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Abstract: We are going to discuss recent progress on many problems in
random matrix theory of a combinatorial nature, including several break-
throughs that solve long standing famous conjectures.
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1. Introduction

The theory of random matrices is a very rich topic in mathematics. Besides
being interesting in its own right, random matrices play a fundamental role in
various areas such as statistics, mathematical physics, combinatorics, theoretical
computer science, etc.

In this survey, we focus on problems of a combinatorial nature. This is a
continuation of an earlier suvery [86]. Since the publication of [86], the field has
been flourishing and there has been significant progress, including the solutions
of several major conjectures. New methods have been introduced which enable
one to consider problems which seemed impenetrable only few years ago. Thus,
an update is definitely in order.

We mostly focus on the following discrete models, noticing that the techniques
developed for them usually work for a much wider class of ensembles.

• Mn: random matrix of size n whose entries are i.i.d. Rademacher random
variables (taking values ±1 with probability 1/2). In various papers, this
is referred as the random sign matrix or Bernoulli matrices.

• Msym
n : random symmetric matrix of size n whose (upper triangular) en-

tries are i.i.d. Rademacher random variables.
• Adjacency matrix of a random graph. This matrix is symmetric and at

position ij we write 1 if ij is an edge and zero otherwise.
• Laplacian of a random graph.

Model of random graphs. We consider two models: Erdös-Rényi and random
regular graphs. For more information about these models, see [9, 4, 89].

• (Erdös-Rényi) We denote by G(n, p) a random graph on n vertices, gen-
erated by drawing an edge between any two vertices with probability p,
independently.

• (Random regular graph) A random regular graph on n vertices with degree
d is obtained by sampling uniformly over the set of all simple d-regular
graphs on the vertex set {1, . . . , n}. We denote this graph by Gn,d.
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It is important to notice that the edges of Gn,d are not independent. Because
of this, this model is usually harder to study, compared to G(n, p).

We denote by A(n, p) (L(n, p)) the adjacency (laplacian) matrix of the Erdös-
Rényi random graph G(n, p) and by An,d (Ln,d) the adjacency (laplacian) matrix
of Gn,d, respectively.

Notation. In the whole paper, we assume that n is large. The asymptotic
notation such as o, O,Θ is used under the assumption that n → ∞. We write
A # B if A = o(B). c denotes a universal constant. All logarithms have natural
base, if not specified otherwise.

2. The singular probability

The most famous combinatorial problem concerning random matrices is per-
haps the “singularity” problem. Let pn be the probability that Mn is singular.
Trivially,

pn ≥ 2−n,

as the RHS is the probability that the first two rows are equal.
By choosing any two rows (columns) and also replacing equal by equal up to

sign, one can have a slightly better lower bound

pn ≥ (4 − o(1))

(
n

2

)
2−n = (

1

2
+ o(1))n. (1)

The following conjecture is folklore.

Conjecture 2.1 (Singularity, non-symmetric). pn = ( 1
2 + o(1))n.

One can formulate even more precise conjectures, based on the following
belief

Phenomenon I. The dominating reason for singularity of a random matrix is
the dependency between a few rows/columns.

For instance, (1) suggests

Conjecture 2.2. pn = (2 + o(1))n22−n.

Examining the dependence between 3,4, 5 etc rows (columns) would lead to
stronger conjectures with smaller error terms; see [5].

It is already non-trivial to prove that pn = o(1). This was first done by
Komlós [46] in 1967. Later, Komlós (see [9]) found a new proof which gave
quantitative bound pn = O(n−1/2). The first exponential bound is due to Kahn,
Komlós, and Szemrédi [45], who proved p(n) ≤ .999n. Their arguments were
simplified by Tao and Vu in [75], resulting in a slightly better bound O(.958n).
Shortly afterwards, Tao and Vu [76] combined the approach from [45] with the
idea of inverse theorems (see [80, Chapter 7] or [66] for surveys) to obtained a
more significant improvement p(n) ≤ (3/4 + o(1))n. With an additional twist,
Bourgain, Vu, and Wood [13] improved the bound further to p(n) ≤ ( 1√

2
+
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o(1))n. In a different direction, Rudelson and Vershynin reproved KKS result in
a stronger form involving a lower bound for the least singular value [71]

The method from [76, 13] enables one to deduce bounds on p(n) directly from
simple trigonometrical estimates. For instance, the 3/4-bound comes from the
fact that

| cosx| ≤ 3

4
+

1

4
cos 2x,

while the 1/
√

2 bound come from

| cosx|2 =
1

2
+

1

2
cos 2x.

In 2018, Tikhomirov proved Conjecture 2.1 [82].

Theorem 2.3. pn = ( 1
2 + o(1))n.

Each of the above mentioned papers contain new, highly non-trivial, ideas,
but the core of the matter is a phenomenon called anti-concentration. Tikho-
mirov’s proof combines previous ideas with a new, powerful, double count-
ing argument (which he referred to as inversion of randomness). This, via a
sophisticated discretization procedure, reduces matters to studying the anti-
concentration properties of random walks with random coefficients. This is per-
haps the main difference from previous works which considered random walks
with deterministic coefficients. The proof in [82] also provided a bound on the
least singular value, extending the result from [71].

To conclude this section, let us discuss a classical anti-concentration result.
Let v = {v1, . . . , vn} be a set of n non-zero real numbers and ξ1, . . . , ξn be i.i.d
random Rademacher variables. Define S :=

∑n
i=1 ξivi, pv(a) = P(S = a), and

pv = supa∈Z pv(a).
The problem of estimating pv came from a paper of Littlewood and Offord in

the 1940s [55], as a key technical ingredient in their study of real roots of random
polynomials. Erdös, improving a result of Littlewood and Offord, proved the
following theorem, which we will refer to as the Erdös-Littlewood-Offord small
ball inequality; see [66] for more details.

Theorem 2.4. Let v1, . . . , vn be non-zero numbers and ξi be i.i.d Rademacher
random variables. Then

pv ≤
( n
$n/2%

)

2n
= O(n−1/2).

Theorem 2.4 is a classical result in combinatorics and have many non-trivial
extensions with far reaching consequences (see [38, 72, 66], [80, Chapter 7] and
the references therein).

To give the reader a feeling about how anti-concentration estimates can be
useful in estimating pn, let us sketch the proof of pn = o(1). We build Mn by
adding one random row at a time. Assume that the first n−1 rows are indepen-
dent and form a hyperplane with normal vector v = (v1, . . . , vn). Conditioned
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on these rows, the probability that Mn is singular is

P(X · v = 0) = P(ξ1v1 + · · · + ξnvn = 0),

where X = (ξ1, . . . , ξn) is the last row. If we can prove that many of the vi are
non-zero, then Theorem 2.4 can be used to finish the job. In order to obtain
strong quantitative bounds on pn, the following phenomenon proves useful

Phenomenon II. If P(X · v = 0) is relatively large, then the coefficients
v1, . . . , vn posses a strong additive structure.

For more discussion on this phenomenon and anti-concentration in general,
we refer to the survey [66].

Remark 2.5. While polishing this survey, I learned of two new remarkable
results (just added to the arxiv). First, Irmatov [43] announced a proof of Con-
jecture 2.2. His approach seems quite different from all previous ones. Second,
Litvak and Tikhomirov [50] announced a solution for a variant of Conjecture 2.2
in the sparse case, for a very wide range of sparsity.

3. The singular probability: symmetric case

As an analogue to the problem of the last section, it is natural to raise the
question of estimating psym

n , the probability that the symmetric matrix Msym
n

singular.
This problem was mentioned to the author by Kalai and Linial (personal

conversations) around 2004. To my surprise, at that point, even the analogue of
Komlos’ 1967 result was not known. According to Kalai and Linial, the following
conjecture was circulated by Weiss in the 1980s, although it is quite possible
that Komlós had thought about it earlier.

Conjecture 3.1. psym
n = o(1).

The main difficulty concerning Msym
n is that its rows are no longer inde-

pendent. This independence plays a critical role in all results discussed in the
previous section.

In [23], Costello, Tao, and Vu found a way to circumvent the dependency.
They build the symmetric matrix Msym

n corner to corner. In step k, one considers
the top left sub matrix of size k. The strategy, following an idea of Komlós [46],
is to show that with high probability, the co-rank of this matrix, as k increases,
behaves like the end point of a biased random walk on non-negative integers
which has a strong tendency to go to the left whenever possible. This leads to
a confirmation of Weiss’ conjecture.

Theorem 3.2. psym
n = o(1).

The key technical tool in the proof of Theorem 3.2 is the following (quadratic)
variant of Theorem 2.4.
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Let us consider the last step in the process when the (n−1)×(n−1) submatrix
Msym

n−1 has been built. To obtain Msym
n , we add a random row X = (ξ1, . . . , ξn)

and its transpose. Conditioning on Msym
n−1 , the determinant of the resulting n×n

matrix is ∑

1≤i,j≤n−1

aijξiξj + det Mn−1,

where aij (up to the signs) are the cofactors of Mn−1. If Msym
n is singular, then

its determinant is 0, which implies

Q :=
∑

1≤i,j≤n−1

aijξiξj = −det Mn−1.

This gives ground for applying an anti-concentration result for quadratic forms.
Motivated by the non-symmetric case, it is natural to conjecture

Conjecture 3.3 (Singularity, symmetric). psym
n = (1/2 + o(1))n.

We leave it to interested readers to formulate more precise conjectures based
on Phenomenon I. The concrete bound from [23] is n−1/8, which can be easily
improved to n−1/4. Costello [20] improved the bound to n−1/2+ε and Nguyen
[64] pushed it further to n−ω(1). Next, Vershynin proved a bound of the form
exp(−nc), for some small constant c > 0 [84]. In [29], Ferber and Jain showed
that one can take c = 1/4. This was improved further to c = 1/2 by Campos,
Mattos, Morris, and Morrison [14].

4. Ranks and co-ranks

The singular probability is the probability that the random matrix has co-
rank at least one. What about larger co-ranks? Let us use pn,k to denote the
probability that Mn has co-rank at least k. It is easy to show that

pn,k ≥ (
1

2
+ o(1))kn. (2)

It is tempting to conjecture that this bound is sharp for constants k. In [45],
Kahn, Komlós, and Szemerédi showed

Theorem 4.1. There is a function ε(k) tending to zero with k tending to infinity
such that

pn,k ≤ ε(k)n.

In [13], Bourgain, Vu, and Wood consider a variant of Mn where the first l
rows are fixed and the next n− l are random. Let L be the submatrix defined by
the first l rows and denote the model by Mn(L). It is clear that corankMn(L) ≥
corank L. The authors of [13] showed ([13, Theorem 1.4])

Theorem 4.2. There is a positive constant c such that

P(corankMn(L) > corank L) ≤ (1 − c)n.
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Let us go back to the symmetric model Msym
n and view it from this new angle,

exploiting a connection to Erdös-Rényi random graph G(n, 1/2). One can see
that in distribution

Msym
n = 2A(n, 1/2) − Jn,

where Jn is the all-one matrix of size n. (Here we allow G(n, 1/2) to have loops,
so the diagonal entries of A(n, 1/2) can be one. If we fix all diagonal entries to
be zero, the analysis does not change significantly.) Since Jn has rank one, it
follows from Theorem 3.2 that with probablity 1 − o(1), A(n, 1/2) has corank
at most one.

One can reduce the co-rank to zero by a slightly trickier argument. Consider
Msym

n+1 instead of Msym
n and normalize (flipping the signs of each row and column

if necessary) so that its first row and column are all- negative one. Adding this
matrix with Jn+1, we obtain a matrix of the form

(
0 0
0 Msym

n + Jn

)

Thus we conclude

Corollary 4.3. With probability 1 − o(1), corankA(n, 1/2) = 0.

From the random graph point of view, it is natural to ask if this statement
holds for a different density p and if there is a threshold phenomenon; see [4]
or [9] for the definition of threshold. It is clear that the adjacency matrix is
singular if the density p is very small. Indeed, if p < (1 − ε) log n/n, for any
constant ε > 0, then by the coupon collector theorem, G(n, p) has, with high
probability, isolated vertices, which correspond to zero rows in the adjacency
matrix. Costello and Vu [21] proved that log n/n is the right threshold.

Theorem 4.4. For any constant ε > 0, with probability 1 − o(1),

corank A(n, (1 + ε) log n/n) = 0.

Strengthening Theorem 4.4, Basak and Rudelson [8] showed that one can
replace (1 + ε) log n/n by log n/n + γ(n)/n where γ(n) is any function tend-
ing to infinity. In this direction, the most satisfying result is by Addario-Berry
and Eslava [1], who proved the following hitting time version. We generate the
random graph by adding random edges one by one (the next random edge is
uniformly chosen from the set of all available edges). Let T be the first time
when the graph has no isolated vertices.

Theorem 4.5. With probability 1 − o(1), the graph is full rank at time T .

For p < log n/n, the co-rank of A(n, p) is no longer zero and its behavior, as
a random variable, is not entirely understood. For the case when p = c log n/n
for some constant 0 < c < 1, Costello and Vu [22] showed that with probability
1 − o(1), the co-rank is determined by small subgraphs whose structure forces
the rank to drop, which is consistent with Phenomenon I. For example,
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Theorem 4.6. For any constant ε > 0 and (1/2 + ε) log n/n < p < (1 −
ε) log n/n, with probability 1−o(1), corank A(n, p) equals the number of isolated
vertices.

For a smaller p, one needs to take into account other small structures such as
cherries (a cherry is a pair of vertices of degree one with a common neighbor;
in the matrix, this subgraph forces two identical rows). The main result of [22]
gives a precise formula for the co-rank in term of these parameters.

When p = c/n, c > 1, G(n, p) consists of a giant component and many
small components. It makes sense to focus on the giant component which we
denote by Giant(n, p). Since Giant(n, p) has cherries, the adjacency matrix of
Giant(n, p) is singular (with high probability). However, if we look at the k-core
of Giant(n, p), for a sufficiently large k, it seems plausible that this subgraph
has full rank. (A k-core of a graph G is a maximal connected subgraph of G in
which all vertices have degree at least k.)

Conjecture 4.7 (k-core). Let c > 1 be a constant and set p = c/n. There
is a constant k0 such that for all k ≥ k0 the following holds. With probability
1 − o(1), the adjacency matrix of the k-core of Giant(n, p) is non-singular.

Bordenave, Lelarge, and Salez [10] proved the following asymptotic result

Theorem 4.8. Consider G(n, c/n) for some constant c > 0. Then with proba-
bility (1 − o(1))n,

rank(A(n, c/n)) = (2 − q − e−cq − cqe−cq + o(1))n,

where 0 < q < 1 is the smallest solution of q = exp(−c exp−cq).

In [18], Coja-Oghlan, Ergür, Gao, Hetterich, and Rolvien studied random
matrices with prescribed number of non-zeroes in each row and column and
achieved an asymptotically sharp estimate for the rank; see [18] for details.

5. Random regular graphs

Let us consider the random regular graph Gn,d. For d = 2, Gn,d is just the union
of disjoint circles. It is not hard to show that with probability 1 − o(1), one of
these circles has length divisible by 4, and thus its adjacency matrix is singular
(in fact, its corank is Θ(n) as the number of circles of length divisible by 4 is
of this order). In [85], the author raised the following conjecture (which later
appeared in [35, 86] as well)

Conjecture 5.1 (Singularity of Random regular graphs). For any 3 ≤ d ≤
n − 1, with probability 1 − o(1) An,d is non-singular.

Many of the earlier works on this conjecture considered the non-symmetric
model, namely, random directed regular graphs. In this model, the matrix is
chosen uniformly among all (not necessarily symmetric) (0, 1) matrices with
exactly d ones in each column and row. For this non-symmetric model, Con-
jecture 5.1 was confirmed for C ln2 n ≤ d ≤ n − C ln2 n by Cook [19], and for
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Cn ≤ d ≤ n/C ln2 n by Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, and
Youssef [51], where C is a sufficiently large constant and Cn tends to infinity
arbitrarily slowly; see also [53] for an estimate on the least singular value. Fur-
thermore, Litvak et al. [52] also showed (whp) that the rank is at least n− 1 for
any d. Huang showed that the rank equals n (whp) for any fixed d; see [40].

For the (original) symmetric case. Landon, Sose, and Yau [49] showed that
the conjecture holds for d ≥ nc for any constant c, as a corollary of a more
general and precise universality theorem. The most challenging case, d being a
constant, was solved recently by Meszaros [61] and Huang [39]. In particular,
Huang proved

Theorem 5.2. For any fixed d ≥ 3, the probability that An,d is singular is at
most n−c for some constant c > 0.

Huang’s proof showed that one can take c = min{1/8, (d − 2)/(5d − 6)}. On
the other hand, he noted that the probability that An,d is singular is at least
n−d+2. It is interesting open question to find the sharp value of the exponent.

6. Determinant and permanent

Let us start with a basic question

Question 6.1. How big is the determinant of Mn?

This was the original motivation of Komlós’ study, which started the line
of research discussed in Section 2; see [46, 47]. However, the fact that Mn is
non-singular (whp) alone does not give any non-trivial estimate on the order of
magnitude of | det Mn|.

As all rows of Mn has length
√

n, Hadamard’s inequality implies that
| det Mn| ≤ nn/2. It was conjectured that with probability close to 1, | det Mn|
is close to this upper bound.

Conjecture 6.2. Almost surely | det Mn| = n(1/2−o(1))n.

This conjecture is supported by a well-known observation of Turán.

E((det Mn)2) = n!. (3)

To verify this, notice that

(det Mn)2 =
∑

π,σ∈Sn

(−1)signπ+signσ
n∏

i=1

ξiπ(i)ξiσ(i).

By linearity of expectation and the fact that E(ξi) = 0, we have

E(det Mn)2 =
∑

π∈Sn

1 = n!.

It follows immediately by Markov’s bound that for any function ω(n) tending
to infinity with n,

| det Mn| ≤ ω(n)
√

n!,

with probability tending to 1.
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A statement of Girko (the main result of [37, 36]) implies that | det Mn| is
typically close to

√
n!. However, his proof appears to contain some gaps (see

[67] for details).
In [75], Tao and Vu established the matching lower bound, confirming Conjec-
ture 6.2.

Theorem 6.3. With probability 1 − o(1),

| det Mn| ≥
√

n! exp(−29
√

n log n).

We sketch the proof very briefly as it contains a useful lemma.
First view | det Mn| as the volume of the parallelepiped spanned by n random

{−1, 1} vectors. This volume is the product of the distances from the (d + 1)st
vector to the subspace spanned by the first d vectors, where d runs from 0 to
n − 1. We are able to obtain a very tight control on this distance (as a random
variable), thanks to the following lemma, which can be proved using a powerful
concentration inequality by Talagrand [75].

Lemma 6.4. Let W be a fixed subspace of dimension 1 ≤ d ≤ n − 4 and X a
random ±1 vector. For any t > 0

P(|dist(X, W ) −
√

n − d| ≥ t + 1) ≤ 4 exp(−t2/16). (4)

The lemma, however, is not applicable when d is very close to n. In this case,
we need to make use of the fact that W is random. Lemma 6.4 appears handy
in many studies involving high dimensional probability.

Now we turn to the symmetric model Msym
n . Again, by Hadamard’s inequality

| det Msym
n | ≤ nn/2.

Conjecture 6.5. With probability 1 − o(1)

| det Msym
n | = n(1/2−o(1))n.

Turán’s identity no longer holds because of a correlation caused by symmetry.
However, one can still show

E(det Msym
n )2 = n(1+o(1))n.

On the other hand, proving a lower bound for | det Msym
n | was more difficult.

Recall that one can interpret the determinant as the product of singular val-
ues, which, in this case, are the absolute values of the eigenvalues. By Wigner
semi-circle law (see [6]), we know the asymptotic of most of the singular val-
ues. However, this law does not say anything about the smallest singular value
which, in principle. could be very close to zero. The problem of bounding the
least singular value from below was solved by Nguyen [63] and Vershynin [84].
The results by Nguyen and Vershynin, combined with Wigner semi-circle law,
confirm Conjecture 6.5.

Theorem 6.6. With probability 1 − o(1)

| det Msym
n | = n(1/2−o(1))n.
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The interested readers can find more precise results, which write down the
limiting law of the determinant in [37, 36, 67, 74, 12]. Let us now go back
to the random regular graphs. Consider the most interesting case when d is a
constant, we know that the matrix An,d (whp) has full rank, so the determinant
is non-zero. Its magnitude, however, is unknown.

Question 6.7. Estimate the determinant of An,d. Find the limiting law.

A completely open problem is to bound the probability that detMn (or other
random determinant) takes on a particular non-zero value. In contrast to the
singularity conjecture (which addresses the case det Mn = 0), it seems that for
any value x )= 0, P(det Mn = x) is sub-exponential. (This was first suggested
to the author by Kalai in the early 2000s.) In fact, in view of Turan’s identity,
we conjecture that

Conjecture 6.8 (Determinant). For any x )= 0, P(det Mn =x)≤n−(1/2+o(1))n.

The best current upper bound is exponential [45]. A much weaker conjecture
is that size of the support of det Mn is super-exponential. But even this is not
known. The new developments discussed in Section 10 may shed some light on
this problem.

Let us now turn to the permanent. Recall the formal definition of the deter-
minant of a matrix M (with entries mij , 1 ≤ i, j ≤ n)

det M :=
∑

π∈Sn

(−1)signπ
n∏

i=1

miπ(i).

The permanent of M is defined as

Per M :=
∑

π∈Sn

n∏

i=1

miπ(i). (5)

Any question for determinant has its natural analogue for permanent. But
typically, the problem becomes much harder as permanent, unlike determinant,
does not admit any useful geometric or linear algebraic interpretation. On the
other hand, it is easy to see that Turán’s identity still holds, namely

E(Per Mn)2 = n!.

It suggests that |PerMn| is typically n(1/2−o(1))n. However, this was much harder
to prove than its determinant counterpart. The following conjecture, which is
the the permanent analogue of Komlós’ 1967 result pn = o(1), was open for
several decades

Conjecture 6.9. P(PerMn = 0) = o(1).

In 2007, Tao and Vu [78] found an entirely combinatorial approach to treat
the permanent problem, relying on the formal definition (5) and making heavy
use of martingale techniques from probabilistic combinatorics. They proved
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Theorem 6.10. With probability 1 − o(1)

|PerMn| = n(1/2−o(1))n.

As far as order of magnitude is concerned, the still missing piece of the picture
is the symmetric counterpart of Theorem 6.10.

Conjecture 6.11. With probability 1 − o(1)

|PerMsym
n | = n(1/2−o(1))n.

Motivated by the singularity problem, it is of interest to find a strong estimate
for the probability that the permanent is zero. In this aspect, we believe that
determinant and permanent behave differently and conjecture

Conjecture 6.12 (Permanent). The probability that PerMn = 0 is super ex-
ponentially small in n.

The current bound is polynomial in n [78]. We do not know anything about
the distribution of |PerMn|, either. Even simulation is challenging, as computing
permanent is a well known #P -complete problem; see [83].

7. Graph expansion and the second eigenvalue

Let G be a connected graph on n points and A its adjacency matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. If G is d-regular then λ1 = d and by Perron-
Frobenius theorem no other eigenvalue has larger absolute value. A parameter
of fundamental interest is

λ(G) := max
|λi|<d

|λi|.

One can derive interesting properties of the graph from the value this param-
eter. The general phenomenon here is

Phenomenon III. If λ(G) is significantly less than d, then the edges of G
distribute like in a random graph with edge density d/n.

A representative result is the following [4]. Let A, B be sets of vertices and
E(A, B) the number of edges with one end point in A and the other in B, then

|E(A, B) − d

n
|A||B|| ≤ λ(G)

√
|A||B|. (6)

Notice that the term d
n |A||B| is the expectation of the number of edges be-

tween A and B if G is random (in the Erdös-Rényi sense) with edge density
d/n. Graphs with small λ are often called pseudo-random [4, 15, 48].

One can use this information about edge distribution to derive various prop-
erties of the graph (see [48] for many results of this kind). The whole concept



190 V. H. Vu

can be generalized for non-regular graphs, using the Laplacian rather than the
adjacency matrix (see, for example, [16]).

From (6), it is clear that the smaller λ, the more “random” is G. But how
small can λ be?

In what follows, we restrict ourselves to the most interesting case when d is
fixed and n tends to infinity. In this case, Alon and Boppana (see [3]) proved
that

λ(G) ≥ 2
√

d − 1 − o(1).

Graphs which satisfy λ(G) < 2
√

d − 1 are called Ramanujan graphs. It is very
hard to construct such graphs explicitly, and all known constructions, such as
those by Lubotzky, Phillip, and Sarnak [54] and Margulis [60] rely heavily on
number theoretic results, which, in turn, requires d to have specific values. A
more combinatorial approach was found few years ago by Markus, Spielman,
and Snivastava [59]. Their method (at least in the bipartite case) works for all
d, but the construction is not explicit.

Theorem 7.1. A bipartite Ramanujan graph exists for all fixed degrees d ≥ 3
and sufficiently large n.

While showing the existence of Ramanujan graphs is already highly non-
trivial, the real question, in our opinion, is to compute the limiting distribution
of λ(Gn,d), which would lead to the exact probability of a random regular graph
being Ramanujan; see [62] for a discussion and some numerical simulation.

A weaker conjecture, by Alon [3], asserts that for any fixed d, with probability
1 − o(1)

λ2(Gn,d) = 2
√

d − 1 + o(1).

Friedman [32] and Kahn and Szemerédi [44] showed that if d is fixed and n
tends to infinity, then with probability 1−o(1), λ(Gn,d) = O(

√
d). Friedman, in a

highly technical paper [33], used the moment method to prove Alon’s conjecture
(see also [34] for a recent generalization)

Theorem 7.2. For any fixed d and n tending to infinity, with probability 1−o(1)

λ(Gn,d) = 2
√

d − 1 + o(1).

For more recent developments concerning Friedman’s theorem, including a
new, shorter proof by Bordenave, see [70, 11].

8. Simple spectrum

A matrix has simple spectrum if its eigenvalues are different. We discuss the
following basic question

Question 8.1. Are random matrices simple?

It is easy to see that if the entries have continuous distribution, then the
spectrum is simple with probability 1. On the other hand, the discrete case is
far from trivial. In particular, Babai raised the following conjecture in the 1980s:
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Conjecture 8.2. With probability 1 − o(1), G(n, 1/2) has a simple spectrum.

The motivation came from the well-known result (proved by Leighton-Miller
and Babai-Grigoriev-Mount; see [7]) that the notorious graph isomorphism prob-
lem is in P within the class of graphs with simple spectrum. Few years ago, Tao
and Vu [81] proved this conjecture.

Theorem 8.3 (Simple Spectrum). Babai’s conjecture holds.

The same proof applies for Msym
n (and many other ensembles). Let sn be the

probability that the spectrum of Msym
n is not simple. We observe that sn ≥ 4−n,

which is the probability that the first 3 rows are the same (which guarantees
that zero is an eigenvalue with multiplicity at least 2). We conjecture

Conjecture 8.4 (Simplicity). sn = (4 + o(1))−n.

The current best upper bound is sn ≤ e−nc

for some small constant c > 0
[65]. Let us now formulate the singular value version of Babai’s conjecture.

Conjecture 8.5. With probability 1 − o(1), the singular values of Msym
n are

different.

Notice that the singular values of a symmetric matrix are the absolute values
of its eigenvalues. Thus, this conjecture asserts that there is no two eigenvalues
adding up to zero.

One can pose the same questions for Mn. In this direction, Ge [42] proved the
analogue of Theorem 8.3, showing that with probability 1− o(1), the spectrum
of Mn is simple. In a very recent paper, Luh and O’rourke [56] proved the first
exponential bound, showing that the probability that the spectrum of Mn is
not simple is at most 2−cn, for some constant c > 0. It looks plausible that
Conjecture 8.4 holds for Mn as well. The Mn analogue of Conjecture 8.5 is also
open.

9. Normality

Another basic notion in linear algebra is that of normality. An n×n real matrix A
normal if AAT = AT A. Few years ago, the author raised the following question.

Question 9.1. How often is a random matrix normal?

Despite the central role of normal matrices in matrix theory, to our surprise,
we found no previous results concerning this question. We consider Mn and
denote by νn the probability that Mn is normal. Clearly, the probability that
Mn is symmetric is 2−(0.5+o(1))n2

. Since symmetric matrices are normal,

νn ≥ 2−(0.5+o(1))n2

.

We conjecture that this lower bound is sharp.

Conjecture 9.2 (Normality).

νn = 2−(0.5+o(1))n2

.
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In [26], Deneanu and Vu proved

Theorem 9.3.
νn ≤ 2−(0.302+o(1))n2

.

Notice that in previous sections, the conjectural bounds are often of the form
2−(c+o(1))n, for some constant c > 0. While this probability is small, it is still
much larger than 2−Ω(n2), which enables one to exclude very rare events (those
occurring with probability 2−ω(n)) and then condition on their complement.

The difficulty with the normality problem is that we are aiming at a bound
which is extremely small (notice that any non-trivial event concerning Mn holds

with probability at least 2−n2

, which is the mass of a single ±1 matrix). There

is simply no non-trivial event of probability 1 − 2−ω(n2) to condition on. Key
to [26] is a new observation that for any given matrix, we can permute its rows
and columns so that the ranks of certain submatrices follow a given pattern.
The fact that there are only n! = 2o(n2) permutations works in our favor and
enables us to execute a different type of conditioning.

Ferber, Jain, and Zhao [30] noticed that one lemma in [26] can be improved,
and reworking the whole argument one could improve the constant .302 slightly
(maybe at the 5th decimal place).

Another problem where 2−(.5+o(1))n2

could be the right answer is bounding
the probability that all eigenvalues of Msym

n are integers (they are apparently
real).

Conjecture 9.4 (Integral spectrum). The probability that Msym
n has an integral

spectrum is 2−(.5+o(1))n2

.

In [2], Ahmadi, Alon, Blake, and Shparlinski showed that the probability that
A(n, 1/2) has an integral spectrum is at most 2−n/400. Costello and Williams

[24] improved this bound to 2−cn3/2

, for some constant c > 0. Their proof can be
modified to yield the same result for Msym

n . We also conjecture the Mn analogue
of the above conjecture to hold

Conjecture 9.5 (Gaussian integral spectrum). The probability that all eigen-

values of Mn are gaussian integers is 2−(1+o(1))n2

.

10. Sandpile groups of random graphs

Given a graph G, its Laplacian is defined as

L(G) = A(G) − D(G)

where A(G) is the adjacency matrix and D(G) is a diagonal matrix whose ith
entry is the degree of the ith vertex. If G is d-regular, then L(G) = A(G) − dI.

Let Z be the set of integer vectors in Rn whose coordinates sum up to zero. It
is clear that the row vectors of L(G) is a subset of Z. Let R be the abelian group
consisting of integer linear combinations of these vectors. The group S := Z/R
is called the sand pile group of G. It is known that |S| equals the product of the
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non-zero eigenvalues of L(G), which equals the number of spanning trees of G
(Kirkhoff’s theorem).

In [87], Wood studied the structure of S, when G = G(n, p) for any fixed p
1. First, it is shown that for any fixed finite abelian group H

P(S = H) = o(1).

A finer question is the following. Any finite abelian group H is the direct
product of its Sylow subgroups. Now fix a prime p and a p-group H. What is
the chance that the p-Sylow subgroup of S equals H? Wood [87] proved that
this probability is asymptotically

f(H)

|H||Aut(H)|

∞∏

j=0

(1 − p−2j−1),

where f(H) is the number of bilinear, symmetric, perfect maps from H ×H to
C∗. (For a concrete formula for f(H), see [87].) Wood noted that this is similar
(but not quite the same) to a formula suggested by Cohen-Lenstra heuristics.

If |S| = | det L(G)| is divisible by p, then its p-Sylow subgroup must be
non-trivial. Thus, one can use the result to compute the probability that |S| is
divisible by p.

Corollary 10.1. Let p(n, p) be the probability that det L(n, p)) is divisible by
p, then

p(n, p) = (1 + o(1))(1 −
∏

j≥0

(1 − p−2j−1)).

For instance, the probability that the number of spanning trees of G(n, p)
is even is ≈ .5806 . . . . Interestingly, this probability does not depend on the
density p, as long as it is fixed. In [61], Meszaros extended Wood’s theorem
to random regular graphs, and used this result to prove the non-singularity of
random regular graphs with fixed degrees. See also [88, 17, 57, 58] for related
results in this direction.

Let us go back to Mn, which defines a map from Zn to itself. As shown in
Section 2, this map is (whp) injective. But how often is it surjective? Notice
that Mn is surjective iff | det Mn| = 1, thus the probability of being surjective
tends to zero with n as discussed in Section 6.

From this point of view, a recent result of Nguyen and Wood [68] is quite
surprising. Consider a n× (n + 1) random matrix with iid Rademacher entries.
This matrix defines a map from Zn+1 to Zn. What is the probability that this
map is surjective? Nguyen and Wood showed that this probability is

(1 + o(1))
∏

k≥2

ζ(k)−1 ≈ .4358,

1The Woods in this section and Section 2 are M. M. Wood and P. M. Wood, respectively.
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which is bounded away from both 0 and 1. (Here ζ is the zeta function.) An im-
portant step in the proof shows that with respect to different primes p1, . . . ,pk,
the distributions of a random determinant mod pi are approximately indepen-
dent.

11. Miscellany

An interesting (and seemingly hard) conjecture is the following, which came up
in the conversation between the author and P. M. Wood in 2009. Later, Babai
informed us that he made the same conjecture (unpublished) in the 1970s.

Conjecture 11.1 (Irreducibility). With probability 1− o(1), the characteristic
polynomial of Mn is irreducible.

In [86], the author raised the following conjecture, which asserts that spectra
can be used as finger prints.

Conjecture 11.2 (Finger Print). A ±1 matrix is determined by its spectrum
if no other ±1 matrices (not counting trivial permutations) have the same spec-
trum. Then almost all ±1 matrices are determined by their spectrum.

One can raise the same question for Msym
n or G(n, 1/2). It is known that there

are non-isomorphic co-spectral graphs. However, these should form a negligible
part of the set of all graphs.

The matrix Mn is (whp) non-symmetric. Thus, there is no obvious reason
for its to have many real eigenvalues. (The oddity of n would guarantee one
real eigenvalue, but nothing more.) The following conjecture is motivated by
our joint work with Tao in [79].

Conjecture 11.3 (Real Eigenvalues). Mn has, with high probability, Θ(
√

n)
real eigenvalues.

Edelman, Kostlan, and Shub [27] obtained a formula for the expectation of
the number of real eigenvalues for a gaussian matrix (which is or order Θ(

√
n)).

In [79], Tao and Vu proved that the same formula holds (in the asymptotic
sense) for certain random matrices with entries (0, ±1). However, we do not
know anything about Mn. As a matter of fact, even the following “first step”
seems hard

Problem 11.4 (Two real roots). Prove that Mn has, with high probability, at
least 2 real eigenvalues.

The next problem bears some resemblance to the famous “rigidity” problem
in computer science. Given a ±1 square matrix M , we denote by Res(M) the
minimum number of entries we need to switch (from 1 to −1 and vice versa) in
order to make M singular. Thus, Res can be seen as the resilience of the matrix
against an effort to reduce its rank. It is easy to show that Res(Mn) is, with
high probability, at most (1/2 + o(1))n.
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Conjecture 11.5 (Rank Resilience). With probability 1 − o(1), Res(Mn) =
(1/2 + o(1))n.

For a recent partial result, see [31]. A closely related question (motivated by
the notion of local resilience from [73]) is the following. Call a {−1, 1} (n by n)
matrix M stubborn if all matrices obtained by switching (from 1 to −1 and vice
versa) the diagonal entries of M are non-singular (there are 2n such matrices).

Conjecture 11.6 (Local resilience). With probability 1− o(1), Mn is stubborn.

We do not discuss eigenvectors here, the interested reader may want to consult
[69] for a survey. See also [25, 41] for recent results on nodal domains of random
graphs.
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