RANDOM POLYNOMIALS: CENTRAL LIMIT
THEOREMS FOR THE REAL ROOTS
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Abstract

The number of real roots has been a central subject in the theory of random polyno-
mials and random functions since the fundamental papers of Littlewood, Offord, and
Kac in the 1940s. The main task here is to determine the limiting distribution of this
random variable. In 1974, Maslova famously proved a central limit theorem (CLT)
for the number of real roots of Kac polynomials. It has remained the only limiting
theorem available for the number of real roots for more than four decades. In this
paper, using a new approach, we derive a general CLT for the number of real roots
of a large class of random polynomials with coefficients growing polynomially. Our
result both generalizes and strengthens Maslova’s theorem.
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1. Introduction

Random polynomials—so simple to define but difficult to understand—have attracted
generations of mathematicians. Typically, a random (algebraic) polynomial has the
form

Pu(x) :=cpénx" + -+ + c1&1x + cobo,
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where §; are i.i.d. copies of an (atom) random variable ¢ with zero mean and unit
variance, and c¢; are deterministic coefficients which may depend on both n and i.
Different definitions of ¢; give rise to different classes of random polynomials, which
have distinct behaviors.

When ¢; =1 for all i, the polynomial P, is often referred to as the Kac poly-
nomial. Even this special class provides great challenges, many of which have led to
rich literature (see, e.g., [3], [14], and the references therein).

Let N, (R) denote the number of real roots of P,. A key problem in the theory
of random polynomials is to understand the behavior of the random variable N, (R),
with n tending to infinity. As a matter of fact, this is the problem that started the whole
field, with fundamental works of Littlewood and Offord [25]-[27] and Kac [23] from
the 1940s.

The first natural question is to determine the expectation of N, (R). It took more
than twenty years and the works of Kac [23], Erd6s and Offord [13], and Ibragimov
and Maslova [19], [20] to settle this problem for the Kac polynomial (the case ¢y =
-+ = ¢, = 1). By now, the problem has been solved for many classes of random
polynomials, with various choices for ¢; and under very general assumptions for &;
(see the introduction of [31]; see also [10], [12], [16], [18], [33]-[35], [38]-[42], and
the references therein).

The next, and more important, problem is to determine the variance and limiting
distribution of N, (R). This problem is much harder and our understanding is far
from complete. In the 1970s, Maslova [29] proved the central limit theorem (CLT) for

d
the Kac polynomial. Here and later, — means convergence in distribution; N (0, 1)
denotes the standard normal distribution, u, := EN,(R), o, := y/VarN,(R).

THEOREM 1.1 ([28], [29])

Let € be a positive constant. Consider the Kac polynomial with the random variables
& being i.i.d. with mean 0, variance 1, bounded (2 + €) moment, and P(§; = 0) = 0.
We have, as n tends to infinity,

Ny(R) —EN,(R) «
(VarN, (R))1/2 — N(0,1).

Furthermore, VarN, (R) = (K + o(1))logn, where K = %(1 — %)

The proof of Maslova relied heavily on explicit computation that requires all the
¢; to be equal. Only very recently have CLTs been established for other classes of
polynomials via new methods. In 2015, Dalmao [6] established the CLT for binomial
polynomials (the case when ¢; = \/('?) ), and in 2018, Do and the second author [11]

handled Weyl polynomials (¢; = ﬁ). However, in both papers, the authors need to
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assume that the random variables &; are standard Gaussian and their arguments rely
strongly on special properties of Gaussian processes. It remains a major challenge
to extend these results to other random variables &; (e.g., Rademacher). For related
results concerning random trigonometric polynomials, see [1], [2], and [17].

The goal of this paper is to establish the CLT for a large class of random polyno-
mials where the deterministic coefficients ¢; grow polynomially. We will only need
a mild assumption on the &;, which is satisfied by most random variables used in
practice (in particular, this assumption is weaker than Maslova’s). In fact, we can also
handle the more general setting when the &; are not i.i.d.

We consider

n
Py(x) =) ciix',
i=0

where &; are independent random variables and ¢; are deterministic coefficients sat-

isfying the following conditions for some positive constants Ny, 71, T2, € and some

constant p > —1/2.

(A1) The random variables &; are independent (but not necessarily identically dis-
tributed) real-valued random variables with unit variance and bounded (2 + ¢)
moments, namely, E|§;|?>1¢ < 1,.

(A2) Wehave E§; =0 forall i > Ny.

(A3) The coefficients ¢; are deterministic real numbers that grow polynomially,
namely,

lci| <tp forall0<i < Ny
and
11i° <|ci| € 1oi® forall Ng <i <n.

This class contains many interesting ensembles of polynomials, including

. the Kac polynomial (all ¢; = 1);

i semi-Kac polynomials with ¢, =--- = ¢, = 1 (for some constant 0 < § < 1)
and all other ¢; taking arbitrary values from a fixed set of nonzero constants
(e.g., we can have ¢,/ =---=c, =1 andall ¢;,i <n/2 are either 2 or 3 in
arbitrary fashion);

. all derivatives of the Kac polynomial (the zeros of these polynomials are thus
the critical points of the Kac polynomial);

. hyperbolic polynomials Py (x) = Y7 LEAY-Etiz])

=0 o £ x', where L is a
positive constant (see [10], [15], [18], and the references therein);
. ¢; has the form f(i) + g(i), where f(i) is a polynomial in i of a fixed degree

d > 0 and g(i) is any function satisfying |g(i)]| = o(| f(7)])-
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Our main result establishes the CLT for these random polynomials.

THEOREM 1.2
Assume that the polynomial P, satisfies conditions (Al)—(A3) and that Var N, (R) >

—u, d
clogn for some constant ¢ > 0. Then %ﬁ“” — N(0,1), where i, = EN,(R),

o, = +/ VarN, (R).
The condition VarN, (R) > clogn is guaranteed by the following lemma.

LEMMA 1.3
Assume that the polynomial P, satisfies conditions (Al)—(A3) and there exist con-
stants C. & > 0 such that for all i € [n —nexp(—1log"/® n),n — exp(log'/” n)),

|ci |

|cnl

— 1) < C exp(—(loglogn)'**). (1)
Then Var N, (R) > c logn for some constant ¢ > 0.

The condition in this lemma is satisfied by all classes listed above. We obtain the
following.

COROLLARY 1.4
The CLT holds for the Kac polynomial and its derivatives. It also holds for hyperbolic
polynomials.

Remark 1.5

When restricted to the Kac polynomial with &; being i.i.d. copies of an atom variable
&, our result strengthens Maslova’s, as the condition P(§¢ = 0) = 0 in Theorem 1.1 is
removed.

Remark 1.6

The real roots of P,(x) are the real solutions of the equation P,(x) = 0. The flexi-
bility in condition (A2) enables us to extend Theorem 1.2 to the equation P,(x) =
H(x), where H(x) is any fixed polynomial with bounded degree. In particular, taking
H(x) = L for a constant L, we conclude that the CLT holds for any level set of P,.

Related literature. Random polynomials with coefficients growing polynomially,
also known as generalized Kac polynomials, have attracted research attention in dif-
ferent areas including probability and mathematical physics. For example, we refer to
Das [7], Schehr and Majumdar [37], [38], and Do and the authors [10]. It has been
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established in [37] and [38] that the real roots of these polynomials are closely con-
nected to zero crossing properties of the diffusion equation with random initial condi-
tions. The connection has been applied by Dembo and Mukherjee in [8] to study the
probability that these random polynomials have no real roots, which is known as per-
sistence probability as it is related to persistence properties of physical systems. (See
also [9] and the references therein.) In [8], the random variables are Gaussian and the
persistence probability is n 727 Tt is shown that the power exponent b is universal
roughly in the sense that it depends on p (in condition (A3)) rather than the specific
values of ¢;. We also refer to Poplavskyi and Schehr [32] for a recent development
in finding the power exponent for the Kac polynomial. It would be interesting to see
if the power exponent is universal in the sense presented in this paper, that is, if we
replace the Gaussian distribution by other distributions.

Notation. We use standard asymptotic notation under the assumption that n tends
to infinity. For two positive sequences (a,) and (b,), we say that a, > b, or b, < ay,
if there exists a constant C such that b, < Ca,. If |c,| < a, for some sequence (c,),
then we also write ¢, < a,.

If a, < b, < ay, then we say that b, = O(ay). If lim, z—”: = 0, then we say
that a, = o(by,). If b, < a,, then we sometimes employ the notation b, = O(a,)
and a, = Q(by,) to make the idea intuitively clearer or the writing less cumbersome;
for example, if A is the quantity of interest, we may write A = A’ + O(B) instead of
A—A' < B,and A =e%®) instead of log 4 < B.

2. The universality method

The key ingredient of our proof is the universality method. The general idea of this
method is to show that limiting laws do not depend too much on the distribution of the
atom variable £ (or the variables &; in general, if they are not i.i.d.). Once universality
has been established, then it suffices to prove the desired law for the case in which
the &; are Gaussian, and here one can bring extra powerful tools such as properties of
Gaussian processes (see [12], [16], [18], [21], [22], [33]-[35], [38], [39], [42]).

The universality method has been powerful in studying local statistics such as
the density or correlation functions concerning the number of roots in a small region
(where the expectation is of order ®(1)) (see, e.g., [10], [30], [31], [42]). However,
universality arguments are tailored to local settings and in order to use them to prove
the global law in this paper, we need to perform a number of considerably technical
steps, linking local statistics to the global one. The proof for the Gaussian case itself
also requires new ideas.

To study the real roots of P,, we divide the real line into two regions: a core
region that contains most of the real roots and the remaining one that contains an
insignificant number of real roots. Consider small numbers 0 < b, < a, < 1 that
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depend on n and satisfy the following property for all constants 4 > 0:
an < log™4n. )
For example, a, = exp(—(logn)!/%). We define
Ji=Tap by =t —an, 1 =by) Ut(1—an, 1 —by) 71, 3)

where for any given set S, we define —S := {—x:x € S}, S71:={x"1:x € S},and
£S5 :=—S U S. For appropriate choices of a, and by, this will be our core region.

For a subset S C C, let N,,(S) = Np, (S) be the number of roots of P, in S. Let
§l- be i.i.d. standard Gaussian random variables, and set

n

D P

P, = E ci§ix'.
i=0

We denote by N, (S) = N B, (S) the number of zeros of P, in S.
Our main result on global universality of the real roots states that on the core 4,
the distributions of the roots of P, and P, are approximately the same.

THEOREM 2.1
Assume that the polynomial P, satisfies conditions (Al)—(A3). There exist positive
constants C and c such that for every 0 < b, < a, < 1 satisfying (2), for sufficiently
large n and every function F : R — R whose derivatives up to order 3 are bounded
by 1, we have

IEF (Na(3)) —EF (N2 ()| < Cal + Cn~*.
Since N, (J) is always an integer, for every real number aq € R,
P(Nu(J) < ao0) = P(Na(J) < Lao]) = E(F (N2 (D)),

where F is any smooth function that takes values in [0, 1] and 1o |qo)] < F <
1(—co,|ap|+1)- Therefore, Theorem 2.1 implies that

IP(Na(3) < ao) — P(Nu(J) <ao)| < Cal + Cn~°. 4)

Using Theorem 2.1 (not in the straightforward way), we deduce the following
corollary.

COROLLARY 2.2
Assume that the polynomial P, satisfies conditions (Al)—~(A3). Let k > 1 be an integer.
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There exist positive constants C and ¢ such that for every 0 < b, < a, < 1 satisfying
(2) and for sufficiently large n, we have

IE(N¥ () —E(NFQ))| < Cal + Cn.
In particular,

|Var(N,(3)) — Var(l\?n )| < Cag + Cn~.
Next, we show that the contribution outside of the core is negligible.

PROPOSITION 2.3

Assume that the polynomial P, satisfies conditions (Al)—(A3). Let k > 2 be an integer.
There exists a positive constant C such that for every 0 < b, < a, < 1 satisfying (2)
and for sufficiently large n, we have

C((logan)?* +1og (nby)) ifbu > 1/n,

5
C(logay,)* ifb, <1/n. ©)

EN,i‘(R\J)s{

To prove Theorem 1.2 and Lemma 1.3, we use the universality results stated in
Theorem 2.1, Corollary 2.2, and Proposition 2.3 to reduce to the Gaussian case (i.e.,
the case in which the §; are i.i.d. standard Gaussian) with roots restricted to the core
J. In particular, we prove the following.

LEMMA 2.4
Assume that the polynomial P, satisfies conditions (Al)—(A3). Let ¢ < 1 be any posi-
tive constant. Then for any a,, by, satisfying

(logn)?/n < by < ay < exp(~(logn)°).

. (6)
log ;ﬁ = O(logn), and VarN, (J) > logn,
n

we have
Na(d) —EN, () «

V VarN, (3) -

And we also prove the following special case of Lemma 1.3 for Gaussian.

N (0, 1).

LEMMA 2.5
Assume that the polynomial P, satisfies conditions (Al)—(A3) and that there exist
constants C,& > 0 such that for all i € [n —nexp(—log'/° n),n —exp(log'/® n)],
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|cil

|cnl

- 1) < C exp(—(loglogn)'**).

Then,

VarN,, (R) > logn.

To illustrate the method of universality, we include here the short proofs of The-
orem |.2 and Lemma 1.3 assuming the Gaussian case (Lemmas 2.4 and 2.5) together
with the universality results (Corollary 2.2 and Proposition 2.3).

Proof of Lemma 1.3
We first choose a,, and b,, that satisfy all the conditions in Corollary 2.2 and make the
right-hand side of (5) as small as o(logn) when k = 2. In particular, we let

1

an = exp(—log!/* n), b, = —
n

and
J=+(l—ay,1-b,)U+(1—a,, 1—b,)"".

By the triangle inequality on the 2-norm, we obtain

}\/Vaan (R) — v/VarN, (CJ)|
< /VarN,(R\J) < /EN2(R\ 3) = o(y/logn), ()

where in the last equation we used Proposition 2.3. Since P, is just a special case of
P,, (where the random variables §; are i.i.d. Gaussian), we also have

]\/Varﬁn(R) — \/Varﬁn(ﬁ)’ = o(y/logn).

Combining this with Lemma 2.5, we obtain

\/ VarN,(J) = \/ VarN, (R) + o(y/logn) > /logn. (8)
Applying Corollary 2.2 and (8) yields
VarN, (3) = VarN, (3) + 0(a) = VarN,(3) + o(logn) > logn.
From this and (7),

V' VarN, (R) = /VarN,(3) + o(y/logn) > /logn.

This completes the proof. O
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Let a,, by, and J be as in the proof of Lemma 1.3. By the assumption that o, =

VarN,(R) > ./logn and by (7), we have

VVarN, (3) = o, (1 + o(1)) > y/logn.

By this and Corollary 2.2, we also have

v VarN, (3) = vVarN,(3) + o(1) = 0, (1 + o(1)) > /logn.

Thus, (6) holds and so we can apply Lemma 2.4 to get
Nu(@) —EN, () «

— N(0,1).
\/ Var, (3)

Na(3) —EN,(3) q

— N(0,1)
v/ Var, (3)

because by (4), for any fixed a € R,
p( V@) —EN @) _ a) _p(N Q@) —ENa() <

\/ VarN,, (3) - \/Val‘/\?n(ﬁ)

—— P(N(0,1) <a).

n—>oo

Hence,

a) +0(1)

By Corollary 2.2,
ENy(3) —EN2(3) = o(1).

Combining these with (9), we get

Nn(ﬁ)—ENn(G)i)N(O .

On

From Proposition 2.3, we have
EN,(R\J) < log?/°n.

By Markov’s inequality, for any fixed a > 0, we have

IP’(‘ Np(R\ J) —EN,(R\ J)
On

logz/5 n

—0.

< a 10g1/2 n n—>o0

|2a) = —B[N,R\D) ~EN, R\ )|
aoy,

(€))

(10)
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Thus,
N,(R\J)—EN,(R\J
n(R\ J) n( \d)i}o' (11
On
Adding (10) and (11) completes the proof. O

In Section 7, we use universality again to prove Lemma 2.5. But in this case, we
will reduce general coefficients ¢; to the case when ¢; = 1. In other words, we could
swap random variables with different means or variances. This deviates significantly
from standard swapping arguments that swap random variables with the same mean
and variance.

The rest of the article is organized as follows. Section 3 is devoted to the proof of
Theorem 2.1, Section 4 for Corollary 2.2, Section 5 for Proposition 2.3, Section 6 for
Lemma 2.4, and Section 7 for Lemma 2.5.

3. Proof of Theorem 2.1
Under the hypothesis of Theorem 2.1, we need to show that

|EF (Na(3)) —EF (N2()| = Cal + Cn~*. (12)
We first restrict to the interval (0, 1) and prove that
IEF (Na (3N (0.1))) —EF (N, (3N (0, 1)))| = Ca + Cn~*. (13)

The proof of (12) follows from the same arguments with some (merely technical)
modifications explained in Section 3.7. We choose to start by presenting the proof
of (13) as it already captures all of the ideas without having to deal with the tedious
technical and notational complications detailed in Section 3.7. This way, it makes the
proofs clearer and easier to follow.

3.1. Partition into dyadic intervals and preliminary results
Recall that

IJNO,1)=1—an, 1 —by).

We start by partitioning the interval (1 — a,,1 — b,) into dyadic intervals: (1 —
an,1 —ay/2), [l —an/2,1 —a,/4), .... To be more specific, let §; := a, /2" for
i=0,...,M—1, where M is the smallest number such that an/2M <max{l/n,b,}.
Let 83 := max{1/n,b,}. Note that M < logn. For eachi < M — 1, let N; be the
number of real roots of P, in the interval [1 — §;—1, 1 — §;). Let Nps be the number
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of real roots of P, in the interval [1 — 8p7—1, 1 — by,). We have N, (1 —ay, 1 —by) =
Ni+--+ Ny

For a dyadic interval (1 — 3§, 1 —§/2), we can control the moments of the number
of roots. More generally, the following result works not just for dyadic intervals but
also for balls on the complex plane.

LEMMA 3.1 (Bounded number of roots)
For any positive constants A and k, there exists a constant C such that for every
n>C,every1/n <5 <1/C,and z€ Cwith1—26 <|z| <1—-68+ 1/n, we have

P(Na(B(z,8/2)) > Clog(1/8)) < C84 (14)
and
ENF(B(z,8/2)) < ClogF(1/9), (15)
where B(z, R) is the disk with center z and radius R in the complex plane.

As a consequence, for 1/n <§ < 1/C and for the dyadic interval [1 —3§,1—6/2],
applying Lemma 3.1 for z = 1 — 36/2, we obtain

P(Na(1—8,1-8/2) > Clog(1/8)) < C54

and

ENK(1—-6,1-68/2) < Clogk(1/5).
Proof
We shall prove that for a large constant C and for every a € [1,n6],

P(N,(B(z,8/2)) > Ca — Clog8) < a~ 484, (16)

where the implicit constant depends only on A and C. Setting a = 1, we obtain (14).
Setting A = 2k, letting a run from 1 to né and using the fact that N, (B(z,6/2)) <n
with probability 1, we obtain

né f

ENX(B(z.8/2)) < (C—Clogd)* + Y (Cla+1)— Clogs)" (a~**5%*)
a=1
+n*(n8) 25
< log“(1/8),

"Ifa, <1/n,then weset M = 1,8y =8, = 1/n and N = N to be the number of real roots of P,, in the
interval (1 —a,, 1 — b,,). Generally, there is no difference in our proof if an interval of interest includes one of
its endpoints or not. So, for example, if one cares about Ny, [1 — a,,1 — b)) instead of N,(1 —a,,1 —by),
one can use the exact same analysis.
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where in the first inequality, the first term bounds EN,f (B(z,6/2)) on the event
Nu(B(z,8/2)) <C —Clogs,

the second term comes from the events Ca — C log$ < N,(B(z,8/2)) <C(a + 1) —
C log § for each a, and the third term comes from the event N, (B(z,6/2)) > C(né +
1) — Clogé. This proves (15), completing the proof.

It remains to prove (16). To that end, we use the following version of Jensen’s
inequality which asserts that for every entire function f,every z € C,and 0 <r < R,

log %

R2+4r2°
lo 2Rr

Nys(B(z.r)) < (17)

where M1 = supyep;,r) |f(w)| and Mz = sup,,ep(; ) |f(w)|. This is a conse-
quence of the classical Jensen’s formula (see, e.g., [36]). We add a proof of this
inequality in Section A.l of the appendix for completeness.

Applying Jensen’s inequality to the polynomial P, gives

Nn(B(z.8/2)) < log % (18)
2

where M1 = supy,ep(z.26/3) | Pn(w)| and Mz = sup,,ep(; 5/2) | Pn(W)].
From (18), to prove (16), it suffices to show that

P(M; > exp(Ca — C logé)) < a~ 454 (19)
and
P(M, <exp(—Ca + C logé)) < a~454. (20)

Since
n
My <Y lallglzl,
i=0

it follows that EM; < §~9(M by conditions (A1) and (A3). The bound (19) then
follows from Markov’s inequality.

For (20), writing z = re'? and observing that the set {w = re'? : 0’ € [§ —
8/10,60 + §/10]} is a subset of B(z,5/2), we have

P(M, < exp(—Ca + C logé))

n
§IP’< sup ’chéjrjeije,‘ fexp(—Ca—i-ClogS)).

6/e[6-8/10,0+5/10]' ;2
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By taking the supremum outside, the right-hand side is at most

n
sup P(‘chéjrjeije/‘ Sexp(—Ca+Clog8))
0’€[6—6/10,6+5/10] =0

and hence, by projecting onto the real line and conditioning on the random variables
(Ej)j¢[l,a/8], it is bounded by
als
sup sup ]P)(‘chéjrj cos(jO') — Z‘ <exp(—=Ca +C 10g8)).
0’€[60—-6/10,604+6/10] ZeR j=1

We use the following anti-concentration lemma from [31].

LEMMA 3.2 ([31, Lemma 9.2])

Let & be an index set of size M € N, and let (§;) jeg be independent random variables
satisfying condition (Al). Let (e;) jeg be deterministic (real or complex) coefficients
with |e;| > e for all j and for some number e € Ry.. Then for any constant B > 1,
any interval I C R of length at least M8, there exists 0’ € I such that

sup ]P’(‘Zejéj cos(jO') — Z‘ < EM716BZ) < MB2,
ZeR je€

where the implicit constant depends only on B and the constants in condition (Al).

Applying Lemma 3.2 with B =24, &6 =[1,a/8], M =a/é, 1 =[0 —6/10,0 +
§/10], ej = cjr’/,and & = “83(1 (where we use condition (A3) and the assumption

that r = |z| > 1 — 2§ to get |ej| > &), we obtain 6’ € [0 — §/10,6 + §/10] such that
for a sufficiently large constant C,

alé
sup IP’(‘Z cjéjrj cos(jO0')—Z| <exp(—Ca + C logS)) L (a)§)y A =a"484,
Zer MY

j=1

which gives (20) and completes the proof of Lemma 3.1. ([

3.2. A generalization
Theorem 2.1 is deduced from the following more general result that can be of inde-
pendent interest.

PROPOSITION 3.3
Let F: RM — R be any function whose every partial derivative up to order 3 is
bounded by 1. We have

|[EF(N1,...,Nu) —EF(N1,....Ny)| < 8.
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To deduce (13) (which is essentially Theorem 2.1 as mentioned at the beginning
of this section), let F be the function defined by ﬁ(xl, X)) =Fxy 4+ xpm).
It is easy to check that [|[0®) F||oo < 1 with |0®) F||oo = maxy.ja|<3 [|3* F||co being
the supremum of all partial derivatives up to order 3 of F. By applying Proposition 3.3
to this 13, (13) follows.

The rest of this section is devoted to the proof of Proposition 3.3.

3.3. Approximate the indicator function by smooth functions
To apply analytical tools, we first approximate the indicator function in counting the
number of real roots by smooth functions.

Let « be a sufficiently small positive constant. Let ¢y be a smooth function taking
values in [0, 1], supported on [—1, 1] and equal to 1 at O with ||<;5(()a)||oo = 0(1) for all
0 < a < 3. For example, we can take the classical bump function

wo(x) = {ZXP(—ﬁ) if x € (—1,1),

otherwise.

For 1 <i < M, let ¢; be a smooth function taking values in [0, 1], supported on
[1— 8y — 817 18 +68!**] and equal to 1 on [1 —&_;, 1 —&;] with [|¢* ]| =
0@, a(1+a)) for all 0 <a < 3. An example of ¢; can be obtained by translating and
scaling ¢¢ as follows:

1 ifxE[l—(Si_l,l—(Si],

0 ifx e[l —8_1 =81 1-8 481,
)= Bo(IRD)  ifx e[l g1 -6 +81)

(U i x € [1 = 8im — 8T 1= 8],

The indicator of the dyadic interval (1 — 8;—1, 1 — §;] shall be approximated by
the following function defined on the complex plane:

¢i(2) 1= ¢i (Re(z))%(%)'

In other words, the number of roots in (1 — 8;—1, 1 — §;], which is just N;, is approxi-
mated by

> e,
j=1

where (¢ j)’}zl are the roots of Py,.
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To control the error terms in this approximation, note that for all 0 <a < 3,
10@ i oo = 08,40 FY). @1

The following lemma estimates the error term in approximating N; by

Yi=19i(5)).

LEMMA 3.4
We have

EF(Ni.....Ny) — EF(Z¢1(§, Z¢M(§,)<<83‘/8. 22)

j=1

Proof
By the derivative assumption on F, we have

Fw“wmn—(Zw@ Eym@ «ZM Zﬁ@w

Foreachi <M, |N; — Z?:l i (£;)| is bounded by the number of roots of P, in
the union of the sets S1, S2, S3 where S; is the set of all complex numbers whose real
part liesin [I —8;_; —8;**,1—§; + 8! **] and imaginary partin [-§; T, 8! T*]\ {0},
Sri=[1=8_1—87%1-8_1],and S3:=[1—5;,1 -8 + 8.

Thus, Lemma 3.4 follows by proving that for k = 1,2, 3,

EN, (Sy) < 888

To this end, we use the following lemma from [10].

LEMMA 3.5 ([10, Lemma 5.1])
There exists a constant ag > 0 such that for all 0 < o < a9 and all x € R with |x| €
[1 =81 =871 =8 + 87,

P(Nn(B(x,28}%%)) > 2) < §2*/2,

To show that EN,, (S1) < 58‘/8, we note that Sy is contained in a union of ®(J;%)
small balls of radius 28i1+°‘. By Lemma 3.5, the union bound, and the fact that the
complex roots come in conjugate pairs, the probability that N, (S;) is nonzero is in
fact negligible:
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IP’(N,, (Sy) > 0) < Z P(number of roots in a small ball is at least 2)

small balls

—ae3a/2 _ caf2
L §7H8N T =817

Thus, N, (S1) = 0 except on an event, named 1, of probability at most 0(8;"/ 2).
The expectation on the tail event +#4; is controlled as the higher moments of

N, (S1) are bounded by Lemma 3.1. More specifically, since S; C B(1 — %85, %i
8i1+°‘), applying (15) to this ball and Holder’s inequality, we obtain
1/2 1/2
ENA(S1) = ENa(SD1a, < (EN2(S1)(P(A1)
1
< 8% 1log 5 < 528, (23)
1

For S, U S3, [10, Theorem 2.4] implies that for such intervals as S, and S3, the
expected number of real roots is universal in the sense that

ENn(S2) =EN,(S2) + 0(6"%)  and  ENy(S3) = EN,(S3) + 057",

where N, (S) is the number of real roots of P, in a set S. It thus remains to show
that EN,, (S, U S3) K 88‘/8. To this end, we use the Kac—Rice formula (see [12], [23];
here we use [14, Formula 3.12]),

- 1 [ \/VarP,(t)Var P} (1) — (Cov(P, (1), P; (1))
By =2 / (Var P, (1))? <

1 ? \/Z:;O Z?=i+lci2612' J —i)2t2i+2/=2
- —/ dr. (24)
T Ja

n 2.2
dizoCil

Algebraic manipulations show that
EN, (S, U S3) < §%/2. (25)

We add the verification of this estimate in Section A.2 of the appendix for complete-
ness. Putting the bounds together gives EN, (S, U S3) K 8;1/ 2,

By combining this with (23), it follows that the left-hand side of (22) is bounded
by O(XM, 8;1/8) = 0(82/%), proving (22) and Lemma 3.4. O
3.4. Reducing to an explicit function of the random polynomial: log | Py |
In light of Lemma 3.4, to show Proposition 3.3, it remains to show that
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]EF(Z 01(85), ZwM(Zz )

(Z o1(€)), Z on(E))) + 0GH). 26)

j=

where ¢; are the roots of P,.

In this section, we reduce the sums Z';=1 @i (£;) to an explicit function of P,,.
The starting point for this reduction is to apply the Green’s second identity to the
compactly supported function ¢;,

- 1
;(pi@j):E/(;log|P”(Z)|A(ﬂ(2)dz

1
_ 10g|Pn(Z)|A<P(Z) dz, @7
21 JB(1-38;/2.28;/3)

where we note that ¢; is supported on B(1 —368;/2,28;/3).
We show that the integral on the rightmost side is well-approximated by its Rie-
mann sum. In particular, we prove that for m; := §; 1%,

-5
ji=1

with probability at least 1 — O(8%¥), where the w;; are chosen independently, uni-
formly at random from the ball B(1 — 36;/2,26; /3) and are independent of all previ-
ous random variables.

(wie)| = 067 28)

Proof of (28)
This proof is based on [10, (4.20)].

For notational convenience, we skip the subscript i and write § := §;, ¢ := ¢,
and m :=m;. Let xg = 1 — 38; /2, the center of the ball.

Since ¢ is compactly supported in B(xg, 26/3), by the Green’s second identity, it
holds that

- 1
;w(é“j)= E/Clogpn(z)m(p(z)dz

1
=— log| Pu(2)| Ag(z) dz. (29)
27 ) B(x0,28/3)

We shall think about the integral on the rightmost side of (29) as an expectation
with respect to dz, up to some rescale; so in approximating an expectation by a sample
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mean (which is the second summation in (28)), it is sufficient to control the variance.
To this end, we would need to require that log| P, (z)| is bounded above and below.
For that purpose, we introduce the good event 7 on which the following hold for
c1=ua/2:

(T1) log|Pn(2)| < %8‘” for all z € B(xy, ‘2—8),

(T2) log|Py(x1)| > —%8_” for some x; € B(xo, 1%).

By Jensen’s inequality (17), these conditions imply that

368 —ey
Na(B(x0. ) <87, (30)
We will show later that
P(T)=1- 0(8%). 31

Assuming (31), it suffices to show that (28), conditioned on 7, holds with probability
1 — O(§%). The following lemma provides the required variance bound, conditioned
onT .

LEMMA 3.6
On the event T, we have

/ (log| Pu(2)])* dz < 575142, (32)
B(x0,28/3)

Assuming Lemma 3.6 and the fact that || Ap||oo < §72(07%) by the definition of
¢, we conclude that on the event 7,

][ 10g?| Pa(2)| - | Ag(2)|* dz <« 67478 (33)
B(x0,28/3)

where

][ f(z)dz:= ; f(z)dz
B(x0,25/3)

| B(x0.28/3)| J B(xo,26/3)
is the average of f on the domain of integration.
Having bounded the 2-norm, we now use the following sampling lemma which
is a direct application of Chebyshev’s inequality.

LEMMA 3.7 (Monte Carlo sampling lemma ([42, Lemma 38]))

Let (X, ) be a probability space, and let F : X — C be a square-integrable function.
Letm > 1, let x1, ..., Xy be drawn independently at random from X with distribution
W, and let S be the empirical average
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1
S = n—1(F(x1) + -4 F(xm)).

Then S has mean [y F du and variance % [ (F — [ F dw)? du. In particular, by
Chebyshev’s inequality, we have

IP’(’S—/XFd,u’zk)g#/x(F—/Xqu)zdu.

Conditioning on 7 and applying this sampling lemma with A = §*~2 together
with (33), we obtain

1 & _
Fo gl Pua)| B dz — Y log| Palwin) (i) < 87
B(x0,26/3) m

k=1
with probability at least 1 — % =1 — 8%, where we recall that m = §~11%,
Combining this with (29) gives (28), conditioned on 7 as claimed. O

It is left to verify (31) and Lemma 3.6.

Proof of (31)
Since

sup [ Pa(2)] <D lesl &1 (1= 78/10)°
i=0

z€B(x0,46/5)

has mean at most § =9, applying Markov’s inequality to the random variable
n .
> leill& (1 —78/10)",
i=0

we conclude that the event (T1) happens with probability at least 1 — O 4(84) for any
constant 4 > 0.

For (T2), writing xo = re'? and observing that the set {w = re'? : 0’ € [0 —
8/100, 0 + 5/100]} is a subset of B(xg,5/100), we have

]P’((TZ) fails) < IP’( sup ‘Z c;&ir J giif’ ‘ <exp(—§~ Cl/2)> (34)

07e[6— 5/100 6+8/100]' ;55

By taking the supremum outside, the right-hand side is at most

sup P(‘Xn: c;&; rfeije" <exp(—=§°! /2))

0’€[6—6/100,646/100] =0
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and hence is bounded by

1/6
sup sup IP’(’Z cjfjrj cos(jO') — Z| < exp(—§! /2))
0’€[0—6/100,646/100] Z€R i=1

by projecting onto the real line and conditioning on the random variables (§;);¢[1,1/5]-
Applying the anti-concentration Lemma 3.2 with B = 4o, § = [1,1/6], M =
1/8, 1 = [0 —§8/100,60 + §/100], e; = c;r/, and &€ = § (where we use condition
(A3) and the assumption that r = |z| > 1 — 3§ to get |e;| > €), we obtain 6’ € [0 —
8/100, 8 + 5/100] such that for all Z € C,
1/6
]P’(‘Z cj&ir! cos(jO')—Z| < exp(—5_cl/2)) < 8%,
j=1

This proves that (T2) holds with probability at least 1 — O (§2%), concluding the proof
of (31). O

Proof of Lemma 3.6
This proof is based on [10, Lemma 4.8]. Since x; € B(xg,5/100), it suffices to show
that

/ (log|P,,(z)|)2dZ & §78ert2,
B(x1,28/3468/100)

By (30), there exists an r € [2§/3 4 6/100,38/4 — §/100] such that P, does not have
zeros in the (closed) annulus B(xy,r + 1) \ B(xy,r —n) with center at x; and radii
r & n, where n > §1+¢1,

It is now sufficient to show that

/ log?| Py (z)| dz < §78112. (35)
B(x1,7r)

Let ¢y,...,¢x be all zeros of P, in B(xi,r — n). Then k < §7°! and P,(z) =
(z—=2¢1)---(z—{r)g(z), where g is a polynomial having no zeros on the closed ball
B(x1,r + n). By the triangle inequality,

g iroes)”

lek:(/B 1og2|z—§i|dz)l/2+(/3(

—1 (x1,r)

& §12e 4 (/
B

1/2
log2|g(z)| dz)

X1,7)

1/2
log?|g(2)| dz) , (36)

(x1,7)
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where in the last inequality we used

/ log? |z — ¢l dz < / log? |z dz <« §272%¢1,
B(xy,r) B(0,38/2)

Next, we will bound [ B(x,.r) log? |g(z)| dz by finding a uniform upper bound
and lower bound for log |g(z)|. Since log |g(z)| is harmonic in B(x1,r), it attains its
extrema on the boundary. Thus,

(/ 10g2|g(z)|dz)/ <<8 max |10g|g(z)|| (37
B(x1,r) €3B(x1,

Notice that log |g(z)] is also harmonic on the ball B(xy,r + n). For the upper bound
of log|g(z)|, we claim that for all z in B(x,r + 1),

log|g(z)| =872 (38)

Indeed, since a harmonic function attains its extrema on the boundary, we can
assume that z € dB(x1,7 + 7). By condition (T1), log | P,(z)| < §~¢!. Additionally,
by noticing that |z — {;| > 2n forall 1 <i <k, we get

k

log|g(z)| =log|Pa(2)] = D log|z — &| < 67! —klog(2n) < 67> (39)
i=1

as claimed.

As for the lower bound, let u(z) = §2¢! — log|g(z)|, then u is a nonnegative
harmonic function on the ball B(x1,7 + n). By Harnack’s inequality (see [36, Chap-
ter 11]) for the subset B(xy,r) of the above ball, we have that for every z € B(x1,7),

qu(xy) <u(z) < éu(xo,

_ c1
where o = 2r+n > §°1. Hence,

(572 — log|g(x1)[) <672 —log|g(z)| < &(8‘2"1 —log|g(x1)]).
And so,
1 1
|log’g(z)|| < &|log|g(x1)|| + 55_261 K § |10g|g(x1)H + 8731, (40)

Thus, we reduce to bounding |log|g(x1)||. From (38) and condition (T2), we have

k

1
§72¢1 > log|g(x1)| =log| P(x1)| — 210g|x1 — i > log| P(x1)| > _55_01'
i=1
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And so, |log |g(x1)|| < 8§2¢1, which together with (40) gives
|log|g(2)|| « 8§73 @1

From (36), (37), and (41), we obtain (35) and hence Lemma 3.6. O

3.5. Universality of log | Py|
Since Z ¢ & 8%, by applying (28), the left-hand side of (26) equals

i=1 z

EK(log\Pn(wik)Dli 1,...M + O(53)
m;

and the right-hand side of (26) equals

K(log|13,,(wik)|)i=1 ,,,,, M + 0(8y)
k=1,..., m;
where
K(xik)i=1,..m
k=1,....m;
2 2 A

= ﬁ( 28 lekA(pl(wlk) ZkaA¢M(ka)> (42)

In this section, we show that the difference between these two identities is small
(Lemma 3.8). Before stating the result, note that by (21) and the assumption on the
derivatives of F, it holds that

[Klloo = O(1), = 057>,

J5vcl-

o] =065, and @

83

———— | = 0§58
” Bxikaxi/k/axiukn ] ( ! ! ! )

foralli,i’,i" k, k', k".

LEMMA 3.8 (Universality of log | P, |)

There exists a constant oy > 0 such that for every constant o € (0, o], every function
K :R™M*tmym R that satisfies (43), and every w;y in B(1 —38;/2,28;/3), we
have

[EK (1] P ) ) — EK (log| Pu(uie)) 5| = OG5
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In order to prove Lemma 3.8, we first prove the following smooth version where
the log function is replaced by a smooth function. The proof of Lemma 3.8 follows by
a routine smoothening argument that we defer to Section A.3 of the appendix. Both
proofs are based on [42].

LEMMA 3.9

There exists a constant oy > 0 such that for every a € (0, ag|, every smooth > function
L :Cmttmm 5 R that satisfies (43), and every wix in B(1 —38;/2,28;/3), we
have

‘EL(M),Z};;;;% _EL<M)]§1,...,M ‘ =0(5). (44

V V(w;k) vV V(wik) 1,...,m;

where V(w) := 3 _n lc;1?|w|?) and Ny is the constant in conditions (A2) and
(A3).

Proof
We use the Lindeberg swapping argument. Let P (z) = Zi(’:_ol cigizi +

Yisi cibiz', for 0 <ig <n+ 1. Then Py = P, and Ppy1 = P, and Piyqy is
obtained from P;, by replacing the random variable &;, by §,~0. Let

o (Wik) io+1(Wik)
Ly := ‘IEL(%)”c _EL(%)%

The left-hand side of (44) is bounded by Z?Ozo I;,. Fix iy € [Ng.n + 1] (where
Ny is the constant in conditions (A2) and (A3)), and let

— Pio(wik) _ Cioéiowfz
Vi) VV(wie)

forl1 <i <M,1<k <m;. We have

i

Pig+1(wix) _ " CiokioWig
it NIk _ vy, .
v V(wik) vV V(wik)

Conditioned on the £; and § j forall j # i, the Y;x are fixed. To bound I;,, we reduce
to bounding

(45)

o 7 Ciogiowf(li .7 Ciogiowzl'g
dig = )EEI‘O,&OL(\/V(Tik))ik_EEio,&OL(m)ik’

2By smooth we mean that L has continuous derivatives up to order 3.
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where L = I:io (Xix)ik := L(Y;x + Xxir )ik - Note that this function L also satisfies (43)
because L does.

ig
L _CigWik .-
Let a;r i, Tm By condition (A3), we have

2671
Vwi)> Y j2(1—136/6)2 577 (46)

j=8"

and

|c,~0wl’.2| L if(1—8;/6)" < if exp(—iod;/6) < max{l,s; "}. 47)

Since p > —1/2, we have from (46) and (47) that
|ik,i] < 8 (48)

for some constant «r; > 0. Taylor expanding L around the origin, we obtain

i(aik,iogio)ik =L(0)+ Ly 4 e, (49)
where
Po= dl:(aik,ioéiof)ik
| = ——olo5io ik
dr t=0
dL(0) dL(0)
= Z 8Re( Re(alk 10;;-'10) + Z 91m ( ” ) (aik,i()g:io)-
Since L satisfies (43), we have
1d2L t
|err1| < sup (alkt;)glo )lk
t€f0,1] 2 dr
2
il D Nk llaimiol872487% < 16 (D lainiol7)
ik,i’k’ ik

Expanding to the next derivative, we have, in a similar manner,
~ ~ ~ 1.
L(@j,io§ip)ix = L(0) + L1 + §L2 + errz, (50)

2 PL@ik.igEigtik
where Ly = —— 90— ;=0 and

3
lerra) < [6io 1 (D lase,io 672%)
ik
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By definition, |err;| = |err; — %£2| &K Eio >k laik,ig|6;72%)?. Using interpo-
lation, Holder’s inequality, and m; = §;11%, we get

lerra] << 180 (3 lase,io672%)
ik

2+¢

(2+¢)/2
< |gi0|2+8M1+6 28 500[(2 |alk o ) .

i=1

All of these estimates also hold for §i0 in place of &;,. Since &;, and §,~0 have the
same first and second moments and they both have bounded (2 + ¢) moments, we get

M mi
= |Eerr,| < M'*¢ ZSZ-_SOO‘(Z \@ir.io)?

i=1 k=1

)(2+8)/2

Taking expectation with respect to the remaining variables shows that the same
upper bound holds for I;, for all Ng <ip <n 4+ 1. By (48), choosing « to be suffi-
ciently small compared to oy, we have (372 | [aik,i, |2)e/2 « 81.(2“1_11“)8/2 & 8100,

Hence,
n+1 n+1
Z Iiy < Me Z Z&sO“ZIa,klol « log? nZSz"‘
ip=No ig=Nop i=1 i=1

< (log? n)83* « 8¢,

where we used M < logn, Zlo No @ik ,O| =1, and (2).
For 0 <iyp < Ny, instead of (49) and (50), we use the mean value theorem to get
a rough bound

L@ ool = L) + 0180 Y 67 laie i,
ik

)

which by the same arguments as above gives

M
> osiole <

i=1

1/2
Iy < M”2(28 ;0 Z laikio2) " < log!2n

i=1

Taking all these bounds together, we get Z:’OJF 10 I;, < 8§. This completes the proof

of Lemma 3.9. O

3.6. Finishing the proof of Proposition 3.3
In Lemma 3.4, we approximated the number of real roots in dyadic intervals, N;, by
the sums Z?:l @i () and estimated the error term to be
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EFN . N —EF (Y 1@ Y em@)) <8 6D

Jj=1 Jj=1

as in (22). Applying this bound for the specific Gaussian case yields

EF(N..... Ny) — EF(Z%(E; ZwM(éj )< 6y

It remains to show that

JEF(Z ¢1(5)). ZwM@, )

(Z 1o Y ou @) + 0. (53)

j=1

where ¢ ; are the roots of P,.
By (28), the sums Z'}=1 @i (£;) can be well-approximated by the sample sum

“ 262 X
D 0iC) — =Y log| Pu(win) | Agi (wik) | = O(8F) (54)
; 9m; =

with probability at least 1 — O(8}), where the w;j are chosen independently, uni-
formly at random from the ball B(1 —36;/2,26;/3) and are independent of all previ-

ous random variables.
Since wa 1 0% K &3, by applying (54), the left-hand side of (26) equals

and the right-hand side of (26) equals
K(10g|ﬁn(wik)|)li=l ..... M + 0(55),
=1
where K is the function defined in (42).
For any fixed w;, Lemma 3.8 asserts that the difference between these two iden-

tities is small:

|EK (log| Pa(wik)]),, — EK (log| Pu(wix)]),, | = O(8F).

This gives Proposition 3.3.



CENTRAL LIMIT THEOREMS FOR RANDOM POLYNOMIALS 3771

3.7. From3N(0,1)t0J
In this section, we detail the modifications needed to prove Theorem 2.1 from the
proof of (13). For Theorem 2.1, we need to show that

|EF (N2 (3)) —EF (N2 (3))| < Caf, + Cn™.
Inequality (13) restricts to the interval (0, 1) and says that
IEF (Nx(3N(0.1))) —EF (N, (3N (0.1)))| < Caf + Cn™.

We first decompose N, (J) and N,,(3) into the sum of the numbers of real roots in
the intervals 3N (0, 1), N (—1,0), 3N (1, 00), and J N (—o0, —1) and denote by N
and N,f’) withi =1,...,4, the corresponding number of real roots. For example,

NP =N@n 1)) and NP =Ny (3N (0,1),
N®=N,(3n(=1,0)) and NP =N,(3N(~1,0)),

and so on.
Note that

4 4
Ny@ =Y N and N, =) N

i=1 i=1

It has been shown in proving (13) how to deal with N,fl). To deal with N,fz), note
that there is a one-to-one correspondence between the real roots of P, (z) in (—1,0)
and the real roots in (0, 1) of the polynomial P,(—z) =Y i_o(—1)'¢;&z". Denote
this new polynomial by P,fz) (z) and the original polynomial P,(z) by P,El)(z). All
arguments that have been used for P,fl) to handle N,El) can be applied to P,fz) to
handle N,\®.

For N,f3), there is a one-to-one correspondence between the roots of P,gl)(z) in
(1,00) and the roots in (0, 1) of the polynomial %Pn (zHY=>" 2 lg, i =

i=0 ¢y,

P,S3) (z). The coefficients C’ﬁ’ of P,f3) satisfy condition (A3) with p = 0, except for
a negligible number of i, and hence the same arguments as for P,fl) also apply for
J2S

Similarly, for N,S4), there is a one-to-one correspondence between the roots
of P,gl)(z) in (—oo,—1) and the roots in (0,1) of the polynomial P,f3)(—z) =
S (=1 Cz;i Ea_izt = PP (2). All arguments that work for P> (z) also work
for P,f4) (2).

In Section 3.1, Nn(l) is partitioned into a sum of N;, which is the number of roots
of P,fl) in a dyadic interval (1 — §;—1, 1 — 6;]. Denote these N; by Ni(l). Denote by
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Ni(z), N (3)i, and Ni(4) the number of roots in the same interval of P,fz) s P,P), and

P,f4), respectively. We have

4 M
Na@ =223 N
j=li=1
All other steps in the proof of (13) can now be written for the proof of Theorem 2.1
by placing these Ni(J ) in place of N;. For example, Proposition 3.3 becomes

EEWND, . NP NP NP

CEFRD, AW A9 D.| « s,

where F: R*M R is any function whose every partial derivative up to order 3 is
bounded by 1.

4. Proof of Corollary 2.2
We define 8y, ...,0p, N1,..., Ny as in the beginning of the proof of Theorem 2.1.
Note that §; > §pr > 1/n and §§ = O(al +n"°).

To prove the first part of Corollary 2.2, we first reduce to the interval [1 —a,, 1 —
by) as explained in Section 3.7; namely, it suffices to show that

[E(NX[1 —an.1=b,)) —E(NF[1—an, 1 —by))| < C8§. (55)

We write N := Ny[l —ap,, 1 — by), N = 1\7n[1 —day,1 — by). Let A be the event
on which N < log*n (here, 4 can be replaced by any large constant). Let F be a
smooth function that is supported on the interval [—1,log* n + 1], and let F(x) = x*
for all x € [0,log* n]. Since N is always an integer, it holds that N¥1 4 = F(N). The
function F can be chosen such that all of its derivatives up to order 3 are bounded by
O(log** n). Applying Theorem 2.1 to the rescaled function (logn)~*K F, we obtain

IEN*14 —EN*1;| = |EF(N) —EF(N)| < §3°log™* n < §§

for some small constant ¢, where 4 is the corresponding event on which N < log*n.
To finish the proof of the first part, we show that the contribution from the com-
plement of +4 is negligible, that is,

ENF1 40 < 5.

Since M < logn K 556/2 by (2) and since N* < M* Zf‘io Nik, it suffices to show
that for all 7, ENik 14 < 856. Let 4; be the event on which N; < 10g3(1/5i). Note
that ﬂlﬂil A; C A. Let A be a large constant. By (14) of Lemma 3.1, P(A¢) < 8.
Thus,
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M M
P(AS) < Y P(AH) < Y81 < 87
i=1 i=1
This together with (15) of Lemma 3.1 gives

M
EN 14 < loghn Y ENF1
i=1

M M
k 2k\1/2 cy)1/2 k A/2 l 2k
< loghn Y (ENP)2(P(A%)) ' < log n;&) (1og &_) :

i=1

Since 8; > 1/n, the rightmost side is at most (log** 11)561/2 < 8{)4/2_1 < 8§ by (2)
and by choosing A > 3.
The second part of Corollary 2.2 follows from the first part by observing that

(EN:Q)” = (EN2 Q) < 85(2ENA () + 0(59)) < 85log?n < 85/

where in the first inequality we used the first part of Corollary 2.2 for k = 1, in the
second inequality we used (15) to get that

M M
EN,(3) < Y log(1/8;) <Y logn < log>n,

i=1 i=1

and in the last inequality we used (2). This completes the proof of Corollary 2.2.

5. Proof of Proposition 2.3

5.1. Probability of multiple roots
We start by proving a useful tool that controls the probability that the polynomial P,
has many roots in a small interval. For any x, y € R, let

V(x) := VarP,(x) = ic,?le' (56)
i=0
and
n 2yl
R e e
LEMMA 5.1

Assume that the random variables &; are i.i.d. standard Gaussian. There exists a con-
stant Cg such that forany 0 <s < 1,anyk,l > 2, 1—%0 <x<t<landy,z €(x,t)
satisfying



3774 NGUYEN and VU

1— 1—
log x:log G
1—y 1—1¢

for some § € (0,1/2Cy], we have

P(Na(x.y) = k) < (Cod)* (58)

and
(Cog)(kJrl)s
VI=r2(y.1)

where the implicit constants depend only on s, notonk, [, x, y, 6.

P(Na(x,y) >k, Nu(z,1) > 1) < (Co8)* + (Cod)** + (59)

Proof
We start by proving (59). By Rolle’s theorem and the fundamental theorem of calcu-
lus, if P has at least k zeros in the interval (x, y), then

y Y1 Yk—1
1Pay)| 5/ / / PO ()| dyg--dyy =: I
X X X

Therefore,

P(Na(x,y) =k, Nu(z,0) = 1) P(Ix,y = 61/ V(y)) + P(Iz; = &2/ V(1))
+P(|Pa()| a1V V(). | Pa()]| <2/ V(D).

where £, := (Co8)¥*, &5 1= (Cp8)** and

V(x) = VarP,(x) = Z cl-zxz". (60)
i=0

By condition (A3), we have the following estimate whose proof is deferred to Sec-
tion A.4 of the appendix, as it is merely algebraic:

ed)
(1—x + 1/n)2e+T

V(x) = Vxe(l—1/C,1). (61)

Pu(y) Pn(®)
NV () V()

], we have

Since ( ) is a Gaussian vector with mean 0 and covariance matrix

[ 1 r(ye)
r(y,t) 1

€182

P70 =60V VO | Pa(0)] < 2V T0) < =i,
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It remains to show that

P(lxy = e1V/ V() < (Co8)**. (62)
Since 0 < s < 1, there exists # > 0 such that s = %. By Markov’s inequality,

we have

(&1 vV "P(Iey = e1V/V ()
Yy oy Yk—1 h
E]E(// / PO )| dy---dy )

By Holder’s inequality, the right-hand side is at most

—x)e\ 14k y i Vi—1 f
(%) E/ / / | P& (i) | dyg - dyy
M P P P

and so

1V V) "B(Ixy = 1 VV())

- <(y__x)k)z+h

2+h
k! '

sup E’Pn(k)(w)‘

we(x,y)

(63)

For each w € (x, y), since P,,(k) (w) is a Gaussian random variable, using the
hypercontractivity inequality for the Gaussian distribution (see, e.g., [5, Corol-
lary 5.21]), we have for some constant C,

h

2+h

E[P® )" « (E{P,f")(w)|2)22 < (

Ck (k)2 )#
(1—y +1/n)2et2k+1/

where in the last inequality we used an estimate similar to (61).
Plugging this and (61) into (63), we obtain

HD(Ix,y > &1V V(y))
Cot1)@+h)

JU=y+lm ((y—X)k)2+h( Ck(k!)? )23'7
s%"'h k! (1—y+ l/n)2p+2k+l ’

which gives

1 y—x k(2+h) 1 y — x\kQ@+h)
P(I,, > &1 VV () < c ) < (C .
(Lry Ze1VV(y)) €%+h( 1=y + 1/n §2th l—y)

Using &, :(Coé’)ks,%:i:—i—lze‘g—l528f0r8§ﬁands:%,weget
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1
P(Ix’y > &1/ V(y)) < W(ch)k(yrh) < (C08)2ks

by choosing Cy > 2C. This proves (59).
The inequality (58) is obtained by the same reasoning:

P(Np(x,y) 2 k) <P(Icy = e1v/V(») + (| Pa ()| =1V V(D).
Thus,
P(Na(x,y) > k) < (Co8)*** + &1 < (Cod)*.

This completes the proof of Lemma 5.1. O

5.2. Fartition into pieces
Let 2 be the right-hand side of (5):

oA (logan)?k + logk(nb,) ifb, >1/n,
" | (logan)?* if by < 1/n.

Writing R \ J as a union of four sets 77 :=[0,1]\ J, T2 :=[-1,0]\ J, T3 :=
(1,00) \ J, and Ty := (—00,—1) \ J and using the triangle inequality, we reduce
Proposition 2.3 to showing that for each 1 <i <4,

ENE (T;) = ENJ(T) < 2. (64)

We only prove (64) for i = 1; the proofs for the remaining i = 2, 3, 4 are similar.
Since 2 >> 1, by the triangle inequality, (64) follows from showing that for some large
constant C,

ENK[0.1-1/C] < 1, (65)
ENK(1—-1/C.1—a,) < (loga; '), (66)
k(q_9n
EN(1 : 1)<, (67)
and
k(1_ _4n
ENF(1=bn.1 : )<, (68)
where we note thatif 1 — b, > 1 — “nl, then the interval (1 —b,,1— "7") is empty and

(68) is vacuously true.
The bound (65) is precisely the content of [10, Lemma 2.5]. In the following
sections, we show (66), (67), and (68).
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5.3. Proof of (66)

Dividing the interval (1 —1/C, 1 — a,) into dyadic intervals Iy := (1 — L, 1 — —]
I = - 2C,1— L] s Ly = (1— W,1 an) (where - C >a, > 2m+lc)
and applying that tr1angle 1nequality together with (15), we obtain
k - k
ENF1—1/C1—an)* <Y (ENFU1)F < Zlog(2’C) <« (loga; 2.
i=0 i=0
Thus,

EN¥(1-1/C.1—ay) < (loga; ")

proving (66).

5.4. Reducing to Gaussian
To prove (67) and (68), applying (55) to the intervals (1 — “ni, 1) and (1—b,,1— %”),
we get

’]EN,f(l —‘;—”,1) ~ENK(1 —C;—”,l)( <n <l
and
(EN,?( b,,,1—“7) ENk(1—b,,,1—7)‘ <ChE+Cn < 1<K

Thus, it remains to prove (67) and (68) when the random variables &; are i.i.d. standard
Gaussian. So for the rest of this proof, we assume that this is the case.

5.5. Proof of (67)
For (67), we use Holder’s inequality and (15) to conclude that

ENF(1- ‘;—” 1) = (ENF(1- C;—” 1))1/2(ENn(1 - “n—” 1))1/2
< (1ogn)2"—1(1EN,,(1 - ‘;—” 1))1/2. (69)

Using the Kac—Rice formula (24), we get

n 2,20 _ \242i4+2j—

/ \/Zz 02 j=it1 6 C(J —i)2HTA=2
n 2.9
D i—o i1

<</ ., ndt =a,, (70)
1-4n

T n

IEN(I——I dt
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where we used |j —i| <n+1and Y7 o> cfeit® ™ = (37 c7r?)>.
Plugging this into (69) and using (2), we obtain

JEN,f(l - ‘;—” 1) < (logn)*=1g1/2 « 1. 1)

5.6. Proof of (68)
By (58), for every interval [x, y] with

l—x 1
l—by<x<y<l-2"  and  log—>r == (72)
n

where C is a sufficiently large constant, we have

o0
ENJ(x.y) SENa(x.y) + Y j*P(Na(x.y) = j)
j=2

o0
KEN,(x.3)+ Y j*277 =ENy(x.y) + O(1).
j=2

Dividing the interval (1 —b,,1—%2) into O(log - - +logb,) = O(log L b”) intervals
that satisfy (72), we obtain

ENS (1= b 1= fl—”)

< (1og "ai” )k_IIEN,,(l by, 1 — ‘;—”) + (1og nbn )k_l. (73)

dp

So, (68) follows from (73) and the following

ENn(l—bn,l— a—”) « max{1,log(nby)}. (74)
n
which can be deduced from
C )
ENn( — by 1— —) < log(nby) ifby>C/n (75)
and
C
EN(I——I——><<1 (76)
n

To prove (75), let ¢; p := 4/ w We have ¢; , = ©(c;) for all i > Ny

thanks to condition (A3).
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Using the Kac—Rice formula (24), we have

ENn(l—bn,l—%)

1-< \/Z(l:o Zr%='+1 c? c? (J _i)2[2i+2j_2
<</ i j=i i,p"J.p dr. 77
1

2 2
~bn 2i=0Cipl

We use [10, Lemma 10.3] with h(k) = cl-2, ,» Which estimates the above integrand

uniformly over the interval (1 — b,, 1 — %) and asserts that
n n 2 .2 (j_ i\242i+2j-2
\/Zi=0 D=1 CipCh i = J)2121 2
n 2 2i
D i=0Cipt?

NeTES 1
« YT ey L
27 (1 —1t) n(l—1)2

which is « ﬁ by the assumption p > —1/2.
That gives (75) because

C

C =

]EN,,(] —bp,1— —) <</ ——dt < logn + logb, =log(nb,). (78)
n 1-b, 1—1¢

For (76), we use the same bound as in (70) to obtain

an

c =5
ENn(l—;,l—a—") <</ ndt < 1. (79)
1

n <
n

This proves (76) and completes the proof of (68).

6. Proof of Lemma 2.4

Since the lemma only involves Gaussian random variables §,~ , we simplify the notation
and write &; for §,~ and N, (S) for N, (S) (this helps us to avoid multiple superscripts
later on). Thus, for this section, & ~ N(0,1) for all i.

We will adapt the argument in Maslova [29], which is to approximate the number
of roots by a sum of independent random variables. Since the random variables &; are
now standard Gaussian, numerous technical steps in [29], which may be impossible
to reproduce without having co = -+ = ¢, = 1, can be greatly simplified and applied
to our general setting thanks to special properties of Gaussian variables.

6.1. Approximate the number of real roots by the number of sign changes
Let V and r be defined as in (56) and (57). Lemma 5.1 asserts that in a small interval,
it is unlikely that the polynomial P, has more than one root. If P, has at most one root
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in an interval (a, b) and does not vanish at a and b, then N, (a,b) =1 if P,(a) and
P, (b) have different signs and N, (a,b) = 0 otherwise. Hence, on a small interval
(a,b), it is reasonable to approximate N, (a, b) by the number of sign changes:

1 1
NI (a,b) = = — 3 sign( Py (a) Pn (b)), (80)
where
1 ifx>0,
sign(x):=40 ifx=0
-1 ifx>0.

The following lemma estimates the accuracy of this approximation for a long
interval.

LEMMA 6.1 (Approximate by sign changes)

Assume that the &; are i.i.d. standard Gaussian. For any positive constant ¢, there
exist constants C, C' such that the following holds. Let T > 1/C, and let a, b be
such that 1 —a, <a <b <1—b, andlog =% =T. Let jo =8"log(l —a)~" and
j1=381log(1 —b)~L, where § is any number with

exp(—(loglogn)' ™) <§ < 1/C.

Assume (without loss of generality) that jo and ji are integers, and let xj =1 —
exp(—jd) forall j = jo,...,j1. Let

J1—1
S =3Sups5=Nnla,b)= Z Nulxj,xj41) and
Jj=Jo
) J1—1
gsign — ¢ ;1gbn8 — Z ng (xj’x]+1)
J=Jjo
Then
]E(S _ Ssign)Z < C’T281_8.
Proof
Note that x, = a, x;, = b, and j; — jo =8"T.
We have
Ji1—1 )
E(S S51gn)2 Z E(Nl is1gn)2 +2 Z E(N Nslgn)(N] s'1gn)7
i=jo Josi<j=<j1—1

where N; 1= Ny[x;, x;4+1) and NJ*" 1= Ny (x;, x 41).
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By Lemma 5.1, we have

Jj1—1 Jj1—1 n
S TEW: - NV <Y S kPPN =)
i=jo i=jok=2
n
LT T kPCod)H /D < T8¢ 81)
k=2

For each jo <i < j < j; — 1, we have

n
E(N; — NJ¥)(N; = N7 < Y kIP(N; =k, N; =1).
k,=2

Let ko := §~'/190 'We split the right-hand side into three sums: 2 < k, ! < k¢ for the

first sum, kg <k <nand2 <[ <nforthesecondsum,and2 <k <mandkg <[ <n

for the third sum, and denote the corresponding sums by K;, K5, K3, respectively.
By Lemma 5.1, letting r;; := r(x;4+1,X;4+1) gives

cs 4(1—e) 83
K < k%[(C(S)““—S’ + L] LB 4+ —. (82)
1— ri2j 1-— rizj

For K,, we use Holder’s inequality to get
Ky <E(NiNjly;zko4118;22) < BN 1y, 2k041) 2 (BN 1y, 22) "2
< k0—h+1 (ENiZh lNi Zz)l/z(Eszle 22)1/2 < ko_h+182_8 < 537

where & is a sufficiently large constant, and in the next to last inequality we used
Lemma 5.1 in a similar way as in (81). Similarly, K3 < 8. Hence,

E(N; — NJ¥")(N; = Nj*") « 8% +

and so

E(S — Sslgn)Z & T8 6‘+ Z (53

=
=

LT8¢ 4653 (83)

]0<1<J<J1

To complete the proof of the lemma, it remains to bound 1 — rizj from below. For
each0 <k <n, let
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(k +2p)---(1+ 2p)
Ckp = m

By condition (A3), ¢y = O(cg,p) for all kK > N and thus, for all x, y € [a,b],

n n
Vix) = Z c,%ka = @(Z c,iprk)
k=0 k=0
and

ZO<1<k<n Cl Ck(x xkyi)z
(Zkz() Ckxzk)(2k=0 C]%)’Zk)

C ok ki

_ ®(20§i<k§n ciz,pc]%,p(xly - X yl)z

- 2 2
(k=0 Ck,,,xz")(ZLo Ck,pka)

1—r?(x,y) =

(84)

Therefore, in order to bound 1 — rizj from below, it suffices to assume that cx = c ,
for all 0 < k < n for the rest of the proof of Lemma 6.1.
For ci = ck,,, we have for every x € [1 —a,, 1 — by,

1+ O(gp)
V(x) = (=22t (85)
where g9 = exp(—(loglogn)!*2¢). We defer the simple verification of (84) and (85)
to Section A.5 of the appendix.
Letting x = x; 41 and y = x; 1 yields

V(J/Xy) J(1 = x2)(1 = y2)\20+1
rij =7=(1+0(80))( ( (a=y )) .
VVX) V() (1—xy)
Let 55 := ~ a (le))C(yl) 2 . To estimate 1 — ré, let us first estimate 1 — s .. We have
o ey (@2 (i)

U I—x+x(1—y)2 (€098 £ x)2 = (eG-D8 1 1)2°

Thus, if (j —i)8 < 1, then 1 — 57 > (j —i)?6?, and if (j —i)§ > 1, then | —s7; =
(e(j )8 _ 1)2
(e(=0D8 £ x)2
we have g9 = o(1 —s; ) for all i < j. This implies that

> 1. Combining thls with the assumption that § > exp(—(loglogn)!*¢),

2(2p+1 (x_y)z
1—r2 =152 )+0(1—85)=®(1_S5)=®(m>

and
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1 1 1
S R S o

Jo<i<j=j1—1 l_rij i<j<i+§—1 l_sij J=i+81 1_5,']'
1
< > TET >
i<j<i+8~1 J j=i+8~1

L T8 %logs™! + 12672,
Plugging this into (83), we obtain
E(S — 5582 « T8¢ + T25 + Tlogs ™! « T8¢,

completing the proof of Lemma 6.1. U

6.2. Truncate the polynomial P, to get independence
We now show that N*€"(x, y) and N%&"(z,¢) are (in some rough sense) independent
whenever the intervals (x, y) and (z,¢) are relatively far apart. This allows us to
approximate N, (J) by a sum of independent random variables from which we can
derive a CLT.

For any x € [1 —ay, 1 — by], let

Ay =log(l —x)71, my=(1—x)""A%, and
(86)
M, =a(l—x)"'logA,,

where « is a large constant to be chosen.
Define a truncated version of P, by

Mx

Qx)= Y cjgxl.

j=mx

We get O from P, by a truncation in which the truncation points m, and M,
depend on the value of x. Let

o =min{l, 1+ 2p} > 0.

The following lemma asserts that Q is a good approximation of P, and that Q(x)
and Q(y) are independent when x and y are far apart.

LEMMA 6.2
For every x € [1 —ay, 1 — by], it holds that

0 < VarP,(x) — VarQ(x) = Var(P,(x) — Q(x)) € A7’ EP2(x).  (87)
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Moreover, if 1 —a, <x <y <1—b, and if log %— 2aloglogn, then Q(x) and
0O (y) are independent because

My <m,.
Proof

Since by, > 1/n,forall x € [l —a,, 1 —by], 1 —x >b, > 1/n. We write x = 1 — %
By (61), on the rightmost side of (87), we have

()

— 2p+1
(I —x)2pt1 =OL*™).

VarP,(x) =

On the other side, we have

Var P, (x) — VarQ, (x) <z:c2 2y Z c2x? Z c2x?

i=No i=My

<<1+212p+ Z i2pe21/L

i=M,

By the same argument as in (118), the rightmost sum is at most

n fele)
Z i2pe—21/L < L2p+1 / l2p€_2t dt
i=M, My/L—-1

& LP#Hlemelotloel « (log L) EP7(x) < AL EP2(x).

where we used M, = oL loglog L and Ay = log L by the definition of M, and A,.
Thus,

VarP, (x) — VarQ, (x) < 1+ m?**! 4 A7 EP2(x) < A7% EP2(x),

where we used m, = L(log L)™® by the definition of m,. This proves (87).
As for the second part of Lemma 6.2, writing x = 1 — % and y = 1 — L, we have
1<K L<K<nand log% >2aloglogn, so

M, =aLloglogL < Llog*n < Klog *n < Klog™®* K =m,.

This proves Lemma 6.2. U

6.3. Approximating sign changes of Py, by those of Q: Short intervals
Let

N (e, 3) = N (r,y) = 5 = 2 sign(0() Q) (88)
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be the sign change of Q on the interval (x, y). In the next lemma, we show that N trun
is a good approximation of the corresponding sign change N, " of P, defined in (80).

LEMMA 6.3 (Approximation by truncation I)
Assume that the &; are i.i.d. standard Gaussian. Let C be any positive constant. Let
l—a, <x<y<l-b, wzthlog1 X2 <1/C. Then

(N2 (x, y) = N™(x, y))* < 47212,

Proof
Using the formula

1
sign(a) = — / t~Ysin(ta) dt,
T JRr
we have

NJE(x, y) = N™(x, )

_ 1
272
// (sin(r O (x)) sin(u QO (y)) — sin(t Py (x)) sin(u Pu(»))) dt du,
where
5 (x) = L) 500y.— 20)
Q(x): \/m’ 0(): *V(y)’
A LG R S R 161

Decompose the plane R x R of (¢,u) into two regions: the square {(¢,u) :
A% < 1), ju| < A%73} and its complement. We denote the corresponding
integrals on these regions by I/ and I, respectively.

First, we show that the contribution from I, is negligible. Indeed, using the esti-
mates

‘/Itlsst_l sin(za)dz( Y,

(89)
’/|t|>M sm(ta)dt‘ < mm{| ]1\4| }

we obtain
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|12| < (| Pa )] + | Pa0)] + [0 0] + ()] 477/
13n(>¢)|_1/1;ap//3} + min{1, 13,,(y)|_1,4;0w’/3}
O(y)| ' azer3).

From this and the Gaussianity of P, and Q, we have

+ min{1,

+ min{1, \Q_(x)|_1A;°‘p//3} + min{1,

EI? « A7%'/? £ Emin{l, Z 247293y « A790'/3,

where Z ~ N (0, 1).
For I, we need to make use of the cancellation between P, and Q. We rewrite
I, as
A%p’ /3 A%p’ /3

1 A
I = ?/A—ao/é anre t~u"sin(rQ(x))
X X

X COS(

" 0(y)+ Pn(y)) Sm(u oWy — Pn(y)) dt du
2 2

/ 7
A%" /3 A%‘O /3

1

_1 _1 . ~
— t~u " sin(uP
7T2 A;Otﬁ/6 A;QD/S ( n (y))

X cos(lw) sin(tw

: . )dtdu.

Using |fbc t~Vsin(ta)dt| < 1 forall 0 < b < c, |%| <1 for all a # 0, and (87),
we get
A?Cm’/3

EI2 < E[/

o Q) = P +[Q(x) = Pu ()] dz]z
Ax
< AP (E|Q) = B[ +E|Q() = Pa)[*) < A7,

where we used Lemma 6.2 (recalling that the random variables &; are i.i.d. standard
Gaussian and hence have mean 0) to get

— — 2 — — PV P
E|Q(y) — Pa(»)|” = Var(Q(y) — Pu(y)) € A% K A%
This completes the proof of Lemma 6.3. O

6.4. Approximating sign changes of P, by those of Q: Long intervals

LEMMA 6.4 (Approximation by truncation II)
Assume that the &; are i.i.d. standard Gaussian. There exist constants C, C' such that
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the following holds. Let T > 1/C, and let a, b be such that 1 —a, <a <b<1-b,
and logi%‘; =T. Let jo =8"'1log(l —a)~! and j; = 8§ log(1 — b)~!, where §
is any number in (0,1/C). Assume (without loss of generality) that jo and ji are
integers, and let x; =1 —exp(—jé) forall j = jo...., j1. Let
Ji—1
S = G = 3" Ny (xjxi40)  and

J=Jo
Ji1—1

trun __ Qtrun __ trun . R

ST =S = § :N (X Xj+1)
J=Jjo

Then

E(S™n — Ssign)z < C/5_2T2(10g ai)—ap’/s 52 (log 1 _Z)z(log i)_ap%.
n _

Proof
By Lemma 6.3, we have

J1—1

E(Strun . Ssign)Z < (Z [E(Ntr””(xj,xjH) _ N:ign(xj’xj+l))2]l/2)2
J=Jo
Ji1—1 L \2 J1—1 L \2
< (X azle) < (X Goere).
J=Jjo J=Jo

By the definition of jj and j;, we get
jl_l / / //6 / //6
3 (80 <50y — o) jo 0N = smImes o e
J=Jo

)

1 1 \—ao'/6
<34 T(log —)
dap

proving Lemma 6.4. O

6.5. Control of the fourth moment
The following lemma controls the fourth moment of S"™".

LEMMA 6.5 (Bounded fourth moment)
Under the setting of Lemma 6.4 and an additional assumption that

1 \—ap'/24
S > (log —) ,
an
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we have

l—a

2
1 b) (loglogn)®.  (90)

E(SIY s —ES™ )* < T?(loglogn)? = (1og

Proof
Let Cy be the constant in Lemma 5.1.
Case 1: T <1.Since T > 1, it suffices to show that

E(Syys)t < 1. 1)
For simplicity, we write S™" for S[''s. Let S¥¢" = S:’gig as in the setting of
Lemma 6.4. By the definition of sign changes, we have with probability 1,
ST & i —jo k87 and SV« — jo < 8L
Hence, by Lemma 6.4, Holder’s inequality, and the assumption that

1 \—ap'/24
§> (IOg —) ,
Ap

we have

—ap’/6
)

‘ . 1
|E(Strun)4 _ E(S51gn)4| & 8—3E|Strun _ Ss1gn| & 8_4 (log .
An
Thus, it suffices to show that E(S*#")* « 1. Since N,‘:ign(x, y) < N, (x,y) for any
interval (x, y),
E(S*e)* <EN2(a,b).
1
2Co°
Since log i%g = T, the number of such subintervals is 2CyT'. By (58), for each of
these intervals (x, y), we have

Partition the interval (a,b) into smaller intervals (x,y) such that log }:—i =

[e¢]
EN, (x.y) < Y _k*27%2 « 1.
k=1

Using this and the assumption that 7 < 1 of Case 1, we have EN(a,b) < 1 as
desired.

Case 2: T > 1. We decompose the sum in ™" —ES™" into blocks of size u :=
87! of the form

Jot+kp—1
Xe= D (N™(xj0) —EN™(x;,x)41)
j=jot =1
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1 is the number of blocks. Notice that

foreachk =1,..., jo, where j, = (j1 — jo)u™
J2LT.

We have

J:
E(Smm —ESmm)4 — E(i Xk)4
k=1

J2
=Y EX}+4> EX}X; +6) EXZX}
k=1 k£l k<l

+12 Y EXZXX,+24 > EXiX/X,X,
I<pik#l,p k<l<p<q

=:114+41, + 613 + 1214 + 2415.

Note that each Xj is of the form Su'2 5~ ES;S“'I‘)/ s for some a’, b’ that satisfy

a’,b’,
log i:g: < 1. Thus, (91) implies that ]EXIQt < 1 for all k. By Holder’s inequality,
each term in the summation of 7y, ..., I5 is of order O(1), and so

L<&Kjp<T, ©L+L<Kj?KT?

To bound /4 and /5, we use the independence in Lemma 6.2 to conclude that if k, —
ki1 > 3aloglogn, then Xi, and (Xi,..., Xk, ) are independent. Together with the
fact that EX; = 0 for all k, we observe that most terms in the sums /4, Is are zero.
Ignoring these zero terms, we have

Iy = Z EX,?XIXP < j22 loglogn <« T?loglogn
I<p=<I+Cloglogn
and
Is = > EXi X; X, X, < T?(loglogn)>.
[—Cloglogn<k<Il<p<qg<p+Cloglogn
Putting the above bounds together, we obtain Lemma 6.5. O

6.6. Proof of Lemma 2.4

Using the results in Sections 6.1 and 6.2, we shall approximate N,(J) by a sum of
independent random variables to prove that it satisfies the CLT. We again recall that
in this proof, the &; are i.i.d. standard Gaussian as mentioned at the beginning of this
section. Recall the hypothesis (6) that

(logn)?/n < by < ay < exp(—(logn)©),

an 92)
log 5 = O(ogn), and VarN,(J) > logn.
n
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In particular, a,, satisfies condition (2). Let «, B be any constants satisfying

B>3 and 28 +3 <cap'/24. (93)
Let

T :=log Z—" = O(logn), §:= (logn)~8,
! (94)

. -1 1 . -1 1

Jo:=6 "log—, and j1:=6 "log b

An n

We have j; — jo=8"'T. Let
g:=8"'TV® and p:=8"1T12,

Observe that ¢ = o(p) and g grows with n. For simplicity, we will assume that jo,
J1, P, and g are integers. In case they are not, we only need to replace them by their
integer part. As before, let xj = 1 —exp(—j§) for j = jo,..., j1.

Let Ng;m(Xj,XjJ,_l) be defined as in (88). By Lemmas 6.1 and 6.4, we can
approximate N, (J N (0, 1)) by

Ji—1
trun . __ trun —_ trun . .
Spi= Sl—an,l—bn,S = § : Np, (xj.Xj+1)
J=Jo

and get an error term

1 \—0'/3
E(Na(30 (0. 1) = $7)? « 726!~ + T2%62(log —) = o(logn),
Qn

where in the last inequality we used (92) and (93).
Combining this with the assumption that Var N, () > logn, we obtain

E(N, (3N (0, 1)) — S = o(logn) = o(VarN,(3)). (95)
Similarly, for the interval J N (—1,0), we approximate the number of real roots
by

Ji1—1
trun . __ trun . .
Sy = E Np " (=xj41,—X;).
J=Jo

And for the intervals J N (1, 00) and J N (—oo, —1), we respectively use

Ji1—1 J1—1
trun . _ trun .. . trun . __ trun X X
S30 = E :NR,, (), %j+1) and Syh= § :NR,, (=Xj+1.—%}),
J=Jo J=Jo
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where R, (x) = %Pn (1) =30 et En_ixi. Let ST = YF Siun. We note
that all of the lemmas proved earlier in this section hold for R, in place of P, (with
the value of p being changed to zero as in Section 3.7). From (95) and its analogue

for Sy, Sy, Sy, we have
E(Na(3) — S‘“‘“)2 = o(logn) = o(VarN,(J)).

Making use of Lemma 6.2, we now approximate S"™" by a sum of independent ran-
dom variables Zj, Wj, as follows. Let

Jot+k+1)p+kg—1

Zk = > (Np, (s xj1) + Np,"(=x 1. =x/))
J=Jjo+kp+kq
and
Jjo+(k+1)p+kg—1
Wi = Z (Net(xjoxj41) + Nt (=xj 41, —x5)),  k=0,....1—1,
Jj=Jjo+kp+kq
where
| = Ji1—Jo _ @(TI/Z)‘
Pt+q

By Lemma 6.2, the random variables Zy,...,Z;_; are mutually indepen-
dent because ¢§ = T'/® > 2aloglogn, and similarly for the random variables
Wo,...,Wij_1. Moreover, all random variables Zy,...,Z;_1,Wy,...,W;_1 are

mutually independent because the Z; only involve the random variables &,, where
r < M;_p, <n/2 (by the definition (86) and the leftmost inequality in (92)) while
the W; only involve the random variables &,_, where, again, r < M{_p, <n/2.

To evaluate the accuracy of the approximation of S"™" by >, (Zx + Wx), con-
sider

-1 -1
S™ =N (Zi+ W) =Y (Xi + Vo),
k=0 k=0

where

Jo+(k+1) p+(k+1)g—1
Xe= X (VRO N ),
j=Jjo+(k+1)p+kq

fork=0,1,...,1 -1,

and Y are defined similarly with respect to R,,.
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By Lemma 6.2, the random variables Xy, ..., X;—1, Yo, ..., Y;—1 are also mutu-
ally independent. Note that each X, Y is of the form S;“ZH s defined in Lemma 6.4

for some a and b with log i%z = g8 = T'/8. By (93) and the definition of § in (94),

§ = (logn)™# > (log i)_“”/ﬂ“; this allows us to use Lemma 6.5 to get
E(Xr —EXy)* < ¢*8%(loglogn)? forallk =0,...,]1 —1.

One can obtain a similar estimate for Y. Thus, the error term of the approxima-
tion of S™" by ch_:lo(Z % + W) has variance

-1 -1 -1 -1
Var(Z(Xk + Yk)) = ZVaer + ZVarYk < ZqSloglogn =o(logn).
k=0 k=0 k=0 k=0
Combining this with (95), we get

-1
Var(N,, @ - (Zi+ Wk)) = o(logn) = o(VarN, (3)). (96)
k=0

The sum Zi_:lo(Z x + Wx) is a sum of independent random variables satisfying the
fourth moment bound
-1 -1 -1
Y E(Zk —EZp)* + ) E(Wp —EWp)* < Y p282(loglogn)?
k=0 k=0 k=0
-1

= o(log?n) = o(Var > (Zi+ Wk))
k=0

2
)

where in the first inequality we used Lemma 6.5. By the Lyapunov CLT (see, e.g.,
[4]), the sum Zf;ﬂ,(zk + Wj) satisfies the CLT.

This and (96) imply that N, (J) also satisfies the CLT, completing the proof of
Lemma 2.4.

7. Proof of Lemma 2.5
Since in this section we only deal with Gaussian random variables, we again use §&;
to denote i.i.d. standard Gaussian variables (instead of g,'). This helps avoid compli-
cated notation (such as double superscripts) later on. By symmetry of the Gaussian
distribution, we can assume that ¢; > 0 for all ;.

Let

an =exp(=2log’’n)  and b, = . 7
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and let
Ji=x(l—an, 1 —b,)Ux(l—a, 1—b,)" L.

Note that this a, satisfies condition (2).
By Proposition 2.3,

IEN,,Z(R\J) « log* % =o(logn).
Thus, to prove Lemma 2.5, it suffices to show that
VarNp, (J) > logn.
We have

Np,(3) = Np,(IN[-1.1]) + Np, (I\ [-1.1])
= Np,(IN[-1.1]) + Ng, (IN[-1,1]),

where R, (x) = %Pn xH=Y", CZ: Epixt.

Since Var(X +Y) = VarX + VarY + Cov(X,Y) > VarX + Cov(X, Y) for any
two real random variables X and Y, it suffices to show that

VarNg, (3 N1, 1]) = Q(logn) (98)
and

Cov(Np, (IN[=1,1]). Ng, (3N [-1,1])) = o(logn). (99)

7.1. Universality for R,

In order to verify (98), we use the universality method in a novel way. Instead of
swapping the random variables &;, we swap the deterministic coefficients c;. This
allows us to couple R, with the Kac polynomial and the desired bound follows by
known results concerning the variance of the Kac polynomial. This swapping is pos-
sible thanks to the fact that the “important” coefficients are C’é—;’ which are close to 1
by (1).

Let

Ru(x):= ) Enmix’
i=0

be the corresponding Kac polynomial. We prove the following analogues of Theo-
rem 2.1 and Corollary 2.2 for R, and R,,.
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PROPOSITION 7.1

Assume that the §; are i.i.d. standard Gaussian. Let 8 > 0 be any constant. There
exists a constant C > 0 such that for every function F : R — R whose derivative up
to order 3 is bounded by 1 and for every n, we have

[EF (Ng, (3N [-1.1])) ~EF (N3 (3N [-1.1]))] < C(logn)~*.

PROPOSITION 7.2
Assume that the & are i.i.d. standard Gaussian. Let 8 > 0 be any constant. There
exists a constant C > 0 such that for every n, we have

[E(Ng, (3N [=1.11)) =E(NE (3N [=1.1]))| < C(logn)~?
for k = 1,2. In particular,
|Var(Ng, (3N [=1.1])) — Var(N; (3N [=1.1]))| < C(logn)~*.

Proposition 7.1 implies Proposition 7.2, using the same arguments as in the proof
of Corollary 2.2.

Proof of Proposition 7.1

We use the same arguments as in the proof of Theorem 2.1 with the following mod-
ifications. First, P, is replaced by R, and P, is replaced by R,, and all of the 8¢ in
the former for a small constant & will be replaced by (logn)# " for a large constant
B’. For example, Lemma 3.5 is replaced by the following variant that can be proved
using the same argument.

LEMMA 7.3

Assume that the &; are i.i.d. standard Gaussian. Let § € [b,,ay]. For any constant
y>0and x e Rwith |x| €[1 -6 —8(logn)™V,1—38/2+ §(logn)~7], we have

P(Ng, B(x,8(logn)™") = 2) (logn)™3/2.

The only remaining difference compared to the proof of Theorem 2.1 is in
the proof of the analogue of Lemma 3.9, namely, for 8o = a,, §; = an/2, ...,
Sm—1 = an/2M71 and 83 := max{1/n,b,} (M is the largest integer such that
Sm—1 > max{1/n,b,)}), and for m; = (logn)?.

LEMMA 7.4

Assume that the &; are i.i.d. standard Gaussian. Let ' be any positive constant. Let
L:Cmittmm s R be a smooth function with all derivatives up to order 3 being
bounded by (log n)B’. Then for every wix in B(1 — 36;/2,268i/3), we have
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Ry, (w;r) Ié (wik)
N i e e )

where V(w) := VarR, (w).

), L (<< (logn)™#",  (100)

Assuming this lemma, the rest of the proof of Theorem 2.1 can be adapted in a
straightforward manner to complete the proof of Proposition 7.1. O

Proof

While for Lemma 3.9, going from P, to P,, we need to swap the general random
variables &; to the Gaussian ones S,, here, going from R, to R,, we need to swap the
coefficients 2=L to 1 and keep the Gaussian random variables £; intact. Keeping that
in mind, we set foreachO<ig<n+1,

ip—1

RZO(Z) _ZS” zZ +ch lgn zZ

i=ig

We have Rg = Ry, Ry41 = ﬁn and R;,+; is obtained from R;, by replacing the
coefficient C”C;n"’ by 1.
The difference d;, in (45) for 0 < ig < n now becomes

Cn— loén lowk A és:n—iowl:(]i
10 )Eén —ig ( l )ik_ESn—i0L< - )

cny/ V(wik) VV(wig)’ ik

where L is obtained from L by translation and thus has all derivatives up to order 3
bounded by (log n)ﬁ/. The task is to show that

(101)

n+1
> Eg....dig < (logn) ™. (102)

ip=0

By the Taylor expansion of order 2, we get

~ Cn—iogn—iow{.(]l ~ ~ 1.
L(il) — L)+ Ly + =L + ey, (103)
Cn+/ V(wirx) 7k 2
where
En l
dfl (Sr=iosn—io tk
b (= ey Dik
! dr =0

_ dL(0) Cn—ioén io Wik dL(0) Cn—igbn— lszk
- %: dRe(zi) Re( cny/V(wik) )+%: dIm(z;x) Im( cny/ V(i) )
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27 (Cn=igfn—igW lk
i d L( en/Vwi0) Dik
5=

dr? t=0

3

jerrs| < (logn) ' = Tl P(X ol 52)
ik

where we used (1) to get that

no 2 8712
n—j 2j 2i -1
V(wir) = Z c—2|wik| 7> Z lwir|™ > &
j=o0 " j=8;1/4
sn—iowgg

Similarly, we get the expansion for I:( )ik. Subtracting the two expansions

W V(wik)

and taking the expectation of both sides (noting again that all of the ; are i.i.d. stan-
dard Gaussian and in particular, have mean 0 and variance 1), we obtain

<logn)—3f”d,~o

\(lezkl’%”z) () (S i)

< (logn 1( Zs (1—8;/2)%0
N M .
+ (logn)0® )(c;;) + 1) 3 82215 /2)%, (104)
n i=1

where in the last inequality we used |w;x| < 1 —§; /2, the Cauchy—Schwartz inequal-
ity, and the fact that M < logn. Note that for each i,

no 3 n/2 . c3
Z n l(] (1—8 /2)310 < Z n lO (1—8 /2)2[0+ Z n lO (1 8 /2)210
im0 G o G e/ 8
n/2
< D=8/ +n0D (1= 5;/2)" <57
ip=0

where in the second to last inequality we used condition (A3), and in the last inequal-
ity we used n%M (1 —8;/2)" <n9MD(1—b,/2)" <n9Me=bnn/2 « | by the choice
of b, in (97).
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Thus, plugging this into (104) and using ZIAL 5i1/2 < a,l,/2 < (logn)~C for any
constant C,
n M n c2 . )
(logn) ™" Y " diy < (logn) @D " "1 220 — 118, (1 — 8;/2)
ip=0 i=1ip=0 Cn
M
+ (logn)o(ﬂ/) 251.1/2.
i=1
Let

_ (logn)?

n

Iy = a;l/z = exp(log!/” n) and I: < nexp(—log'/” n).

Splitting the double sum
M n
i=1ip=0

. M I M Io-1 M <o .
into 3721 > jo—r,> 2i=12ig—o> and 35—y > ;4 and denoting the corre-
sponding sums by S;, S2, S3, we obtain

2
ch; 0
?0—1’81-(1—8,-/2) io

n
(logn)™#" > " djy < (1ogn) B (S) + S5 + S3) + (logn) ™",
ip=0
By assumption (1), we have for every ig € [Io, I1],

2

cs .

—52 — 1 < exp(—(loglogn)'*?).
c

n
Hence,

M n
S1 < exp(—(loglogn)' ) >~ " 5;(1 - 8;/2)*° < M exp(—(loglogn)'*).

i=1ip=0

2 .
For S5, we observe that C";zlo <& 1 forall iy < Iy <n/2 by condition (A3) and so

n
M Ip—1

AVR<Y Z Z 8; K Ipay, = arll/z.
i=1ip=0

2 .
For S3, we observe that cnc;zlo < n9%M for all i, by condition (A3) and that for all
ip > 11, "
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(1—=68;/2)"° « (1 —by/2)"" « exp(—=b,11/2) = exp(—log?n).

And so,

M n

S3 < n%® Z Z exp(—log? n) <« n°W exp(—log?n).

i=lig=1I;+1

Combining these bounds, we obtain
n
(logn)_3ﬂ/ Z di, < (logn)_‘w ,
ip=0

proving (102) and completing the proof of Lemma 7.4. O

7.2. Proof of (98)
As shown in [28], for the Kac polynomial R,, (recall that the random variables &; are
i.i.d. standard Gaussian), Var(Nkn (—1,1)) > logn.

By Proposition 2.3 for the Kac polynomial R, and the choice of a,, by, in (97),
ENZ ([F1.11\3) < ENZ (R\J) = o(logn).

So, by the triangle inequality,

\/Var FN[-1.1]) = \/Var(Nfan (—1,1)) —o(y/logn) > /logn.
This together with Proposition 7.2 implies (98).
7.3. Proof of (99)

By a classical formula (see [24, Theorem 1]), we have that for every a < b and for
every nonzero polynomial f,

Nys(a,b) = // |f (x)|cos sf(x) dxds

=57 // / (1 —cos(uf'(x)))cos(sf(x)) dudxds.
b4
We will apply this formula for both P, and R,. To avoid improper integrals, we

need to cut off the domain of integration. Let D := exp(a;!/100), y := D~3 and
approximate N ¢ (a, b) by

D b
NJ(,I)(a,b):= %/_D/a | f(x)] cos(s/f(x)) dx ds
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and
1 D b rD?> 4 )
N}(})(a,b):: ﬁ/—p/a /y u—z(l —cos(uf'(x))) cos(sf(x)) dudxds.

We first show that N}l) is a good approximation of N y. We claim that for any
(a,b) cgN[-1,1],

E|Np,(a.b) — N (a.b)” < exp(—Q(a; ). (105)

To show this, let x; < --- < xi be all the roots of P, (x) in the interval (a,b), and let
Xo =a, Xg4+1 = b. We have k < n. Since P, keeps the same sign on each interval
(xi,Xj+1), it holds that

k . .
Np,(a.b)— NP (a.b) < Lz‘ / Sin(s P (xi1)) = sin(sPu(xi))
! 2 i—o 7 IsI=D N

< Zmi“{l’ D|P1(x,-) }

where we used (89). Thus,

(E|Np, (@.b) = N (@, b)) < %(]Emin{l, ;}2)1/2. (106)
2 2 DIP, ()]

Divide the interval (a, b) into D'/2 equal intervals by the points a = ag < a; < --- <
apij2 =b.

Let p = 1/4 (or any small constant). For each 1 <i < k, assume that x; €
(aj,ajt1] for some j.If | Py(x;)| < DP~ 1 and |Py(aj+1)| > 2DP71, then

aj+1 [t
/ / P/(u)dudt|> DP™!
Xi X;

aj+1 [aj+1
/ / |P,;/(u)|dudtZD”_l.
a; a;

This happens with small probability

ajt1 [ajt1
IP’(/ / | P/ (w)| du dt > DP—l) <D, (107)
a; a;

|Pu(@jt1) — Pu(xi)| =

and so

We defer the proof of (107) to Section A.6 of the appendix, as it is similar to the proof
of Lemma 5.1. Using this and the union bound over all D'/2 possible values of j, we
obtain
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P(|Pu(xi)| = DP7Y) < P(3j :|Pulay)| <2D?7 ")+ DY20(D7)
<« DY2prt 4 pZ « pTIA,

where we used the fact that P, (@) is a Gaussian random variable with variance €2(1).
Plugging this into (106) and using k <n, p = 1/4 yields

(E|Np, (@.b) = ND(a.b)[)? < n(D7V* + D7V/%) < exp(-Q(a; ).

This proves (105) which means that N}ai) (a, b) is a good approximation of Np, (a,b).
Next, we show that for all (a,b) C JN[-1,1], Ng) (a,b) is also a good approx-

imation of N },i) (a,b), namely,
E|NS(@.b) — NP (a.b)” < exp(—Q(a; ). (108)
To start, using the fact that 0 <1 —cosx < x2 for every real number x, we have

[N}, (@.b) = Ny @.b)|

D by > D b poo 1
<</ / / | Py (x)] dudxds—i—/ / / — dudxds
—DJa Jo —-DJa JD2 U

b
< D—Z/ |Py(x)|?dx + D
a
Taking the second moment of both sides, we get
b
EINS (@.b) - NP (@.b) < D~ + D‘Z/ E|PL(x)|* dx
a

< D'+ D72n%W «exp(—Q(ay M),

where we again used the fact that a,, satisfies (2). This proves (108).
Combining this with (105), we conclude that for any (a,b) C 3N [-1,1],

E|Np,(a.b)— N (a.b)[* < exp(-Q(a; ).

We can obtain a similar estimate for R,. Therefore, in order to prove (99), it
suffices to show that

Cov(NS (3N [-1.1). N (3N [~1.1])) = o(logn). (109)

To prove this bound, we need to make critical use of a property of Gaussian variables.
For a standard Gaussian random variable Z and any real number a, Ecos(aZ) =
Eei9Z = ¢=4%/2 Since P, (x), R, (x) are Gaussian for any value of x, we have for
(a,b),(c,d)CcIn[-1,1],
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Cov(NS(a.b). N (c.d))

1 b rd pD?> ,D? D D 1
:m/a/c/y /y /_D/_Du2v2

X (F1+ F, 4+ F3+ Fy)dtdsdvdudy dx, (110)

where

Fi(x,y,u,v,s,t)

= % Zexp(—%Var(sP,, (x) £ uP,(x) £ tR,(y) £ vR, (y)))

_ % Zexp(—%Var(sPn (x) £uP,(x)) — %Var(tRn(y) +vR), (y)))

in which the sums are taken over all possible assignments of 4 and — signs in place
of the + and

F(x,y,u,v,s,t) :=—F1(x,y,0,v,s,1),
Fi(x,y,u,v,s,t):=—F1(x,y,u,0,s,1),
Fo(x,y,u,v,s,t) := F1(x,y,0,0,s,1).

These formulas follow directly from the definition of N (2); we provide the
tedious derivation in Section A.7 of the appendix for the reader’s convenience.
We now show that for (a,b), (c,d) CJN[-1,1] and foralli =1,2,3,4,

b rd pD?> D% D D 1
/ / / / / / —— Fi dtdsdvdudydx =o(1). (111)
a Jc 1% y -D.J-p U°Vv

We will show it for i = 4. The cases i = 1,2, 3 are completely similar. We have

Fy(x,y,u,v,s,t)

n _2i _
12 2.,2n—2i estA+e stA

2 n . y
:exp(—%gcizxZZ)exp(—EZOc’ycg )( : —1), (112)

where

Since |x|,|y| <1 —b, and nb, >a, /2> C logn for any constant C, we have
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n
A < D3 (1= by)" <n%W exp(—nby) < exp(—a,’/4).
i=0

Thus, bounding the first two exponents in (112) by 1, using D = exp(a;, 1 /100) and
|s|, |t] < D, we get that on the domain of integration in (111),

Fa(x,y,u,v,5,1) < exp(O(1) D2 exp(—a;, ' /4)) — 1
< D?exp(—a, ' /4) < exp(—ay,'/5).

Finally, using y = D3, we have

b rd rD?> D% D (D 1
/ / / / / / — 5 Fadtdsdvdudydx
a Jc 1% y -D.J-p U“V

< D¥exp(—a,'/5) =o(1),

proving (111) and completing the proof of (99).
Appendix

A.l. Proof of Jensen’s inequality (17)

By setting g(w) = f(R(w + z)) and proving the corresponding inequality for g, it
suffices to assume that z =0 and R = 1. Let a;,...,ay be the zeros of f in B(0,r).
For each a inside the unit disk D, consider the map

Ta(w) = e

aw—1

For |a| <r and |w| < r, one can show by algebraic manipulation that

T, < <.
| a(U))| — 1+7'2
Moreover, for all |a| < 1 and |w| = 1, we have
_|w—a 1 —aw
Taw)] = ol =——=| = | === | = 1.
aw —1 aw —1
Let h(w) = Nf# Then A is an analytic function on D. By the maximum

k=1 Tak (w)
principle, we have for every wg € rD,

2\N
If(wo()g(rl) T < max 1) < max ||

= mag [h(w)] = max| /()] = M1.
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Thus,
M,
log 7o

1+r2
log 57—

N =<

for all wy € rD, completing the proof.

A.2. Proof of (25)
We first reduce to the hyperbolic polynomials for which the Kac—Rice formula (24)
is easier to handle. Consider the hyperbolic polynomial with coefficients c; , :=
(20+1)':'!(2ﬂ+_i)’ 0<j<n.
By condition (1), ¢; , = ©(c;) forall j > Ny. Using the Kac—Rice formula (24),
we have

n n 2 2 . ; _
\/Zj:O Zk=j+lcj,pck,p(k_j)2t2J+2k 2

S2US3 Zj=0 ijpt J

E(Na(S2 U S3)) < dr. (113)

We use [10, Lemma 10.3] with A(k) = c,% 0 which estimates the above integrand
uniformly over the interval (1 — % 1— %) for some sufficiently large constant C and
asserts that

n n 2 2 . 1 —
S e L
n 2 i
2 j=0¢]

V20 +1 _
N L (-2
< 2 (1 —1) +( ) + n(l—1)2

1 < 1
1—¢

This together with (113) gives (25) for §; > % as in this case, S, U S3 C (1 —
1 C
c 1=

If§; < % then since k — j <n, forall t € S, U S3, we have

n n 2 2 . ; _
\/Zj=0 Yle=j+1GpCh plk — 2122
n 2 ;
2j=0¢i ot

Plugging this into (113) and using the fact that 2C/n > §; > 63 > 1/n gives

<Ln. (114)

E(N,(S2 U S3)) < nél T « n™® « 8¢

and hence (25) for §; < %, completing the proof of (25) for all values of §;.
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A.3. Proof of Lemma 3.8
In this section, we deduce Lemma 3.8 from Lemma 3.9.

The constant ¢y in this proof will be a small fraction of the g in Lemma 3.9. Let
K(xin)ik := K(xix + % log V(wix))ik. Then, K still satisfies (43) and we can reduce
the problem to showing that

| P(wig)] ),k —Elf(lo |i)(wik)| )ik = 0(5%).

SV & V)

Ideally, we would like to set L(z;)ix := K(log|zix|)ix and apply Lemma 3.9 for
this function L. However, the singularity of the log function at zero prevents L from
satisfying (43). To handle this difficulty, we split the space of (log|z;x|);x into two
regions €27 and €2,, where €2 is the image of the log function around zero, and show
that the contribution from €2 is insignificant. On €25, the log function is well-behaved
and we can then apply Lemma 3.9 there.

More specifically, for M; := log(8;'2%), let

)Ek(log

Q= {(xik)ik e RMittmam : x < —M; for some i,k}
and
Qp = {(xi)ix €R™MT MM 2 x> —M; — 1 forall i, k}.

Let ¥ : R™1++tmym 5 [0, 1] be a smooth function taking values in [0, 1] such
that ¥ is supported in 25, ¥ = 1 on the complement of 21, and || 0%V ||oc = O(1) for
all0<a <3.Put¢p:=1—v, K, := K.¢p,and K» := K.vy. We have K = K| + K>,
and both K, K, satisfy (43) with supp K1 C Q1, supp K, C 2;.

We now show that the contribution from K is negligible. Set K; :=||K|loo¢ and

Ly(zik)ik = K1 (log|zik]) -

Since || K1]loo < | K|loo < 1, we observe that L satisfies

y [K1(log |zik ik | < L1(Zik)ik>

. supp(L1) C {(zix)ix € C™MH=+mm - |z, | < e Mi for some i,k},

. L is constant on {(z;x)ix € C™ T +mm + |z, | < e Mi~1 for some i, k},

. L satisfies (43) (with the power 2« being replaced by 14w, but that does not

affect the argument).
Choose ¢ to be small enough such that Cog is at most the constant g
in Lemma 3.9, where C is some sufficiently large absolute constant. Applying
Lemma 3.9, we get

| P (wik)ik| (wik) P (i) «
E|K1 (10 %)‘ EELI(%)% §EL1(%)”€ +0(55).
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Since the variables &; are Gaussian, we have

Pwin). P@l _ ) NS, gt g
ELl(m)i < P(3ik: Tt =€ )<<;m,8, <8

Thus, E| K (log 1L®0L) | « 8¢ Finally, we will show that

v V(wik)

|P(z1)] _”log|P(zm)|)_EK2(log|P(zl)| - log |P(zm)|)‘
Ve TV Vm) VV(z1) * VGm

< 82

(EKZ <log

Define Ly : C™1 T +mM s Rby Ly(zix) = Ka(log|zix|). Since supp K> C 5,
supp Lo C {(zix)ik : |zik| = ™ Mi71 > 812 for all i, k}.

Thus, L, is well-defined and satisfies (43) (with the power 2« being replaced by 14«).
Applying Lemma 3.9 gives

| P (wir) | P (wi)|
EK> (log 7/%)”‘ —-EK, (log —m)ik
|P(wir)l\ | P (i) o
Lz(\/m)ik ELZ(m)ik <.

This completes the proof of Lemma 3.8.

A.4. Proof of (61)
In this section, we prove (61); namely, for a sufficiently large constant C, we have

o(l
V(x) —Zcz 2i _ 1_x+(1/)n)2p+1 Vxe(1—1/C,1). (115)

To this end, we will repeatedly use condition (A3) and the assumption that p > —1/2.
Ifx>1- %, then we have

n No n
V) <Y KDY 1+ )i < n?t
i=0 i=0 i=0

For the lower bound, we have x2 > (1 — %)2” > 1 and so

n n
V) » Y c2»> Y it
i=0 i=Np

These bounds prove (115) for x > 1 — %
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If I - <x <1— g, thenletting L = 115 € (C.n), we have = rosmrr =
O(L?**1) and

2L
V(x) > Z FxPl Ny i L2
i=L i=L

As for the upper bound, we have for any constant C’,

V(x) <<Zl + Z i2°x2 <1+ lepr’ + Z

i=Np i=C’'L

o0
L LT Y 2 (116)
i=C’L

L < e_l/L, the rightmost sum is at most

T 2 < Z p—2i/L _ [ 2p Z ( ) e 2L (117)

i=C’L i=C’'L i=C'L

Since x =1 —

8hl

By choosing C’ sufficiently large (depending only on p) such that the function t —
t2Pe~2" is decreasing on (C’ — 1, 00), we have

o0 .
> () s [ () e as

=crL (118)

(o]
= L/ t?Pe?'dt < L.
Cc'—1/L

Plugging this into (116) and (117), we obtain V(x) < L?**!, which is the desired
upper bound.

A.5. Proofs of (84) and (85)

Proof of (84)
We need to show that

Z c2eR(xtyk —xkyh)? = @( Z Cipciap(xiyk —xkyi)z). (119)
0<i<k<n 0<i<k<n

By condition (A3), ¢; < ¢;,p foralli > 0, and so the left-hand side of (119) is at most
the order of the right-hand side. To prove the reverse, by condition (A3), ¢; > c¢;,, for
alli > Ny, so
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O ISR S e

0<i<k<n No<i<k<n

> Z ciz’pc,%,p(xiyk —xkyhy2,
No<i<k<n
Thus, it remains to show that the remaining terms on the right-hand side of (119) are
of smaller order, namely, for all 1 <i < Ny,

n

Zciz,pc,ip(x’yk —xkyh? « Z Z cjz-,pc,%,p(x’yk —xky)2. (120)
k=0 No<j<n No<k<n

Since Ny is a constant, ¢k , = O(ck4n,,p) for all k > 0 and since xy = O(1), we

have for j' =i + Np,

n n

2 2 ik ki\2 2 2 Jj’ k+N k+No ., j’\2

Zci,pck’p(xy —x" YK ch,,pck+N0’p(x YETNO — x T No YT
k=0 k=0
n+No

2 2 i’k k. j’\2

= Z CirpCh (X Y =Xy )% (121)

k=Ny

Assume without loss of generality that x < y. Using the simple observation that

0<y/ T Xt <2(y/ —x7) Vj=>1,

we have
n+No n
2 2 i’k k. j\2 2 2 i’k k. j\2
Z Cj’,ﬂck,p(x] yEexty )T Z Cj’,pck,p(xj yE=xtyl)n
k=n+1 k=n+1—N()

And so, the rightmost side of (121) is of order at most the rightmost side of (120),
proving (119). O

Proof of (85)
We want to show that for every x € [1 —ay, 1 — by],

Xn:ﬁ? 2k _ 1+ 0(e0)
0 — x2)2p+1’
= (I —x2)2r

where g9 = exp(—(loglogn)!2¢). By Taylor’s expansion, we have

> 1
. 2 2k _
S:= ch,px - (1— x2)2p+1'
k=0
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Thus, it suffices to show that

o0

Z c,f,pxﬂ‘ <K goS.
k=n+1

We have

[oe) (] 6.2
2 2k _ _2n+2 n+l+k,p 2 2k
Z Chp* =X Z 2 Ch,p*

k=n+1 k=0 ko

and so it is left to verify that for all kK > 0,

cz
n+1+k,
x2n P

< &p.
2
Ckop
Indeed, we have
6'2 n-i-l2 k . n+1 . n+1 .
onSntltk,o _ on p+K+i 2n 2p+i 2n 2] +i+1
e == =117
0 i=1 i=1 i=1
_ on (M +2) . (n+2+2[p])

& x2np2etl

2[p] + 1!

Usingx <1—b, <1-— % by the assumption (6), we obtain

(logn)*
n

[
1+k,
x2” w < (]

2n
) n***! < exp(—2(logn)*)n** ! < g. O
%,

A.6. Proof of (107)
Let (c,d) :=(aj,a;+1). We want to show that for any interval (c,d) C [l —1/C, 1]
withd —¢ < D~1/2,

d pd
IP’(/ / |Py G| dudi = DP!) < D7V, (122)

Let I denote the above double integral. By Markov’s inequality and Holder’s inequal-
ity, for a large constant / to be chosen, we have

d prd
P(I > DP~Y)y < DU=PIRE" « pU=Ph(q — c)2<h—1>E/ / yP,;’(u)\” du dt
C C

and so

P(I = D7) < DO (d — )" max E|P/@)|" < D" max E|P/(u)|".
u€le,d] u€lc.d]
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Since P”(u) is a Gaussian random variable, by the hypercontractivity of Gaussian
distribution, we have

2+h
B[P/ w)|" < (B|P/)|) 2 «nOD.
Thus, by choosing h =2/ p,
P(I > DP7Y) « D~Ptp0M « p~1

where we used D = exp(a;, 1 /100) > n€ for any constant C as a, satisfies condition

2).

A.7. Proof of (110)
We have

Cov(NS(a.b). NP (c.d)) =ENS (a.b)NY (c.d) —~ENS (a.b) -EN Y (c.d).
Thus, we have by definition of N that
Cov(NP(a.b). N (c.d))
1 b rd pD?> D% D D 1
“wl L L

. [Efl(x,u,s)‘%(y, v,t)—EF1(x,u,s) EF(y, v,t)] dtdsdvdudydx,
(123)

where
Fi(x,u,s) = (1 —cos(uP,(x)))cos(sPy(x)), F2(y.v,1)
:= (1 —cos(vR;,(y))) cos(tRn(y)).

Note that we can use Fubini’s theorem in the above calculation because the integrands
are absolutely integrable.
We have

Fix,u,8)F2(y,v,t)
= (1 —cos(uP,(x))) cos(sPy(x)) (1 —cos(vR;,(y))) cos(tRn(y))
= cos(sPy(x)) cos(tR(y)) — cos(u P, (x)) cos(sPy(x)) cos(t R, (»))
—cos(vR,, (1)) cos(sPn(x)) cos(tRu(y))
+ cos(u P, (x)) cos(vR;, () cos(s Py (x)) cos(tRn(y))
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and so

Fi(x,u,8)F(y,v,t)

1

=3 Zcos(sPn(x) + 1R, (y)) — % Zcos(uP,: (x) £ 5Py (x) £ 1R, (y))

_ i 3" cos(UR, (¥) % $Pa(x) £ 1Ry (1)

+ % Zcos(uP,;(x) + VR},(y) £ 5Py (x) £ tR,(y)).

We recall that the random variables &; are i.i.d. standard Gaussian and that for a

standard Gaussian random variable Z and any real number a, Ecos(aZ) = Ee'%% =

/2 — exp(—%Var(aZ)). Thus,

EF (x,u,s)F2(y,v,t)
= 32 exp( 5 Var(sBa () £ Ra())
1Y exp (- Var(uP () £ 5P (1) £ 1R ()
_ % Zexp(—%Var(vR;l () £ 5Pa(x) £ 1R (1)) )

+ % Zexp(—%Var(uP,;(x) +uR) (y) £ 5Py(x) £ 1R, (y))).

Similarly,

EF(x,u,s) = exp(—%Var(sPn (x))) - % Zexp(—%Var(uP,:(x) + 5P, (x)))

and

EFs(y,v,1) = exp(—%Var(tRn (y))) - % Zexp(—%Var(vR; () % 1Ry (y))).

Plugging these formulas into (123), we obtain (110).
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