reader.

The computation of EN,, ¢ for discrete random variables £ required a con-
siderable effort. It took more than 10 years until Erdos and Offord [15] found a
completely new approach to handle the Rademacher case, proving the following.

THEOREM 4.2. [15] Let &; be iid Rademacher random variables. Then

2
Nng = —logn+ o((logn)**loglogn)

with probability at least 1 — 0( \/logllm).

The argument of Erdos and Offord is combinatorial and very delicate, even by
today’s standards. Their main idea is to approximate the number of roots by the
number of sign changes in P,(z1),...,P,(z) where (x1,...,2) is a carefully
chosen deterministic sequence of points of length k = (2 +0(1)) log n. The authors
showed that with high probability, almost every interval (z;,x;;) contains exactly
one root, and used this fact to prove Theorem 4.2.

Our main result in this section is the following universality statement.
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THEOREM 4.3. (Universality for Kac polynomials) Let k,l be nonnegative
integers with k41> 1. Assume that &, ... &, and &, ... &, are real random vari-
ables with mean 0, satisfying Condition CI and the polynomials P,, P, are Kac
polynomials with respect to these variables. Then there exist positive constants
C',c depending only on k,l and the constants in Condition CI such that the fol-
lowing holds.

For every 0 < 0,, < 1, for any real numbers x1,...,xy, and complex numbers
215 with 1 =20, <|x;|,|2;| <1=0,41/n foralli, j, and for any function G
R¥ x C! — C supported on [, [:— 10730, 2+ 10736, x ngl B(zj,10730,,)
with continuous derivatives up to order 2(k+1)+4 and ||V°G||., < (0, +1/n)"¢
forall 0 <a <2(k-+1)+4, we have

‘EZG(CZ'N"WQMCJ'U'“7<jl) _EZG(@n»CNZk?CN]n»CN]l)‘
<0+ C'n,

where the first sum runs over all (k+1)-tuples (G, .., GipsCjis---,Gj) € RF x
(CfJr of thf roots C1>C~27 ... of Py, and the second~ sum runs over all (k+1)-tuples
(CirseGigr Girae-nGjy) € RF x (Cl+ of the roots (1,Ca, ... of P,.

Remark 4.4. Theorem 4.3 provides universality result for the polynomial P,
on the disk B(0,1+ 1/n). For the complement of this disk, consider Q,,(z) :=
2" P,(z~") which is another Kac polynomial. Since the roots of @,, are just the
reciprocal of the roots of P,, the universality of @),, in B(0, 1) implies the univer-
sality of P, outside the disk B(0,1).

As a corollary, we get the following result on the number of real roots of these
polynomials which recovers the main result of Do and the authors in [11].

COROLLARY 4.5. Let C be a positive constant. Assume that the random vari-
ables &; are independent (not necessarily identically distributed) real random vari-
ables with mean 0, variance 1 and (2 + €)-moments bounded by C'. Then

ENp (R) = %logn+0(l)

where the implicit constant depends only on C and ¢.

Theorem 4.3 strengthens an earlier result of Tao and the second author [58].
The result in [58] only covers the bulk of the spectrum, namely the region 1 —n~° <
|z| <14 n~°. Restricting to the number of real roots, it yields

ENp (R)=0O(logn)

instead of the more precise (and optimal) estimate in Corollary 4.5. Another new
feature is that our result also yields sharp estimates for the size of level sets {z € C :
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P, (z) = a}, for any fixed a, since we can allow that in Theorem 4.3 and Corollary
4.5, & (and in fact any finite number of ¢;) has non-zero, bounded mean. Our proofs
work automatically under this extension. A version of Corollary 4.5 is obtained
earlier in [41] using a different approach that combines the local universality in the
bulk and a comparison of the number of real roots of P, with that of P, for n’
much larger than n.

The proof in [58] made use of a deep anti-concentration lemma [58,
Lemma 14.1] whose proof relies on the Inverse Littlewood-Offord theory and
a weak quantitative version of Gromov’s theorem. The proof we will provide
here is simple and almost identical to the one used to treat random trigonometric
polynomials in the last section. For random variables having continuous distri-
butions (such as the cases treated by Kac and Stevens mentioned above), the
anti-concentration property (see Remark 2.3) is immediate.

Remark 4.6. One can routinely modify the proofs of Theorem 4.3 and Corol-
lary 4.5 to show that these results hold for more general settings. For example, the
proofs can be used to show that these results apply for

n
=) ci&a’
i=0

where &; are independent (not necessarily identically distributed) random variables
satisfying Condition C1 with zero mean and the deterministic coefficients ¢; grow
polynomially. Specifically, these results hold for derivatives of the Kac polynomials
of any given order. We leave the details to the interested reader. The aforementioned
results for this general version were proven in the previous work [11] using much
more involved tools and arguments.

We defer the proofs of Theorem 4.3 and Corollary 4.5 to Section 11.

5. Application: Universality for Weyl series. In this section, we discuss
an application of our main theorems to Weyl series

i’:&

where {; are independent complex random variables satisfying the matching condi-
tion C1 with the §; being standard complex Gaussian random variables with density

ﬂ\

2 . . .
Le=I2I" In the literature, Weyl series are also referred to as flat series.

The flat series P(z) = Z;’ 0 \F is also known as the flat Gaussian analytic
function and has been studied intensively over the past few decades. See, for exam-
ple, [26, 51, 52], and the references therein. Using the Edelman-Kostlan formula
[14], one can show that for any Borel set B C C, the expected number of roots of
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Pin Bis
(7) ENp(B) = —m(B)

where m(B) is the Lebesgue measure of B.

For general random variables, to compare the distribution of the roots of PP with
that of P, Kabluchko and Zaporozhets (2014) [30] showed that with probability 1,
the rescaled empirical measure p,. defined by

1
pr(A) = - Z Lec ra
¢:P(¢)=0

converges vaguely as r — oo to the measure %m(), which is, as mentioned above,

the corresponding measure for P. We recall that a sequence of measures (i) is
said to converge vaguely to a measure /i if lim, ., [ fdu, = [ fdu for every con-
tinuous, compactly supported function f.

The aforementioned result of [30] is about the rescaled measures .. Thus,
it provides an asymptotically sharp estimate on the number of roots of P in large
domains of the form /7 B where r — o and B is a fixed “nice” measurable domain,
but does not give estimates for the number of roots in domains with fixed area, as
in (7).

Using our framework, we obtain the following result at the local scale.

THEOREM 5.1. (Universality for random flat series) Assume that the complex
random variables &; satisfy the matching condition C1 with the éj being standard
complex Gaussian random variables and the random variables Re(&p),Im(&p),
Re(&1),Im(&), ... are independent. Then there exist positive constants C,c de-
pending only on the constants in Condition C1 such that the following holds.

For any complex number zy and for any function G : C — C supported on
B(z, 1) with continuous derivatives up to order 6 and ||V*G||., < 1 for all 0 <
a < 6, we have

EY G(O)-EY G(Q)|<Clal ™,
where the first sum runs over all the roots (1,(3,... of P, and the second sum runs
over all the roots (,Ca, ... of P.

As a corollary, we obtain a sharp estimate on the number of roots in regions
with a fixed area.

COROLLARY 5.2. For any constant C > 0, let B be an angular square B =
{Re® : R € [r,r+1],0 € [09,00 + C/r]} for some numbers r > 0 and 6y. Under
the assumption of Theorem 5.1, we have

1
ENp(B) = ;m(B) +O(r ) asr— oo,
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where c and the implicit constant only depend on C' and the constants in Condition
Cl.

The angular square B can be replaced by a disk, square, or any other nice
domains whose indicator functions can be well approximated by smooth functions,
with only a nominal modification of the proof. Thus, we have a generalization of
(7) for flat series with general random coefficients.

To the best of our knowledge, Theorem 5.1 and Corollary 5.2 are new. We
present a short proof of these results in Section 12.

6. Application: Universality for elliptic polynomials. In this section, we
briefly illustrate how to apply our framework to elliptic polynomials

Po(z) = Z_; (’Z) g2,

where §; are independent real random variables satisfying the matching condition
C1 with the & ;j being standard real Gaussian random variables.

For the Gaussian case, the polynomial 5, (z) = 1" 1/ (%) &2" has exactly
\/n real roots in expectation (see, for example, [5, 14]). In their paper [6], among
other results, Bleher and Di extended this result to the non-Gaussian setting.

THEOREM 6.1. [6, Theorem 5.3] Let &; be iid random variables with mean
0 and variance 1. Assume furthermore that they are continuously distributed with
sufficiently smooth density. Then

i EVP(R)

n—soo n

=1

We refer the reader to the original paper [6] for the precise description of “suf-
ficiently smooth”. The same result with this assumption being removed is obtained
in a recent work of Flasche-Kabluchko [21].

Later, Tao and the second author in [58, Theorem 5.6] showed that the same
result holds when the random variables &; are only required to be independent with
mean 0, variance 1, and finite (2 4 ¢)-moments. Here we apply our framework
to recover these results assuming the more flexible Condition C1, which allows
a constant number of {; to have non-zero means. Let us first start with a local
universality result.

THEOREM 6.2. (Universality for random elliptic polynomials) Assume that
the real random variables §; are independent and satisfy the matching condition
C1 with the Ej being standard real Gaussian random variables. Then there exist
positive constants C, c depending only on the constants in Condition C1 such that
the following holds.
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For any real number xq with n~ /%t < |xo| < 1 and for any function G : C —
C supported on [xo —1/v/n,xo+ 1/+/n] with continuous derivatives up to order 6
and || VG|, < n%? for all 0 < a < 6, we have

EY_GO-EY_G(Q)|<cn,

where the first sum runs over all roots (1,(2,... of P,, and the second sum runs
over all the roots (1,(a, ... of P

Remark 6.3. 1If P, satisfies the assumptions of Theorem 6.2, so does the poly-
nomial Q,(2) = 2"P,(2) = Y1 g1/ () &n—iz". And since the roots of @, are
just the reciprocals of the roots of P, from the conclusion of Theorem 6.2 for

@, one can obtain the corresponding universality result of P, on the domain
1 < |zo| < nl/?e.

Thanks to this remark, our result proves universality on the domain n~1/2e <
|xo| < nl/2e, By showing that the contribution outside of this domain is negligible,
we obtain the following more quantitative version of Theorem 6.1.

COROLLARY 6.4. Under the assumption of Theorem 6.2, we have
ENp, (R) = /n+0(n'/?>7)
where c and the implicit constant only depend on the constants in Condition C1.

We give a short proof of these results in Section 13. We note that a correspond-
ing statement can be made concerning the expected number of real roots on a fixed
interval [a,b] C R, using the same proof.

7. Application: Universality for random Taylor series. Let I' denote the
Gamma function. In a recent paper [20], Flasche and Kabluchko considered the
following random series

Pla) =Y Gt
k=0

where the ¢ are real deterministic coefficients such that

for some constant y > 0 and some function L : (0,e0) — R satisfying L(¢) > 0 for
LA _

sufficiently large ¢ and lim;_,c N0}

1 for all A > 0. For example, L(z) is some
power of log z.



24 O.NGUYEN AND V. VU

We follow the terminology in [20] and call such a function L a slowly varying
function and the function P a random series with regularly varying coefficients.
The following is the main result of [20].

THEOREM 7.1. [20, Theorem 1.1] Assume that the random variables & are
iid real random variables with zero mean and unit variance. Then

ENP[()»T] :ﬂ
ril —log(1—7r) 27’

We reprove Theorem 7.1 under the (slightly different) assumption that the
random variables &, are independent (not necessarily identically distributed) real
random variables with zero mean, unit variance, and uniformly bounded (2 + ¢)-
moments. As usual, we allow that a few random variables have non-zero bounded
mean, and so our result also applies to level sets. Our method also yields a polyno-
mial rate of convergence.

As before, we obtain this as a corollary of a stronger theorem establishing the
local universality of the roots. Let

P(x) = ngckﬂck
k=0

where the &, are independent standard Gaussian.

THEOREM 7.2. (Universality for random series with regularly varying coeffi-
cients) Let k,l be nonnegative integers with k+1 > 1. Assume that the real random
variables §; are independent and satisfy the matching condition C1 with the éj be-
ing standard real Gaussian random variables. There exist positive constants C',c
depending only on the constants in Condition CI such that the following holds.

Let 0 < 0 < 1, and let xy,...,x}, be real numbers and z,...,z be complex
numbers satisfying 1 —26 < |z;|,|z;| <1—6 for all relevant i,j. Let G : RF x C! —
C by a function supported on Hle[mi —10736,2; +10734] x Hg-:l B(zj,10736)
with continuous derivatives up to order 2(k +1) +4 and ||V*G||., < 6~ ® for all
0<a<2(k+1)+4. Then

‘EZG(Cin'">Cik7gj17"'>le) _EZG(C~1177§2;€7§]177§]1)‘ < 0/507

where the first sum runs over all (k+1)-tuples (Gi,...,GCipsCjiy---,Gj) € RF x
CL. of the roots (1,(a,... of P, and the second sum runs over all (k+1)-tuples

(CZ-I,...,Cik,fjl,...,fjl) ER"‘“‘X(CI+ of the roots (1,Ca,. .. of P.

COROLLARY 7.3. Under the assumption of Theorem 7.2, there exist positive
constants C' and c such that the following hold.
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(1) Foranyr € (0,1),
|[ENp[0,r] —ENp[0,7]| < C

where Np[0,7] and Np[0,7] are the number of real roots of P and P in [0,7],
respectively.
(2) We have

ENp[0,7] 7

3{?—10;;(1—7«) S 2n

We prove Theorem 7.2 and Corollary 7.3 in Section 14.

After this paper has been finished, the authors become aware of a very recent
and interesting result of Flasche-Kabluchko [21] in which a completely different
method is developed to study systematically the elliptic polynomial, Weyl poly-
nomial, flat random analytic function, and hyperbolic random analytic function.
As Flasche and Kabluchko mentioned in their paper, a similar approach has been
applied to random trigonometric polynomials [19] and random Taylor series [20].
Here we draw a quick comparison of the results.

e The results in [21] prove the universality of the density functions, while our
results prove universality of all correlation functions. The authors of [21] do not
seem to be aware of our paper (which was put on the arxiv several months earlier)
and made a comparison with [58]. However, the main result of [58] is also about
universality of all correlation functions, but this critical point has been ignored.

e [21] and related papers require that the random variables are identically dis-
tributed with finite second moment; our method requires (2 + €)-moment, but the
variables do not need to be iid.

e The results in [19, 20, 21] provide the limits as n — e. Our results prove the
limits with quantitative error terms.

e Our method allows the coefficients to fluctuate. Specifically, in most of the
applications in the above sections, a result stated for a random function

F(a) = euon(2)
k

can readily be generalized (with no significant changes in the proofs) to a random
function

G(x) = crrdn(2),
p

where ¢ are deterministic coefficients that can take any values in the interval
[1/2,2] (say). In this respect, the method in [21] which relies on assumptions such
as [21, Equation (6)] may be more susceptible to coefficients’ fluctuations.
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8. Proof of Theorems 2.5 and 2.6. Before starting the proofs, let us men-
tion two Jensen’s inequalities that we use several times in this manuscript. It will be
clear in the context which Jensen’s inequality is used. The first, and perhaps more
popular, Jensen’s inequality relates the value of a convex function of an integral to
the integral of that convex function. In particular, for any convex function ¢ on the
real line and any real integrable random variable X, we have

¢(E(X)) <E¢(X).

The second Jensen’s inequality provides an upper bound on the number of roots
of an analytic function. Assume that f is an analytic function on an open domain
that contains the closed disk B(z, R). Then for any r < R, we have
log 4
(8) N(B(z,r)) < —

IOg 2Rr

where N (B(z,r)) is the number of roots (including multiplicities) of f in the open
disk B(z,r) and M = max,cp g |f(w)|, m = max,cp. . |f(w)|. For com-
pleteness, we include a short proof of this inequality in Appendix 15.5.

8.1. Proof of Theorem 2.5. We first state a few lemmas. The first lemma
reduces the theorem to the case when the function G splits, namely G is a product
of functions of a single variable. In many applications, G automatically takes this
form. This lemma was proved in [58]. We include a short proof in Appendix 15.1.

LEMMA 8.1. If Theorem 2.5 holds for every function G of the form
(9) G(wl,...,wm):Gl(wl)-'-Gk(wk)

where for each 1 <1i <k, G; : C — C is a function supported in B(z;,1/50) with
continuous derivatives up to order 3 and ||V°G;l|., < 1 for all 0 < a < 3, then it
holds for any function G satisfying the hypothesis of Theorem 2.5. Similarly for
Theorem 2.6.

The next lemma plays a critical role in our approach, as it shows that the sin-
gularity problem at O (see the discussion in the last subsection of Section 2) can be
dealt with assuming anti-concentration at a single point.

LEMMA 8.2. Let 0 < 0y, ¢y < 1 and let F,, be an entire function with | F,,(w)| >
exp(—0,,?) for some complex number w and |F,(z)| < exp(9,?) for all z €
B(w,3/2). Then

/ |log |F,,(2)]|dz < 7207 x 6,%.
B(w,1/2)
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The constant 720% = 518400 is for explicitness and plays no specific role. Both
this and the constant 6 in the exponent can be reduced but we make no attempt to
optimize these constants. The proof follows from ideas in [11] and is included in
Appendix 15.2.

The following lemma shows that the logarithm function satisfies a universality
property. It is a variant of a lemma in [58] and we include the proof in Appendix
15.3.

LEMMA 8.3. (Log-comparability) Assume that the coefficients &; and &; satisfy
Condition C1 for some constants Ny,e,T. Let ap be a positive constant and k be
a positive integer. Assume that there exists a constant C' > 0 such that the random
functions F), and E, satisfy Condition C2(4) with parameters oy and C. There exist
positive constants o and C' such that for any z,...,z; € D, + B(0,1/10), and
function K : C* — C with continuous derivatives up to order 3 and || V°K |, <
9,0 for all 0 < a < 3, we have

|EK (log |F(21)], ..., log |Fp(z)|) —EK (log | Fiu(21)|,- .., log | F (21)]) |
<%0,

3aqe
103 *

Remark 8.4. Following the proof, one can set ag =

Proof of Theorem 2.5. By Lemma 8.1, we can assume that the function G has
the form (9). We need to show that

(o) (o)

for some constant ¢ > 0. By Green’s formula, we have

(10) < ',

(11) ZGJ(Ci):/Clog‘Fn(z)|Hj(z)dZ:/ log | Fy, (uj)| Hj(uj)dus;,

B(z;,1/10)

where H;(z) = 5=/AG;(z). Note that supp(H;) C B(z;,1/10) and ||H;|_, <1
for all z € C, thanks to the assumption on G in Theorem 2.5. (As usual, || f||. =
sup,.c |f(2)].) When F, is identically 0, we assume by convention that the left-
hand side and the right-hand side are 0.

Let A be a sufficiently large constant and c¢; be a sufficiently small positive
constant. For this proof, it suffices to set ¢ := 3(;)‘# and A :=2kC; + %. This
choice, together with the value of o in Remark 8.4, yields the explicit values of A
and c; in the theorem.

Let ¢, :=100kc; . The power cin (10) can be chosen (quite generously) to be c;.

Let K : R — R be a smooth function with the following properties:

e K is supported on the interval [—24,, 1,26, 1].
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o K(x ) =z forall z € [—4,,%,4, ).

o |K@|.=0(5,%) forall 0 < a < 3 (where K is the Ith derivative of K).
o |[K(z)| <|x|forall z € R.

LetD:= H§:1 B(zj,1/10) and H (u) := H?ZlHj(uj) for u:= (uy,...,ug).
By (11), we have

k
E]] (Z@-(g)) /H Hlog\F (uj)|du= Ay + Ay
j=1 i

7j=1

where

e

A ::EAH(U)HK(log|Fn(uj)|)du,
1

j=

Ay = /H Hlog|F uj)| H (log|Fy(uj)]) | du.

Ead

Let A; and A, be the corresponding terms for £},. Our goal is to show that
(12) Al—l-Az—Al—Az:O((SfL).

By Lemma 8.3, we have A; — A; = O(6%'). We next show that both A, and
Aj are of order O(6%). It suffices to consider A, as the treatment of A, is similar.

Let Ap be the event on which the following two properties hold.

e Forall 1 <j <k, |F,(2})| > exp(—d,') for some 2} € B(z;,1/100).

o |F,(z)| <exp(6,) forall z € B(z;,2).

By Conditions C2(2) and C2(3), P(A§) < C54, where A§ is the complement
of Ap. We next break up A, as follows

k k
AzzE/FH(u) TT1og | Fu(uy)| - [ & (tog| Fa(u)]) | duts,
j=1 J=1

k k
+E/H(u)Hlog\Fn(uj)\du1A3—E/H HK log | F, (u; DdulAg
r 2l r iy

=:Az+ Ay — As.
For As, since || K||.. < 26,,°! by construction and A > 2ké;, we have
|As| <25, *P(Af) <206, =0(a1) = O(57)).

To bound Ay, from (11) and the boundedness of H;, we have

log |y (u;) [ Hj(uj)du;| < Np, (B(z,1/100)) =: Nj.

B(z;,1/100)
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By Holder’s inequality for products,

e

|Ag| < H (ENF14) """,

We bound each term on the right using Holder’s inequality as follows

ENj1y <0, P(AG) + (ENJT1 o, ) (R (Ag)) Y,

In our setting, A > kC)| + (k + 1)¢;, the first term on the right-hand
side is O(d%'). Moreover, Condition C2(1) implies that the second term is
O(P(AG)V 1Y = O(691). Thus, Ay = O(6%).

Finally, to bound Aj, we let B be the (random) set of all © € I' on which
|log|Fy(uj)|| > 6, for some j. Notice that if u = (ui,...,u;) ¢ B, then
K (log|Fy,(u;)|) = log|F,(uj)| by the properties of K and the definition of B.
Moreover, for u € B, | K (log|F,(u;)|)| < |[log|Fy,(u;)|| as | K (x)| < |z| for all x.
It follows that

k
Hlog | F ()]

j=1

15(u)dul 4,.

(13) | Az §2E/
T

By Holder’s inequality, the right-hand side is at most

1/2

k 2 1/2
E | |[]log|Fn(u))l| dula, [E/IB(u)dule] .
| T
7=1

By Lemma 8.2, on the event Ay, we have

(14) / | log | ()| *duy = O(6,57).
(2,,1/100)

It follows that

= 0(5,%).

k 2
Hlog |Fn(u])‘
[ e

On the other hand, by the definition of B,

/FIB(u)duIAO <1AO Z/ B(z;,1/100) Liog 7, )10, du])

Furthermore,

1 —eydu; S(Sicl/ log |F}, (2 Zdz'
/J;’(zj,l/lOO) ‘IOg‘Fn(“J)HZ(gn ! J B(Z],l/100)| | ( )H
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Using (14), we obtain

E / 15(u)dul 4y = O(6:516, %),
r
It follows that
|A3| :O(((S 6kcy X52615 6k‘cl)1/2) 0(561 6k‘cl) :O((Sgl)

as we set ¢; > 7kc;. The bounds on |Ajz|,|A4| and |As| together imply |Az| =
O(65}), concluding the proof. O

8.2. Proof of Theorem 2.6. By Lemma 8.1, it suffices to assume that G
can be decomposed into functions of single variables, namely

G(a;l,...,xk,zl,...,zl) :Hl(azl)...Hk(a;k)Gl(zl)...Gl(zl)

where the H; : R — C and G, : C — C are smooth functions supported on [z; —
1/50,x; 4 1/50] and B(z;,1/50) (respectively) and satisfying

[VEH;(2), |V Gi(2) < 1

foranyx € R, z€ Cand 0 < a < 3.
In other words, one needs to show that

(1) (1) (11) (117)

for some constants C’, ¢ > 0, where

Xi=Y Hi(G), Xi=) Hi(G), Y=Y Gi(G). Yi= Y Gi(G)

¢s€R CseR ¢s€Cy {s€Cy

(15)

(We use ¢ instead of ¢ to denote the exponent on the right-hand side, since we
reserve c for the exponent in Theorem 2.5, which we will use in the proof.)

The proof follows the ideas in [58]. The first step is to show that the number of
complex zeros near the real axis is small with high probability. Let c be the constant
exponent in Theorem 2.5 corresponding to k + [. Following Remark 2.7, we can

_ Q1 E
sel ¢ = {52

With this choice of ¢, we set ¢ := > and 7 := 4. Let us also

< __ae
100 — 107(k+1)
recall that in the statement of this theorem (Theorem 2.6), ¢ = o7, which is
109 (k+1)
. _ (&)
much smaller than ¢;: ¢| = T00(k 71)7 "

LEMMA 8.5. Under the assumptions of Theorem 2.6, we have

P(Np, B(z,7) >2) = O(y*/?), forallz € RN (D, + B(0,1/50))
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where the implicit constant depends only on the constants in Conditions Cl and
C2 but not on n, 6, D,, and x.

The power 3/2 in the above lemma is not critical, we only need something
strictly greater than 1.

Assuming this lemma, the rest of the proof is relatively simple. For every 1 <
i < k, consider the strip S; := [z; — 1/50,2; + 1/50] x [—v/4,~/4]. We can cover
S; by O(y~ 1) disks of the form B(z,7), where x € [x; — 1/50,z; + 1/50]. Since
F,, has real coefficients, if z is a root of F,, in S;\R, so is it conjugate z. Using
Lemma 8.5 and the union bound, we obtain

P(there is at least 1 (or equivalently 2) root(s) in SZ-\]R)
_ 0(77173/2) _ 0(71/2)‘

Define $;(z) := Hi(Re(z))qzb(mf’Yﬁ), where ¢ : R — [0,1] is a smooth func-
tion that is supported on [—1, 1], with ¢(0) = 1 and H(;S(a) Hoo =0(1)forall0<a<
3. It is easy to see that §); is a smooth function supported on S; with ||$);]| < 1,
and || V8] = O(y ) for0 < a < 3.

Set X; :=>_.9i(¢s) and D; := X; — X;. By the definitions of X; and X,
D, = chgéRﬁi(Cs)' Our general strategy is to use X; to approximate X;, then
apply Theorem 2.5 to X; and finish the proof using a triangle inequality.

From (16), D; = 0 with probability at least 1 — O('/?). Notice that by the
definition of D; and the fact that ||$);||. <1,

(16)

By (17) and Jensen’s inequality (8),

|D;| < Nr, B(xi,1/5) = O(Iogwergg;@ [Fo(w)| ~log__max Fa(2)]).
By Conditions C2(2) and C2(3), with probability at least 1 — O(57),
there exists z € B(z;,1/100) such that both terms on the right-hand side are
of order O(6,°'). Therefore, with probability at least 1 — O(524), we have
|D;| < Np, B(z,1/5) < C'6,,¢* for some constant C”. For the rest of this proof,
we denote N; := Np, B(z;,1/5).

Our next step is to bound E|D;|"*

. To start, we have

(18) E |Di|k+l < E(‘Di|k+l1Ni§C'ag"l) +E(Nz'k+lljvi>c'5;”1)'

Since D; = 0 with probability at least 1 — O(~'/?),

E(‘Di‘kﬂl ) — 0(57;01 (kJrl)le/z) — 0(57;01(k+l)+c2/2) _ 0(57011 (k+l)2)

N;<C"6,,°!

because c; > 4ci (k+1)2.
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For the second term in (18), we further break up the event N; > C’§, ' into
two events

Q:=6,">N;>C'5, and :=5,9 <N,
where (] is the constant in the statement of Theorem 2.6. We have
ENZ]C+IIQ] < 5;01 (k+l)P(Ql) _ 0(5;;1701 (k+l)) _ 0(57611 (k+l)2) '

Moreover, by Holder’s inequality,

EN' 1, < P(0) E=Es) (ENF21g.) s
= O(dA/ D) (ENFHI2Y, ) E

Under the assumption of Theorem 2.6, Condition C2(1) holds for the parameter
k +1, which provides EN*"21g, = O(1). As we set A to be much larger than ¢y,
it is easy to check that

ENZ“HIQz -0 (5;;1/(k:+l+2)) -0 (551 (k+l)2) '
Thus,

E(Np, B(z:,1/5))""1 O (§4/(1+2))

Ng, B(zi,1/5)>C"5," —

19
) — O (5507,

Combining all these bounds with (18), we obtain
E|Di|k+l _ O((Szl(k+l)2) )
Moreover, from the above bounds, we get

E[X|" <ENfT=EN[T1 _ 5o +EN[ Mo, +ENf g,
-0 (5;c1 (k+l)) ’

where the main contribution comes from the first term. Similarly, E|X;[F+! =
O(égcl (k+l))'

Next, foreach 1 < j <[, let &;(z) := G;(2)¢(Im(2)/v) where ¢ is a smooth
function on R supported on [1/2,e0) with ¢ = 1 on [1, ) and Hcpgf) = O(1) for
all0<ag <3.

Set 9); := >, 8;((s). By similar reasoning, we have E|Y); — Y;[F! =

O(67) (kH)Z) and

max {E[);|**LE[Y;[*) = 05,9 kD).
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Now, we show that the difference

() (1) (11 (112

is small. Using the “telescopic sum” argument, we decompose the difference inside
the absolute value sign into the sum of £ + [ differences, in each of which exactly
one of the Xy,..., X, Y1,...,Y; is replaced by its counterpart, and then use the
triangle inequality to finish. Let us bound the first difference; the argument for the
rest is the same. By Holder’s inequality and the previous bounds on D;, X;,Y; etc,

we have
k l k l
k l
E‘D |I<:+l ﬁ H E‘Xi‘kJrl ﬁ H E‘Y ‘k+l %
i= j=1
=0 <5gl<’f+l> 11 5,;1) =0(62).
k-+1—1 terms

Thus,

o () (1) - (1) (119 ot

We can obtain the same bound for the corresponding terms of F;,. Finally, from
Theorem 2.5, we have

(1)) o) ) -

The desired estimate now follows from the triangle inequality.

Proof of Lemma 8.5. The first step is to use Theorem 2.5 to reduce to the
Gaussian case. Borrowing ideas from [26, Chapter 2], we handle the Gaussian
case using Rouché’s theorem and various probabilistic estimates based on some
properties of the Gaussian distribution.

For this proof, we let &,...,&, be Gaussian random variables with unit vari-
ance and satisfying Efz =E¢; foreach 1 <i <n.

Let H : C — [0, 1] be a nonnegative smooth function supported on B(x,27),
such that H = 1 on B(x,7) and |V°H| < Cy *forall 0 <a < 8.
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Applying Theorem 2.5 to H, we obtain

P(Np,B(z,7) >2) <EY H(G)H(()
i
<EY H(G)H(()+0(5778).
i#j

(20)

The definition of + guarantees (via a trivial calculation) that O(65y~8) =
O(y 3/ 2), with room to spare. Thus, it remains to show

1) EY H(G)H(()=0(?).
2

Set N := N B(x,27); we bound the LHS of (21) from above by

(22) EN’1 o +EN(N—1)1

N>C'5, N<C'6, 1"

Using the same argument as in the proof of (19), we can show that

EN’1 Nscsa =0 (6A/(+142)) = O (43/2),

Thus, it remains to show that EN (N — 1)1 O(7%/?). Since

N<C'5,°0 =

EN(N —1)1 < C"?5,%P(N >2),

N<C'8,°!

it suffices to prove
(23) P(N >2) =P(N; B(z,27) >2) = 0(62+%3).

Thus, we have reduced the problem to the Gaussian setting. Let g(z) :=
F(x) + F!(x)(z — x) and p(2) := F,,(2) — g(z). By Condition C2(4), for any
fixed z, we have F),(x)F) (x) # 0 with probability 1. So, g(z) has exactly one
root. Thus, by Rouché’s theorem,

PN, B2) 22) <P(_min o)< _mox [9(2)])

In the rest of the proof, we bound the right-hand side. We are going to show
that with (appropriately) high probability, min,csp(s ) |9(2)| is not too small and
Max_cpp(z,24) [P(2)| is not too large.

For every z € B(x,47), we have p(2) = 7, &jv;(z) where v;(2) = ¢j(2) —
¢j(x) + (2 — )¢ (2). Thus

o ()| < |z—aP  sup \qb;f(w)\:()(vz sup |¢;f<w>|>.

weB(z,2y) weB(z,2y)
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By Condition C2(5),

[Ep(2) ( 2Z|E£J sup |¢;-/<z>|>

weB(x,1)
(24)
and
Var(p(2)) :O<74 sup |¢/-/(W)|2> =O<5ffzc‘ |¢'(33)|2>
(25) iz_;wEB(z,Z’y) ! ]z_:l !

=0 (5#2%‘ Var (F,,())).

Set t := 022~ /Var(E},(z)). The previous estimates show that [Ep(z)| =

O(t) and Var(p(z)) = O(t?5%') for all z € B(x,4v). We will show the following
concentration inequality

P( L, o)) > 31

z€0B(x,2y)

t2
—0(1 _ — O(~16/105201)
o )e"p< 100maxzeB<m,4,y)Var<p<z>>> O Te")

(26)

Set p(z) := p(z) — Ep(z). For any z € 9B(x,2v), by Cauchy’s integral for-
mula,

21 ‘— 0 27
_ plx+4vye?)|  db / _ 0\, do
< [ B <2 14yt Y
Ip(z)l_/o a2y S2 ) et Az

21 10
4~e* df
< max +/Var(p / [Pz +4ye”)| —.

weB(z,47) V/ Var(p(z + dyei?)) 2w

Hence, by Markov’s inequality,

P D >t
(. g, 1p(2)] > 1)

. » 2
< Eexp (/ZW |p x +4ye’ )‘ d_9> eftz/IOOmaxzeB(zyh) Var(p(z)).
0 10\/Var (P(z +4ei?)) 2
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Using Jensen’s inequality for convex functions and Fubini’s theorem, we ob-

tain
(et dye®)|  do\
Eexp / —
0 10y/Var(p(x + 4vyei®)) 2m

2 = 102
< [Meop (e tacl Y
0 100Var (p(z +4~e?)) ) 27

The right-hand side is O(1) by basic properties of the Gaussian distribution. (No-
tice that p(z), for any fixed z is a Gaussian random variable.) This proves (26).
Using the bound |[Ep(z)| = O(t) for all z € B(x,27), one concludes that with
probability at least 1 — O(~'0/1052¢1),

27 ma < Kt,
(27) x| Ip(2)] <

for some constant K > 0.
Now, we address g(z); since ¢ is a linear function with real coefficients, we
have

. . -, ,
Zeafg;gﬁzw)lg(é%')\ min{|g(z —27)|,|g(z +27)[},

which reduces the task to obtaining lower bounds for the two end points only.
Note that g(x 4 2+) is normally distributed with standard deviation

wherein the last two inequalities, we used the triangle inequality and then Condi-
tion C2(5). Note that by the definition of ¢,

Z¢2

Var (E,(z)) = to2eater,

Since g(x +27), as a random variable, is a real Gaussian with density bounded
2¢cy—cy
1 < On —, we have for any constant K > 0,
2\/Varg(x+2'y)

by

P(lg(z+27)| < Kt) = 0(5227) = O(624*/?).
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In the last inequality we used the fact that c; is set to be much larger than cy;
see the paragraph following (15).

We can prove a similar statement for g(z — 2y). Thus we can conclude that for
any constant K > 0,

28 P i < Kt ) =0(824%7).
(28) <Z€argg72w l9(2)] < > (02717)
Combining (28) and (27), we conclude the proof of Lemma 8.5. O

9. Proof of Theorem 3.2. In this section, we prove Theorem 3.2 by apply-
ing Theorem 2.6. By dividing the coefficients ¢; and d; by their maximum modulus,
it suffices to assume that maxo<;<n{|c;|,|d;|} = 1. For the sake of simplicity, we
assume all random variables have mean 0; the more general setting in Condition
C4 can be dealt with via a routine modification.

Our crucial new ingredient is the following lemma, which is a generalization
of a classical result of Turan [59].

LEMMA 9.1. [40, Chapter I] For i = \/—1, let
h .
p(t) =) are™', ar€C, A< A < <A ER.
k=0

Then for any interval J C R and any measurable subset & C J of positive measure,
we have

h
max [p(t)| < <%> sup [p(t)]

ted teE

where C'is an absolute constant.

We shall apply Theorem 2.6 to the function Fy,(2) := P,(10*Cz/n) and
the number of summands is 2n + 1 in place of n (so we only care about F}, where
k is odd). The corresponding parameters are dzy,41 := 1/n, and Dy, = {2 :
|Tm(2)| < 1/10*}. The functions ¢; in (1) are

¢1(2) = co,2(2) = c1€08(2), ..., Pni1(2) = ¢ co8(n2),
Oni2(2) =disin(z),...,¢an41(2) = dy sin(nz)
and the random variables £,...,&,41 in (1) will be &, ...,&q,M1,- - -, n, TESPEC-

tively. The constant 10* is chosen rather arbitrarily, any sufficiently large constant
would work.

To deduce Theorem 3.2 from Theorem 2.6, for this model, we set a; = 1/2
and C to be any constant larger than 1. We only need to show that for any posi-
tive constants A, ¢y, there exists a constant C' for which Condition C2 holds with
parameters (k,Cy, a1, A, ¢y, C).
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For Condition C2(1), notice that the periodic function P,, has at most 2n com-
plex zeros in the region [a,a+27) x R C C for any a € R. Indeed, let w = €%
then

:%<Z§k(w"+k+w —zzn kg k))
k=0

which is a polynomial of degree 2n in w and has at most 2n zeros. For each w there
is only one z in the above region that corresponds to w. Thus this condition holds
trivially for any constant C'; > 1, as the left-hand side of Condition C2(1) becomes
Zero.

Now we address (the critical) Condition C2(2). We will prove the following
stronger statement that for every positive constants ¢, A, there exists a constant
(' such that the following holds. For every complex number 2, there exists a real
number z such that [z — zo| < |Im(2)| + 1 and

P(|P(z)| < exp(—n™)) < C'n .

Let 29 = Re(29) and I = [zg — 1,29 + 1]. By conditioning on the random
variables 7; and replacing A by 2A, it suffices to show that there exists x € I for
which

(29) sup P <e ™| <C'n A2,

chfj cos(jz) —

Now let us recall the definition of Zj in Condition C3. We would like to point out
that in this part of the proof, we only use the fact that the size of Zy is of order
O(n).

We shall prove a more general version which will be useful for all of the re-
maining models in this manuscript.

LEMMA 9.2. Let £ be an index set of size N € N, and let (§;)jcs be inde-
pendent random variables satisfying the moment Condition CI(i). Let (e;);ce be
deterministic (real or complex) coefficients with |ej| > € for all j and for some
number & € R... Then for any A > 1, any interval I C R of length at least N~4,
there exists an x € I such that

Zejﬁj cos(jx) —

je&

sup P Z| <eNT14 | — 0, (N-A2)

ZeR

where the implicit constant depends only on A and the constants in Condition
ClI(i).
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Assuming this Lemma, we condition on the random variables (§;);¢7, and
apply the Lemma with £ :=Zg,e; := ¢;, N := |Zy| = ©(n) to obtain (29) directly
with & = ©(1).

Proof of Lemma 9.2. We will prove Lemma 9.2 in three steps. In the first (and
most important) step, we handle the case where &; are iid Rademacher. In the sec-
ond step, we handle the case where the & have symmetric distributions. In the final
step, we address the most general setting.

Step 1. &; are iid Rademacher (that is, P(§; = 1) = P(§; = —1) = 1/2). The
key ingredient in this step is the following inequality, which is a variant of a result
of Halasz [25]; see also [57, Cor. 7.16], [43, Cor. 6.3] for relevant estimates. Before
stating the result, we recall a definition of multi-sets: a multi-set is a collection of
unordered elements in which each element can appear more than once.

LEMMA 9.3. Letey,...,e, be independent Rademacher random variables. Let

ai,--.,an be real numbers and | be a fixed integer. Assume that there is a constant
a > 0 such that for any two different multi-sets {iy,...,iy } and {jy,...,ji} where
U'+1" <21, |ag +---+a;, —aj, — - —aj,| > a. Then
n
sup P Zajz—:j —Z|<an'| =0 (nil).
ZeR j=1

For the sake of completeness, we present a short proof of this lemma in Ap-
pendix 15.4.

There exists a subset £’ C £ of size at least half the size of £ such that either
foralli e &', |Re(e;)| > é/2 orforalli € &', |Im(e;)| > €/2. Since

P Zejfjcos(jx)—Z géN*MAZ
je&
<P ZRe(ej)ﬁjCOS(jx)—Re(Z) < EN716A2
je&
and
P Zejfjcos(jx)_z §5N716A2
je&
<P || Im(e;)¢ cos(jx) —Im(Z)| <eN 104" ||

je&
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we can, by conditioning on the ({;);¢¢ and replacing & by &', assume that the e;
are real and Z is real. This allows us to apply Lemma 9.3.

In order to apply Lemma 9.3, we first show that there exists an « € [ such that
for every 2 distinct multi-sets {ij,...,i4'} and {ji,...,jar} in & with A’ + A" <
2A, we have

A/ A//
(30) Zeit cos(ipx) — Zejt cos(jrx)| > EN164° N4,
t=1 t=1
Let us fix such two multi-sets and let

AII

AI
h(z) = Zeit cos(izx) — Zejt cos(jix).
t=1 t=1

Let E:={z € I : |h(z)| < N4’ N4}, Since h can be written in terms of expo-
nential polynomials with 4 A frequencies, we can apply Lemma 9.1 to obtain

7\ 4A
(31 max |h| < <—> sup |h|.
[o,m' | £ E‘ |

By the definition of E, the right-hand side is bounded from above by

44

To bound the left-hand side from below, observe from orthogonality of the func-
tions cos kx that

27
(32) 27 max |h|* > / \h|>dz > 7é?,
[0,27] 0
as all |e;| with ¢ € £ is at least €.

Therefore, from (31), we get |E| = Oa(N~*A+1/4). Since there are only
O(N?*) choices for the sets A’ and A", we conclude that every x in I, except for
a set of Lebesgue measure at most O 4 (N 241/4) = o 4 (|I|), satisfies (30).

To conclude the proof, we use (30) with Lemma 9.3. By setting a :=
eN 164" NA and | := A, Lemma 9.3 gives

(33) sup P

<ENTIA | — 0 (N,
ZeC

> ejéjeos(jr) - Z

je&

This proves Lemma 9.2 for the Rademacher case.

Step 2. In this step, we consider the case where random variables §; have
symmetric distributions. In this case, (£;); and ({;&;); have the same distribution
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where ¢; are independent Rademacher random variables that are independent of
the &;. Thus, the claimed statement is equivalent to

(34) zlé%P > ejéjejcos(jz) — Z <N | =04 (N4

je€
for some z € I.

The natural way to prove this is to use the (standard) conditioning argument,
one fixes all &; and uses the Rademacher variables as the only random source,
going back to Step 1. However, the situation here is more delicate, as x may not
be the same in each evaluation of £;. We handle this extra complication by proving
the stronger statement that

Zejﬁjsj cos(jr)—Z| < eN"164% | gy = O (NfA/2)

je&

(35) ][ sup P
I ZeR

where f, fdx = |Tllf1fdm.
The left-hand side is at most

Eiysup P
]ZI. (SJ)ZG% (51)

By Fubini’s theorem, it suffices to show that

2
<eNT1 | da.

> eiéjejeos(jz) — 2

je€

Zejﬁjsjcos(jx)—Z <eN~ 64 deOA(NfA/z)‘

je&

(36) E(ﬁj)][ sup P
1 ZeR

We first show that with high probability, there are © (V) indices j € £ such
that |£;] = ©(1), which is needed to guarantee (32). Assume, for a moment, that
P(|¢;| < d) > 1 —d for some small positive constant d. Since the random variables
&; are symmetric, they have mean 0. Using the boundedness of the (2+¢) central
moment of §; (Condition C1), and the fact that ; has variance 1, we have

e e\2/(24¢
E|§|* = 1 =E|§[" 1, jca + EI&1* g, 50 < &+ d/ T (E|g[7T) /)
< @4 g2 2/ 0k,

Thus, if d is small enough (depending on 7 and ¢), we have a contradiction.
Hence, there is a constant d > 0 such that P(|¢;| < d) < 1 —d. Now, by Chernoff’s
inequality, with probability at least 1 —e~©() there are at least ©(N) indices
J € & for which |¢;| > d. On the event that this happens, we condition on the ¢;
where |¢;| < d and use Step 1 to conclude that outside a subset of I of measure at
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most O 4 (N ~24%1/4), we have

supP > ejéjejcos(jz) — Z <N — 0, (NTA).

je&

Therefore, the left-hand side of (36) is at most

e OW) ][ ldz +O0a(N24714)|11) + 04 ( NAd:r> =0 (N-AT14
I I
=0y (NfA/z) ,
completing the proof for this case.

Step 3. Finally, we address the general case. Let ¢ ; be independent copies of &;,
j € &. Then the variables £ ;-’ =< ; are symmetric and have uniformly bounded
(2+ ¢)-moments. By Step 2, we have
2
— 7| <eN~1o¥

Zejﬁj cos(jz)

je&

<2ENT1 ) <04 (n )

E e;&; " cos(jr)

je&€

wherein the last inequality, we decompose the disk B(0,2eN~'%4%) into O(1)
disks of radius &N 164 (not necessarily centered at 0) before applying Step 2.
Taking square root of both sides, we obtain Lemma 9.2. U

The remaining conditions are easy to check. Condition C2(3) follows from the
following lemma.

LEMMA 9.4. For any positive constants A, ¢ and C, we have, with probability
at least 1 — O(n=4), log M < n®, where M := max{|P(z)| : |Im(z)| < C/n}.

Proof. Forevery 1 < j <n, we have |¢¥?| = e~ IIm(z) < o€ And so,

37 ma cosjzl|,|sinjz|p < =

G7 \Im(z)ls@fb,lgjgn{' sz ‘]Z|} =

Let B be the event on which |¢;| < nA/2+ for all 0 < j < n. Notice that on the
complement B¢ of B, log M = o(n') for any constant ¢; > 0. By Chebyshev’s
inequality (exploiting the fact that E|¢;|? = 1) and the union bound, we have

P(BY) < — =o(n ™),

completing the proof. U
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Finally Condition C2(4) follows from the following lemma:

LEMMA 9.5. For any constant C, there exists a constant C' > 0 such that for
every z with |Im(z)| < C/n,

|¢jl[cos(j2)| 1, —1/2 .
(38) ————=——<C'n" /7, forall0<j<mn,
V'S
and
(39) [dllsinGR)|  cop-1i2 forano<j<n
N N J<mn,

where S 1= Y75 |c;*|cos jz|* + 377 [d;[*|sinjiz|*.

Proof. Write z =: a + ib. Without loss of generality, assume that b > 0. By
(37), |cos(jz)] < C and |sin(jz)| < C for all 0 < j < mn, so it suffices to show
S :=Q(n). To achieve this bound on S, it suffices to show that Z; contains a subset
J of size ©(n) such that

(40) |cos(jz)| > c¢* forall j € J, for some positive constant ¢*.
Since b > 0 and j > 0, we have
2|cos(jz)| = eble 2042a L 1| > |w! + 1

where w := ¢~20+%1¢ By Condition C3 and Lemma 3.1, we can find a subset .J of
Ty of size ©(n) such that

in12aj — (2 1 >
ll‘cnéélﬂ aj— (2k+1)r|} > ¢

for some constant ¢ > 0 and all j € J. We can assume, without loss of generality,
that ¢ < 1/10 and this guarantees |cos(2aj) + 1| > ¢*/4.
Consider j € J,if 1 —e~2/* > ¢ /10 then by the triangle inequality,

jw? 41| = e~ 20?19 11| > 1 — | 20e99| = |e=210 — 1] > 2/ 10.

In the opposite case, e 2/* > 1 —¢?/10 > .99. Keeping in mind that ¢ < 1/10, we
have

A1) w4 1]> e 2P 41| — e 20— 1] > .99¢2 /4 — 2 /10 > 2 /10.
Thus, we achieved (40) with ¢* = ¢?/10. O

Finally, using Conditions C3, C4 and (40), it is a routine to prove that the
repulsion Condition C2(5) holds. That completes the proof.
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10. Proof of Theorem 3.5 and Corollary 3.6. As before, by rescaling the
coefficients, we can assume that maxo<;<n{|c;|,|d;|} = 1. Before going to the
proofs, let us state a version of the Kac-Rice formula for Gaussian processes. Note
that a Gaussian process P(t), t € (ag,bp) is a random variable P : 2 x (ag,bp) = R
with 2 being a probability space such that for each w € 2, P(w,-) is a continuous
function on (ag,bp) and for each k € N, ¢y,... 1 € (ag,bo), (P(-,t1),...,P(-,t))
is a Gaussian random vector.

PROPOSITION 10.1. [17, Theorem 2.5] Let P(t), t € (ag,bo) be a real, differ-
entiable Gaussian process. Let

P(t) = Var (P(t)), Q(t) = Var (P'(t)), R(t) = Cov (P(t), P'(t)),
L RO - EPW). and () - <> p(t)m(t)/QO/PE

Assume that m/(t) is continuous and the joint normal distribution for P(t) and
P'(t) has non-singular covariance matrix for each t, then for any interval [a,b] C
(ao,bo), we have

ENpab

/\/ Rl )¢< m;%)(2¢(77(t))+77(t)(2<1>(n(t))—1))dt

where ¢(t) and ®(t) are the standard normal density and distribution functions,
respectively.

Proof of Theorem 3.5. By triangle inequality, we can assume that fj and 7);
are Gaussian random variables. Let ¢ be the constant in Theorem 3.2 with o) =
1/2,k =1, =0. As in Remark 2.7, we can set ¢ = 575 Let a = ¢/7. It suffices
to show that for every interval (a,,, b, ) of size at most 1/n, we have

(42) |ENp, (an,bn) —ENp (an,by)| =0 (n"/?).

If b, — a, > 1/n, we simply divide the interval (a,b) into |(b, —a,)n|+1
intervals of size at most 1/n each and then apply (42) to each interval and then
sum up the bounds.

Let ¢ := (by, —ay)/2. Let G be a smooth function on R with support
in [a”Ter" —K—nflfa,%—i-é—kn*l*a] such that 0 < G <1, G=1 on
[a”Ter" -/, ‘”‘TH’" —i—ﬁ], and HG(“)HOO < Cnbtaforall 0 < a < 6.

By the definition of GG, we have

ENp, (an,bn) <E> G(G) <ENp, (an—n"""%by+n"'"%)
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where (; are the real roots of P,,. Similarly,
ENp (an,bp) < EZG &) <ENp (an—n"""% by +n179).
Applying Theorem 3.2 (with k& = 1,1 = 0) to the function G /n%%, we get
EY G(G)=EY G()+0(n ™) =EY _G(§)+0(n ).
Since o = ¢/7, we obtain

ENp (ap,b,) < Ean(an —n b, Y+ O(n*a)
< Ean (an,bn) —|-2Ipn + O(’I’Lia),

where Zp = sup,.gENp (z — n~17% 2). We will show later that Ip =
O(n~*/?), which gives the upper bound ENp (an,b,) < ENp (an,bn) +
O(n=2/?),

Let us quickly address the lower bound ENp (a,,b,) > EN pn(an,bn) -
O(n=%/%). If £ > n~'"%, we can argue as for the upper bound. In the case
¢ < n~ 172 the desired bound follows from the observation that EN P, (an,by) >
0>7p — O(n=/%) > ENp (an,bn) — O(n~/?). The upper and lower bounds
together give (42).

To prove the stated bound on Z , we use Proposition 10.1, which asserts that
forevery z € R,

~ |m/|P +|m|R
43) ENp [z—n~ /znm’/ dt+/xnal — ot

where
o m(t):=EDB,(t)
o P(t) :=Var(B,) =>1_,c2cos (kt)—l—di sin? (kt)
o Q(t):= Var(P)) =Y }_o k> sin’(kt) + k*d2 cos? (kt)
o R(t):=Cov(B,,P))=Y"}_,kcos(kt)sin(kt)(—c2 +d2)

e S(t)=P)Q(t) — R*(1).

Observe that the covariance matrix of (P, (t), P, (t)) is non-singular if and only
if S(t) # 0. Since the deterministic function S(¢) only has finitely many zeroes in
[ —n~9"! x]+ (—¢*,&*) (Where we add (—¢*,&*) only to make the interval big-
ger to apply Proposition 10.1, €* can be any positive number), we can decompose
this interval into subintervals whose interiors do not contain any zero of S, and
use linearity of expectation if necessary. This way, we can assume that the joint
distribution of P, and ]5,’L is non-singular, as required in Proposition 10.1.

From (37) and (40), there is a constant K > 0 such that for every ¢t € R,

7>>? Q< Kn®, and R <Kn?><KnP.
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From here, we obtain (for all ¢) that % < % < Kn?.

Moreover, from Condition C4, we have |m(t)| < Kn™ and |m/ (t)| < Kn!'/?+70
(notice that m(t) = 0 if all atom random variables have zero mean; the upper
bounds here come from the bound on the expectations). It follows that

|m/|P+ |m|R

P3/2
Using the above estimates, we conclude that the integrand on the right-hand
side of (43) is bounded (in absolute value) by O(n!/?*t™). Since the length of

the interval in the integration is n~®"!, the integral is of order O(n™ *~1/2) =

O(n=/?), as T0—1/2= G < a/2. O

S Kn1/2+7'0.

Proof of Corollary 3.6. As promised in Remark 3.7, we will prove the desired
statement for P, as in (5). Applying Theorem 3.5 with

n No No
Z A+ Z ujn'/* = cos(jx) + Zvjnl/z"" sin(jx)
=0 j=0 =1

n n
+ Z c;€jcos(jz) + chﬁj sin(jx)

=0 j=1

where éj and 7}; are iid standard Gaussian, it suffices to prove that the desired
estimate holds for P,. Applying Proposition 10.1 to B, we obtain

Ean (an,bn)

Do it
2 26(g(2)) +q(2) (22 (q(2)) — 1) ]dw
i=0Ci 0 C;
where
n No No
m(x) :=uy, Z 2+ Zujnl/zfacos(jif) + Zvjnl/%a sin(jx)
=0 7=0 7=1
and ¢(z) :=

In our setting, Y1 7 = O(n), Y1, c?i* = O(n?), and so g(f) s = up +
=0

O(n~%) and q(x) = O(n~"). Therefore, by the boundedness of the functions ®, ¢
and ¢, we get

m(z)

Zn 2 :(b(un)'ko(nia)a
i=0Ci
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and

2¢(q(x)) +q(2) (2@ (g(x)) = 1) = 26(0) +O(n"").

It follows that

n o cri?
BN, (a0:h0) = 20| S5 (b, 0,) (0600
1=0"1
noe242
i=0 "1
>0

=2 Z?:O CZZ (bn — an)¢(un)¢(0)

+0(n *(by — an)n).

Plugging in ¢(z) = \/%e*xz/z

, we obtain

by, —

ENPTL (ana bn) =

where the positive constant ¢ and the implicit constant depend only on a, Ny, K, 71,
e, completing the proof. O

11. Proof of Theorem 4.3 and Corollary 4.5.

Proofs of Theorem 4.3. Let us first consider the case 0 < 0, < % for some
sufficiently large constant K > 0. Let 6,, = 0,, + 1/n.

We apply Theorem 2.6 to the random function F,(z) := P,,(26,,/10) and the
domain D,, :={z:1-260, <|20,/10| < 1—6,+1/n}.

For this model, one can choose a; = 1/2 and C'} = 1. The main task is to show
that for any positive constants A, ¢y, there exists a constant C' for which Conditions
C2(1)-C2(5) hold with parameters (k+1,C,q,A,c;,C). Conditions C2(4) and
C2(5) can be checked by a simple algebraic manipulation, which we leave as an
exercise. To verify Condition C2(3), notice that for any M > 2, if we condition on
the event ' on which |&;| < M(1+§,,/2)" for all i, then for all z € D,, + B(0,2),

n .
@) |Fu(2)| =0(M) (1+8,/2)" (1= 6, +2/n)" = O(M3,").
i=0

Thus, for every M > 2, we have

n

45) P(|Fu(2)|=0(Mg,"))=1-0 (Z M(Tlgn/g)) :1_O<Mlan>'




48 O.NGUYEN AND V. VU

Setting M = 6, 4~!, we obtain Condition C2(3).

To prove Condition C2(2), we show that for any constants A and ¢; > 0, there
exists a constant B > 0 such that the following holds. For every zp with 1 —26,, <
20| < 1—0,+1/n, there exists z = ze’® where 6 € [~4,,/100,6,/100] such that
for every 1 < M < nd,,

5,9 gy - Bop
(46) P(|Py(2)] <e ' e )gm.
Setting M = 1, we obtain Condition C2(2).
By writing zy = re'®, the bound (46) follows from a more general anti-
concentration bound: there exists 6 € I := [0y — d,,/100, 6y + ,,/100] such that

s pP(‘P ( 2'0) Z‘ < o0 —BM) < B‘S;;‘
u re”)—Z|<e ™ e < .
ZeC " M4

Since the probability of being confined in a complex ball is bounded from
above by the probability of its real part being confined in the corresponding interval
on the real line, it suffices to show that

Ms;t )2 BsA
j : 6,1 —BM n

sup P g Erlcosjl—Z| <e " e < .
ZeR = ! MA

This is, in turn, a direct application of Lemma 9.2 with N := M, ' /2 and
g:=e M <piforall0<j< M, '/2.

Finally, to prove Condition C2(1), from (45), (46), and Jensen’s inequality, we
get for every 1 < M < nd,

, 52
P(N > 6, —I—BM) = O(M—”A)
where N = Np, B(w,2), w € D,
Let A=k+1+2,¢,=1and M =1,2,2%,...,2™ where m is the largest
number such that 2™ < nd,. Combining the above inequality with the fact that
N <nas., we get

ENk+l+21 <C S 571 BziJrl k+1+2 5;? C k+1+2 5713
N>6,' = Z(n + ) 2@A+ n omA

i=1

< o2 = 0(1).

This proves Condition C2(1) and completes the proof for #,, <1/K.For 6, > 1/K,
note that Jensen’s inequality implies that

maXqyeB(0,1-1/2K) | P (w)]

Np, BO0.1=1/K) = Ok (1)log mMaXyep(1—1/k,1/3K) | Pn(w)]”




ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL UNIVERSALITY 49

Thus, using the bounds (44), (45), (46) for 0,, = 1 — 1/K, we get for every
1<M<n/K,

1
P(Np,B(0,1-1/2K)> BM) =0 (W) :
And so, ENp, B(0,1—1/2K) = O(1). The same holds for P, and therefore the
desired result follows. (]

Proof of Corollary 4.5. Without loss of generality, we can assume that &, . ..,
&, are standard Gaussian random variables. As in Remark 4.4, it suffices to restrict
to the roots in the interval [—1, 1]. Divide this interval into [y = {z: [z| < 1—-1/C}
and I = [—1,1]\ Iy and denote by N(0) and N (1) the number of real roots of P,
in these sets, respectively. We have seen in the proof of Theorem 4.3 that EN (0) =
O(1), and so is N (0) which is the corresponding term for P,.

To get EN(1) —EN(1) = O(1), we decompose the interval I; into dyadic
intervals +£[1 —1/C,1—-1/2C),£[1 —1/2C,1—-1/4C),...,£[1-2/n,1—1/n),
and finally £[1 — 1/n,1]. In each of these intervals, say [z,y), we show that
ENp,[7,y) —ENp [z,y) = O((1 —y+1/n)°) for some positive constant c. This
can be routinely done by approximating the indicator function on the interval
[,y) by a smooth function and applying Theorem 4.3. We omit the details as it is
similar to the proof of Theorem 3.5. U

12. Proof of Theorems 5.1 and Corollary 5.2.

Proof of Theorem 5.1. Notice that by the Borel-Cantelli lemma, with probabil-
ity 1, there are only a finite number of 4 such that |;| > 2¢. Thus with probability 1,
the radius of convergence of the series P is infinity and so P is an entire function.

A natural idea is to apply Theorem 2.5 with n = e to the function F,,(z) :=
P(z), with §,, := |2|~" and D,, := {2}. (We will skip the redundant subscript
n in the rest of the proof.) However, since Var P(z) = el |P(2)| is likely to be
of order @(e|2|2/ 2) in which case Condition C2(3) fails. The idea here is to find a
proper scaling, which, at the same time, preserves the analyticity of F'. We set

P(z)
47 F(z):= Tl e

A routine calculation shows that Var F'(z) = O(1).

Furthermore, F' is analytic and has the same roots as P. For this model, let
a1 = 1/2 and C| = 2. The main task is to show that for any positive constants
A, ¢y, there exists a constant C' for which Conditions C2(1)-C2(4) hold with pa-
rameters (k,Cp,a1,A,c;,C). We can, without loss of generality, assume that |2|
is sufficiently large because by Jensen’s inequality, one can show that the expected
number of roots of both P and P in B(0, K), for any constant I, is O (1).

Condition C2(3) is a direct consequence of the following lemma.
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LEMMA 12.1. For any constant A > 0, there is a constant K > 0 such that for
any M > 2,

K A
(48) P( max |F(z)] > KMA6A2> < Ko~
z€B(20,2)

Proof. Let L = |z|+1=0(5""). Let ' be the event that |§;| < MALA(1+

m)l for all 7 > 0. Consider its complement ¢,

. 1 54
19 P =0(> ) =0(—=).
“ P <Z-_OM2AL2A(1+(L+2M)2)2Z> <MA>

On the other hand, once € holds, then for every z € B(zp,2),

- §z||z| ArA (l2]+1z] ) A7 A
< M*“L -~ < =M"L"*S(w
z—; Vil ; Vil (w)

where w = |z| 4+ |z|~! and S(w Let x := z(w) = |w? — 1]. We split
7,0\/_

. S5z—1 w?
into the sum of Sy := ) 7% NG and Sr =) "5, \F Since the terms N
increasing with ¢ runmng from O to x and then decreasing with 7 running from z to

oo, we have S < 5:1:\/7. Moreover,

w?

wSx

Z\/z+5m ~/(52)!

193] < S.

By Stirling’s formula (and the fact that x is sufficiently large)

w>® (x4 2)@e® 1 1
/—533 (5z)5ati/z =2

Hence, S < 15, which implies

S <25 <10 2002 — O (L2l

!

Thus, on ¢,
|P(Z)| — O(MALA+26‘Z‘2/2).
By the definition of F',

MALA+26\z\2/2 A AL
‘F(Z)‘:O<ezo|2 /zeRe((ZZO)Z_O)> =0(MALA"?)

which, together with (49), yield the desired claim. O
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Write z = re'®. To verify Condition C2(2), the idea is to apply Lemma 9.2 to
the entire function

Z()e E 5]6 9+90)

Note that when [0] < .017~!, 20e?® € B(z9,1/100). Let 29 = ||20|*> — 1]. For any
M > r, we apply Lemma 9.2 to the set £ = {z¢,29+ 1,...,20+ M}, the random
variables (;);ce, the coefficients e; = &—% and obtain that for any positive constant
A >3, for the interval I = [—-M~4, M~4] C [-.017~",.01r~1], there exists § € T
such that

sup P Z| < oy M1 | = O (M~A/?)

Zejﬁj COS(j9 —|—j9()) —
zZeC

je&

where we use the fact that ez, > eyy41 > -+ > €x4 M-
This together with the assumption that Re(&p),Im(&y),Re(&),Im(&;),... are
independent imply that

sup P
ZeC

Zejfjexp (Z](0+90)) -7 SeonrMMimAz :O(M—A/z)

je&

because the distance between two complex numbers is at least the distance between
their real components.

Conditioning on the random variables outside £, we obtain some 6 € I such
that with probability at least 1 — O (M ~4/2),

|P(206i€) ‘ > exOJrMMfmAz’

which implies

—16A2
eI()JrMM

exp(r2/2)| exp (r2(e? —1))|
ng+MM716A2

|F(20¢")| >

V(o + M)lexp(r2/2)| exp (12(ef — 1))|

For§ € I, |r?(e" — 1)| = O(r>M~4) = O(1). Thus, by Stirling’s formula,

M 3 r—16A2 —16A2 2 M/2
‘F(zoew)‘:Q<l rt M >:Q M ( 27’ > .
m/(zo+ 1) (zo+ M) r r2+M
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In other words, we have proved that for every constant A > 3, for every M >
r = |20|, there exists z € B(zg,1/100) for which

A-l6A r2 M/2 _ap
(50) P |F(2)] =04 - <T2+M> =0a(M 7).

Setting M = [r], we obtain Condition C2(2) (note that 7 = §~1).
Combining (48) and (50) and Jensen’s inequality, we get that there exists a
constant K depending only on A such that for any M > r,
K

P(Np(B(2,1)) > M?) < 1A

Thus,
ENk+2( Z07 )INF (B(20,1))>r2

< > ENE(B(20, 1)) a2 <N (Blao 1)< (M4 12
M=r

As the right-hand side is at most O(1) > 5,_, MH)Z}M = O(1) by setting A =
2k + 6, Condition C2(1) follows.
Finally for Condition C2(4), note that |z|*/v/i! is maximized at i = | |z|> —1].

By Stirling’s formula, at this 4, |2|*/v/i! = O (M) 0

|Z|1/2

Proof of Corollary 5.2. As before, we simply approximate the indicator func-
tion 15 above and below by smooth test functions f and g whose derivatives up
to order 6 are bounded by O(r®) for a sufficiently small constant a and [(f —
g)dm = O(r—%). Applying Theorem 5.1 to the function f, we obtain

ENp(B)<E Y  f(()=E Y f O (r=ctea)
¢:P(¢

P(¢)=0 CGP(O)=
— ENP( ) ( ay ,rfc+6a)
where c is the constant in Theorem 5.1. By choosing a = ¢/12, we get ENp(B) =

ENp(B) + O(r12). And similarly, applying Theorem 5.1 to the function g, we
get the corresponding lower bound. This completes the proof. U

13. Proof of Theorem 6.2 and Corollary 6.4.

Proof of Theorem 6.2. We have Var P,,(z) = (|z|*> + 1)". As in the proof of
Theorem 5.1, we will apply the framework in Section 2 to the function

Ea(z/v/1)

(|zol? + 1)”/2 exp (_"(Z(/lgg)‘ﬁz:?;)fo) ’

F,.(z)=
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6, =n"'and D,, = {\/nxq}. We have Var F(z) = O(1). Note that the denominator
is chosen so that VarF'(z) = ©(1), F' is analytic, and F'(z) = 0 if and only if
P(z/+/n) = 0. We will first show that Theorem 2.5 holds, and then we show that
the conclusion of Theorem 2.6 also holds. For Theorem 2.5, it suffices to show
that there exist positive constants C'1,a; such that for any positive constants A, ¢y,
there exists a constant C' for which Conditions C2(1)-C2(4) hold with parameters
C,a1,A,c;,C. For this model, one can choose a; = ¢/4 and C| = 1. Condition
C2(3) follows from the following. For any constants A,c; > 0, we have

n

en!

(51) P( max wx@|26k””v%>fg
z€B(y/nxo,2)
for some constant C' depending only on A and c¢;.
Indeed, let €' be the event on which |&;| < ™" for all i > 0. The probability
of its complement is bounded from above by

Cn

cy

P(Q’C) <

eTL

On ¢, for every z € B(x¢,2/+/n), we have

= n i nel " (n ;
o P (et <o v S ()R
="' V/ny/Var P(z).

Thus,

|F(z)] < Ce™ v/n.

For Condition C2(2), note that the sequence 4/ (YZL) |xo\i increases from ¢ = 1 to

a2 .

io=|14+ %J and then decreases. For n~1/2+¢ < |z0| < 1, we have % <ip<
0

”T“. Condition C2(2) follows by showing that for any constants A,c; > 0, there

exists a constant C' and an angle 0 € [—1/(100+/n),1/(100y/n)] such that

(53) P(|F(\/ﬁxoew)| < Cefncl) <Cn ™4,
We apply Lemma 9.2 to the set & = {ig,i0+ 1,...,ip + m} where m = %, the
random variables ({;);ece, the coefficients e; = (?) 7/ where 7 = |x|, and the

interval I = [—m =4 m~4'] where A’ =5A4/¢,. We have

€ - Vi+1 <pl/?

1< < - < )
ej41 ~ rV/n—j
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for all j € £, which implies
m/2‘

€igtm = €igN

Moreover, we have since e;, is the largest term, Var P(z9) < ne%o, and so,

o \/ Var P(z) _ \/Var P(zg)
totm = \/ﬁnm/Z \/ﬁencl/z .

Hence, there exists 6 € I such that for all Z € C,

P < \/VarP(a:o)e*”CI/zm*MA/z/\/ﬁ = O(mfA//z)

= O(n*A).

Z ej&jcos(j0) — 2

je&

By conditioning on the random variables not in £, we obtain

P (|Pu(woe™)| < V/VarPlag)e ™" “m=14% /) = O(n™4).
Since e~ m=164% / /i = Q(e~™"), we obtain

(54) P (|Pu(m0e™)| < VVarPlag)e ™" ) = O(n~4).

That implies (53) and therefore, Condition C2(2) follows.
Combining (51) and (53) and Jensen’s inequality, we get that

P(Np(B(vnwz,1)) >n) < Cn~A.

From this and the fact that Np(B(y/nxg,1)) is always at most n, Condition C2(1)
follows.
For Condition C2(4), as we have seen above, E; := ,/(?)|xo|" is largest
2e

a2
when iy = |1 + (nlﬁw)foj € [Z-, 2] Tt suffices to show that the Ej, =
0

O(nfe/ )4/>2; E? which can be deduced from showing that the consecutive

terms (Ei)z:ﬁ."s/z are of the same order, i.e., E;/ E; = O(1). We have for 7 in the

i=ig—ns/?
above window,

Ez'2451:|900|(7.1—i+1):@ ”_.H‘lif’""l -0 1+i )
E: i+1 n—io+1i+1 ne

Thus for all ¢, j in the above window,

E; o i ns/z_
5 =0+ )" =em
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as needed. So Theorem 2.5 holds for F;,. It’s left to show that the conclusion of
Theorem 2.6 also holds.

Unfortunately, Condition C2(5) doesn’t hold for F;,. Note that this condition
is used in the proof of Theorem 2.6 only to show that (23) which says that for any
x € [n~1/?2 14 n~1/2), we have for a sufficiently small constant c,

(55) P(NF,LB(\/ﬁm,znfc) >2) < Cip—16¢/10

where £}, is the corresponding function with standard Gaussian coefficients.
To prove (55), we can instead use the fact that

P(NpB(v/nz,2n"°) >2)
<P(NpB(vnz,2n ¢)NCy > 1) +P(Nz[vnz —2n" ¢, V/nz —2n"¢] >2)

x+2n70*1/2 m+2nfc—l/2
S// p(O,l)(z)dz—l—/ / P(Z’O)(S,t)dsdt
B(z,2n~"1/2)nCy. x—2n-c1/2 Jp_op-c-1/2

where p(®D and p(>% are the (0,1)- and (2,0)-correlation functions of B,
respectively. By [58, Proposition 13.3], these functions are bounded for all
z€ B(x,2n ¢ 2)NC, and s,t € [z — 20 1/2 x4+ 2n°"1/?] as follows

pOD(@,y) = O(n*2) (z —y) = O(n' ")

and
P (z) = 0(n)
Thus,
P(NzB(vnx,2n™¢) >2) = O(n )
giving the desired estimate. ]

Proof of Corollary 6.4. As mentioned in remark 6.3, it suffices to show that
1
ENp,[0.1] = v/n+0(n'/?™).

We partition the interval [0,1] into 2 intervals I; := [0,n~'/?*¢] and I, :=
[nil/ 2*+¢ 1]. On the interval I, where Theorem 6.2 applies, we further partition it
into equal intervals J; of length n~Y2. On each of these small intervals J;, we rou-
tinely approximate its indicator function above and below by smooth test functions
and apply Theorem 6.2 to these functions to obtain

ENp, (J;) —ENp (J;) =0(n"°).
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Thus,
ENp, (L) —ENp (I) = 0(n'/*7°).

It remains to show that the interval ) is insignificant. Note that Np (I;) <
Np, B(x,3x) where = n~'/>*¢, By Jensen’s inequality,

M
Np,B(z,3z) < Clog ————
| P ()]
where M = max|.|<4, | P, (2)]. By (52), on the event {2,

e v/n Z< >|4a:|21—e" V(162> + 1) < /ne™

Thus, P(log M > n’) <
n~4. Combining these bounds we get

(1Pa(z) <) <

P(anB(ZE,3ZE) > C’n35) <Cn 2

Hence,
ENp, B(z,37) < Cn* +nn™? < (C+ 1)n**
This completes the proof. U

14. Proof of Theorem 7.2 and Corollary 7.3.

Proof of Theorem 7.2. The reader may notice that this proof is quite similar to
the proof of Theorem 4.3. We nonetheless present it here for the reader’s conve-
nience.

Let us first consider the case 0 < § < % for some sufficiently large constant
K >0.

We apply Theorem 2.6 to the random function F'(z) := P(z6/10) and the
domain D :={z:1-2§ <|2§/10] <1—4}.

For this random series, we set «; = min{1/4,~/2} and C| = 1. The main task
is to show that for any positive constants A, ¢, there exists a constant C' for which
Conditions C2(1)-C2(4) hold with parameters (k+1,C,a;,A,c;,C).

We use the following crucial property of regularly varying coefficients.

LEMMA 14.1. [18, Theorem 5, p. 423] If 2 = ’f”;l(gf’“ where L(k) is a slowly
varying function then

1
1 at)**(2at)Y /L =1
;golch a)/<>

uniformly as long as t stays in a compact subset of (0,).
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Moreover, for any positive constant ¢ > 0, there exists a constant C' > 0 (de-
pending on the function L) such that == < L(t) < Ct¢ for all t > 0. This simple
observation can be proven using, for example, the Karamata’s representation theo-
rem [4, Proposition 1.3.8, p. 26].

To verify Condition C2(4), we use Lemma 14.1 to get for every w € B(0,
1-4/2),

Zcz|w|2k VL) =677

while
GlwF <O (1 =6k = 0672 1),

Letting ¢’ sufficiently small, we obtain Condition C2(4).

Condition C2(5) follows immediately from Lemma 14.1.

To verify Condition C2(3), notice that for any M > 2, if we condition on the
event (' on which |&;| < M(1+4/2)" for all i, then for all z € D+ B(0,3), by
Lemma 14.1,

(56) |F(2) M)> (1+]ei)(1+6/2)'(1-6)" = O(Ms ).
i=0

Thus, for every M > 2, we have

n

1 1
57) P(|F(2)|=0(Ms 1) =1-0 — | =1-0( — .
5D pl1r) =000 ) =10 (3t ) <1-0(55)
Setting M = 6~ “~!, we obtain Condition C2(3).
To prove Condition C2(2), we show that for any constants A and ¢; > 0, there
exists a constant B > 0 such that the following holds. For every 2y with 1 —2§ <
|z0] < 1— 6, there exists z = zpe'? where 6 € [—6,J] such that for every M > 1,

(58) P(|P(z)| <e® M BM) < —

Setting M = 1, we obtain Condition C2(2).
By writing 29 = re? the bound (46) follows from a more general anti-
concentration bound: there exists 6 € I := [y — 0,6y + 0] such that

sup P(|P(7‘ei6) —Z|<e " e*BM) < B—éj.
ZeC M

Since the probability of being confined in a complex ball is bounded from
above by the probability of its real part being confined in the corresponding interval
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on the real line, it suffices to show that

Ms™'/2 BsA
sup P Z cjfjrj cosjl—Z|<e e BM | < 7
ZeR = M

This is a direct application of Lemma 9.2.
Finally, to prove Condition C2(1), from (45), (46), and Jensen’s inequality, we
get forevery 1 < M <nd

_ 54
where N = NpB(w,2), w € D.
Setting ¢; = 1 and M = 1,2,2%,.. ., we get
EN"1y 50 <0 (57! +le+1)’“25_ <otk

2z'A —
=1

This proves Condition C2(1) and completes the proof for § < 1/K.For§ > 1/K,
note that the Jensen’s inequality implies that

maXq,eB(0,1-1/2K) |P(w)]
maxXy,eB(1-1/K,1/3K) |P(w)]

NPB(O,I— I/K) :OK(I)IOg

Thus, using the bounds (44), (45), (46) for 6 = 1— 1/ K, and apply we get for
every 1 < M,

C/
P(NpB(0,1—1/2K) > BM) = O <W> .
And so, ENpB(0,1—1/2K) = O(1). The same holds for P and therefore desired
result follows. 0

Proof of Corollary 7.3. To prove the first part of Corollary 7.3, we decom-
pose the interval [0, 7] into dyadic intervals [0,1/2],[1 —1/2,1—1/4),..., and fi-
nally £[1 — §,7]. In each of these interval, say [x,y), we show that ENp[z,y) —
ENp(z,y) = O((1 —y)°) for some positive constant ¢. This can be routinely done
by approximating the indicator function on the interval [z,y) by a smooth function
and apply Theorem 4.3. We omit the detail as it is similar to the proof of Theorem
3.5.

Thanks to the first part, to prove the second part of Corollary 7.3, it suffices to
prove the corresponding statement for P whose coefficients are Gaussian. We adapt
a strategy in [20]. For any interval [a,b] C R, by the Kac-Rice formula (Proposition
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10.1), we have

ENpla,b] = / Vf(x)dx
where
(Cio@a™) (Xr ok a®2) — (g ke 1)
(Xipca)’ ’
Lemma 14.1 suggests that we make the transformation
fo®) = f(1=27"1).

Applying Lemma 14.1 to a =27 " and ¢ € [1,2], we obtain that uniformly on x =
l—ate[l—-2"""1-2",asn — oo

Zcz k21 —z) VL2 Zc fa?hl

k=0

~ 27N —2) L2

fz) =

F'(v+1)
L'(v)

and

I(y+2)

Zcikzmzkfz ~ 22721 —2) 202" T

where p,, ~ ¢, means lim,, .. f’q)—z =1.
Since I'(v+2) = (y+ DI'(v+ 1) = y(y+ 1)I'(y), we obtain that uniformly
onte[l,2],

fu() ~y(278) 2 /4.
‘We have

1 2
ENp[l—2"""1-27"] = —/ 27"/ fn(t)dt.
™ J1

By uniform convergence, we obtain

In2
ENp[1—2"""1-2""] ~ Vo2
Taking the Cesdro summation, we obtain

1 1< VA2
Z“EN5[0,1—2" ==Y ENs[1-2"F 12k V"7
n P[ ) ] nkz_:l P[ ) ] 27I'
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For each 7 € (0,1), sandwiching EN[0,7] between ENp[0,1 —2!""] and
ENp[0,1—-27"] (i.e,n—1=|—log,(1—7)]), we get

S il
—log(1—r) ENp[0,7] 27

as desired. O
15. Appendix.

15.1. Proof of Lemma 8.1. This proof is taken from [58]. We will only
prove the first part of the Lemma relating to Theorem 2.5 as the second part is
similar. By translation, we can assume without loss of generality that z; = --- =
2, = 0. Suppose that we have (3) for G in the form (9). Let 9 = 1/100. Then, for
every function G supported in H;‘;l B(0,rp) with [|[V¢G]|., <1 forall 0 <a <
2k + 4, we view it as a smooth function on the torus (R/(2.2r¢)Z)?*. Expanding
G by Fourier series yields

(59) G(w) — Z a C€27rle(bRe(w)+cIm(w)/(2.2r0))’

b,c€ZF

for w € (R/(2.2r9)Z)**, where

1
9b,c = (

727r\/7_1(bRe(w)+cIm(w))/(2.27“0)G d
e w)dw,
2.27’0)2k /B(Oﬂao)k ( )

and the convergence is point-wise (by, for example, [22, Theorem 8.32]).
By integration by parts (or [22, Theorem 8.22¢]), we have

\gb.el < C(1+1b]+ [c]) 2+,

where C = C,.
Let 7 : R — R be a smooth function supported on [—1.1r¢, 1.17] that equals 1
on [—r9,70] and |7} < 1, and let

¢b,c7i _ e27r\/7_1(b1- Re(w;)+e; Im(wi)/(2.2ro))77 ( Re(wz)) n ( Im(wz)) :

and

k
Ghc(w) = gpe H Vp,e.i(W;).

i=1
Since G is supported on [—7g,70]?*, multiplying both sides of (59) by

k

Hn(Re(wi))n(Im(wi)),

i=1
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we have

Gw)= > Gye(w),

b,ccZk

pointwise. We have that )y, .. ; is supported on B(0,2.2r) and |V*Gy | < C(1+
bl + [¢])?|gb.cl, VO < a < 3. We thus have for all m > 1

E D Gn(GienG) —E D Gu(Gi1G)

Ulyeenslk Uyl
3
<08, > (14l +1el) | 9b.el
b,ccZF
<08 3 (1+pl+le) =0y Y (14m) !
b,ceZk m=0b,ceZk |b|+|c|=m

oo

<C> (I4m) 2 Im? <06y m P < C6

m=0 m=1

where G = 2y 1 cj<m Gb,c supported in B (0,279)* and we recall that the con-
stant C' may change from one equation to another. Using Condition C2(1) and the
fact that G,,, — G point-wise and |G,,| = O(1), by dominated convergence theo-
rem, we get

lim E > GunlGirosGi) =E > GGG

Uyl Uyl

And hence the above inequalities hold for G in place of G,,,, completing the proof.

15.2. Proof of Lemma 8.2. We follow ideas from [11]; the constant 6 in
the conclusion is adhoc but we make no attempt to optimize it.

From Jensen’s inequality for the number of roots (see the beginning of Section
8), we have

Np,

n

(B(w,l)) < logg(logM—log|Fn(w)|) < 2(logM—log|Fn(w)|)

where Np, (B(w,1)) is the number of zeros of F,, in B(w,1) and M =
maxXiqy—z|=2 ‘Fn(z) |
From this and the assumption of Lemma 8.2, we conclude that

(60) N, (B(w,1)) <26,.

By the pigeonhole principle, there exists a radius 1 > r > 1/2 for which F,
has no zeros in the annulus B(w,r+n)\ B(w,r —n) where n = .162. We can also
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assume, without loss of generality, that there is no root on the boundary of each
disk.

Let (j,...,(n be the zeros of F,, in the disk B(w,r —n). By (60), m < 24,.
Define

Fo(2)

(z=C1) (2= Cm)
Since f is an entire function which does not have zeros in the (closed) disk
B(w,r+mn), log|f| is harmonic on this disk. For every z with |z — w| = r+ 1, the
distance from z to any (; is at least 7, so

[f () < [Fa(2)ln™ < exp(6, )™

It follows that for any z where |z —w| =7r+1n

fz) =

61) log|f(2)| <6, +mlogn~! <216,%,
since
5o <62 <257 =106, < !0

Because of the harmonicity of log | f|, its maximum is achieved on the boundary,
and so the same bound holds for all z € B(w,r +n).

On the other hand, from the lower bound on |F'(w)| in the lemma and the fact
that |¢; —w| <1,

(62) log|f(w)| = log|Fp(w)| = =6,

Now, we make a critical use of Harnack’s inequality [47, Chapter 11], which
asserts that if a function G is harmonic on the open disk B(w,R) and is non-
negative continuous on its closure, for some w € C and R > 0, then for every
z € B(w,r) withr < R,

<R+r

Glz) < R—r

G(w).

We apply Harnak’s inequality to G(2) := 215, 2% —log | f| which is nonnega-
tive harmonic on B(w, R) with R := r + 1. By this inequality, we conclude that for
all z € B(w,r)

2r+mn

(63) 216, —log|f(2)| < (216, —log | f(w)]).

Asn=.16>and r < 1, 2’"% <3n~! =306, . By (62), the right-hand side is
at most

306, x 225, %% = 6605, 3.
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It follows that
log|f(z)| > 218, % — 6606, > —6605,, .
Together with (61), we have
(64) [log|f(2)|| < 6606, Vze B(w,r).
By the triangle inequality and the definition of f,

| log | Fu (2)] HLZ(B(w,r))

(65) -
< [[1og]f(2)] HLZ(B(w,r)) + Z [ log]z — Gl HLZ(B(w,r))'

i=1

Notice that each of the m terms in the sum above is at most
/ ‘log\szdz, as |¢;| <r—mnforall .
( ) 7“*77)

As r < 1, we can further upper bound it by fB(o 2) |log |z||>dz, which is O(1)
(in fact, one can easily show | 5(02) |log|z||?dz < 30, with room to spare). Since
m < 26, 2, the right-hand side of (65) is at most

6606,,°% 4 605, > < 7206,,3.
Thus, we have
110 | Fn ()| 12 gy < 7200,
which implies the claim of the lemma as r > 1/2.

15.3. Proof of Lemma 8.3. To prove Lemma 8.3, we will follow the proofs
in [11] and [58]. We first prove the following.

LEMMA 15.1. Under the assumptions of Lemma 8.3, there exist constants o >
0 and C' > 0 such that for any z1, ...,z € D, + B(0,1/10) and for any function
L : C* — C with continuous derivatives up to order 3 and |V*L||., < 6, for all
0<a<3, we have

Fr(z1) Fo(ze) \ F(21) I (zk) 1 o
EL(WW> EL(WW>‘§”

where V (z;) := Y1 n. |i(2;)|* and Ny is the constant in Condition C1.

Remark 15.2. Following the proof, one can set c; = %4=.
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Proof of Lemma 15.1. To prove this Lemma, we first observe that by replacing
L by

EF, EF,
L’(zl,...,zk) Z:L<Z1—|— n(ZI),...,Zk%—M),
V(Zl) V(Zk)
if necessary, we can assume that Eg] =0 for all 7 and E§; = 0 for all ¢ > Ny. (See
Condition C1.)
We use the Lindeberg swapping argument. Let

Gi, ZZ&@(Z)‘*‘ Z &idi(2)
i—1 i—igt1

The purpose is to swap the random variables one by one. Under these notations,
Go=F, and G,, = F,,. Put

L Giy(21) Gigzk) \ Gigr1(21)  Gig+1(2k)

oo (G ety (Gt Gty
Then

. Fa(z1) Fozi) \ Fu(21)

I._‘EL< T V(Zk)> EL( NS Zk)‘ 02)

Fix ip € [No,n] and let Yj : Gig(5) _ L&) gop g < 7 < n. Then,

\/V (z5) \/V (z5)

Gigr1(z) _ Y, + §ig®ig(25) . Condition on &; for ¢ < ¢ and §Z for i > ig. The Y;’s
V(z;) V(z5)

become constants; the only randomness left comes from 51'0,51-0. Define

N a

L:Lio(wl,...,wk) = L(le —l—wl,...,Yk—l—wk).

V“ﬁHw < (9, for all

0<a<3.
We are going to estimate

b= E{iwgiofj(gio(bio(zl) y §¢0¢i0(zk)>

_E&O@OE (éioﬁbio(z:l) . €i0¢i0(2k)) ‘




ROOTS OF RANDOM FUNCTIONS: A FRAMEWORK FOR LOCAL UNIVERSALITY 65

¢1 Zz
0

Let a; ;, := ) and a;, := (Ele \ai,i0|2)1/2. Taylor expanding L around
(0,...,0), we obtain

(66) _[A/(a17i0§i0, s 7ak,i0§i0) = f/(O) + ﬁl +err,
where
[ di(al,iogigta-'-7ak7i0£i0t) — - MRe (a & )
= i L = 2 8Re(w2) 1,50510
k
8L 0)
+Zalm (w;) Im al Zoglo)

(To avoid confusion, we use d to denote a partial derivative of functions of
multi-variables and d to denote a derivative of function of a single variable.)
From the bounds on the derivatives of L, we have

ld L(a N TR
‘61‘1'1‘ < sup ( 11057,0 : k,zofm )‘
t€0,1] dt
(67)
( az‘&o‘ kZ‘az 7/0‘2> a2|§lo zo)
Similarly,
o N A 1.
(68) L(a1o&ios- - akio&io) = L(0) + Ly + ELZ +erry,
N 2 L(arige, tyemstn,igipt
where [, = (al’ogzodtz Sl )‘t:O and
L(ay it .. api it
lerrs| < sup ! (216 5 ik )‘
tef0,1] dt
(69) i 3
=0 5na2‘§io‘3<2‘ai,io‘) ( a2|£lo zo)
i=1
Note that as in (67), L, = O(5;,**|&;, [a a;,). Thus,
L
(70) €Iy = e1r] — 72 = ( a2|£m zo)

Using (69) and (70), we obtain

1) Jerry| = O(6,“) min {|&, a3, [y Pad } = O (5, 1€ [* € az ).
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The expression (68) also holds for ¢ in place of &; we denote the error term
here by err,. By the same reasoning, we can show that err; satisfies (71).

Take the expectation (with respect to ;) of the right-hand side of (68) and
subtract from it the expectation of the corresponding formula (with respect to éio).
By Condition C1, &, and ;, have matching first and second moments, and so
the expectations of flj (j = 1,2) from the two formulae cancel each other out.
Furthermore, L (0) is the same in both formulae. Thus, the only thing remaining
after the subtraction are the error terms. Therefore,

< ‘E& errp| + ‘Eg er,| = O(1)Cs6,, a2(12+5(E|§io|z+g+E|§~io|2+€)
_ 0(5 2+€)'

@y,
Taking expectation with respect to the other variables (which we have condi-
tioned on so far), we obtain I;, = O(J,,** a”g) for all Ny <ig <n.
Now we treat the first few indices 0 < 79 < Ny, where &;, may have non-zero
mean. Instead of using (66) and (68), we use the mean value theorem to get the
rough bound

(72) z(ahiogioa”wak,io{io) = ﬁ(O)—l—O(

k
oo |Eio Z ‘ai,i0|> )
i=1

which by the same arguments as above gives I;, = O(d,,“2a;,).

Since we assume EE; = 0 for all 1 < i < n, Condition C1 implies that |E&, | =
O(1). But as Var¢;, = 1, it follows that E|¢; | = O(1).

As k is constant and H VIA}HOO <9,,“?, we have, from (72), that

i=1

k k 1/2
=0 <5na2 > |a¢,¢0|> =0 <5na2 > Iaz',z'0|2> =0(8,"as).

i=1 i=1

k
diy =0 (kHVﬁHmZ |ai7i0|> (El&,| +El&;])

Notice that by Condition C2(4) ai, = O(VE521) = O(62) for all i. Further-
more, by the definition > " v a; =k = O(1). Thus, we have

No

i19=0 19=0

wherein the last step we used the fact that a; was set much smaller than «;. ]
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Proof of Lemma 8.3. Let o be the constant in Lemma 15.1 and set ap := {Z.
Let

_ 1 1
K(wy,...,w) ::K<w1+2 .,wk—kilog‘V(zk)!)

where we recall that V'(z;) := >y |¢i(z;)|*. We have || VoK || < 6, for all
0 < a < 3; we aim to show

7 1og 20 | Fn ()]
EK(I \/ﬁ - lo \/—zk>
n (g Do P )| o).

For M :=log(d,3?0), define

(73)

Q= {(wl,...,wk) eR’: min w; < —M}

izlv"'v

and

Oy = {(wl,...,wk) e RF: . rrllin w; > —M — 1}.

By considering the real and imaginary parts of K separately, we can assume
that K :RF - R,

Let 1 : R¥ — [0, 1] be a smooth function supported in €2, such that 1) = 1 on
the complement of ©; and ||[V%)|., = O(1) forall 0 < a <3. As M > 1, it is
easy to see that such a function exists. In particular, one can define ¢ (zy,...,z;) =
p(z1)...p(xr) where p is a smooth function satisfying the corresponding proper-
ties on R.

Let ¢ :=1—1, K1 := K¢, and K, := K1). Then by the definition K = K| +
K. Furthermore, both K, K> are smooth functions with supp K| C Qy,supp K> C
O and ||VOK;]|,, = O(5,%) fori = 1,2 and 0 < a < 3.

We now show that the contribution from K| towards the right-hand side of (73)
is negligible. Notice that

| K1, < HI‘(Hm <S5,

This leads to setting H;(wy,...,wg) = C'6, *p(log|wy],...,log|wg|). The func-
tion H; is a smooth function on R* with the following properties:
o | K (log|wil,...,loglwg|)| < Hy(wy,...,wg),
e supp(H;) C {(wy,...,w;) € RF: min;—;,_|w;| <e
o |[ViH |, = O(6,10%)=0(5) forall 0 < a < 3.

,M},

Remark 15.3. To verify the last property, notice that the support of Hj is
{(z,y) : |z| < e Mor|y| <e M}. Moreover, H; is a constant C’5,° in the set
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{(z,y): |z| <e M Tor |yl <e M1} (because ¢ = 1 on the complement of 25).
So we only need to consider the derivatives of H; in the set {(x,y) : |z| < b or |y| <
e Myn{|z| > e M1 |y| > e M=}, On that set, z~! and 3! are bounded from
above by eM+1 which is significantly smaller than the bound. (We define vy and
M with foresight so the claimed bound holds, with room to spare.)

Applying Lemma 15.1, we obtain

K, <10g [Fn )] ,--.,log 7|Fn‘/(_zlj|)

E

<Eﬂd<wuanj IEA%N>

com (B i)
V(1) V(zr)
+C'o00.
Since Hi(wy,...,w) = 0 if (log|wi],...,log|wk|) ¢ 2, and since the vari-

ables &; are Gaussian, we have

a2l [Pl
e e M))

<C's, O‘°P<E|z€{1 kY [Fr() <eM=53a0>

Viz)
<05, k5% = 0(520).
Thus, E| K, (log ‘\’;_'1 ., log ‘5&)\ < (620, The same bound holds with

F, replaced by F,,. To conclude the proof, we need to show that

A L LTC )

[ Fn(21)] [Fn(ze) \ | _ ¢ s00
_EK2<logW,...l \/—2k>‘_0(5")'

Define Hy(wy,...,wy) := Ky(log|w],...,log|w,|). Since supp K, C s,

supp Hy C {(wy,...,wy) :log|w;| > —M —1, Vi}
= {(wi,...,wy) : lw;| > C'52, Vi}.
Thus, H, is well defined and smooth on R¥. Furthermore, by the definition

of H,, it is not hard to check that ||V¢H,||, = O(5,19%) for all 0 < a < 3; see
Remark 15.3.
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Finally, by applying Lemma 15.1, we obtain

s (10 P2 g o)

Bl g |Fn<zw|>'
VVED)TT TV V)

| Fr(21)] | Fr (2|

_ [En(zO)l [EaCGRLY | o s00
EH2<\/WW>' 0(55°).

This completes the proof. ]

—EK2<log

15.4. Proof of Lemma 9.3. By rescaling, we can assume that a = n'. Thus,
we need to estimate supZP(‘ Z;‘:l aje; — Z‘ < 1).

By Esséen’s inequality [16] (see also [57, Lemma 7.17]), there is an absolute
constant ¢ such that for any real number Z,

1/2
<1 gc/ ()|t

1/2

(74) P

n
E ajz—:j -7
j=1

where

n n n
o(t) = Eexp <i27rt2aj€j) = HEexp (i2mtaje;) = Hcos(27rajt).
j=1

J=1 J=1

For every x € R, let [|z(|g /5, := min{|z — N|: N € Z} be the distance from z
to the set of integers. In the following lemma, we gather a few simple (and well-
known) facts concerning sin and cos, whose proof is left as an exercise.

LEMMA 15.4. We have
e sinf > 20 /7 forall 6 € [0,7/2];
e [cosz| <1 _2||33/77H12R/Z < exp(—ZHx/WHIZR/Z)for all x € R;

e cos(2x) > 1 —2r7? ||a:/7THIZR/Zf0r all z € R;
e There is a constant ¢ > 0 such that for all T > 1,
} <c/T.

1 1
max { / sinTxzdx / cosTxdx
0 0

Y
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By (74) and Fubini’s Theorem,

n 1/2 n
S aje—z| <1 gc/ exp | =23 [2atll | dt
j=1 - o

P
1/2

(75)
:20/ |A,le % d,
0
where A, = {t € [-1/2,1/2] : Z?:1||2ajt||12mz < z} and |A,| denotes the

Lebesgue measure of A,. We break the last integral in (75) into two parts,
2 (e} .
fon/47r |Az|le ?*dx and S a2 |Az|le ?*dx. Since |A,| < 1 for all x,

/ |Ayle % dx = e 0 = o(nil)
n/4n?
for any fixed /. Thus, this part is negligible and it remains to show
n/4n?
(76) / Agleds = O(n~Y).
0

Let us now bound the measure of the set A, /4.>. By Lemma 15.4,

Apjamr C A= {t €[-1/2,1/2] :Zn:cos(47rajt) > n/2}

j=1

To bound | A|, we first notice that

1/2
L

2 21
12 [ n

cos(4ma;t) dt g/ Z(eznmjt_i_efmm].t) gt
-12 \ {5

- >/

S1y-ey821=%F1 J1,0.,Jau<n

n

J=1
1/2

. 21
6147”52}1:1 Shajy, dt.
1/2

Recall the hypothesis of the lemma that for any two different multi-sets {i1,... 7y}
and {j1,...,ji} where I'4+1" <2, it holds that |a;, +- - +a;, —aj, —---—a;, | >
a = n'. Thus, for each 81y.--,82 = 1 and jy,..., 72 < n, consider the multi-sets
Si={jn:sp =1} and S, = {jj, : sp, = —1}. If S| # S, then \Zilzlshajh\ >
n'. In this case, the corresponding term in the above double sum is of the form

fj{iz ¢T'dt for some |T'| > 2n!. By Lemma 15.4, we have

12
/ ez47‘rt2%bl:13hajh dt — O(?’Lil), lf Sl # 52'
—1/2

If S} = S,, then |a;, +- - +a;, —aj, —---—aj, | = 0 and the corresponding integral
is 1. The number of terms in the double sum with S| = S, is at most 2%/n! = O(n?)
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while the total number of terms is at most 2%n* = O(n?). Putting these cases
together, we obtain

/1/2 <§n:cos (47‘rajt)) 2ldlt — O +nn ) = O (n).

12\

Hence, |A| = O(n~!) by Markov’s inequality. This implies |A,, Jam2| = O(n™h),
which, in turn, yields (76), completing the proof.

15.5. Proof of the second Jensen’s inequality (8). By setting g(w) =
f(R(w+ z)) and prove the corresponding inequality for g, it suffices to assume
that z=0and R = 1. Let ay,...,ayn be the zeros of f in B(O,T). For each a inside
the unit disk D, consider the map

w—a

Talw) = aw—1"

For |a| < and |w| < r, one can show by algebraic manipulation that

2r
|To(w)| < T2 < 1.

Moreover, for all |a| < 1 and |w| = 1, we have

Jw—a 1—aw
Ta(w)l =0l 20— = aw—l‘zl’
Let h(w) = #ﬁl(w) Then £ is an analytic function on D. By maximum

principle, we have for every wy € D,

|f(wo)| (142"

< max |h(w)| < geag‘h(w)‘

(27’)N werD
ma |h(w)] = max |/(w)]
198 [7ugy -
Thus, N < ———% for all wg € D, completing the proof.
1
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