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Abstract
The number of real roots has been a central subject in the theory of random polyno-
mials and random functions since the fundamental papers of Littlewood, Offord, and
Kac in the 1940s. The main task here is to determine the limiting distribution of this
random variable. In 1974, Maslova famously proved a central limit theorem (CLT)
for the number of real roots of Kac polynomials. It has remained the only limiting
theorem available for the number of real roots for more than four decades. In this
paper, using a new approach, we derive a general CLT for the number of real roots
of a large class of random polynomials with coefficients growing polynomially. Our
result both generalizes and strengthens Maslova’s theorem.

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3745
2. The universality method . . . . . . . . . . . . . . . . . . . . . . . . 3749
3. Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 3754
4. Proof of Corollary 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 3772
5. Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 3773
6. Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 3779
7. Proof of Lemma 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 3792
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3802
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3811

1. Introduction
Random polynomials—so simple to define but difficult to understand—have attracted
generations of mathematicians. Typically, a random (algebraic) polynomial has the
form

Pn.x/ WD cn!nxnC ! ! !C c1!1xC c0!0;
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where !i are i.i.d. copies of an (atom) random variable ! with zero mean and unit
variance, and ci are deterministic coefficients which may depend on both n and i .
Different definitions of ci give rise to different classes of random polynomials, which
have distinct behaviors.

When ci D 1 for all i , the polynomial Pn is often referred to as the Kac poly-
nomial. Even this special class provides great challenges, many of which have led to
rich literature (see, e.g., [3], [14], and the references therein).

Let Nn.R/ denote the number of real roots of Pn. A key problem in the theory
of random polynomials is to understand the behavior of the random variable Nn.R/,
with n tending to infinity. As a matter of fact, this is the problem that started the whole
field, with fundamental works of Littlewood and Offord [25]–[27] and Kac [23] from
the 1940s.

The first natural question is to determine the expectation of Nn.R/. It took more
than twenty years and the works of Kac [23], Erdős and Offord [13], and Ibragimov
and Maslova [19], [20] to settle this problem for the Kac polynomial (the case c0 D
! ! ! D cn D 1). By now, the problem has been solved for many classes of random
polynomials, with various choices for ci and under very general assumptions for !i
(see the introduction of [31]; see also [10], [12], [16], [18], [33]–[35], [38]–[42], and
the references therein).

The next, and more important, problem is to determine the variance and limiting
distribution of Nn.R/. This problem is much harder and our understanding is far
from complete. In the 1970s, Maslova [29] proved the central limit theorem (CLT) for

the Kac polynomial. Here and later,
d"! means convergence in distribution; N .0; 1/

denotes the standard normal distribution, "n WD ENn.R/, #n WD
p

VarNn.R/.

THEOREM 1.1 ([28], [29])
Let " be a positive constant. Consider the Kac polynomial with the random variables
!i being i.i.d. with mean 0, variance 1, bounded .2C "/ moment, and P.!i D 0/D 0.
We have, as n tends to infinity,

Nn.R/"ENn.R/
.VarNn.R//1=2

d"!N .0; 1/:

Furthermore, VarNn.R/D .K C o.1// logn, where K D 4
! .1" 2

! /.

The proof of Maslova relied heavily on explicit computation that requires all the
ci to be equal. Only very recently have CLTs been established for other classes of
polynomials via new methods. In 2015, Dalmao [6] established the CLT for binomial

polynomials (the case when ci D
q!n

i

"
), and in 2018, Do and the second author [11]

handled Weyl polynomials (ci D 1p
iŠ

). However, in both papers, the authors need to
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assume that the random variables !i are standard Gaussian and their arguments rely
strongly on special properties of Gaussian processes. It remains a major challenge
to extend these results to other random variables !i (e.g., Rademacher). For related
results concerning random trigonometric polynomials, see [1], [2], and [17].

The goal of this paper is to establish the CLT for a large class of random polyno-
mials where the deterministic coefficients ci grow polynomially. We will only need
a mild assumption on the !i , which is satisfied by most random variables used in
practice (in particular, this assumption is weaker than Maslova’s). In fact, we can also
handle the more general setting when the !i are not i.i.d.

We consider

Pn.x/D
nX
iD0

ci!ix
i ;

where !i are independent random variables and ci are deterministic coefficients sat-
isfying the following conditions for some positive constants N0, $1, $2, " and some
constant % >"1=2.
(A1) The random variables !i are independent (but not necessarily identically dis-

tributed) real-valued random variables with unit variance and bounded .2C "/
moments, namely, Ej!i j2C" # $2.

(A2) We have E!i D 0 for all i $N0.
(A3) The coefficients ci are deterministic real numbers that grow polynomially,

namely,

jci j# $2 for all 0# i < N0

and

$1i
# # jci j# $2i# for all N0 # i < n:

This class contains many interesting ensembles of polynomials, including
! the Kac polynomial (all ci D 1);
! semi-Kac polynomials with cın D ! ! !D cn D 1 (for some constant 0 < ı < 1)

and all other ci taking arbitrary values from a fixed set of nonzero constants
(e.g., we can have cn=2 D ! ! !D cn D 1 and all ci ; i < n=2 are either 2 or 3 in
arbitrary fashion);

! all derivatives of the Kac polynomial (the zeros of these polynomials are thus
the critical points of the Kac polynomial);

! hyperbolic polynomials Pn.x/D
Pn
iD0

q
L.LC1/""".LCi#1/

iŠ
!ix

i , where L is a
positive constant (see [10], [15], [18], and the references therein);

! ci has the form f .i/Cg.i/, where f .i/ is a polynomial in i of a fixed degree
d > 0 and g.i/ is any function satisfying jg.i/j D o.jf .i/j/.
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Our main result establishes the CLT for these random polynomials.

THEOREM 1.2
Assume that the polynomial Pn satisfies conditions (A1)–(A3) and that VarNn.R/$
c logn for some constant c > 0. Then Nn.R/#$n

%n

d"! N .0; 1/, where "n D ENn.R/,
#n D

p
VarNn.R/.

The condition VarNn.R/$ c logn is guaranteed by the following lemma.

LEMMA 1.3
Assume that the polynomial Pn satisfies conditions (A1)–(A3) and there exist con-
stants C;" > 0 such that for all i 2 Œn" n exp." log1=5 n/;n" exp.log1=5 n/&,

ˇ̌
ˇ jci jjcnj " 1

ˇ̌
ˇ# C exp

!
".log logn/1C"

"
: (1)

Then VarNn.R/$ c logn for some constant c > 0.

The condition in this lemma is satisfied by all classes listed above. We obtain the
following.

COROLLARY 1.4
The CLT holds for the Kac polynomial and its derivatives. It also holds for hyperbolic
polynomials.

Remark 1.5
When restricted to the Kac polynomial with !i being i.i.d. copies of an atom variable
! , our result strengthens Maslova’s, as the condition P.! D 0/D 0 in Theorem 1.1 is
removed.

Remark 1.6
The real roots of Pn.x/ are the real solutions of the equation Pn.x/D 0. The flexi-
bility in condition (A2) enables us to extend Theorem 1.2 to the equation Pn.x/D
H.x/, whereH.x/ is any fixed polynomial with bounded degree. In particular, taking
H.x/DL for a constant L, we conclude that the CLT holds for any level set of Pn.

Related literature. Random polynomials with coefficients growing polynomially,
also known as generalized Kac polynomials, have attracted research attention in dif-
ferent areas including probability and mathematical physics. For example, we refer to
Das [7], Schehr and Majumdar [37], [38], and Do and the authors [10]. It has been
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established in [37] and [38] that the real roots of these polynomials are closely con-
nected to zero crossing properties of the diffusion equation with random initial condi-
tions. The connection has been applied by Dembo and Mukherjee in [8] to study the
probability that these random polynomials have no real roots, which is known as per-
sistence probability as it is related to persistence properties of physical systems. (See
also [9] and the references therein.) In [8], the random variables are Gaussian and the
persistence probability is n#bCo.1/. It is shown that the power exponent b is universal
roughly in the sense that it depends on % (in condition (A3)) rather than the specific
values of ci . We also refer to Poplavskyi and Schehr [32] for a recent development
in finding the power exponent for the Kac polynomial. It would be interesting to see
if the power exponent is universal in the sense presented in this paper, that is, if we
replace the Gaussian distribution by other distributions.

Notation. We use standard asymptotic notation under the assumption that n tends
to infinity. For two positive sequences .an/ and .bn/, we say that an% bn or bn& an
if there exists a constant C such that bn # Can. If jcnj& an for some sequence .cn/,
then we also write cn& an.

If an& bn& an, then we say that bn D‚.an/. If limn!1 an
bn
D 0, then we say

that an D o.bn/. If bn& an, then we sometimes employ the notation bn D O.an/
and an D'.bn/ to make the idea intuitively clearer or the writing less cumbersome;
for example, if A is the quantity of interest, we may write ADA0CO.B/ instead of
A"A0&B , and AD eO.B/ instead of logA&B .

2. The universality method
The key ingredient of our proof is the universality method. The general idea of this
method is to show that limiting laws do not depend too much on the distribution of the
atom variable ! (or the variables !i in general, if they are not i.i.d.). Once universality
has been established, then it suffices to prove the desired law for the case in which
the !i are Gaussian, and here one can bring extra powerful tools such as properties of
Gaussian processes (see [12], [16], [18], [21], [22], [33]–[35], [38], [39], [42]).

The universality method has been powerful in studying local statistics such as
the density or correlation functions concerning the number of roots in a small region
(where the expectation is of order ‚.1/) (see, e.g., [10], [30], [31], [42]). However,
universality arguments are tailored to local settings and in order to use them to prove
the global law in this paper, we need to perform a number of considerably technical
steps, linking local statistics to the global one. The proof for the Gaussian case itself
also requires new ideas.

To study the real roots of Pn, we divide the real line into two regions: a core
region that contains most of the real roots and the remaining one that contains an
insignificant number of real roots. Consider small numbers 0 # bn < an < 1 that
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depend on n and satisfy the following property for all constants A> 0:

an& log#A n: (2)

For example, an D exp.".logn/1=5/. We define

J WD Jan;bn WD˙.1" an; 1" bn/[˙.1" an; 1" bn/#1; (3)

where for any given set S , we define "S WD ¹"x W x 2 Sº, S#1 WD ¹x#1 W x 2 Sº, and
˙S WD"S [ S . For appropriate choices of an and bn, this will be our core region.

For a subset S (C, let Nn.S/DNPn.S/ be the number of roots of Pn in S . Let
Q!i be i.i.d. standard Gaussian random variables, and set

QPn D
nX
iD0

ci Q!ixi :

We denote by QNn.S/DN QPn.S/ the number of zeros of QPn in S .
Our main result on global universality of the real roots states that on the core J,

the distributions of the roots of Pn and QPn are approximately the same.

THEOREM 2.1
Assume that the polynomial Pn satisfies conditions (A1)–(A3). There exist positive
constants C and c such that for every 0# bn < an < 1 satisfying (2), for sufficiently
large n and every function F W R! R whose derivatives up to order 3 are bounded
by 1, we have

ˇ̌
EF

!
Nn.J/

"
"EF

! QNn.J/"
ˇ̌
# CacnCCn#c :

Since Nn.J/ is always an integer, for every real number a0 2R,

P
!
Nn.J/# a0

"
D P

!
Nn.J/# ba0c

"
D E

!
F
!
Nn.J/

""
;

where F is any smooth function that takes values in Œ0; 1& and 1.#1;ba0c& # F #
1.#1;ba0cC1/. Therefore, Theorem 2.1 implies that

ˇ̌
P
!
Nn.J/# a0

"
" P

! QNn.J/# a0"
ˇ̌
# CacnCCn#c : (4)

Using Theorem 2.1 (not in the straightforward way), we deduce the following
corollary.

COROLLARY 2.2
Assume that the polynomialPn satisfies conditions (A1)–(A3). Let k $ 1 be an integer.
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There exist positive constants C and c such that for every 0# bn < an < 1 satisfying
(2) and for sufficiently large n, we have

ˇ̌
E
!
N k
n .J/

"
"E

! QN k
n .J/

"ˇ̌
# CacnCCn#c :

In particular,
ˇ̌
Var

!
Nn.J/

"
"Var

! QNn.J/"
ˇ̌
# CacnCCn#c :

Next, we show that the contribution outside of the core is negligible.

PROPOSITION 2.3
Assume that the polynomialPn satisfies conditions (A1)–(A3). Let k $ 2 be an integer.
There exists a positive constant C such that for every 0# bn < an < 1 satisfying (2)
and for sufficiently large n, we have

EN k
n .R n J/#

´
C..logan/2k C logk.nbn// if bn $ 1=n;
C.logan/2k if bn < 1=n:

(5)

To prove Theorem 1.2 and Lemma 1.3, we use the universality results stated in
Theorem 2.1, Corollary 2.2, and Proposition 2.3 to reduce to the Gaussian case (i.e.,
the case in which the !i are i.i.d. standard Gaussian) with roots restricted to the core
J. In particular, we prove the following.

LEMMA 2.4
Assume that the polynomial Pn satisfies conditions (A1)–(A3). Let c < 1 be any posi-
tive constant. Then for any an, bn satisfying

.logn/2=n# bn < an # exp
!
".logn/c

"
;

log
an

bn
D‚.logn/; and Var QNn.J/% logn;

(6)

we have

QNn.J/"E QNn.J/q
Var QNn.J/

d"!N .0; 1/:

And we also prove the following special case of Lemma 1.3 for Gaussian.

LEMMA 2.5
Assume that the polynomial Pn satisfies conditions (A1)–(A3) and that there exist
constants C;" > 0 such that for all i 2 Œn" n exp." log1=5 n/;n" exp.log1=5 n/&,
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ˇ̌
ˇ jci jjcnj " 1

ˇ̌
ˇ# C exp

!
".log logn/1C"

"
:

Then,

Var QNn.R/% logn:

To illustrate the method of universality, we include here the short proofs of The-
orem 1.2 and Lemma 1.3 assuming the Gaussian case (Lemmas 2.4 and 2.5) together
with the universality results (Corollary 2.2 and Proposition 2.3).

Proof of Lemma 1.3
We first choose an and bn that satisfy all the conditions in Corollary 2.2 and make the
right-hand side of (5) as small as o.logn/ when k D 2. In particular, we let

an D exp." log1=5 n/; bn D
1

nan
;

and

JD˙.1" an; 1" bn/[˙.1" an; 1" bn/#1:

By the triangle inequality on the 2-norm, we obtain
ˇ̌p

VarNn.R/"
p

VarNn.J/
ˇ̌

#
p

VarNn.R n J/#
q

EN 2
n .R n J/D o.

p
logn/; (7)

where in the last equation we used Proposition 2.3. Since QPn is just a special case of
Pn (where the random variables !i are i.i.d. Gaussian), we also have

ˇ̌q
Var QNn.R/"

q
Var QNn.J/

ˇ̌
D o.

p
logn/:

Combining this with Lemma 2.5, we obtain
q

Var QNn.J/D
q

Var QNn.R/C o.
p

logn/%
p

logn: (8)

Applying Corollary 2.2 and (8) yields

VarNn.J/DVar QNn.J/CO.acn/DVar QNn.J/C o.logn/% logn:

From this and (7),
p

VarNn.R/D
p

VarNn.J/C o.
p

logn/%
p

logn:

This completes the proof.
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Proof of Theorem 1.2
Let an, bn, and J be as in the proof of Lemma 1.3. By the assumption that #n Dp

VarNn.R/%
p

logn and by (7), we have
p

VarNn.J/D #n
!
1C o.1/

"
%
p

logn:

By this and Corollary 2.2, we also have
q

Var QNn.J/D
p

VarNn.J/C o.1/D #n
!
1C o.1/

"
%
p

logn: (9)

Thus, (6) holds and so we can apply Lemma 2.4 to get

QNn.J/"E QNn.J/q
Var QNn.J/

d"!N .0; 1/:

Hence,

Nn.J/"E QNn.J/q
Var QNn.J/

d"!N .0; 1/

because by (4), for any fixed a 2R,

P
#Nn.J/"E QNn.J/q

Var QNn.J/
# a

$
D P

# QNn.J/"E QNn.J/q
Var QNn.J/

# a
$
C o.1/

""""!
n!1 P

!
N .0; 1/# a

"
:

By Corollary 2.2,

ENn.J/"E QNn.J/D o.1/:

Combining these with (9), we get

Nn.J/"ENn.J/
#n

d"!N .0; 1/: (10)

From Proposition 2.3, we have

ENn.R n J/& log2=5 n:

By Markov’s inequality, for any fixed a > 0, we have

P
#ˇ̌
ˇNn.R n J/"ENn.R n J/

#n

ˇ̌
ˇ$ a

$
# 1

a#n
E
ˇ̌
Nn.R n J/"ENn.R n J/

ˇ̌

& log2=5 n

a log1=2 n
""""!
n!1 0:
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Thus,

Nn.R n J/"ENn.R n J/

#n

d"! 0: (11)

Adding (10) and (11) completes the proof.

In Section 7, we use universality again to prove Lemma 2.5. But in this case, we
will reduce general coefficients ci to the case when ci D 1. In other words, we could
swap random variables with different means or variances. This deviates significantly
from standard swapping arguments that swap random variables with the same mean
and variance.

The rest of the article is organized as follows. Section 3 is devoted to the proof of
Theorem 2.1, Section 4 for Corollary 2.2, Section 5 for Proposition 2.3, Section 6 for
Lemma 2.4, and Section 7 for Lemma 2.5.

3. Proof of Theorem 2.1
Under the hypothesis of Theorem 2.1, we need to show that

ˇ̌
EF

!
Nn.J/

"
"EF

! QNn.J/"
ˇ̌
# CacnCCn#c : (12)

We first restrict to the interval .0; 1/ and prove that
ˇ̌
EF

!
Nn
!
J\ .0; 1/

""
"EF

! QNn!J\ .0; 1/""
ˇ̌
# CacnCCn#c : (13)

The proof of (12) follows from the same arguments with some (merely technical)
modifications explained in Section 3.7. We choose to start by presenting the proof
of (13) as it already captures all of the ideas without having to deal with the tedious
technical and notational complications detailed in Section 3.7. This way, it makes the
proofs clearer and easier to follow.

3.1. Partition into dyadic intervals and preliminary results
Recall that

J\ .0; 1/D .1" an; 1" bn/:

We start by partitioning the interval .1 " an; 1 " bn/ into dyadic intervals: .1 "
an; 1 " an=2/, Œ1 " an=2; 1 " an=4/, : : : . To be more specific, let ıi WD an=2i for
i D 0; : : : ;M "1, whereM is the smallest number such that an=2M #max¹1=n; bnº.
Let ıM WD max¹1=n; bnº. Note that M & logn. For each i #M " 1, let Ni be the
number of real roots of Pn in the interval Œ1" ıi#1; 1 " ıi /. Let NM be the number
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of real roots of Pn in the interval Œ1" ıM#1; 1" bn/. We have Nn.1" an; 1" bn/D
N1C ! ! !CNM .1

For a dyadic interval .1" ı; 1" ı=2/, we can control the moments of the number
of roots. More generally, the following result works not just for dyadic intervals but
also for balls on the complex plane.

LEMMA 3.1 (Bounded number of roots)
For any positive constants A and k, there exists a constant C such that for every
n$ C , every 1=n# ı # 1=C , and z 2C with 1" 2ı # jzj# 1" ıC 1=n, we have

P
!
Nn
!
B.z; ı=2/

"
$ C log.1=ı/

"
# CıA (14)

and

EN k
n

!
B.z; ı=2/

"
# C logk.1=ı/; (15)

where B.z;R/ is the disk with center z and radius R in the complex plane.

As a consequence, for 1=n# ı # 1=C and for the dyadic interval Œ1"ı; 1"ı=2&,
applying Lemma 3.1 for z D 1" 3ı=2, we obtain

P
!
Nn.1" ı; 1" ı=2/$ C log.1=ı/

"
# CıA

and

EN k
n .1" ı; 1" ı=2/# C logk.1=ı/:

Proof
We shall prove that for a large constant C and for every a 2 Œ1; nı&,

P
!
Nn
!
B.z; ı=2/

"
$ Ca"C log ı

"
& a#AıA; (16)

where the implicit constant depends only on A and C . Setting aD 1, we obtain (14).
Setting AD 2k, letting a run from 1 to nı and using the fact that Nn.B.z; ı=2//# n
with probability 1, we obtain

EN k
n

!
B.z; ı=2/

"
# .C "C log ı/k C

nıX
aD1

!
C.aC 1/"C log ı

"k
.a#2kı2k/

C nk.nı/#2kı2k

& logk.1=ı/;

1If an $ 1=n, then we set M D 1, ı0 D ı1 D 1=n and N DN1 to be the number of real roots of Pn in the
interval .1#an; 1# bn/. Generally, there is no difference in our proof if an interval of interest includes one of
its endpoints or not. So, for example, if one cares about NnŒ1# an; 1# bn/ instead of Nn.1# an; 1# bn/,
one can use the exact same analysis.
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where in the first inequality, the first term bounds EN k
n .B.z; ı=2// on the event

Nn
!
B.z; ı=2/

"
# C "C log ı;

the second term comes from the events Ca"C log ı #Nn.B.z; ı=2// < C.aC 1/"
C log ı for each a, and the third term comes from the event Nn.B.z; ı=2//$ C.nıC
1/"C log ı. This proves (15), completing the proof.

It remains to prove (16). To that end, we use the following version of Jensen’s
inequality which asserts that for every entire function f , every z 2C, and 0 < r < R,

Nf
!
B.z; r/

"
#

log M1
M2

log R
2Cr2
2Rr

; (17)

where M1 D supw2B.z;R/ jf .w/j and M2 D supw2B.z;r/ jf .w/j. This is a conse-
quence of the classical Jensen’s formula (see, e.g., [36]). We add a proof of this
inequality in Section A.1 of the appendix for completeness.

Applying Jensen’s inequality to the polynomial Pn gives

Nn
!
B.z; ı=2/

"
& log

M1

M2
; (18)

where M1 D supw2B.z;2ı=3/ jPn.w/j and M2 D supw2B.z;ı=2/ jPn.w/j.
From (18), to prove (16), it suffices to show that

P
!
M1 $ exp.Ca"C log ı/

"
& a#AıA (19)

and

P
!
M2 # exp."CaCC log ı/

"
& a#AıA: (20)

Since

M1 #
nX
iD0
jci jj!i jjzji ;

it follows that EM1 & ı#O.1/ by conditions (A1) and (A3). The bound (19) then
follows from Markov’s inequality.

For (20), writing z D rei' and observing that the set ¹w D rei' 0 W ( 0 2 Œ( "
ı=10;( C ı=10&º is a subset of B.z; ı=2/, we have

P
!
M2 # exp."CaCC log ı/

"

# P
#

sup
' 02Œ'#ı=10;'Cı=10&

ˇ̌
ˇ
nX
jD0

cj !j r
j eij'

0 ˇ̌ˇ# exp."CaCC log ı/
$
:
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By taking the supremum outside, the right-hand side is at most

sup
' 02Œ'#ı=10;'Cı=10&

P
#ˇ̌
ˇ
nX
jD0

cj !j r
j eij'

0 ˇ̌ˇ# exp."CaCC log ı/
$

and hence, by projecting onto the real line and conditioning on the random variables
.!j /j…Œ1;a=ı&, it is bounded by

sup
' 02Œ'#ı=10;'Cı=10&

sup
Z2R

P
#ˇ̌
ˇ
a=ıX
jD1

cj !j r
j cos.j( 0/"Z

ˇ̌
ˇ# exp."CaCC log ı/

$
:

We use the following anti-concentration lemma from [31].

LEMMA 3.2 ([31, Lemma 9.2])
Let E be an index set of sizeM 2N, and let .!j /j2E be independent random variables
satisfying condition (A1). Let .ej /j2E be deterministic (real or complex) coefficients
with jej j $ Ne for all j and for some number Ne 2 RC. Then for any constant B $ 1,
any interval I (R of length at least M#B , there exists ( 0 2 I such that

sup
Z2R

P
#ˇ̌
ˇ
X
j2E

ej !j cos.j( 0/"Z
ˇ̌
ˇ# NeM#16B2

$
&M#B=2;

where the implicit constant depends only on B and the constants in condition (A1).

Applying Lemma 3.2 with B D 2A, E D Œ1; a=ı&, M D a=ı, I D Œ( " ı=10;( C
ı=10&, ej D cj rj , and Ne D ı

ae3a
(where we use condition (A3) and the assumption

that r D jzj $ 1" 2ı to get jej j $ Ne), we obtain ( 0 2 Œ( " ı=10;( C ı=10& such that
for a sufficiently large constant C ,

sup
Z2R

P
#ˇ̌
ˇ
a=ıX
jD1

cj !j r
j cos.j( 0/"Z

ˇ̌
ˇ# exp."CaCC log ı/

$
& .a=ı/#A D a#AıA;

which gives (20) and completes the proof of Lemma 3.1.

3.2. A generalization
Theorem 2.1 is deduced from the following more general result that can be of inde-
pendent interest.

PROPOSITION 3.3
Let OF : RM ! R be any function whose every partial derivative up to order 3 is
bounded by 1. We have

ˇ̌
E OF .N1; : : : ;NM /"E OF . QN1; : : : ; QNM /

ˇ̌
& ıc0:
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To deduce (13) (which is essentially Theorem 2.1 as mentioned at the beginning
of this section), let OF be the function defined by OF .x1; : : : ; xM /D F.x1C ! ! !CxM /.
It is easy to check that k@.3/ OF k1 # 1 with k@.3/ OF k1 D max˛Wj˛j$3 k@˛ OF k1 being
the supremum of all partial derivatives up to order 3 of F . By applying Proposition 3.3
to this OF , (13) follows.

The rest of this section is devoted to the proof of Proposition 3.3.

3.3. Approximate the indicator function by smooth functions
To apply analytical tools, we first approximate the indicator function in counting the
number of real roots by smooth functions.

Let ˛ be a sufficiently small positive constant. Let '0 be a smooth function taking
values in Œ0; 1&, supported on Œ"1; 1& and equal to 1 at 0 with k).a/0 k1 DO.1/ for all
0# a # 3. For example, we can take the classical bump function

'0.x/D
´

exp." x2

1#x2 / if x 2 ."1; 1/;
0 otherwise:

For 1# i #M , let )i be a smooth function taking values in Œ0; 1&, supported on
Œ1" ıi#1 " ı1C˛i ; 1" ıi C ı1C˛i & and equal to 1 on Œ1" ıi#1; 1" ıi & with k).a/i k1 D
O.ı

#a.1C˛/
i / for all 0# a # 3. An example of )i can be obtained by translating and

scaling )0 as follows:

'i .x/D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

1 if x 2 Œ1" ıi#1; 1" ıi &;
0 if x 2 Œ1" ıi#1 " ı1C˛i ; 1" ıi C ı1C˛i &;

)0.
x#.1#ıi /
ı1C˛
i

/ if x 2 Œ1" ıi ; 1" ıi C ı1C˛i &;

)0.
x#.1#ıi!1/

ı1C˛
i

/ if x 2 Œ1" ıi#1 " ı1C˛i ; 1" ıi#1&:

The indicator of the dyadic interval .1 " ıi#1; 1 " ıi & shall be approximated by
the following function defined on the complex plane:

'i .z/ WD )i
!
Re.z/

"
'0

# Im.z/

ı1C˛i

$
:

In other words, the number of roots in .1" ıi#1; 1" ıi &, which is just Ni , is approxi-
mated by

nX
jD1

'i .*j /;

where .*j /njD1 are the roots of Pn.
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To control the error terms in this approximation, note that for all 0# a # 3,

k@.a/'ik1 DO.ı#a.1C˛/i /: (21)

The following lemma estimates the error term in approximating Ni byPn
jD1 'i .*j /.

LEMMA 3.4
We have

E OF .N1; : : : ;NM /"E OF
# nX
jD1

'1.*j /; : : : ;

nX
jD1

'M .*j /
$
& ı

˛=8
0 : (22)

Proof
By the derivative assumption on OF , we have

OF .N1; : : : ;NM /" OF
# nX
jD1

'1.*j /; : : : ;

nX
jD1

'M .*j /
$
&

MX
iD1

ˇ̌
ˇNi "

nX
jD1

'i .*j /
ˇ̌
ˇ:

For each i #M , jNi "
Pn
jD1 'i .*j /j is bounded by the number of roots of Pn in

the union of the sets S1, S2, S3 where S1 is the set of all complex numbers whose real
part lies in Œ1"ıi#1"ı1C˛i ; 1"ıiCı1C˛i & and imaginary part in Œ"ı1C˛i ; ı1C˛i &n ¹0º,
S2 WD Œ1" ıi#1 " ı1C˛i ; 1" ıi#1&, and S3 WD Œ1" ıi ; 1" ıi C ı1C˛i &.

Thus, Lemma 3.4 follows by proving that for k D 1; 2; 3,

ENn.Sk/& ı
˛=8
0 :

To this end, we use the following lemma from [10].

LEMMA 3.5 ([10, Lemma 5.1])
There exists a constant ˛0 > 0 such that for all 0 < ˛ # ˛0 and all x 2 R with jxj 2
Œ1" ıi#1 " ı1C˛i ; 1" ıi C ı1C˛i &,

P
!
Nn
!
B.x; 2ı1C˛i /

"
$ 2

"
& ı

3˛=2
i :

To show that ENn.S1/& ı
˛=8
0 , we note that S1 is contained in a union of‚.ı#˛i /

small balls of radius 2ı1C˛i . By Lemma 3.5, the union bound, and the fact that the
complex roots come in conjugate pairs, the probability that Nn.S1/ is nonzero is in
fact negligible:



3760 NGUYEN and VU

P
!
Nn.S1/ > 0

"
#

X
small balls

P.number of roots in a small ball is at least 2/

& ı#˛i ı
3˛=2
i D ı˛=2i :

Thus, Nn.S1/D 0 except on an event, named A1, of probability at most O.ı˛=2i /.
The expectation on the tail event A1 is controlled as the higher moments of

Nn.S1/ are bounded by Lemma 3.1. More specifically, since S1 ( B.1 " 3ıi
2 ;

ıi
2 C

ı1C˛i /, applying (15) to this ball and Hölder’s inequality, we obtain

ENn.S1/D ENn.S1/1A1 #
!
EN 2

n .S1/
"1=2!P.A1/

"1=2

& ı
˛=4
i log

1

ıi
& ı

˛=8
i : (23)

For S2 [ S3, [10, Theorem 2.4] implies that for such intervals as S2 and S3, the
expected number of real roots is universal in the sense that

ENn.S2/D E QNn.S2/CO.ı˛=2i / and ENn.S3/D E QNn.S3/CO.ı˛=2i /;

where QNn.S/ is the number of real roots of QPn in a set S . It thus remains to show
that E QNn.S2[S3/& ı

˛=8
0 . To this end, we use the Kac–Rice formula (see [12], [23];

here we use [14, Formula 3.12]),

E QNn.a; b/D
1

+

ˆ b

a

p
VarPn.t/VarP 0n.t/" .Cov.Pn.t/;P 0n.t//2

.VarPn.t//2
dt

D 1

+

ˆ b

a

qPn
iD0

Pn
jDiC1 c

2
i c
2
j .j " i/2t2iC2j#2Pn

iD0 c
2
i t
2i

dt: (24)

Algebraic manipulations show that

E QNn.S2 [ S3/& ı
˛=2
i : (25)

We add the verification of this estimate in Section A.2 of the appendix for complete-
ness. Putting the bounds together gives ENn.S2 [ S3/& ı

˛=2
i .

By combining this with (23), it follows that the left-hand side of (22) is bounded
by O.

PM
iD1 ı

˛=8
i /DO.ı˛=80 /, proving (22) and Lemma 3.4.

3.4. Reducing to an explicit function of the random polynomial: log jPnj
In light of Lemma 3.4, to show Proposition 3.3, it remains to show that
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E OF
# nX
jD1

'1.*j /; : : : ;

nX
jD1

'M .*j /
$

D E OF
# nX
jD1

'1. Q*j /; : : : ;
nX
jD1

'M . Q*j /
$
CO.ı˛0 /; (26)

where Q*j are the roots of QPn.
In this section, we reduce the sums

Pn
jD1 'i .*j / to an explicit function of Pn.

The starting point for this reduction is to apply the Green’s second identity to the
compactly supported function 'i ,

nX
jD1

'i .*j /D
1

2+

ˆ
C

log
ˇ̌
Pn.z/

ˇ̌
4'.z/dz

D 1

2+

ˆ
B.1#3ıi=2;2ıi=3/

log
ˇ̌
Pn.z/

ˇ̌
4'.z/dz; (27)

where we note that 'i is supported on B.1" 3ıi=2; 2ıi=3/.
We show that the integral on the rightmost side is well-approximated by its Rie-

mann sum. In particular, we prove that for mi WD ı#11˛i ,

ˇ̌
ˇ
nX
jD1

'i .*j /"
2ı2i
9mi

miX
kD1

log
ˇ̌
Pn.wik/

ˇ̌
4'i .wik/

ˇ̌
ˇDO.ı˛i / (28)

with probability at least 1 " O.ı˛i /, where the wik are chosen independently, uni-
formly at random from the ball B.1" 3ıi=2; 2ıi=3/ and are independent of all previ-
ous random variables.

Proof of (28)
This proof is based on [10, (4.20)].

For notational convenience, we skip the subscript i and write ı WD ıi , ' WD 'i ,
and m WDmi . Let x0 D 1" 3ıi=2, the center of the ball.

Since ' is compactly supported in B.x0; 2ı=3/, by the Green’s second identity, it
holds that

nX
jD1

'.*j /D
1

2+

ˆ
C

log
ˇ̌
Pn.z/

ˇ̌
4'.z/dz

D 1

2+

ˆ
B.x0;2ı=3/

log
ˇ̌
Pn.z/

ˇ̌
4'.z/dz: (29)

We shall think about the integral on the rightmost side of (29) as an expectation
with respect to dz, up to some rescale; so in approximating an expectation by a sample
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mean (which is the second summation in (28)), it is sufficient to control the variance.
To this end, we would need to require that log jPn.z/j is bounded above and below.
For that purpose, we introduce the good event T on which the following hold for
c1 D ˛=2:
(T1) log jPn.z/j# 1

2ı
#c1 for all z 2B.x0; 4ı5 /,

(T2) log jPn.x1/j$"12ı#c1 for some x1 2B.x0; ı
100
/.

By Jensen’s inequality (17), these conditions imply that

Nn

#
B
#
x0;

3ı

4

$$
& ı#c1 : (30)

We will show later that

P.T /D 1"O.ı˛/: (31)

Assuming (31), it suffices to show that (28), conditioned on T , holds with probability
1"O.ı˛/. The following lemma provides the required variance bound, conditioned
on T .

LEMMA 3.6
On the event T , we have

ˆ
B.x0;2ı=3/

!
log
ˇ̌
Pn.z/

ˇ̌"2
dz& ı#8c1C2: (32)

Assuming Lemma 3.6 and the fact that k4'k1& ı#2.1C˛/ by the definition of
', we conclude that on the event T ,

 
B.x0;2ı=3/

log2
ˇ̌
Pn.z/

ˇ̌
!
ˇ̌
4'.z/

ˇ̌2
dz& ı#4#8˛; (33)

where  
B.x0;2ı=3/

f .z/dz WD 1

jB.x0; 2ı=3/j

ˆ
B.x0;2ı=3/

f .z/dz

is the average of f on the domain of integration.
Having bounded the 2-norm, we now use the following sampling lemma which

is a direct application of Chebyshev’s inequality.

LEMMA 3.7 (Monte Carlo sampling lemma ([42, Lemma 38]))
Let .X;"/ be a probability space, and let F WX!C be a square-integrable function.
Letm$ 1, let x1; : : : ; xm be drawn independently at random fromX with distribution
", and let S be the empirical average
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S WD 1

m

!
F.x1/C ! ! !CF.xm/

"
:

Then S has mean
´
X F d" and variance 1

m

´
X .F "

´
X F d"/

2 d". In particular, by
Chebyshev’s inequality, we have

P
#ˇ̌
ˇS "

ˆ
X

F d"
ˇ̌
ˇ$ ,

$
# 1

m,2

ˆ
X

#
F "

ˆ
X

F d"
$2
d":

Conditioning on T and applying this sampling lemma with , D ı˛#2 together
with (33), we obtain

 
B.x0;2ı=3/

log
ˇ̌
Pn.z/

ˇ̌
4'.z/dz " 1

m

mX
kD1

log
ˇ̌
Pn.wik/

ˇ̌
4'.wik/& ı˛#2

with probability at least 1" ı!4!8˛
mı2˛!4 D 1" ı

˛ , where we recall that mD ı#11˛ .
Combining this with (29) gives (28), conditioned on T as claimed.

It is left to verify (31) and Lemma 3.6.

Proof of (31)
Since

sup
z2B.x0;4ı=5/

ˇ̌
Pn.z/

ˇ̌
#

nX
iD0
jci jj!i j.1" 7ı=10/i

has mean at most ı#O.1/, applying Markov’s inequality to the random variable

nX
iD0
jci jj!i j.1" 7ı=10/i ;

we conclude that the event (T1) happens with probability at least 1"OA.ıA/ for any
constant A> 0.

For (T2), writing x0 D rei' and observing that the set ¹w D rei' 0 W ( 0 2 Œ( "
ı=100;( C ı=100&º is a subset of B.x0; ı=100/, we have

P
!
(T2) fails

"
# P

#
sup

' 02Œ'#ı=100;'Cı=100&

ˇ̌
ˇ
nX
jD0

cj !j r
j eij'

0 ˇ̌ˇ# exp."ı#c1=2/
$
: (34)

By taking the supremum outside, the right-hand side is at most

sup
' 02Œ'#ı=100;'Cı=100&

P
#ˇ̌
ˇ
nX
jD0

cj !j r
j eij'

0 ˇ̌ˇ# exp."ı#c1=2/
$
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and hence is bounded by

sup
' 02Œ'#ı=100;'Cı=100&

sup
Z2R

P
#ˇ̌
ˇ
1=ıX
jD1

cj !j r
j cos.j( 0/"Z

ˇ̌
ˇ# exp."ı#c1=2/

$

by projecting onto the real line and conditioning on the random variables .!i /i…Œ1;1=ı&.
Applying the anti-concentration Lemma 3.2 with B D 4˛, E D Œ1; 1=ı&, M D

1=ı, I D Œ( " ı=100;( C ı=100&, ej D cj rj , and Ne D ı (where we use condition
(A3) and the assumption that r D jzj $ 1 " 3ı to get jej j $ Ne), we obtain ( 0 2 Œ( "
ı=100;( C ı=100& such that for all Z 2C,

P
#ˇ̌
ˇ
1=ıX
jD1

cj !j r
j cos.j( 0/"Z

ˇ̌
ˇ# exp."ı#c1=2/

$
& ı2˛:

This proves that (T2) holds with probability at least 1"O.ı2˛/, concluding the proof
of (31).

Proof of Lemma 3.6
This proof is based on [10, Lemma 4.8]. Since x1 2B.x0; ı=100/, it suffices to show
that ˆ

B.x1;2ı=3Cı=100/

!
log
ˇ̌
Pn.z/

ˇ̌"2
dz& ı#8c1C2:

By (30), there exists an r 2 Œ2ı=3C ı=100; 3ı=4" ı=100& such that Pn does not have
zeros in the (closed) annulus B.x1; r C -/ nB.x1; r " -/ with center at x1 and radii
r ˙ -, where -% ı1Cc1 .

It is now sufficient to show thatˆ
B.x1;r/

log2
ˇ̌
Pn.z/

ˇ̌
dz& ı#8c1C2: (35)

Let *1; : : : ; *k be all zeros of Pn in B.x1; r " -/. Then k & ı#c1 and Pn.z/ D
.z " *1/ ! ! ! .z " *k/g.z/, where g is a polynomial having no zeros on the closed ball
B.x1; r C -/. By the triangle inequality,

#ˆ
B.x1;r/

log2
ˇ̌
Pn.z/

ˇ̌
dz
$1=2

#
kX
iD1

#ˆ
B.x1;r/

log2 jz " *i jdz
$1=2
C
#ˆ
B.x1;r/

log2
ˇ̌
g.z/

ˇ̌
dz
$1=2

& ı1#2c1 C
#ˆ
B.x1;r/

log2
ˇ̌
g.z/

ˇ̌
dz
$1=2

; (36)



CENTRAL LIMIT THEOREMS FOR RANDOM POLYNOMIALS 3765

where in the last inequality we used
ˆ
B.x1;r/

log2 jz " *i jdz #
ˆ
B.0;3ı=2/

log2 jzjdz& ı2#2c1 :

Next, we will bound
´
B.x1;r/

log2 jg.z/jdz by finding a uniform upper bound
and lower bound for log jg.z/j. Since log jg.z/j is harmonic in B.x1; r/, it attains its
extrema on the boundary. Thus,

#ˆ
B.x1;r/

log2
ˇ̌
g.z/

ˇ̌
dz
$1=2
& ı max

z2@B.x1;r/

ˇ̌
log
ˇ̌
g.z/

ˇ̌ˇ̌
: (37)

Notice that log jg.z/j is also harmonic on the ball B.x1; r C -/. For the upper bound
of log jg.z/j, we claim that for all z in B.x1; r C -/,

log
ˇ̌
g.z/

ˇ̌
# ı#2c1 : (38)

Indeed, since a harmonic function attains its extrema on the boundary, we can
assume that z 2 @B.x1; r C -/. By condition (T1), log jPn.z/j # ı#c1 . Additionally,
by noticing that jz " *i j$ 2- for all 1# i # k, we get

log
ˇ̌
g.z/

ˇ̌
D log

ˇ̌
Pn.z/

ˇ̌
"

kX
iD1

log jz " *i j# ı#c1 " k log.2-/# ı#2c1 (39)

as claimed.
As for the lower bound, let u.z/ D ı#2c1 " log jg.z/j, then u is a nonnegative

harmonic function on the ball B.x1; r C -/. By Harnack’s inequality (see [36, Chap-
ter 11]) for the subset B.x1; r/ of the above ball, we have that for every z 2B.x1; r/,

˛u.x1/# u.z/#
1

˛
u.x1/;

where ˛D (
2rC( % ıc1 . Hence,

˛
!
ı#2c1 " log

ˇ̌
g.x1/

ˇ̌"
# ı#2c1 " log

ˇ̌
g.z/

ˇ̌
# 1
˛

!
ı#2c1 " log

ˇ̌
g.x1/

ˇ̌"
:

And so,

ˇ̌
log
ˇ̌
g.z/

ˇ̌ˇ̌
# 1
˛

ˇ̌
log
ˇ̌
g.x1/

ˇ̌ˇ̌
C 1

˛
ı#2c1& ı#c1

ˇ̌
log
ˇ̌
g.x1/

ˇ̌ˇ̌
C ı#3c1 : (40)

Thus, we reduce to bounding j log jg.x1/jj. From (38) and condition (T2), we have

ı#2c1 $ log
ˇ̌
g.x1/

ˇ̌
D log

ˇ̌
P.x1/

ˇ̌
"

kX
iD1

log jx1 " *i j$ log
ˇ̌
P.x1/

ˇ̌
$"1

2
ı#c1 :
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And so, j log jg.x1/jj# ı#2c1 , which together with (40) gives
ˇ̌
log
ˇ̌
g.z/

ˇ̌ˇ̌
& ı#3c1 : (41)

From (36), (37), and (41), we obtain (35) and hence Lemma 3.6.

3.5. Universality of log jPnj
Since

PM
iD1 ı

˛
i & ı˛0 , by applying (28), the left-hand side of (26) equals

EK
!
log
ˇ̌
Pn.wik/

ˇ̌"
iD1;:::;M
kD1;:::;mi

CO.ı˛0 /

and the right-hand side of (26) equals

EK
!
log
ˇ̌ QPn.wik/

ˇ̌"
iD1;:::;M
kD1;:::;mi

CO.ı˛0 /;

where

K.xik/ iD1;:::;M
kD1;:::;mi

WD OF
# 2ı21
9m1

m1X
kD1

x1k4'1.w1k/; : : : ;
2ı2M
9mM

mMX
kD1

xMk4'M .wMk/
$
: (42)

In this section, we show that the difference between these two identities is small
(Lemma 3.8). Before stating the result, note that by (21) and the assumption on the
derivatives of OF , it holds that

kKk1 DO.1/;
%%% @K
@xik

%%%
1
DO.ı#2˛i /;

%%% @2K

@xik@xi 0k0

%%%
1
DO.ı#2˛i ı#2˛i 0 /; and

%%% @3K

@xik@xi 0k0@xi 00k00

%%%
1
DO.ı#2˛i ı#2˛i 0 ı#2˛i 00 /

(43)

for all i , i 0, i 00, k, k0, k00.

LEMMA 3.8 (Universality of log jPnj)
There exists a constant ˛0 > 0 such that for every constant ˛ 2 .0; ˛0&, every function
K W Rm1C"""CmM ! R that satisfies (43), and every wik in B.1 " 3ıi=2; 2ıi=3/, we
have

ˇ̌
EK

!
log
ˇ̌
Pn.wik/

ˇ̌"
ik
"EK

!
log
ˇ̌ QPn.wik/

ˇ̌"
ik

ˇ̌
DO.ı˛0 /:
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In order to prove Lemma 3.8, we first prove the following smooth version where
the log function is replaced by a smooth function. The proof of Lemma 3.8 follows by
a routine smoothening argument that we defer to Section A.3 of the appendix. Both
proofs are based on [42].

LEMMA 3.9
There exists a constant ˛0 > 0 such that for every ˛ 2 .0; ˛0&, every smooth 2 function
L W Cm1C"""CmM ! R that satisfies (43), and every wik in B.1 " 3ıi=2; 2ıi=3/, we
have

ˇ̌
ˇEL

# Pn.wik/p
V.wik/

$
iD1;:::;M
kD1;:::;mi

"EL
# QPn.wik/p

V.wik/

$
iD1;:::;M
kD1;:::;mi

ˇ̌
ˇDO.ı˛0 /; (44)

where V.w/ WDPn
jDN0 jcj j

2jwj2j and N0 is the constant in conditions (A2) and
(A3).

Proof
We use the Lindeberg swapping argument. Let Pi0.z/ D

Pi0#1
iD0 ci Q!izi CPn

iDi0 ci!iz
i , for 0 # i0 # n C 1. Then P0 D Pn and PnC1 D QPn and Pi0C1 is

obtained from Pi0 by replacing the random variable !i0 by Q!i0 . Let

Ii0 WD
ˇ̌
ˇEL

# Pi0.wik/p
V.wik/

$
ik
"EL

#Pi0C1.wik/p
V.wik/

$
ik

ˇ̌
ˇ:

The left-hand side of (44) is bounded by
Pn
i0D0 Ii0 . Fix i0 2 ŒN0; nC 1& (where

N0 is the constant in conditions (A2) and (A3)), and let

Yik WD
Pi0.wik/p
V.wik/

"
ci0!i0w

i0
ikp

V.wik/

for 1# i #M , 1# k #mi . We have

Pi0C1.wik/p
V.wik/

D Yik C
ci0
Q!i0w

i0
ikp

V.wik/
:

Conditioned on the !j and Q!j for all j ¤ i0, the Yik are fixed. To bound Ii0 , we reduce
to bounding

di0 WD
ˇ̌
ˇE)i0 ;Q)i0 OL

# ci0!i0wi0ikp
V.wik/

$
ik
"E

)i0 ;
Q)i0
OL
# ci0 Q!i0wi0ikp

V.wik/

$
ik

ˇ̌
ˇ; (45)

2By smooth we mean that L has continuous derivatives up to order 3.
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where OLD OLi0.xik/ik WDL.YikCxik/ik . Note that this function OL also satisfies (43)
because L does.

Let aik;i0 D
ci0w

i0
ikp

V.wik/
. By condition (A3), we have

V.wik/%
2ı!1
iX

jDı!1
i

j 2#.1" 13ıi=6/2j % ı
#1#2#
i (46)

and

jci0w
i0
ik
j& i

#
0 .1" ıi=6/i0& i

#
0 exp."i0ıi=6/&max¹1; ı##i º: (47)

Since % >"1=2, we have from (46) and (47) that

jaik;i0 j& ı˛1i (48)

for some constant ˛1 > 0. Taylor expanding OL around the origin, we obtain

OL.aik;i0!i0/ik D OL.0/C OL1C err1; (49)

where

OL1 D
d OL.aik;i0!i0 t /ik

dt

ˇ̌
ˇ
tD0

D
X
ik

@ OL.0/
@Re.zik/

Re.aik;i0!i0/C
X
ik

@ OL.0/
@ Im.zik/

Im.aik;i0!i0/:

Since OL satisfies (43), we have

jerr1j# sup
t2Œ0;1&

ˇ̌
ˇ1
2

d2 OL.aik;i0!i0 t /ik
dt2

ˇ̌
ˇ

& j!i0 j2
X
ik;i 0k0

jaik;i0 jjai 0k0;i0 jı#2˛i ı#2˛i 0 & j!i0 j2
#X
ik

jaik;i0 jı#2˛i

$2
:

Expanding to the next derivative, we have, in a similar manner,

OL.aik;i0!i0/ik D OL.0/C OL1C
1

2
OL2C err2; (50)

where OL2 D
d2 OL.aik;i0 )i0 t/ik

dt2
jtD0 and

jerr2j& j!i0 j3
#X
ik

jaik;i0 jı#2˛i

$3
:
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By definition, jerr2j D jerr1 " 1
2
OL2j& j!i0 j2.

P
ik jaik;i0 jı#2˛i /2. Using interpo-

lation, Hölder’s inequality, and mi D ı#11˛i , we get

jerr2j& j!i0 j2C"
#X
ik

jaik;i0 jı#2˛i

$2C"

& j!i0 j2C"M 1C"
MX
iD1

ı#50˛i

# miX
kD1
jaik;i0 j2

$.2C"/=2
:

All of these estimates also hold for Q!i0 in place of !i0 . Since !i0 and Q!i0 have the
same first and second moments and they both have bounded .2C "/ moments, we get

di0 D jEerr2j&M 1C"
MX
iD1

ı#50˛i

# miX
kD1
jaik;i0 j2

$.2C"/=2
:

Taking expectation with respect to the remaining variables shows that the same
upper bound holds for Ii0 for all N0 # i0 # nC 1. By (48), choosing ˛ to be suffi-
ciently small compared to ˛1, we have .

Pmi
kD1 jaik;i0 j2/"=2& ı

.2˛1#11˛/"=2
i & ı100˛i .

Hence,

nC1X
i0DN0

Ii0&M 1C"
nC1X
i0DN0

MX
iD1

ı50˛i

miX
kD1
jaik;i0 j2& log2 n

MX
iD1

ı2˛i

& .log2 n/ı2˛0 & ı˛0 ;

where we used M & logn,
PnC1
i0DN0 jaik;i0 j

2 D 1, and (2).
For 0# i0 <N0, instead of (49) and (50), we use the mean value theorem to get

a rough bound

OL.aik;i0!i0/ik D OL.0/CO
#
j!i0 j

X
ik

ı#2˛i jaik;i0 j
$
;

which by the same arguments as above gives

Ii0&M 1=2
# MX
iD1

ı#50˛i

miX
kD1
jaik;i0 j2

$1=2
& log1=2 n

vuut MX
iD1

ı2˛1#61˛i & ı˛0 :

Taking all these bounds together, we get
PnC1
i0D0 Ii0 & ı˛0 . This completes the proof

of Lemma 3.9.

3.6. Finishing the proof of Proposition 3.3
In Lemma 3.4, we approximated the number of real roots in dyadic intervals, Ni , by
the sums

Pn
jD1 'i .*j / and estimated the error term to be
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E OF .N1; : : : ;NM /"E OF
# nX
jD1

'1.*j /; : : : ;

nX
jD1

'M .*j /
$
& ı

˛=8
0 (51)

as in (22). Applying this bound for the specific Gaussian case yields

E OF . QN1; : : : ; QNM /"E OF
# nX
jD1

'1. Q*j /; : : : ;
nX
jD1

'M . Q*j /
$
& ı

˛=8
0 : (52)

It remains to show that

E OF
# nX
jD1

'1.*j /; : : : ;

nX
jD1

'M .*j /
$

D E OF
# nX
jD1

'1. Q*j /; : : : ;
nX
jD1

'M . Q*j /
$
CO.ı˛0 /; (53)

where Q*j are the roots of QPn.
By (28), the sums

Pn
jD1 'i .*j / can be well-approximated by the sample sum

ˇ̌
ˇ
nX
jD1

'i .*j /"
2ı2i
9mi

miX
kD1

log
ˇ̌
Pn.wik/

ˇ̌
4'i .wik/

ˇ̌
ˇDO.ı˛i / (54)

with probability at least 1 " O.ı˛i /, where the wik are chosen independently, uni-
formly at random from the ball B.1" 3ıi=2; 2ıi=3/ and are independent of all previ-
ous random variables.

Since
PM
iD1 ı

˛
i & ı˛0 , by applying (54), the left-hand side of (26) equals

EK
!
log
ˇ̌
Pn.wik/

ˇ̌"
iD1;:::;M
kD1;:::;mi

CO.ı˛0 /

and the right-hand side of (26) equals

EK
!
log
ˇ̌ QPn.wik/

ˇ̌"
iD1;:::;M
kD1;:::;mi

CO.ı˛0 /;

where K is the function defined in (42).
For any fixed wik , Lemma 3.8 asserts that the difference between these two iden-

tities is small:
ˇ̌
EK

!
log
ˇ̌
Pn.wik/

ˇ̌"
ik
"EK

!
log
ˇ̌ QPn.wik/

ˇ̌"
ik

ˇ̌
DO.ı˛0 /:

This gives Proposition 3.3.
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3.7. From J\ .0; 1/ to J
In this section, we detail the modifications needed to prove Theorem 2.1 from the
proof of (13). For Theorem 2.1, we need to show that

ˇ̌
EF

!
Nn.J/

"
"EF

! QNn.J/"
ˇ̌
# CacnCCn#c :

Inequality (13) restricts to the interval .0; 1/ and says that
ˇ̌
EF

!
Nn
!
J\ .0; 1/

""
"EF

! QNn!J\ .0; 1/""
ˇ̌
# CacnCCn#c :

We first decomposeNn.J/ and QNn.J/ into the sum of the numbers of real roots in
the intervals J\ .0; 1/, J\ ."1; 0/, J\ .1;1/, and J\ ."1;"1/ and denote byN .i/

n

and QN .i/
n with i D 1; : : : ; 4, the corresponding number of real roots. For example,

N .1/
n DNn

!
J\ .0; 1/

"
and QN .1/

n D QNn
!
J\ .0; 1/

"
;

N .2/
n DNn

!
J\ ."1; 0/

"
and QN .2/

n D QNn
!
J\ ."1; 0/

"
;

and so on.
Note that

Nn.J/D
4X
iD1

N .i/
n and QNn.J/D

4X
iD1
QN .i/
n :

It has been shown in proving (13) how to deal with N .1/
n . To deal with N .2/

n , note
that there is a one-to-one correspondence between the real roots of Pn.z/ in ."1; 0/
and the real roots in .0; 1/ of the polynomial Pn."z/ D

Pn
iD0."1/ici!izi . Denote

this new polynomial by P .2/n .z/ and the original polynomial Pn.z/ by P .1/n .z/. All
arguments that have been used for P .1/n to handle N .1/

n can be applied to P .2/n to
handle N .2/

n .
For N .3/

n , there is a one-to-one correspondence between the roots of P .1/n .z/ in
.1;1/ and the roots in .0; 1/ of the polynomial z

n

cn
Pn.z

#1/DPn
iD0

cn!i
cn
!n#izi DW

P
.3/
n .z/. The coefficients cn!i

cn
of P .3/n satisfy condition (A3) with %D 0, except for

a negligible number of i , and hence the same arguments as for P .1/n also apply for
P
.3/
n .

Similarly, for N .4/
n , there is a one-to-one correspondence between the roots

of P .1/n .z/ in ."1;"1/ and the roots in .0; 1/ of the polynomial P .3/n ."z/ DPn
iD0."1/i

cn!i
cn
!n#izi DW P .4/n .z/. All arguments that work for P .3/n .z/ also work

for P .4/n .z/.
In Section 3.1, N .1/

n is partitioned into a sum of Ni , which is the number of roots
of P .1/n in a dyadic interval .1 " ıi#1; 1 " ıi &. Denote these Ni by N .1/

i . Denote by
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N
.2/
i , N .3/i , and N .4/

i the number of roots in the same interval of P .2/n , P .3/n , and
P
.4/
n , respectively. We have

Nn.J/D
4X
jD1

MX
iD1

N
.j /
i :

All other steps in the proof of (13) can now be written for the proof of Theorem 2.1
by placing these N .j /

i in place of Ni . For example, Proposition 3.3 becomes
ˇ̌
E OF .N .1/

1 ; : : : ;N
.1/
M ;N

.2/
1 ; : : : ;N

.2/
M ; : : : /

"E OF . QN .1/
1 ; : : : ; QN .1/

M ; QN .2/
1 ; : : : ; QN .2/

M ; : : : /
ˇ̌
& ıc0;

where OF : R4M ! R is any function whose every partial derivative up to order 3 is
bounded by 1.

4. Proof of Corollary 2.2
We define ı0; : : : ; ıM ;N1; : : : ;NM as in the beginning of the proof of Theorem 2.1.
Note that ıi $ ıM $ 1=n and ıc0 D‚.acnC n#c/.

To prove the first part of Corollary 2.2, we first reduce to the interval Œ1" an; 1"
bn/ as explained in Section 3.7; namely, it suffices to show that

ˇ̌
E
!
N k
n Œ1" an; 1" bn

"
/"E

! QN k
n Œ1" an; 1" bn

"
/
ˇ̌
# Cıc0: (55)

We write N WD NnŒ1 " an; 1 " bn/, QN WD QNnŒ1 " an; 1 " bn/. Let A be the event
on which N # log4 n (here, 4 can be replaced by any large constant). Let F be a
smooth function that is supported on the interval Œ"1; log4 nC 1&, and let F.x/D xk
for all x 2 Œ0; log4 n&. Since N is always an integer, it holds that N k1A D F.N/. The
function F can be chosen such that all of its derivatives up to order 3 are bounded by
O.log4k n/. Applying Theorem 2.1 to the rescaled function .logn/#4kF , we obtain

jEN k1A "E QN k1 QAj D
ˇ̌
EF.N/"EF. QN/

ˇ̌
& ı2c0 log#4k n& ıc0

for some small constant c, where QA is the corresponding event on which QN # log4 n.
To finish the proof of the first part, we show that the contribution from the com-

plement of A is negligible, that is,

EN k1Ac & ıc0:

Since M & logn& ı
#c=2
0 by (2) and since N k #M k

PM
iD0N

k
i , it suffices to show

that for all i , EN k
i 1Ac & ı2c0 . Let Ai be the event on which Ni # log3.1=ıi /. Note

that
TM
iD1Ai (A. Let A be a large constant. By (14) of Lemma 3.1, P.Ac

i /& ıAi .
Thus,
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P.Ac/#
MX
iD1

P.Ac
i /&

MX
iD1

ıAi & ıA0 :

This together with (15) of Lemma 3.1 gives

EN k1Ac & logk n
MX
iD1

EN k
i 1Ac

& logk n
MX
iD1
.EN 2k

i /1=2
!
P.Ac/

"1=2& logk n
MX
iD1

ı
A=2
0

#
log

1

ıi

$2k
:

Since ıi $ 1=n, the rightmost side is at most .log4k n/ıA=20 & ı
A=2#1
0 & ıc0 by (2)

and by choosing A$ 3.
The second part of Corollary 2.2 follows from the first part by observing that
!
ENn.J/

"2 " !E QNn.J/"2& ıc0
!
2ENn.J/CO.ıc0/

"
& ıc0 log2 n& ı

c=2
0 ;

where in the first inequality we used the first part of Corollary 2.2 for k D 1, in the
second inequality we used (15) to get that

ENn.J/&
MX
iD1

log.1=ıi /#
MX
iD1

logn& log2 n;

and in the last inequality we used (2). This completes the proof of Corollary 2.2.

5. Proof of Proposition 2.3

5.1. Probability of multiple roots
We start by proving a useful tool that controls the probability that the polynomial Pn
has many roots in a small interval. For any x;y 2R, let

V.x/ WDVarPn.x/D
nX
iD0

c2i x
2i (56)

and

r.x;y/ WD EPn.x/Pn.y/p
V.x/

p
V.y/

D
Pn
iD0 c

2
i x
iyiq

.
Pn
iD0 c

2
i x
2i /.

Pn
iD0 c

2
i y

2i /
: (57)

LEMMA 5.1
Assume that the random variables !i are i.i.d. standard Gaussian. There exists a con-
stant C0 such that for any 0 < s < 1, any k; l $ 2, 1" 1

C0
# x < t < 1 and y; z 2 .x; t/

satisfying
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log
1" x
1" y D log

1" z
1" t D ı

for some ı 2 .0; 1=2C0&, we have

P
!
Nn.x; y/$ k

"
& .C0ı/

ks (58)

and

P
!
Nn.x; y/$ k;Nn.z; t/$ l

"
& .C0ı/

2ks C .C0ı/2ls C
.C0ı/

.kCl/s
p
1" r2.y; t/

; (59)

where the implicit constants depend only on s, not on k, l , x, y, ı.

Proof
We start by proving (59). By Rolle’s theorem and the fundamental theorem of calcu-
lus, if P has at least k zeros in the interval .x; y/, then

ˇ̌
Pn.y/

ˇ̌
#
ˆ y

x

ˆ y1

x

! ! !
ˆ yk!1

x

ˇ̌
P .k/n .yk/

ˇ̌
dyk ! ! !dy1 DW Ix;y :

Therefore,

P
!
Nn.x; y/$ k;Nn.z; t/$ l

"
# P

!
Ix;y $ "1

p
V.y/

"
C P

!
Iz;t $ "2

p
V.t/

"

C P
!ˇ̌
Pn.y/

ˇ̌
# "1

p
V.y/;

ˇ̌
Pn.t/

ˇ̌
# "2

p
V.t/

"
;

where "1 WD .C0ı/ks , "2 WD .C0ı/ls and

V.x/DVarPn.x/D
nX
iD0

c2i x
2i : (60)

By condition (A3), we have the following estimate whose proof is deferred to Sec-
tion A.4 of the appendix, as it is merely algebraic:

V.x/D ‚.1/

.1" xC 1=n/2#C1 8x 2 .1" 1=C;1/: (61)

Since . Pn.y/p
V.y/

; Pn.t/p
V.t/

/ is a Gaussian vector with mean 0 and covariance matrix& 1 r.y;t/
r.y;t/ 1

'
, we have

P
!ˇ̌
Pn.y/

ˇ̌
# "1

p
V.y/;

ˇ̌
Pn.t/

ˇ̌
# "2

p
V.t/

"
& "1"2p

1" r2.y; t/
:
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It remains to show that

P
!
Ix;y $ "1

p
V.y/

"
& .C0ı/

2ks: (62)

Since 0 < s < 1, there exists h > 0 such that s D 2Ch
4Ch . By Markov’s inequality,

we have
!
"1
p
V.y/

"2ChP!Ix;y $ "1
p
V.y/

"

# E
#ˆ y

x

ˆ y1

x

! ! !
ˆ yk!1

x

ˇ̌
P .k/n .yk/

ˇ̌
dyk ! ! !dy1

$2Ch
:

By Hölder’s inequality, the right-hand side is at most

# .y " x/k
kŠ

$1Ch
E
ˆ y

x

ˆ y1

x

! ! !
ˆ yk!1

x

ˇ̌
P .k/n .yk/

ˇ̌2Ch
dyk ! ! !dy1

and so
!
"1
p
V.y/

"2ChP!Ix;y $ "1
p
V.y/

"

#
# .y " x/k

kŠ

$2Ch
sup

w2.x;y/
E
ˇ̌
P .k/n .w/

ˇ̌2Ch
: (63)

For each w 2 .x; y/, since P .k/n .w/ is a Gaussian random variable, using the
hypercontractivity inequality for the Gaussian distribution (see, e.g., [5, Corol-
lary 5.21]), we have for some constant C ,

E
ˇ̌
P .k/.w/

ˇ̌2Ch& !
E
ˇ̌
P .k/n .w/

ˇ̌2" 2Ch
2 &

# C k.kŠ/2

.1" y C 1=n/2#C2kC1
$ 2Ch

2
;

where in the last inequality we used an estimate similar to (61).
Plugging this and (61) into (63), we obtain

P
!
Ix;y $ "1

p
V.y/

"

& .1" y C 1=n/
.2!C1/.2Ch/

2

"2Ch1

# .y " x/k
kŠ

$2Ch# C k.kŠ/2

.1" y C 1=n/2#C2kC1
$ 2Ch

2
;

which gives

P
!
Ix;y $ "1

p
V.y/

"
& 1

"2Ch1

#
C

y " x
1" y C 1=n

$k.2Ch/
& 1

"2Ch1

#
C
y " x
1" y

$k.2Ch/
:

Using "1 D .C0ı/ks , y#x1#y D 1#x
1#y " 1D eı " 1# 2ı for ı # 1

2C0
and s D 2Ch

4Ch , we get



3776 NGUYEN and VU

P
!
Ix;y $ "1

p
V.y/

"
& 1

.C0ı/ks.2Ch/
.2Cı/k.2Ch/& .C0ı/

2ks

by choosing C0 $ 2C . This proves (59).
The inequality (58) is obtained by the same reasoning:

P
!
Nn.x; y/$ k

"
# P

!
Ix;y $ "1

p
V.y/

"
C P

!ˇ̌
Pn.y/

ˇ̌
# "1

p
V.y/

"
:

Thus,

P
!
Nn.x; y/$ k

"
& .C0ı/

2ks C "1& .C0ı/
ks:

This completes the proof of Lemma 5.1.

5.2. Partition into pieces
Let A be the right-hand side of (5):

A WD
´
.logan/2k C logk.nbn/ if bn $ 1=n;
.logan/2k if bn < 1=n:

Writing R n J as a union of four sets T1 WD Œ0; 1& n J, T2 WD Œ"1; 0& n J, T3 WD
.1;1/ n J, and T4 WD ."1;"1/ n J and using the triangle inequality, we reduce
Proposition 2.3 to showing that for each 1# i # 4,

EN k
Pn
.Ti /D EN k

n .Ti /&A: (64)

We only prove (64) for i D 1; the proofs for the remaining i D 2; 3; 4 are similar.
Since A% 1, by the triangle inequality, (64) follows from showing that for some large
constant C ,

EN k
n Œ0; 1" 1=C && 1; (65)

EN k
n .1" 1=C;1" an/& .loga#1n /2k; (66)

EN k
n

#
1" an

n
; 1
$
& 1; (67)

and

EN k
n

#
1" bn; 1"

an

n

$
&A; (68)

where we note that if 1" bn > 1" an
n

, then the interval .1" bn; 1" an
n
/ is empty and

(68) is vacuously true.
The bound (65) is precisely the content of [10, Lemma 2.5]. In the following

sections, we show (66), (67), and (68).
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5.3. Proof of (66)
Dividing the interval .1" 1=C;1" an/ into dyadic intervals I0 WD .1" 1

C
; 1" 1

2C
&,

I1 WD .1 " 1
2C
; 1 " 1

4C
&, . . . , Im WD .1 " 1

2mC
; 1 " an/ (where 1

2mC
$ an > 1

2mC1C )
and applying that triangle inequality together with (15), we obtain

!
EN k

n .1" 1=C;1" an/
"1=k #

mX
iD0

!
EN k

n .Ii /
"1=k&

mX
iD0

log.2iC/& .loga#1n /2:

Thus,

EN k
n .1" 1=C;1" an/& .loga#1n /2k

proving (66).

5.4. Reducing to Gaussian
To prove (67) and (68), applying (55) to the intervals .1" an

n ; 1/ and .1"bn; 1" an
n /,

we get
ˇ̌
ˇEN k

n

#
1" an

n
; 1
$
"E QN k

n

#
1" an

n
; 1
$ˇ̌
ˇ& n#c& 1

and
ˇ̌
ˇEN k

n

#
1" bn; 1"

an

n

$
"E QN k

n

#
1" bn; 1"

an

n

$ˇ̌
ˇ# CbcnCCn#c& 1&A:

Thus, it remains to prove (67) and (68) when the random variables !i are i.i.d. standard
Gaussian. So for the rest of this proof, we assume that this is the case.

5.5. Proof of (67)
For (67), we use Hölder’s inequality and (15) to conclude that

EN k
n

#
1" an

n
; 1
$
#
#
EN 2k#1

n

#
1" an

n
; 1
$$1=2#

ENn
#
1" an

n
; 1
$$1=2

& .logn/2k#1
#
ENn

#
1" an

n
; 1
$$1=2

: (69)

Using the Kac–Rice formula (24), we get

ENn
#
1" an

n
; 1
$
D 1

+

ˆ 1

1#ann

qPn
iD0

Pn
jDiC1 c

2
i c
2
j .j " i/2t2iC2j#2Pn

iD0 c
2
i t
2i

dt

&
ˆ 1

1#ann
ndt D an; (70)
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where we used jj " i j # n C 1 and
Pn
iD0

Pn
jDiC1 c

2
i c
2
j t
2iC2j D .Pn

iD0 c
2
i t
2i /2.

Plugging this into (69) and using (2), we obtain

EN k
n

#
1" an

n
; 1
$
& .logn/2k#1a1=2n & 1: (71)

5.6. Proof of (68)
By (58), for every interval Œx; y& with

1" bn # x < y < 1"
an

n
and log

1" x
1" y D

1

C
; (72)

where C is a sufficiently large constant, we have

EN k
n .x; y/# ENn.x; y/C

1X
jD2

j kP
!
Nn.x; y/D j

"

& ENn.x; y/C
1X
jD2

j k2#j D ENn.x; y/CO.1/:

Dividing the interval .1"bn; 1" an
n / intoO.log n

an
C logbn/DO.log nbnan / intervals

that satisfy (72), we obtain

EN k
n

#
1" bn; 1"

an

n

$

&
#

log
nbn

an

$k#1
ENn

#
1" bn; 1"

an

n

$
C
#

log
nbn

an

$k#1
: (73)

So, (68) follows from (73) and the following

ENn
#
1" bn; 1"

an

n

$
&max

®
1; log.nbn/

¯
; (74)

which can be deduced from

ENn
#
1" bn; 1"

C

n

$
& log.nbn/ if bn $ C=n (75)

and

ENn
#
1" C

n
;1" an

n

$
& 1: (76)

To prove (75), let ci;# WD
q
.2#C1/""".2#Ci/

iŠ
. We have ci;# D‚.ci / for all i $ N0

thanks to condition (A3).
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Using the Kac–Rice formula (24), we have

ENn
#
1" bn; 1"

C

n

$

&
ˆ 1#Cn

1#bn

qPn
iD0

Pn
jDiC1 c

2
i;#c

2
j;#.j " i/2t2iC2j#2Pn

iD0 c
2
i;#t

2i
dt: (77)

We use [10, Lemma 10.3] with h.k/ D c2i;#, which estimates the above integrand
uniformly over the interval .1" bn; 1" C

n
/ and asserts that

qPn
iD0

Pn
jDiC1 c

2
i;#c

2
j;#.i " j /2t2iC2j#2Pn

iD0 c
2
i;#t

2i

&
p
2%C 1

2+.1" t / C .1" t /
##1=2C 1

n.1" t /2 ;

which is& 1
1#t by the assumption % >"1=2.

That gives (75) because

ENn
#
1" bn; 1"

C

n

$
&

ˆ 1#Cn

1#bn

1

1" t dt& lognC logbn D log.nbn/: (78)

For (76), we use the same bound as in (70) to obtain

ENn
#
1" C

n
;1" an

n

$
&

ˆ 1#ann

1#Cn
ndt& 1: (79)

This proves (76) and completes the proof of (68).

6. Proof of Lemma 2.4
Since the lemma only involves Gaussian random variables Q!i , we simplify the notation
and write !i for Q!i and Nn.S/ for QNn.S/ (this helps us to avoid multiple superscripts
later on). Thus, for this section, !i )N.0; 1/ for all i .

We will adapt the argument in Maslova [29], which is to approximate the number
of roots by a sum of independent random variables. Since the random variables !i are
now standard Gaussian, numerous technical steps in [29], which may be impossible
to reproduce without having c0 D ! ! !D cn D 1, can be greatly simplified and applied
to our general setting thanks to special properties of Gaussian variables.

6.1. Approximate the number of real roots by the number of sign changes
Let V and r be defined as in (56) and (57). Lemma 5.1 asserts that in a small interval,
it is unlikely that the polynomial Pn has more than one root. If Pn has at most one root
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in an interval .a; b/ and does not vanish at a and b, then Nn.a; b/D 1 if Pn.a/ and
Pn.b/ have different signs and Nn.a; b/ D 0 otherwise. Hence, on a small interval
.a; b/, it is reasonable to approximate Nn.a; b/ by the number of sign changes:

N sign
n .a; b/D 1

2
" 1
2

sign
!
Pn.a/Pn.b/

"
; (80)

where

sign.x/ WD

8̂
<̂
ˆ̂:

1 if x > 0;

0 if x D 0;
"1 if x > 0:

The following lemma estimates the accuracy of this approximation for a long
interval.

LEMMA 6.1 (Approximate by sign changes)
Assume that the !i are i.i.d. standard Gaussian. For any positive constant ", there
exist constants C , C 0 such that the following holds. Let T > 1=C , and let a, b be
such that 1" an # a < b # 1" bn and log 1#a1#b D T . Let j0 D ı#1 log.1" a/#1 and
j1 D ı#1 log.1" b/#1, where ı is any number with

exp
!
".log logn/1C"

"
< ı < 1=C:

Assume (without loss of generality) that j0 and j1 are integers, and let xj D 1 "
exp."jı/ for all j D j0; : : : ; j1. Let

S D Sa;b;ı DNnŒa; b/D
j1#1X
jDj0

NnŒxj ; xjC1/ and

S sign D S sign
a;b;ı D

j1#1X
jDj0

N sign
n .xj ; xjC1/:

Then

E.S " S sign/2 # C 0T 2ı1#":

Proof
Note that xj0 D a, xj1 D b, and j1 " j0 D ı#1T .

We have

E.S " S sign/2 D
j1#1X
iDj0

E.Ni "N sign
i /2C 2

X
j0$i<j$j1#1

E.Ni "N sign
i /.Nj "N sign

j /;

where Nj WDNnŒxj , xjC1) and N sign
j WDN sign

n .xj ; xjC1).
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By Lemma 5.1, we have

j1#1X
iDj0

E.Ni "N sign
i /2 #

j1#1X
iDj0

nX
kD2

k2P.Ni D k/

& T ı#1
nX
kD2

k2.C0ı/
k.1#"=2/& T ı1#": (81)

For each j0 # i < j # j1 " 1, we have

E.Ni "N sign
i /.Nj "N sign

j /#
nX

k;lD2
klP.Ni D k;Nj D l/:

Let k0 WD ı#1=100. We split the right-hand side into three sums: 2# k; l # k0 for the
first sum, k0 < k # n and 2# l # n for the second sum, and 2# k # n and k0 < l # n
for the third sum, and denote the corresponding sums by K1, K2, K3, respectively.

By Lemma 5.1, letting rij WD r.xiC1; xjC1/ gives

K1& k20

h
.Cı/4.1#"/C .Cı/4.1#"/q

1" r2ij

i
& ı3C ı3q

1" r2ij
: (82)

For K2, we use Hölder’s inequality to get

K2 # E.NiNj 1Ni%k0C11Nj%2/# .EN 2
i 1Ni%k0C1/

1=2.EN 2
j 1Nj%2/

1=2

# k#hC10 .EN 2h
i 1Ni%2/

1=2.EN 2
j 1Nj%2/

1=2& k#hC10 ı2#"& ı3;

where h is a sufficiently large constant, and in the next to last inequality we used
Lemma 5.1 in a similar way as in (81). Similarly, K3& ı3. Hence,

E.Ni "N sign
i /.Nj "N sign

j /& ı3C ı3q
1" r2ij

;

and so

E.S " S sign/2& T ı1#"C
X

j0$i<j<j1

#
ı3C ı3q

1" r2ij

$

& T ı1#"C ı3
X

j0$i<j<j1

1q
1" r2ij

: (83)

To complete the proof of the lemma, it remains to bound 1" r2ij from below. For
each 0# k # n, let
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ck;# D
r
.kC 2%/ ! ! ! .1C 2%/

kŠ
:

By condition (A3), ck D‚.ck;#/ for all k $N0 and thus, for all x;y 2 Œa; b&,

V.x/D
nX
kD0

c2kx
2k D‚

# nX
kD0

c2k;#x
2k
$

and

1" r2.x; y/D
P
0$i<k$n c

2
i c
2
k.x

iyk " xkyi /2
.
Pn
kD0 c

2
kx
2k/.

Pn
kD0 c

2
ky

2k/

D‚
#P

0$i<k$n c
2
i;#c

2
k;#.x

iyk " xkyi /2

.
Pn
kD0 c

2
k;#x

2k/.
Pn
kD0 c

2
k;#y

2k/

$
: (84)

Therefore, in order to bound 1" r2ij from below, it suffices to assume that ck D ck;#
for all 0# k # n for the rest of the proof of Lemma 6.1.

For ck D ck;#, we have for every x 2 Œ1" an; 1" bn&,

V.x/D 1CO."0/
.1" x2/2#C1 ; (85)

where "0 D exp.".log logn/1C2"/. We defer the simple verification of (84) and (85)
to Section A.5 of the appendix.

Letting x D xiC1 and y D xjC1 yields

rij D
V.
p
xy/p

V.x/V .y/
D
!
1CO."0/

"#p.1" x2/.1" y2/
.1" xy/

$2#C1
:

Let sij WD
p
.1#x2/.1#y2/
.1#xy/ . To estimate 1" r2ij , let us first estimate 1" s2ij . We have

1" s2ij D
.x " y/2

.1" xC x.1" y//2 D
.e.j#i/ı " 1/2
.e.j#i/ı C x/2 $

.j " i/2ı2
.e.j#i/ı C 1/2 :

Thus, if .j " i/ı # 1, then 1" s2ij % .j " i/2ı2, and if .j " i/ı $ 1, then 1" s2ij D
.e.j!i/ı#1/2
.e.j!i/ıCx/2 % 1. Combining this with the assumption that ı $ exp.".log logn/1C"/,

we have "0 D o.1" s2ij / for all i < j . This implies that

1" r2ij D 1" s
2.2#C1/
ij C o.1" s2ij /D‚.1" s2ij /D‚

# .x " y/2
.1" xy/2

$

and
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X
j0$i<j$j1#1

1q
1" r2ij

&
X

i<j<iCı!1

1q
1" s2ij

C
X

j%iCı!1

1q
1" s2ij

&
X

i<j<iCı!1

1

.j " i/ı C
X

j%iCı!1
1

& T ı#2 log ı#1C T 2ı#2:

Plugging this into (83), we obtain

E.S " S sign/2& T ı1#"C T 2ıC T ı log ı#1& T 2ı1#";

completing the proof of Lemma 6.1.

6.2. Truncate the polynomial Pn to get independence
We now show that N sign.x; y/ and N sign.z; t/ are (in some rough sense) independent
whenever the intervals .x; y/ and .z; t/ are relatively far apart. This allows us to
approximate Nn.J/ by a sum of independent random variables from which we can
derive a CLT.

For any x 2 Œ1" an; 1" bn&, let

Ax D log.1" x/#1; mx D .1" x/#1A#˛x ; and

Mx D ˛.1" x/#1 logAx;
(86)

where ˛ is a large constant to be chosen.
Define a truncated version of Pn by

Q.x/D
MxX
jDmx

cj !jx
j :

We get Q from Pn by a truncation in which the truncation points mx and Mx

depend on the value of x. Let

%0 Dmin¹1; 1C 2%º> 0:

The following lemma asserts thatQ is a good approximation of Pn and thatQ.x/
and Q.y/ are independent when x and y are far apart.

LEMMA 6.2
For every x 2 Œ1" an; 1" bn&, it holds that

0#VarPn.x/"VarQ.x/DVar
!
Pn.x/"Q.x/

"
&A#˛#

0
x EP 2n .x/: (87)
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Moreover, if 1 " an # x < y # 1 " bn and if log 1#x
1#y $ 2˛ log logn, then Q.x/ and

Q.y/ are independent because

Mx <my :

Proof
Since bn $ 1=n, for all x 2 Œ1" an; 1" bn&, 1" x $ bn $ 1=n. We write x D 1" 1

L
.

By (61), on the rightmost side of (87), we have

VarPn.x/D
‚.1/

.1" x/2#C1 D‚.L
2#C1/:

On the other side, we have

VarPn.x/"VarQn.x/#
N0X
iD0

c2i x
2i C

mxX
iDN0

c2i x
2i C

nX
iDMx

c2i x
2i

& 1C
mxX
N0

i2# C
nX

iDMx
i2#e#2i=L:

By the same argument as in (118), the rightmost sum is at most

nX
iDMx

i2#e#2i=L& L2#C1
ˆ 1
Mx=L#1

t2#e#2t dt

& L2#C1e#˛ log logL& .logL/#˛EP 2n .x/&A#˛#
0

x EP 2n .x/;

where we used Mx D ˛L log logL and Ax D logL by the definition of Mx and Ax .
Thus,

VarPn.x/"VarQn.x/& 1Cm2#C1x CA#˛#0x EP 2n .x/&A#˛#
0

x EP 2n .x/;

where we used mx DL.logL/#˛ by the definition of mx . This proves (87).
As for the second part of Lemma 6.2, writing x D 1" 1

L
and y D 1" 1

K
, we have

1&L#K # n and log KL $ 2˛ log logn, so

Mx D ˛L log logL#L log˛ n#K log#˛ n#K log#˛K Dmy :

This proves Lemma 6.2.

6.3. Approximating sign changes of Pn by those of Q: Short intervals
Let

N trun
Pn
.x; y/DN trun.x; y/ WD 1

2
" 1
2

sign
!
Q.x/Q.y/

"
(88)
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be the sign change of Q on the interval .x; y/. In the next lemma, we show that N trun

is a good approximation of the corresponding sign changeN sign
n of Pn defined in (80).

LEMMA 6.3 (Approximation by truncation I)
Assume that the !i are i.i.d. standard Gaussian. Let C be any positive constant. Let
1" an # x < y # 1" bn with log 1#x

1#y # 1=C . Then

E
!
N sign
n .x; y/"N trun.x; y/

"2&A#˛#
0=3

x :

Proof
Using the formula

sign.a/D 1

+

ˆ
R
t#1 sin.ta/dt;

we have

N sign
n .x; y/"N trun.x; y/

D 1

2+2

*
ˆ

R

ˆ
R
t#1u#1

!
sin
!
t NQ.x/

"
sin
!
u NQ.y/

"
" sin

!
t NPn.x/

"
sin
!
u NPn.y/

""
dt du;

where

NQ.x/ WD Q.x/p
V.x/

; NQ.y/ WD Q.y/p
V.y/

;

NPn.x/ WD
Pn.x/p
V.x/

; and NPn.y/ WD
Pn.y/p
V.y/

:

Decompose the plane R * R of .t; u/ into two regions: the square ¹.t; u/ W
A
#˛#0=6
x # jt j; juj # A˛#0=3x º and its complement. We denote the corresponding

integrals on these regions by I1 and I2, respectively.
First, we show that the contribution from I2 is negligible. Indeed, using the esti-

mates
ˇ̌
ˇ
ˆ
jt j$"

t#1 sin.ta/dt
ˇ̌
ˇ&min

®
ja"j; 1

¯
;

ˇ̌
ˇ
ˆ
jt j%M

t#1 sin.ta/dt
ˇ̌
ˇ&min

° 1

jaM j ; 1
±
;

(89)

we obtain
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jI2j&
!ˇ̌ NPn.x/

ˇ̌
C
ˇ̌ NPn.y/

ˇ̌
C
ˇ̌ NQ.x/ˇ̌C NQ.y/j"A#˛#0=6x

Cmin
®
1;
ˇ̌ NPn.x/

ˇ̌#1
A#˛#

0=3
x

¯
Cmin

®
1;
ˇ̌ NPn.y/

ˇ̌#1
A#˛#

0=3
x

¯

Cmin
®
1;
ˇ̌ NQ.x/ˇ̌#1A#˛#0=3x

¯
Cmin

®
1;
ˇ̌ NQ.y/ˇ̌#1A#˛#0=3x

¯
:

From this and the Gaussianity of NPn and NQ, we have

EI 22 &A#˛#
0=3

x CE min¹1;Z#2A#2˛#0=3x º&A#˛#
0=3

x ;

where Z )N .0; 1/.
For I1, we need to make use of the cancellation between Pn and Q. We rewrite

I1 as

I1 D
1

+2

ˆ A
˛!0=3
x

A
!˛!=6
x

ˆ A
˛!0=3
x

A
!˛!=6
x

t#1u#1 sin
!
t NQ.x/

"

* cos
#
u
NQ.y/C NPn.y/

2

$
sin
#
u
NQ.y/" NPn.y/

2

$
dt du

C 1

+2

ˆ A
˛!0=3
x

A
!˛!=6
x

ˆ A
˛!0=3
x

A
!˛!=6
x

t#1u#1 sin
!
u NPn.y/

"

* cos
#
t
NQ.x/C NPn.x/

2

$
sin
#
t
NQ.x/" NPn.x/

2

$
dt du:

Using j
´ c
b t
#1 sin.ta/dt j& 1 for all 0 < b < c, j sin.a/

a
j # 1 for all a ¤ 0, and (87),

we get

EI 21 & E
hˆ A˛!

0=3
x

A
!˛!0=6
x

ˇ̌ NQ.y/" NPn.y/
ˇ̌
C
ˇ̌ NQ.x/" NPn.x/

ˇ̌
dt
i2

& A2˛#
0=3

x

!
E
ˇ̌ NQ.y/" NPn.y/

ˇ̌2CE
ˇ̌ NQ.x/" NPn.x/

ˇ̌2"&A#˛#
0=3

x ;

where we used Lemma 6.2 (recalling that the random variables !i are i.i.d. standard
Gaussian and hence have mean 0) to get

E
ˇ̌ NQ.y/" NPn.y/

ˇ̌2 DVar
! NQ.y/" NPn.y/"&A#˛#

0
y &A#˛#

0
x :

This completes the proof of Lemma 6.3.

6.4. Approximating sign changes of Pn by those of Q: Long intervals

LEMMA 6.4 (Approximation by truncation II)
Assume that the !i are i.i.d. standard Gaussian. There exist constants C , C 0 such that
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the following holds. Let T > 1=C , and let a, b be such that 1" an # a < b # 1" bn
and log 1#a

1#b D T . Let j0 D ı#1 log.1 " a/#1 and j1 D ı#1 log.1 " b/#1, where ı
is any number in .0; 1=C /. Assume (without loss of generality) that j0 and j1 are
integers, and let xj D 1" exp."jı/ for all j D j0; : : : ; j1. Let

S sign D S sign
a;b;ı D

j1#1X
jDj0

N sign
n .xj ; xjC1/ and

S trun D S trun
a;b;ı D

j1#1X
jDj0

N trun.xj ; xjC1/:

Then

E.S trun " S sign/2 # C 0ı#2T 2
#

log
1

an

$#˛#0=3
D C 0ı#2

#
log

1" a
1" b

$2#
log

1

an

$#˛#0=3
:

Proof
By Lemma 6.3, we have

E.S trun " S sign/2 #
#j1#1X
jDj0

&
E
!
N trun.xj ; xjC1/"N sign

n .xj ; xjC1/
"2'1=2$2

&
#j1#1X
jDj0

A#˛#
0=6

xj

$2
&
#j1#1X
jDj0

.jı/#˛#
0=6
$2
:

By the definition of j0 and j1, we get

j1#1X
jDj0

.jı/#˛#
0=6 # ı#˛#0=6.j1 " j0/j#˛#

0=6
0 D ı#1#˛#0=6Tj#˛#0=60

# ı#1T
#

log
1

an

$#˛#0=6
;

proving Lemma 6.4.

6.5. Control of the fourth moment
The following lemma controls the fourth moment of S trun.

LEMMA 6.5 (Bounded fourth moment)
Under the setting of Lemma 6.4 and an additional assumption that

ı $
#

log
1

an

$#˛#0=24
;
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we have

E.S trun
a;b;ı "ES trun

a;b;ı/
4& T 2.log logn/2 D

#
log

1" a
1" b

$2
.log logn/2: (90)

Proof
Let C0 be the constant in Lemma 5.1.

Case 1: T # 1. Since T % 1, it suffices to show that

E.S trun
a;b;ı/

4& 1: (91)

For simplicity, we write S trun for S trun
a;b;ı . Let S sign D S

sign
a;b;ı as in the setting of

Lemma 6.4. By the definition of sign changes, we have with probability 1,

S trun& j1 " j0& ı#1 and S sign& j1 " j0& ı#1:

Hence, by Lemma 6.4, Hölder’s inequality, and the assumption that

ı $
#

log
1

an

$#˛#0=24
;

we have

ˇ̌
E.S trun/4 "E.S sign/4

ˇ̌
& ı#3EjS trun " S signj& ı#4

#
log

1

an

$#˛#0=6
& 1:

Thus, it suffices to show that E.S sign/4& 1. Since N sign
n .x; y/ # Nn.x; y/ for any

interval .x; y/,

E.S sign/4 # EN 4
n .a; b/:

Partition the interval .a; b/ into smaller intervals .x; y/ such that log 1#x
1#y D 1

2C0
.

Since log 1#a
1#b D T , the number of such subintervals is 2C0T . By (58), for each of

these intervals .x; y/, we have

EN 4
n .x; y/&

1X
kD1

k42#k=2& 1:

Using this and the assumption that T # 1 of Case 1, we have EN 4
n .a; b/& 1 as

desired.
Case 2: T > 1. We decompose the sum in S trun "ES trun into blocks of size " WD

ı#1 of the form

Xk D
j0Ck$#1X

jDj0C.k#1/$

!
N trun.xj ; xjC1/"EN trun.xj ; xjC1/

"



CENTRAL LIMIT THEOREMS FOR RANDOM POLYNOMIALS 3789

for each k D 1; : : : ; j2, where j2 D .j1" j0/"#1 is the number of blocks. Notice that
j2& T .

We have

E.S trun "ES trun/4 D E
# j2X
kD1

Xk

$4

D
j2X
kD1

EX4k C 4
X
k¤l

EX3kXl C 6
X
k<l

EX2kX
2
l

C 12
X

l<pIk¤l;p
EX2kXlXp C 24

X
k<l<p<q

EXkXlXpXq

DW I1C 4I2C 6I3C 12I4C 24I5:

Note that each Xk is of the form S trun
a0;b0;ı " ES trun

a0;b0;ı for some a0, b0 that satisfy

log 1#a
0

1#b0 # 1. Thus, (91) implies that EX4k & 1 for all k. By Hölder’s inequality,
each term in the summation of I1; : : : ; I5 is of order O.1/, and so

I1& j2& T; I2C I3& j 22 & T 2:

To bound I4 and I5, we use the independence in Lemma 6.2 to conclude that if k2 "
k1 $ 3˛ log logn, then Xk2 and .X1; : : : ;Xk1/ are independent. Together with the
fact that EXk D 0 for all k, we observe that most terms in the sums I4, I5 are zero.
Ignoring these zero terms, we have

I4 D
X

l<p$lCC log logn

EX2kXlXp& j 22 log logn& T 2 log logn

and

I5 D
X

l#C log logn$k<l<p<q$pCC log logn

EXkXlXpXq& T 2.log logn/2:

Putting the above bounds together, we obtain Lemma 6.5.

6.6. Proof of Lemma 2.4
Using the results in Sections 6.1 and 6.2, we shall approximate Nn.J/ by a sum of
independent random variables to prove that it satisfies the CLT. We again recall that
in this proof, the !i are i.i.d. standard Gaussian as mentioned at the beginning of this
section. Recall the hypothesis (6) that

.logn/2=n# bn < an # exp
!
".logn/c

"
;

log
an

bn
D‚.logn/; and VarNn.J/% logn:

(92)
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In particular, an satisfies condition (2). Let ˛, ˇ be any constants satisfying

ˇ $ 3 and 2ˇC 3# c˛%0=24: (93)

Let

T WD log
an

bn
D‚.logn/; ı WD .logn/#ˇ ;

j0 WD ı#1 log
1

an
; and j1 WD ı#1 log

1

bn
:

(94)

We have j1 " j0 D ı#1T . Let

q WD ı#1T 1=8 and p WD ı#1T 1=2:

Observe that q D o.p/ and q grows with n. For simplicity, we will assume that j0,
j1, p, and q are integers. In case they are not, we only need to replace them by their
integer part. As before, let xj D 1" exp."jı/ for j D j0; : : : ; j1.

Let N trun
Pn
.xj ; xjC1/ be defined as in (88). By Lemmas 6.1 and 6.4, we can

approximate Nn.J\ .0; 1// by

S1
trun WD S trun

1#an;1#bn;ı D
j1#1X
jDj0

N trun
Pn
.xj ; xjC1/

and get an error term

E
!
Nn
!
J\ .0; 1/

"
" S trun

1

"2& T 2ı1#"C T 2ı#2
#

log
1

an

$#˛#0=3
D o.logn/;

where in the last inequality we used (92) and (93).
Combining this with the assumption that VarNn.J/% logn, we obtain

E
!
Nn
!
J\ .0; 1/

"
" S trun

1

"2 D o.logn/D o
!
VarNn.J/

"
: (95)

Similarly, for the interval J \ ."1; 0/, we approximate the number of real roots
by

S trun
2 WD

j1#1X
jDj0

N trun
Pn
."xjC1;"xj /:

And for the intervals J\ .1;1/ and J\ ."1;"1/, we respectively use

S trun
3 WD

j1#1X
jDj0

N trun
Rn
.xj ; xjC1/ and S trun

4 WD
j1#1X
jDj0

N trun
Rn
."xjC1;"xj /;
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where Rn.x/D xn

cn
Pn.x

#1/DPn
iD0

cn!i
cn
!n#ixi . Let S trun WDP4

kD1 S
trun
k . We note

that all of the lemmas proved earlier in this section hold for Rn in place of Pn (with
the value of % being changed to zero as in Section 3.7). From (95) and its analogue
for S trun

2 , S trun
3 , S trun

4 , we have

E
!
Nn.J/" S trun"2 D o.logn/D o

!
VarNn.J/

"
:

Making use of Lemma 6.2, we now approximate S trun by a sum of independent ran-
dom variables Zk , Wk as follows. Let

Zk D
j0C.kC1/pCkq#1X
jDj0CkpCkq

!
N trun
Pn
.xj ; xjC1/CN trun

Pn
."xjC1;"xj /

"

and

Wk D
j0C.kC1/pCkq#1X
jDj0CkpCkq

!
N trun
Rn
.xj ; xjC1/CN trun

Rn
."xjC1;"xj /

"
; k D 0; : : : ; l " 1;

where

l D j1 " j0
pC q D‚.T

1=2/:

By Lemma 6.2, the random variables Z0; : : : ;Zl#1 are mutually indepen-
dent because qı D T 1=8 $ 2˛ log logn, and similarly for the random variables
W0; : : : ;Wl#1. Moreover, all random variables Z0; : : : ;Zl#1;W0; : : : ;Wl#1 are
mutually independent because the Zs only involve the random variables !r , where
r #M1#bn # n=2 (by the definition (86) and the leftmost inequality in (92)) while
the Ws only involve the random variables !n#r where, again, r #M1#bn # n=2.

To evaluate the accuracy of the approximation of S trun by
P
k.Zk CWk/, con-

sider

S trun "
l#1X
kD0

.Zk CWk/D
l#1X
kD0

.Xk C Yk/;

where

Xk D
j0C.kC1/pC.kC1/q#1X
jDj0C.kC1/pCkq

!
N trun
Pn
.xj ; xjC1/CN trun

Pn
."xjC1;"xj /

"
;

for k D 0; 1; : : : ; l " 1;

and Yk are defined similarly with respect to Rn.
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By Lemma 6.2, the random variables X0; : : : ;Xl#1; Y0; : : : ; Yl#1 are also mutu-
ally independent. Note that each Xk , Yk is of the form S trun

a;b;ı defined in Lemma 6.4
for some a and b with log 1#a

1#b D qı D T
1=8. By (93) and the definition of ı in (94),

ıD .logn/#ˇ $ .log 1
an
/#˛#

0=24; this allows us to use Lemma 6.5 to get

E.Xk "EXk/4& q2ı2.log logn/2 for all k D 0; : : : ; l " 1:

One can obtain a similar estimate for Yk . Thus, the error term of the approxima-
tion of S trun by

Pl#1
kD0.Zk CWk/ has variance

Var
# l#1X
kD0

.Xk C Yk/
$
D

l#1X
kD0

VarXk C
l#1X
kD0

VarYk&
l#1X
kD0

qı log lognD o.logn/:

Combining this with (95), we get

Var
#
Nn.J/"

l#1X
kD0

.Zk CWk/
$
D o.logn/D o

!
VarNn.J/

"
: (96)

The sum
Pl#1
kD0.Zk CWk/ is a sum of independent random variables satisfying the

fourth moment bound

l#1X
kD0

E.Zk "EZk/4C
l#1X
kD0

E.Wk "EWk/4&
l#1X
kD0

p2ı2.log logn/2

D o.log2 n/D o
#

Var
l#1X
kD0

.Zk CWk/
$2
;

where in the first inequality we used Lemma 6.5. By the Lyapunov CLT (see, e.g.,
[4]), the sum

Pl#1
kD0.Zk CWk/ satisfies the CLT.

This and (96) imply that Nn.J/ also satisfies the CLT, completing the proof of
Lemma 2.4.

7. Proof of Lemma 2.5
Since in this section we only deal with Gaussian random variables, we again use !i
to denote i.i.d. standard Gaussian variables (instead of Q!i ). This helps avoid compli-
cated notation (such as double superscripts) later on. By symmetry of the Gaussian
distribution, we can assume that ci $ 0 for all i .

Let

an D exp."2 log1=5 n/ and bn D
1

ann
; (97)
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and let

J WD ˙.1" an; 1" bn/[˙.1" an; 1" bn/#1:

Note that this an satisfies condition (2).
By Proposition 2.3,

EN 2
n .R n J/& log4

1

an
D o.logn/:

Thus, to prove Lemma 2.5, it suffices to show that

VarNPn.J/% logn:

We have

NPn.J/D NPn
!
J\ Œ"1; 1&

"
CNPn

!
J n Œ"1; 1&

"

D NPn
!
J\ Œ"1; 1&

"
CNRn

!
J\ Œ"1; 1&

"
;

where Rn.x/D xn

cn
Pn.x

#1/DPn
iD0

cn!i
cn
!n#ixi .

Since Var.XCY /DVarXCVarY CCov.X;Y /$VarXCCov.X;Y / for any
two real random variables X and Y , it suffices to show that

VarNRn
!
J\ Œ"1; 1&

"
D'.logn/ (98)

and

Cov
!
NPn

!
J\ Œ"1; 1&

"
;NRn

!
J\ Œ"1; 1&

""
D o.logn/: (99)

7.1. Universality for Rn
In order to verify (98), we use the universality method in a novel way. Instead of
swapping the random variables !i , we swap the deterministic coefficients ci . This
allows us to couple Rn with the Kac polynomial and the desired bound follows by
known results concerning the variance of the Kac polynomial. This swapping is pos-
sible thanks to the fact that the “important” coefficients are cn!i

cn
which are close to 1

by (1).
Let

ORn.x/ WD
nX
iD0

!n#ixi

be the corresponding Kac polynomial. We prove the following analogues of Theo-
rem 2.1 and Corollary 2.2 for Rn and ORn.
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PROPOSITION 7.1
Assume that the !i are i.i.d. standard Gaussian. Let ˇ > 0 be any constant. There
exists a constant C > 0 such that for every function F W R! R whose derivative up
to order 3 is bounded by 1 and for every n, we have

ˇ̌
EF

!
NRn

!
J\ Œ"1; 1&

""
"EF

!
N ORn

!
J\ Œ"1; 1&

""ˇ̌
# C.logn/#ˇ :

PROPOSITION 7.2
Assume that the !i are i.i.d. standard Gaussian. Let ˇ > 0 be any constant. There
exists a constant C > 0 such that for every n, we have

ˇ̌
E
!
N k
Rn

!
J\ Œ"1; 1&

""
"E

!
N k
ORn
!
J\ Œ"1; 1&

""ˇ̌
# C.logn/#ˇ

for k D 1; 2. In particular,
ˇ̌
Var

!
NRn

!
J\ Œ"1; 1&

""
"Var

!
N ORn

!
J\ Œ"1; 1&

""ˇ̌
# C.logn/#ˇ :

Proposition 7.1 implies Proposition 7.2, using the same arguments as in the proof
of Corollary 2.2.

Proof of Proposition 7.1
We use the same arguments as in the proof of Theorem 2.1 with the following mod-
ifications. First, Pn is replaced by Rn and QPn is replaced by ORn, and all of the ı˛ in
the former for a small constant ˛ will be replaced by .logn/#ˇ

0
for a large constant

ˇ0. For example, Lemma 3.5 is replaced by the following variant that can be proved
using the same argument.

LEMMA 7.3
Assume that the !i are i.i.d. standard Gaussian. Let ı 2 Œbn; an&. For any constant
/ > 0 and x 2R with jxj 2 Œ1" ı " ı.logn/#* ; 1" ı=2C ı.logn/#* &, we have

P
!
NRnB

!
x; ı.logn/#*

"
$ 2

"
& .logn/#3*=2:

The only remaining difference compared to the proof of Theorem 2.1 is in
the proof of the analogue of Lemma 3.9, namely, for ı0 D an, ı1 D an=2, : : : ,
ıM#1 D an=2

M#1 and ıM WD max¹1=n; bnº (M is the largest integer such that
ıM#1 >max¹1=n; bnº), and for mi D .logn/ˇ .

LEMMA 7.4
Assume that the !i are i.i.d. standard Gaussian. Let ˇ0 be any positive constant. Let
L W Cm1C"""CmM ! R be a smooth function with all derivatives up to order 3 being
bounded by .logn/ˇ

0
. Then for every wik in B.1" 3ıi=2; 2ıi=3/, we have
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ˇ̌
ˇEL

# Rn.wik/p
V.wik/

$
iD1;:::;M
kD1;:::;mi

"EL
# ORn.wik/p

V.wik/

$
iD1;:::;M
kD1;:::;mi

ˇ̌
ˇ& .logn/#ˇ

0
; (100)

where V.w/ WDVarRn.w/.

Assuming this lemma, the rest of the proof of Theorem 2.1 can be adapted in a
straightforward manner to complete the proof of Proposition 7.1.

Proof
While for Lemma 3.9, going from Pn to QPn, we need to swap the general random
variables !i to the Gaussian ones Q!i , here, going from Rn to ORn, we need to swap the
coefficients cn!i

cn
to 1 and keep the Gaussian random variables !i intact. Keeping that

in mind, we set for each 0# i0 # nC 1,

Ri0.z/ WD
i0#1X
iD0

!n#izi C
nX

iDi0

cn#i
cn

!n#izi :

We have R0 D Rn, RnC1 D ORn and Ri0C1 is obtained from Ri0 by replacing the
coefficient

cn!i0
cn

by 1.
The difference di0 in (45) for 0# i0 # n now becomes

di0 WD
ˇ̌
ˇE)n!i0 OL

#cn#i0!n#i0wi0ik
cn
p
V.wik/

$
ik
"E)n!i0

OL
# !n#i0wi0ikp

V.wik/

$
ik

ˇ̌
ˇ; (101)

where OL is obtained from L by translation and thus has all derivatives up to order 3
bounded by .logn/ˇ

0
. The task is to show that

nC1X
i0D0

E)0;:::;)ndi0& .logn/#ˇ
0
: (102)

By the Taylor expansion of order 2, we get

OL
#cn#i0!n#i0wi0ik
cn
p
V.wik/

$
ik
D OL.0/C OL1C

1

2
OL2C err2; (103)

where

OL1 WD
d OL. cn!i0)n!i0w

i0
ik

cn
p
V.wik/

t /ik

dt

ˇ̌
ˇ
tD0

D
X
ik

@ OL.0/
@Re.zik/

Re
#cn#i0!n#i0wi0ik
cn
p
V.wik/

$
C
X
ik

@ OL.0/
@ Im.zik/

Im
#cn#i0!n#i0wi0ik
cn
p
V.wik/

$
;
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OL2 WD
d2 OL. cn!i0)n!i0w

i0
ik

cn
p
V.wik/

t /ik

dt2

ˇ̌
ˇ
tD0
;

and

jerr2j& .logn/3ˇ
0 c
3
n#i0
c3n
j!n#i0 j3

#X
ik

jwikji0ı1=2i
$3
;

where we used (1) to get that

V.wik/D
nX
jD0

c2n#j
c2n
jwikj2j %

ı!1
i
=2X

jDı!1
i
=4

jwikj2i % ı#1i :

Similarly, we get the expansion for OL. )n!i0w
i0
ikp

V.wik/
/ik . Subtracting the two expansions

and taking the expectation of both sides (noting again that all of the !i are i.i.d. stan-
dard Gaussian and in particular, have mean 0 and variance 1), we obtain

.logn/#3ˇ
0
di0

&
ˇ̌
ˇc
2
n#i0
c2n
" 1

ˇ̌
ˇ
#X
ik

jwikji0ı1=2i
$2
C
#c3n#i0
c3n
C 1

$#X
ik

jwikji0ı1=2i
$3

& .logn/O.ˇ
0/
ˇ̌
ˇc
2
n#i0
c2n
" 1

ˇ̌
ˇ
MX
iD1

ıi .1" ıi=2/2i0

C .logn/O.ˇ
0/
#c3n#i0
c3n
C 1

$ MX
iD1

ı
3=2
i .1" ıi=2/3i0 ; (104)

where in the last inequality we used jwikj# 1" ıi=2, the Cauchy–Schwartz inequal-
ity, and the fact that M & logn. Note that for each i ,

nX
i0D0

c3n#i0
c3n

.1" ıi=2/3i0 #
n=2X
i0D0

c3n#i0
c3n

.1" ıi=2/2i0 C
nX

i0Dn=2

c3n#i0
c3n

.1" ıi=2/2i0

&
n=2X
i0D0

.1" ıi=2/2i0 C nO.1/.1" ıi=2/n& ı#1i ;

where in the second to last inequality we used condition (A3), and in the last inequal-
ity we used nO.1/.1" ıi=2/n # nO.1/.1" bn=2/n # nO.1/e#bnn=2& 1 by the choice
of bn in (97).
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Thus, plugging this into (104) and using
PM
iD1 ı

1=2
i & a

1=2
n & .logn/#C for any

constant C ,

.logn/#3ˇ
0
nX

i0D0
di0& .logn/O.ˇ

0/
MX
iD1

nX
i0D0

ˇ̌
ˇc
2
n#i0
c2n
" 1

ˇ̌
ˇıi .1" ıi=2/2i0

C .logn/O.ˇ
0/
MX
iD1

ı
1=2
i :

Let

I0 WD a#1=2n D exp.log1=5 n/ and I1 WD
.logn/2

bn
# n exp." log1=5 n/:

Splitting the double sum

MX
iD1

nX
i0D0

ˇ̌
ˇc
2
n#i0
c2n
" 1

ˇ̌
ˇıi .1" ıi=2/2i0

into
PM
iD1

PI1
i0DI0 ,

PM
iD1

PI0#1
i0D0 , and

PM
iD1

Pn
i0DI1C1 and denoting the corre-

sponding sums by S1, S2, S3, we obtain

.logn/#3ˇ
0
nX

i0D0
di0& .logn/O.ˇ

0/.S1C S2C S3/C .logn/#4ˇ
0
:

By assumption (1), we have for every i0 2 ŒI0; I1&,

c2n#i0
c2n
" 1& exp

!
".log logn/1C"

"
:

Hence,

S1& exp
!
".log logn/1C"

" MX
iD1

nX
i0D0

ıi .1" ıi=2/2i0&M exp
!
".log logn/1C"

"
:

For S2, we observe that
c2
n!i0
c2n
& 1 for all i0 # I0 # n=2 by condition (A3) and so

S2&
MX
iD1

I0#1X
i0D0

ıi & I0an D a1=2n :

For S3, we observe that
c2
n!i0
c2n
& nO.1/ for all i0 by condition (A3) and that for all

i0 $ I1,
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.1" ıi=2/i0& .1" bn=2/I1& exp."bnI1=2/D exp." log2 n/:

And so,

S3& nO.1/
MX
iD1

nX
i0DI1C1

exp." log2 n/& nO.1/ exp." log2 n/:

Combining these bounds, we obtain

.logn/#3ˇ
0
nX

i0D0
di0& .logn/#4ˇ

0
;

proving (102) and completing the proof of Lemma 7.4.

7.2. Proof of (98)
As shown in [28], for the Kac polynomial ORn (recall that the random variables !i are
i.i.d. standard Gaussian), Var.N ORn."1; 1//% logn.

By Proposition 2.3 for the Kac polynomial ORn and the choice of an, bn in (97),

EN 2
ORn
!
Œ"1; 1& n J

"
& EN 2

ORn.R n J/D o.logn/:

So, by the triangle inequality,
q

Var
!
N ORn

!
J\ Œ"1; 1&

""
$
q

Var
!
N ORn."1; 1/

"
" o.

p
logn/%

p
logn:

This together with Proposition 7.2 implies (98).

7.3. Proof of (99)
By a classical formula (see [24, Theorem 1]), we have that for every a < b and for
every nonzero polynomial f ,

Nf .a; b/D
1

2+

ˆ
R

ˆ b

a

ˇ̌
f 0.x/

ˇ̌
cos
!
sf .x/

"
dx ds

D 1

2+2

ˆ
R

ˆ b

a

ˆ
R

1

u2
!
1" cos

!
uf 0.x/

""
cos
!
sf .x/

"
dudx ds:

We will apply this formula for both Pn and Rn. To avoid improper integrals, we
need to cut off the domain of integration. Let D WD exp.a#1n =100/, / WD D#3 and
approximate Nf .a; b/ by

N
.1/
f .a; b/ WD 1

2+

ˆ D

#D

ˆ b

a

ˇ̌
f 0.x/

ˇ̌
cos
!
sf .x/

"
dx ds
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and

N
.2/
f .a; b/ WD 1

2+2

ˆ D

#D

ˆ b

a

ˆ D2

*

1

u2
!
1" cos

!
uf 0.x/

""
cos
!
sf .x/

"
dudx ds:

We first show that N .1/
f is a good approximation of Nf . We claim that for any

.a; b/( J\ Œ"1; 1&,

E
ˇ̌
NPn.a; b/"N .1/

Pn
.a; b/

ˇ̌2& exp
!
"'.a#1n /

"
: (105)

To show this, let x1 < ! ! !< xk be all the roots of P 0n.x/ in the interval .a; b/, and let
x0 D a, xkC1 D b. We have k # n. Since P 0n keeps the same sign on each interval
.xi ; xiC1/, it holds that

NPn.a; b/"N .1/
Pn
.a; b/ # 1

2+

kX
iD0

ˇ̌
ˇ
ˆ
jsj%D

sin.sPn.xiC1//" sin.sPn.xi //
s

ds
ˇ̌
ˇ

&
kC1X
iD0

min
°
1;

1

DjPn.xi /j
±
;

where we used (89). Thus,

!
E
ˇ̌
NPn.a; b/"N .1/

Pn
.a; b/

ˇ̌2"1=2&
kC1X
iD0

#
E min

°
1;

1

DjPn.xi /j
±2$1=2

: (106)

Divide the interval .a; b/ into D1=2 equal intervals by the points aD a0 < a1 < ! ! !<
aD1=2 D b.

Let p D 1=4 (or any small constant). For each 1 # i # k, assume that xi 2
.aj ; ajC1& for some j . If jPn.xi /j#Dp#1 and jPn.ajC1/j$ 2Dp#1, then

ˇ̌
Pn.ajC1/"Pn.xi /

ˇ̌
D
ˇ̌
ˇ
ˆ ajC1

xi

ˆ t

xi

P 00n .u/dudt
ˇ̌
ˇ$Dp#1

and so ˆ ajC1

aj

ˆ ajC1

aj

ˇ̌
P 00n .u/

ˇ̌
dudt $Dp#1:

This happens with small probability

P
#ˆ ajC1

aj

ˆ ajC1

aj

ˇ̌
P 00n .u/

ˇ̌
dudt $Dp#1

$
&D#1: (107)

We defer the proof of (107) to Section A.6 of the appendix, as it is similar to the proof
of Lemma 5.1. Using this and the union bound over all D1=2 possible values of j , we
obtain
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P
!ˇ̌
Pn.xi /

ˇ̌
#Dp#1" # P

!
9j W

ˇ̌
Pn.aj /

ˇ̌
# 2Dp#1"CD1=2O.D#1/

&D1=2Dp#1CD#1=2&D#1=4;

where we used the fact that Pn.aj / is a Gaussian random variable with variance'.1/.
Plugging this into (106) and using k # n, pD 1=4 yields

!
E
ˇ̌
NPn.a; b/"N .1/

Pn
.a; b/

ˇ̌2"1=2& n:.D#1=4CD#1=8/& exp
!
"'.a#1n /

"
:

This proves (105) which means thatN .1/
Pn
.a; b/ is a good approximation ofNPn.a; b/.

Next, we show that for all .a; b/( J\ Œ"1; 1&, N .2/
Pn
.a; b/ is also a good approx-

imation of N .1/
Pn
.a; b/, namely,

E
ˇ̌
N
.1/
Pn
.a; b/"N .2/

Pn
.a; b/

ˇ̌2& exp
!
"'.a#1n /

"
: (108)

To start, using the fact that 0# 1" cosx # x2 for every real number x, we have
ˇ̌
N
.1/
Pn
.a; b/"N .2/

Pn
.a; b/

ˇ̌

&
ˆ D

#D

ˆ b

a

ˆ *

0

ˇ̌
P 0n.x/

ˇ̌2
dudx dsC

ˆ D

#D

ˆ b

a

ˆ 1
D2

1

u2
dudx ds

&D#2
ˆ b

a

ˇ̌
P 0n.x/

ˇ̌2
dxCD#1:

Taking the second moment of both sides, we get

E
ˇ̌
N
.1/
Pn
.a; b/"N .2/

Pn
.a; b/

ˇ̌2&D#1CD#2
ˆ b

a

E
ˇ̌
P 0n.x/

ˇ̌4
dx

&D#1CD#2nO.1/& exp
!
"'.a#1n /

"
;

where we again used the fact that an satisfies (2). This proves (108).
Combining this with (105), we conclude that for any .a; b/( J\ Œ"1; 1&,

E
ˇ̌
NPn.a; b/"N .2/

Pn
.a; b/

ˇ̌2& exp
!
"'.a#1n /

"
:

We can obtain a similar estimate for Rn. Therefore, in order to prove (99), it
suffices to show that

Cov
!
N
.2/
Pn

!
J\ Œ"1; 1&

"
;N

.2/
Rn

!
J\ Œ"1; 1&

""
D o.logn/: (109)

To prove this bound, we need to make critical use of a property of Gaussian variables.
For a standard Gaussian random variable Z and any real number a, E cos.aZ/ D
EeiaZ D e#a2=2. Since Pn.x/, Rn.x/ are Gaussian for any value of x, we have for
.a; b/; .c; d/( J\ Œ"1; 1&,



CENTRAL LIMIT THEOREMS FOR RANDOM POLYNOMIALS 3801

Cov
!
N
.2/
Pn
.a; b/;N

.2/
Rn
.c; d/

"

D 1

4+4

ˆ b

a

ˆ d

c

ˆ D2

*

ˆ D2

*

ˆ D

#D

ˆ D

#D

1

u2v2

* .F1CF2CF3CF4/ dt ds dv dudy dx; (110)

where

F1.x; y;u; v; s; t/

WD 1

8

X
exp

#
"1
2

Var
!
sPn.x/˙ uP 0n.x/˙ tRn.y/˙ vR0n.y/

"$

" 1
4

X
exp

#
"1
2

Var
!
sPn.x/˙ uP 0n.x/

"
" 1
2

Var
!
tRn.y/˙ vR0n.y/

"$

in which the sums are taken over all possible assignments of C and " signs in place
of the ˙ and

F2.x; y;u; v; s; t/ WD "F1.x; y; 0; v; s; t/;
F3.x; y;u; v; s; t/ WD "F1.x; y;u; 0; s; t/;
F4.x; y;u; v; s; t/ WD F1.x; y; 0; 0; s; t/:

These formulas follow directly from the definition of N .2/; we provide the
tedious derivation in Section A.7 of the appendix for the reader’s convenience.

We now show that for .a; b/; .c; d/( J\ Œ"1; 1& and for all i D 1; 2; 3; 4,

ˆ b

a

ˆ d

c

ˆ D2

*

ˆ D2

*

ˆ D

#D

ˆ D

#D

1

u2v2
Fi dt ds dv dudy dx D o.1/: (111)

We will show it for i D 4. The cases i D 1; 2; 3 are completely similar. We have

F4.x; y;u; v; s; t/

D exp
#
"s

2

2

nX
iD0

c2i x
2i
$

exp
#
" t

2

2

nX
iD0

c2i y
2n#2i

c2n

$#est+C e#st+
2

" 1
$
; (112)

where

0D
nX
iD0

c2i
cn
xiyn#i :

Since jxj; jyj# 1" bn and nbn $ a#1n =2% C logn for any constant C , we have
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0& nO.1/
nX
iD0
.1" bn/n& nO.1/ exp."nbn/& exp."a#1n =4/:

Thus, bounding the first two exponents in (112) by 1, using D D exp.a#1n =100/ and
jsj; jt j#D, we get that on the domain of integration in (111),

F4.x; y;u; v; s; t/& exp
!
O.1/D2 exp."a#1n =4/

"
" 1

&D2 exp."a#1n =4/& exp."a#1n =5/:

Finally, using / DD#3, we have

ˆ b

a

ˆ d

c

ˆ D2

*

ˆ D2

*

ˆ D

#D

ˆ D

#D

1

u2v2
F4 dt ds dv dudy dx

&D8 exp."a#1n =5/D o.1/;

proving (111) and completing the proof of (99).

Appendix

A.1. Proof of Jensen’s inequality (17)
By setting g.w/D f .R.w C z// and proving the corresponding inequality for g, it
suffices to assume that z D 0 and RD 1. Let a1; : : : ; aN be the zeros of f in NB.0; r/.
For each a inside the unit disk D, consider the map

Ta.w/D
w " a
Naw " 1 :

For jaj# r and jwj# r , one can show by algebraic manipulation that

ˇ̌
Ta.w/

ˇ̌
# 2r

1C r2 < 1:

Moreover, for all jaj< 1 and jwj D 1, we have

ˇ̌
Ta.w/

ˇ̌
D j Nwj

ˇ̌
ˇ w " aNaw " 1

ˇ̌
ˇD

ˇ̌
ˇ1" a NwNaw " 1

ˇ̌
ˇD 1:

Let h.w/D f .w/QN
kD1 Tak .w/

. Then h is an analytic function on D. By the maximum

principle, we have for every w0 2 rD,

jf .w0/j.1C r2/N
.2r/N

# max
w2rD

ˇ̌
h.w/

ˇ̌
# max
w2D

ˇ̌
h.w/

ˇ̌

D max
w2@D

ˇ̌
h.w/

ˇ̌
D max
w2@D

ˇ̌
f .w/

ˇ̌
DM1:
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Thus,

N #
log M1
jf .w0/j

log 1Cr
2

2r

for all w0 2 rD, completing the proof.

A.2. Proof of (25)
We first reduce to the hyperbolic polynomials for which the Kac–Rice formula (24)
is easier to handle. Consider the hyperbolic polynomial with coefficients cj;# WDq
.2#C1/""".2#Cj /

j Š , 0# j # n.
By condition (1), cj;# D‚.cj / for all j $N0. Using the Kac–Rice formula (24),

we have

E
! QNn.S2 [ S3/"&

ˆ
S2[S3

qPn
jD0

Pn
kDjC1 c

2
j;#c

2
k;#.k " j /2t2jC2k#2Pn

jD0 c
2
j;#t

2j
dt: (113)

We use [10, Lemma 10.3] with h.k/D c2k;# which estimates the above integrand

uniformly over the interval .1" 1
C
; 1" C

n
/ for some sufficiently large constant C and

asserts that
qPn

jD0
Pn
kDjC1 c

2
j;#c

2
k;#.k " j /2t2iC2k#2Pn

jD0 c
2
j;#t

2i

&
p
2%C 1

2+.1" t / C .1" t /
##1=2C 1

n.1" t /2 &
1

1" t :

This together with (113) gives (25) for ıi $ 2C
n as in this case, S2 [ S3 ( .1 "

1
C ; 1" C

n /.
If ıi # 2C

n , then since k " j # n, for all t 2 S2 [ S3, we have

qPn
jD0

Pn
kDjC1 c

2
j;#c

2
k;#.k " j /2t2iC2k#2Pn

jD0 c
2
j;#t

2i
& n: (114)

Plugging this into (113) and using the fact that 2C=n$ ıi $ ıM $ 1=n gives

E
! QNn.S2 [ S3/"& nı1C˛i & n#˛& ı˛i

and hence (25) for ıi # 2C
n , completing the proof of (25) for all values of ıi .
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A.3. Proof of Lemma 3.8
In this section, we deduce Lemma 3.8 from Lemma 3.9.

The constant ˛0 in this proof will be a small fraction of the ˛0 in Lemma 3.9. Let
NK.xik/ik WDK.xikC 1

2 logV.wik//ik . Then, NK still satisfies (43) and we can reduce
the problem to showing that

ˇ̌
ˇE NK

#
log
jP.wik/jp
V.wik/

$
ik
"E NK

#
log
j QP .wik/jp
V.wik/

$
ik

ˇ̌
ˇDO.ı˛0 /:

Ideally, we would like to set L.zik/ik WD NK.log jzikj/ik and apply Lemma 3.9 for
this function L. However, the singularity of the log function at zero prevents L from
satisfying (43). To handle this difficulty, we split the space of .log jzikj/ik into two
regions '1 and '2, where '1 is the image of the log function around zero, and show
that the contribution from'1 is insignificant. On'2, the log function is well-behaved
and we can then apply Lemma 3.9 there.

More specifically, for Mi WD log.ı#12˛i /, let

'1 D
®
.xik/ik 2Rm1C"""CmM W xik #"Mi for some i; k

¯

and

'2 D
®
.xik/ik 2Rm1C"""CmM W xik $"Mi " 1 for all i; k

¯
:

Let  W Rm1C"""CmM ! Œ0; 1& be a smooth function taking values in Œ0; 1& such
that  is supported in'2,  D 1 on the complement of'1, and k@a k1 DO.1/ for
all 0# a # 3. Put ) WD 1" , K1 WD NK:), and K2 WD NK: . We have NK DK1CK2,
and both K1, K2 satisfy (43) with suppK1 ('1, suppK2 ('2.

We now show that the contribution fromK1 is negligible. Set QK1 WD k NKk1) and

L1.zik/ik WD QK1
!
log jzikj

"
ik
:

Since kK1k1 # k NKk1& 1, we observe that L1 satisfies
! jK1.log jzikj/ikj#L1.zik/ik ,
! supp.L1/( ¹.zik/ik 2Cm1C"""CmM W jzikj# e#Mi for some i; kº,
! L1 is constant on ¹.zik/ik 2Cm1C"""CmM W jzikj# e#Mi#1 for some i; kº,
! L1 satisfies (43) (with the power 2˛ being replaced by 14˛, but that does not

affect the argument).
Choose ˛0 to be small enough such that C˛0 is at most the constant ˛0

in Lemma 3.9, where C is some sufficiently large absolute constant. Applying
Lemma 3.9, we get

E
ˇ̌
ˇK1

#
log
jP.wik/ikjp
V.wik/ik

$ˇ̌
ˇ# EL1

# P.wik/p
V.wik/

$
ik
# EL1

# QP .wik/p
V.wik/

$
ik
CO.ıC˛0 /:
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Since the variables Q!i are Gaussian, we have

EL1
# QP .wik/p

V.wik/

$
ik
& P

#
9ik W j

QP .wik/jp
V.wik/

# e#Mi
$
&

MX
iD1

miı
12˛
i & ı˛0 :

Thus, EjK1.log jP.wik/jp
V.wik/

/ikj& ı˛0 . Finally, we will show that

ˇ̌
ˇEK2

#
log
jP.z1/jp
V.z1/

; : : : ; log
jP.zm/jp
V.zm/

$
"EK2

#
log
j QP .z1/jp
V.z1/

; : : : ; log
j QP .zm/jp
V.zm/

$ˇ̌
ˇ

& ı˛0 :

Define L2 WCm1C"""CmM !R by L2.zik/DK2.log jzikj/. Since suppK2 ('2,

suppL2 (
®
.zik/ik W jzikj$ e#Mi#1% ı12˛i for all i; k

¯
:

Thus,L2 is well-defined and satisfies (43) (with the power 2˛ being replaced by 14˛).
Applying Lemma 3.9 gives

EK2
#

log
jP.wik/jp
V.wik/

$
ik
"EK2

#
log
j QP .wik/jp
V.wik/

$
ik

D EL2
# jP.wik/jp

V.wik/

$
ik
"EL2

# j QP .wik/jp
V.wik/

$
ik
& ı˛0 :

This completes the proof of Lemma 3.8.

A.4. Proof of (61)
In this section, we prove (61); namely, for a sufficiently large constant C , we have

V.x/ WD
nX
iD0

c2i x
2i D ‚.1/

.1" xC 1=n/2#C1 8x 2 .1" 1=C;1/: (115)

To this end, we will repeatedly use condition (A3) and the assumption that % >"1=2.
If x $ 1" 1

n
, then we have

V.x/#
nX
iD0

c2i &
N0X
iD0

1C
nX
iD0

i2#& n2#C1:

For the lower bound, we have x2i $ .1" 1
n /
2n% 1 and so

V.x/%
nX
iD0

c2i %
nX

iDN0
i2#% n2#C1:

These bounds prove (115) for x $ 1" 1
n .
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If 1" 1
n
< x < 1" 1

C
, then letting LD 1

1#x 2 .C;n/, we have 1
.1#xC1=n/2!C1 D

‚.L2#C1/ and

V.x/%
2LX
iDL

c2i x
2L%

2LX
iDL

i2#%L2#C1:

As for the upper bound, we have for any constant C 0,

V.x/&
N0X
iD0

1C
1X

iDN0
i2#x2i & 1C

C 0LX
iD0

i2#x2i C
1X

iDC 0L
i2#x2i

&L2#C1C
1X

iDC 0L
i2#x2i : (116)

Since x D 1" 1
L # e#1=L, the rightmost sum is at most

1X
iDC 0L

i2#x2i #
1X

iDC 0L
i2#e#2i=L DL2#

1X
iDC 0L

# i
L

$2#
e#2i=L: (117)

By choosing C 0 sufficiently large (depending only on %) such that the function t !
t2#e#2t is decreasing on .C 0 " 1;1/, we have

1X
iDC 0L

# i
L

$2#
e#2i=L #

ˆ 1
C 0L#1

# s
L

$2#
e#2s=L ds

DL
ˆ 1
C 0#1=L

t2#e#2t dt&L:

(118)

Plugging this into (116) and (117), we obtain V.x/& L2#C1, which is the desired
upper bound.

A.5. Proofs of (84) and (85)

Proof of (84)
We need to show that

X
0$i<k$n

c2i c
2
k.x

iyk " xkyi /2 D‚
# X
0$i<k$n

c2i;#c
2
k;#.x

iyk " xkyi /2
$
: (119)

By condition (A3), ci & ci;# for all i $ 0, and so the left-hand side of (119) is at most
the order of the right-hand side. To prove the reverse, by condition (A3), ci % ci;# for
all i $N0, so
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X
0$i<k$n

c2i c
2
k.x

iyk " xkyi /2 $
X

N0$i<k$n
c2i c

2
k.x

iyk " xkyi /2

%
X

N0$i<k$n
c2i;#c

2
k;#.x

iyk " xkyi /2:

Thus, it remains to show that the remaining terms on the right-hand side of (119) are
of smaller order, namely, for all 1# i < N0,

nX
kD0

c2i;#c
2
k;#.x

iyk " xkyi /2&
X

N0$j$n

X
N0$k$n

c2j;#c
2
k;#.x

jyk " xkyj /2: (120)

Since N0 is a constant, ck;# D ‚.ckCN0;#/ for all k $ 0 and since xy D ‚.1/, we
have for j 0 D i CN0,

nX
kD0

c2i;#c
2
k;#.x

iyk " xkyi /2&
nX
kD0

c2j 0;#c
2
kCN0;#.x

j 0ykCN0 " xkCN0yj 0/2

D
nCN0X
kDN0

c2j 0;#c
2
k;#.x

j 0yk " xkyj 0/2: (121)

Assume without loss of generality that x < y. Using the simple observation that

0# yjC1 " xjC1 # 2.yj " xj / 8j $ 1;

we have

nCN0X
kDnC1

c2j 0;#c
2
k;#.x

j 0yk " xkyj 0/2&
nX

kDnC1#N0
c2j 0;#c

2
k;#.x

j 0yk " xkyj 0/2:

And so, the rightmost side of (121) is of order at most the rightmost side of (120),
proving (119).

Proof of (85)
We want to show that for every x 2 Œ1" an; 1" bn&,

nX
kD0

c2k;#x
2k D 1CO."0/

.1" x2/2#C1 ;

where "0 D exp.".log logn/1C2"/. By Taylor’s expansion, we have

S WD
1X
kD0

c2k;#x
2k D 1

.1" x2/2#C1 :
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Thus, it suffices to show that

1X
kDnC1

c2k;#x
2k& "0S:

We have

1X
kDnC1

c2k;#x
2k D x2nC2

1X
kD0

c2nC1Ck;#
c2k;#

c2k;#x
2k

and so it is left to verify that for all k $ 0,

x2n
c2nC1Ck;#
c2
k;#

& "0:

Indeed, we have

x2n
c2nC1Ck;#
c2k;#

D x2n
nC1Y
iD1

2%C kC i
kC i # x2n

nC1Y
iD1

2%C i
i
# x2n

nC1Y
iD1

2Œ%&C i C 1
i

D x2n .nC 2/ : : : .nC 2C 2Œ%&/
.2Œ%&C 1/Š & x2nn2#C1:

Using x # 1" bn # 1" .logn/2

n
by the assumption (6), we obtain

x2n
c2nC1Ck;#
c2k;#

&
#
1" .logn/2

n

$2n
n2#C1& exp

!
"2.logn/2

"
n2#C1& "0:

A.6. Proof of (107)
Let .c; d/ WD .aj ; ajC1/. We want to show that for any interval .c; d/( Œ1" 1=C;1&
with d " c #D#1=2,

P
#ˆ d

c

ˆ d

c

ˇ̌
P 00n .u/

ˇ̌
dudt $Dp#1

$
&D#1: (122)

Let I denote the above double integral. By Markov’s inequality and Hölder’s inequal-
ity, for a large constant h to be chosen, we have

P.I $Dp#1/#D.1#p/hEI h&D.1#p/h.d " c/2.h#1/E
ˆ d

c

ˆ d

c

ˇ̌
P 00n .u/

ˇ̌h
dudt

and so

P.I $Dp#1/&D.1#p/h.d " c/2h max
u2Œc;d &

E
ˇ̌
P 00n .u/

ˇ̌h #D#ph max
u2Œc;d &

E
ˇ̌
P 00n .u/

ˇ̌h
:
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Since P 00.u/ is a Gaussian random variable, by the hypercontractivity of Gaussian
distribution, we have

E
ˇ̌
P 00n .u/

ˇ̌h& !
E
ˇ̌
P 00n .u/

ˇ̌2" 2Ch
2 & nO.1/:

Thus, by choosing hD 2=p,

P.I $Dp#1/&D#phnO.1/&D#1

where we usedD D exp.a#1n =100/% nC for any constant C as an satisfies condition
(2).

A.7. Proof of (110)
We have

Cov
!
N
.2/
Pn
.a; b/;N

.2/
Rn
.c; d/

"
D EN .2/

Pn
.a; b/N

.2/
Rn
.c; d/"EN .2/

Pn
.a; b/ !EN .2/

Rn
.c; d/:

Thus, we have by definition of N .2/ that

Cov
!
N
.2/
Pn
.a; b/;N

.2/
Rn
.c; d/

"

D 1

4+4

ˆ b

a

ˆ d

c

ˆ D2

*

ˆ D2

*

ˆ D

#D

ˆ D

#D

1

u2v2

!
&
EF1.x;u; s/F2.y; v; t/"EF1.x;u; s/EF2.y; v; t/

'
dt ds dv dudy dx;

(123)

where

F1.x;u; s/ WD
!
1" cos

!
uP 0n.x/

""
cos
!
sPn.x/

"
;F2.y; v; t/

WD
!
1" cos

!
vR0n.y/

""
cos
!
tRn.y/

"
:

Note that we can use Fubini’s theorem in the above calculation because the integrands
are absolutely integrable.

We have

F1.x;u; s/F2.y; v; t/

D
!
1" cos

!
uP 0n.x/

""
cos
!
sPn.x/

"!
1" cos

!
vR0n.y/

""
cos
!
tRn.y/

"

D cos
!
sPn.x/

"
cos
!
tRn.y/

"
" cos

!
uP 0n.x/

"
cos
!
sPn.x/

"
cos
!
tRn.y/

"

" cos
!
vR0n.y/

"
cos
!
sPn.x/

"
cos
!
tRn.y/

"

C cos
!
uP 0n.x/

"
cos
!
vR0n.y/

"
cos
!
sPn.x/

"
cos
!
tRn.y/

"



3810 NGUYEN and VU

and so

F1.x;u; s/F2.y; v; t/

D 1

2

X
cos
!
sPn.x/˙ tRn.y/

"
" 1
4

X
cos
!
uP 0n.x/˙ sPn.x/˙ tRn.y/

"

" 1
4

X
cos
!
vR0n.y/˙ sPn.x/˙ tRn.y/

"

C 1

8

X
cos
!
uP 0n.x/˙ vR0n.y/˙ sPn.x/˙ tRn.y/

"
:

We recall that the random variables !i are i.i.d. standard Gaussian and that for a
standard Gaussian random variable Z and any real number a, E cos.aZ/DEeiaZ D
e#a

2=2 D exp."12Var.aZ//. Thus,

EF1.x;u; s/F2.y; v; t/

D 1

2

X
exp

#
"1
2

Var
!
sPn.x/˙ tRn.y/

"$

" 1
4

X
exp

#
"1
2

Var
!
uP 0n.x/˙ sPn.x/˙ tRn.y/

"$

" 1
4

X
exp

#
"1
2

Var
!
vR0n.y/˙ sPn.x/˙ tRn.y/

"$

C 1

8

X
exp

#
"1
2

Var
!
uP 0n.x/˙ vR0n.y/˙ sPn.x/˙ tRn.y/

"$
:

Similarly,

EF1.x;u; s/D exp
#
"1
2

Var
!
sPn.x/

"$
" 1
2

X
exp

#
"1
2

Var
!
uP 0n.x/˙ sPn.x/

"$

and

EF2.y; v; t/D exp
#
"1
2

Var
!
tRn.y/

"$
" 1
2

X
exp

#
"1
2

Var
!
vR0n.y/˙ tRn.y/

"$
:

Plugging these formulas into (123), we obtain (110).
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