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Abstract. Let M, be a class of symmetric sparse random matrices, with independent entries M;; = §;;§;; for i < j. §;; are i.i.d.
Bernoulli random variables taking the value 1 with probability p > n™ 148 for any constant § > 0 and §;; are i.i.d. centered, subgaussian
random variables. We show that with high probability this class of random matrices has simple spectrum (i.e. the eigenvalues appear
with multiplicity one). We can slightly modify our proof to show that the adjacency matrix of a sparse Erd6s—Rényi graph has simple
spectrum for n148 < p <1 —n~11% These results are optimal in the exponent. The result for graphs has connections to the notorious
graph isomorphism problem.

Résumé. On définit une classe M, de matrices symétriques clairsemées, a coefficients indépendants, en posant M;; = §;;&;; pour
i <j,oulesd; j sont des variables aléatoires de Bernoulli i.i.d. prenant la valeur 1 avec probabilité p > =18 pour une constante
8 > 0 arbitraire, et les &;; sont des variables aléatoires sous-gaussiennes i.i.d. centrées. Nous montrons qu’avec une grande probabilité,
cette classe de matrices aléatoires a un spectre simple, c’est-a-dire que les valeurs propres sont de multiplicité 1. Une légere modification
de la démonstration de ce résultat permet de montrer montrer que la matrice d’adjacence d’un graphe d’Erdés—Rényi clairsemé a un
spectre simple pour n~148 < p <1 —n~ 143 Ces résultats sont optimaux en les exposants. Le résultat pour les graphes a des liens
avec le célebre probleme de 1’isomorphisme de graphe.
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1. Introduction

The gaps between eigenvalues are natural objects to study in random matrix theory and are of central importance in
the field. Since the introduction of the notion of a random matrix, there have been numerous inquiries into the spacings
of consecutive eigenvalues of symmetric random matrices. For a matrix with eigenvalues A;, we denote the gaps by
8; = Mi+1 — A;. The limiting global gap distribution for Gaussian matrices (GOE and GUE) has been well understood for
some time and can be deduced from Wigner’s surmise [14, Chapter 6,7]. Recent progress on universality has extended
these results to large classes of random variables [10,22]. At finer levels, meaning under proper normalization and for a
particular gap, the limiting distribution for the GUE was only calculated in 2013 by Tao [19]. The four moment condition
establishes that this distribution is universal for any random variable that matches the gaussian up to the first four moments.
Using advanced dynamical techniques, Erdés and Yau removed this condition [9].

Although these results describe the behavior of a single gap, §;, bounds on the smallest gap, 8pin = min; §;, for general
matrices were still out of reach. Bourgade and Ben-Arous [5] showed that 8, is on the order of n=3/° for the GUE
ensemble. Yet, currently, this issue does not fall into the scope of the four moment theorem. Although tail bounds for
individual §; were known for more general matrices [21,22], they were too weak to survive the union bound over all i to
conclude anything about §phin. Under severe restrictions on the smootheness and decay of the entries, Erdds, Schlein and
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Yau [8] proved that

e €
P(Enl/z - <i <M <En'?4 Y for some i) =0(ek2)

for any fixed k > 1, any ¢ > 0 and any bounded E € R. Applying a union bound to this result yields
P(5min < 8n71/2) = 0(n83) + exp(—cn)

for any § > 0. Despite the strong bound, this result applies only to a small set of smooth random variables. Outside of
this set, even whether §pmin could equal zero could not be settled by these previous results and was only resolved in 2014.
Phrased differently, the fact that a random matrix typically has simple spectrum (i.e. all eigenvalues have multiplicity
one) is a recent result due to Tao and Vu [23]. They show that the probability that a random matrix has simple spectrum
is bounded below by 1 — n~4 for any constant A. In [16], this qualitative statement was refined to quantitative tail
bounds on the gaps between the eigenvalues and probability that a random matrix has simple spectrum was improved to
1 — exp(—n°) for a small unspecified constant c.

In the realm of graphs, whether or not a graph has simple spectrum (i.e. its adjancecy matrix has simple spectrum)
has practical complexity implications. Although great strides have been made recently on the notorious graph isomor-
phism problem [1], the best running time guarantees are still quasipolynomial. However, Babai, Grigoryev and Mount [2]
demonstrated ealier that the graph isomorphism problem restricted to the graphs with simple spectrum is in complexity
class P. A corollary of the random matrix result in [23] is that dense Erd6s—Rényi random graphs have simple spectrum
which answered a question of Babai’s that had been open since the *80’s.

In the past few years, there has been renewed interest in sparse random matrices due to their applications in data
science, where they require less storage space and fewer operations to manipulate [6,7,15]. In other settings, sparse
random matrices reflect the intuition that in many natural problems, each data point is dependent on only a few of the
many parameters [11-13,25]. For random graphs, the more interesting behavior occurs for sparse graphs. Many real-world
networks are sparse and applications often prefer graphs with fewer edges that maintain the necessary properties.

In this work, we establish that sparse random matrices have simple spectrum. Our result is nearly optimal in terms
of the range of sparsity. In the dense range, our work improves the probability bound in [16] to 1 — exp(—n'/128). The
particular value of the constant (1/128) is not meaningful and has not been optimized.

2. Main results

Let M, be an n x n symmetric random matrix with entries m;; = §;;&;; for all i < j, where §;; is a Bernoulli random
variable that takes the value 1 with probability p = p(n) and §;; are iid random variables with mean zero, variance one,
and subgaussian moment bounded by B. We remind the reader that the subgaussian moment of &;; is the smallest ¢ such
that exp(éizj /t?) < 2. Our main result is the following.

Theorem 2.1. For 0 <8 <1 a constant and p > n~ 3 then with probability at least 1 — exp(—(np)1/128), M, has
simple spectrum.

Denote by G(n, p), the random variable that takes values in the labeled graphs on [r] vertices and distributed such
that each edge appears independently with probability p.

Theorem 2.2. Let A, be the adjacency matrix of G(n, p) and 0 < 8 < 1 a constant. For n~l+e < p<1-— n~ 18 ith
probability at least 1 — exp((np)~/128), A,, has simple spectrum.

Remark 2.3. Observe that for p = o(logn/n), there is likely to be at least two row of zeros in M,, and A,,. This yields
a zero eigenvalue with multiplicity at least 2. Thus, our bound on p is near optimal. We record here that the upperbound
on p does not appear in Theorem 2.1 as even with p = 1, there is additional randomness from the &;;. However, for the
adjacency matrix, for p = 1, we are left with the deterministic matrix J,, — I, which has eigenvalue —1 with multiplicity
n — 1. By symmetry, the upperbound is also near optimal. In fact, we believe the true sparsity threshold is on the order of
p > logn/n, but our current method needs a technical refinement to achieve this bound and we postpone this matter for
another occassion.
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The remainder of the paper is organized as follows. In Section 3 we give a birds-eye view of the proof, avoiding any
technical statements. In Section 4 we state several notational conveniences. In Sections 5 and 6 we develop the necessary
tools to control the deviation of M,, acting on two different sets of vectors (compressible and incompressible respectively).
Finally, in Section 7, we combine the results of the previous sections to obtain a short proof of Theorem 2.1. In the final
section, we discuss the necessary modifications to handle adjacency matrices of sparse random graphs.

3. Proof strategy

The overall approach is analogous to that used in [23] and [16]. For M,, as in Theorem 2.1, we write

Mpn

where X = (x1,...,%,_1) € R""!. For a matrix X, let ,(X) < --- < A1(X) be the eigenvalues of M,. Let v = (x, a)
(where x € R"~! and a € R) be the unit eigenvector associated to A; (M,,). By definition we have

M, X x\_ . X
(% ) (0) =000 (0):

Restricting our attention to the top n — 1 coordinates gives
(Mp—1 — 2i(Mp))x +aX =0.

Let w be the eigenvector of M,,_; corresponding to A; (M,_1). After multiplying on the right by w”, we deduce that
law” X| = |w! (My—1 — 2 (M) x| = |2 (My—1) — 1 (M) ||w” x].

By the Cauchy interlacing law, we must have A; (M) < A;(M,,—1) < Aj—1(M,,). Therefore, if we let & be the event that
Ai (M) = Aj+1(M,,), then assuming a # 0, on the event &;, this implies that wlX =0 A simple union bound over all
choices of a in w removes our assumption that a # 0. Finally, if P(E;) = o(n~") for all i, then a union bound yields the
result.

Our task thus reduces to showing that an eigenvector w of M,,_; has the property that P(w” X = 0) is small. Note that
X and w are independent. By now, this is a well-studied phenomenon [17,18,20]. This small-ball probability is intimately
related to the arithmetic structure of the vector w. The goal then is to prove that with high probability, an eigenvector of
the submatrix M,_; will not have much structure. For this intermediate objective, we make the simple observation that
for v, a unit eigenvector of M,,, with eigenvalue A,

(M, — 2)v =0.

For x close to v, (M, — A)x ~ 0. This is reminiscent of the least singular problem for a random matrix and the details
of our argument draws heavily from the techniques of [3,18,24]. Choosing an appropriate net of the highly structured
vectors in S”~! and a net of potential eigenvalues, we show that these vectors are unlikely to be eigenvectors.

This aerial view of the argument obscures the technical obstacles that must be overcome when the matrices we deal
with are sparse. As the random variables are zero with large probability, the small-ball probabilities that appear tend to be
too large for direct union bounds to work. Delicate nets and careful balancing of probabilities is required to implement
our overall strategy.

4. Notation

For a vector v € R” and an index set I C [n], let v; € R! be the restriction of v onto that index set and P;(v) € R” be
the vector v with all coordinates in /¢ zeroed out.

We will also need finer control over index sets I C [1]. We let ord(I) be the vector in NI/ populated by elements of 7
in increasing order. Then, we define I[k] := ord(I )y and I[k : k'] := ord(I)[g.k17, where [k 1 k'] :={i 1k <i <Kk'}.

To avoid repition, we impose the assumption that, unless explicitly stated, any constants (usually numbered) in the
statement of the Lemmas, Propositions and Theorems depend only on § and the subgaussian moment B. Additionally,
standard asymptotic notation (e.g. 0, O) is stated with the assumption of n tending to infinity.
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5. Compressible vectors
5.1. Preliminaries

We divide the unit sphere into two classes. The compressible vectors are those that are close to sparse vectors and the
remaining vectors are called incompressible.

Definition 5.1. For M € N, a vector x is in Sparse(M) if | Supp(x)| < M. Fora § € (0, 1), we denote
Comp(M, §) := {x € "' : 3y € Sparse(M) such that |x — ||, < 8}.
The incompressible vectors are defined to be
Incomp(M, §) := {x eS" ! x ¢ Comp(M, 8)}.
We will often make use of the following bound on the operator norm of M,,.
Proposition 5.2. There exist constants K, ¢ > 0 such that
P(I Myl = K /pn) < exp(—cpn).

Proof. The proof of Theorem 1.7 in [3] can easily be modified to handle symmetric random matrices. The details can be
found in the proof of Theorem 1.14 [4]. O

5.2. Compressible vectors

Proposition 5.3. There exist constants C, C, ¢, ¢’ > 0 depending only on B, such that for

Clogn log1/(8p)
> , by = | ———= d le[-C ,C
pz— 0 [bg o an [-C/pn, Cy/pn]
we have

IP’(EIx € Dom(M, (K + C)_4) U Comp(M, p) s.t. H (M, — M)x ||2 < C,o\/p_n) < exp(—c/pn),
where p 1= C— 4% gnd p_1 <M <cn.

Remark 5.4. To gain some understanding of these parameters, observe that for p = n~!*? for some constant § > 0, then
£o = O(1). Near the threshold, when p = 10%, Lo =0 (logn/loglogn) so p =exp(—O(logn/loglogn)).

Although this result is highly non-trivial, the proof follows from a straightforward adaptation of Proposition 3.1 in [3].
We include the proof with the necessary modifications in Appendix A.1.
From this result, we obtain a bound on the probability that an eigenvector is compressible.

Corollary 5.5. For pi1 < M < cn, where c is the constant from Proposition 5.3, there exists a constant ¢’ > 0 such that
IP’(EI a unit eigenvector € Comp(M, ,o)) < exp(—c’pn),
where p := C 06,

Proof. By Lemma 5.2, all eigenvalues of M, are in the interval I = [—K ./pn, K ./pn]. Consider an n~l-net of I
which can be constructed to be of size at most 2Kn.,/pn. For A € I that is an eigenvalue of M, with eigenvector x €
Comp(M, p), there exists an element of the net, A¢, such that

l(My = 20)x ||, = | (h = ro)x|, <n .

I
However, by Proposition 5.3,
P(3x € Comp(M, p) s.t. [ (M, — ro)x |, < n~') <exp(—c'pn).

Taking a union bound over the A¢ and increasing C from Proposition 5.3 if necessary, yields the result. (|
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6. Incompressible vectors

For these vectors, we develop small-ball probability bounds that are dependent on a measure of arithmetic strucutre (Least
Common Denominator) [18,24]. First, we introduce the following partition of the indices for v € Incomp(M, p). Recall
that p := C~%~% with C from Proposition 5.3. Let

Jo 1
o(v):= {k = =lul = —}
2n VM
Due to the incompressibility of v, the cardinality of this set is large.
Lemma 6.1. For v € Incomp(M, p) where p := C 6,
M,o2
> —.
o=

Proof. Define o1 (v) :={k : |vr| < ﬁ}. Since v is a unit vector, [o7| <M. As y = Pgev is a sparse vector with support

at most M, the definition of incompressible vectors implies |[v — y|l2 > p or || Py, (v) ||% > p2. Define the following set to
capture the lower bound.

Clearly, || Py, (v)||3 < p?/2. Therefore,

[Pe @5 = [Py )5 = [ Pos @)]3 = 7/2.
By the upperbound on the coordinates in o,

2
o lo]
F=lrwlh=37

Rearranging this inequality finishes the proof. (]

For every v € Incomp(M, p), we fix a set o (v) of size exactly [ M, 02/2].Let T’ (v) be the index set of the M coordinates
with largest magnitude. If this set is not uniquely defined, choose one arbitrarily. Let t(v) := 7'(v) \ 6(v) and & :=
[n]\ (r Uo). Now we divide [n] \ T into disjoint sets I, I2, ..., Iy, and J, with |Iy| = [an] < M for 1 <k < ko and
|J| < [an] where a = o(1) is a parameter to be chosen later. For 1 <k < kg, we let

le= o @y gy O O OG0T kol + 1413 ko)
Finally, let Iy := J Ut so |Ip| < 2M by our assumption on [an]. In words, Iy is the index set of the large coordinates and
the leftover smaller coordinates. Additionally, we have
1 n—|t|
< _

20 = [an] == [an] — «

n—|t| 1
< <

The purpose of this construction is to have substantial control over the £, norm and the £, norm of each vy, for
1 <k < kg. In particular, we have

Mp2a p2  p? [Ma ,
> —_— = ) — = . 2
vz =y T - aV P 2

Furthermore,

1
i llo < — and vy lla <2,/ 52
M M

The I’s are filled by drawing sequentially from o and & so that the entire partition is determined by 7" and o. Thus,
there are at most () (47,2/2) partitions for all the vectors in Incomp(M, p).
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6.1. Small-ball probability

Recall from the proof strategy in Section 3 that we have reduced the problem to bounding the probability that an eigen-
vector of a random matrix is orthogonal to a random vector. As we will use various epsilon-net approximations, we need
a more quantitative version of orthogonality. In particular, we need to bound the probability that the dot product of the
eigenvector and the random vector are small. This leads naturally to the notion of small-ball probability.

Definition 6.2. The Lévy concentration of a random vector Z € R” is defined to be

L(Z, &) = sup IP’(||Z —ulx < 8).

ueR”

Intuitively, the structure of a vector, v, will highly affect the Lévy concentration of the random variable v - X where
X is a random vector. To formalize this concept, we begin with a measure for the arithmetic structure of an entire unit
vector.
Definition 6.3. We define the least common denominator (LCD) of x € S"~! as
D(x) =inf]6 > 0: dist(6x, Z") < (Sop)~"/*\/log, (/S0 p0)},

where &g is an appropriate constant (see Remark 6.4 below). This particular form of the LCD was first used in [24].

Remark 6.4. There exists constants &g, £g € (0, 1) such that for any ¢ < &g, L(8&,¢) <1 — Sgp where P(6 = 1) = p and
& is a subgaussian random variable with unit variance. We fix such a §¢p in Definition 6.3.

The quantitative relationship between the arithmetic structure of a vector and small ball probability is captured in the
following proposition.

Proposition 6.5 (Proposition 4.2, [3]). Let X € R" be a random vector with i.i.d. coordinates of the form £;6;, where
P(6; =1) = p and &;’s are random variables with unit variance and finite fourth moment. Then for any v € s

1
E(X-v,ﬁ8)§C<8+m>,

where C depends only on the fourth moment of &.
Following [24], we introduce a tool that can reveal the arithmetic structure in small segments of the vector x.
Definition 6.6 (Regularized LCD). Let @ € (0, 1). We define the regularized LCD of a vector v € Incomp(M, p) as
D, a)= max D/l Il2).-
Recall that the o dependence stems from the constraint that |/;| = [an].

Combining Proposition 6.5 with the by now standard tensorization argument (see [18]), yields a bound on the Lévy
concentration of M,,x.

Proposition 6.7 (Small ball probabilities of M, x via regularized LCD). There exists a constant C such that for all
& >0, and I is an index set of size [an],

1 n—lan]
L(Myx, g||vr|as/pm) < ¢ len] (s+—> )
(M, ) N D)

Therefore, by the bounds in (2) and the above proposition, we have

C n—on
L(Myx, &0’ /pn) < (Ce—i— A7> )
( ) JPDW, a)

We also have the following simple lower bound for the LCD.
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Proposition 6.8 (Lemma 6.2, [24]). Let x € S"~!. Then

D(x) =

2l|xlloe”
We can deduce from this proposition and our bounds in (2), that

A 1

D, a) > E'O/VM' 3
For the remainder of this section, we fix several parameters. For the readers’ convenience, we have aggregated and

highlighted several important variables below. Although we repeat these definitions, we urge the reader to refer to this
section when verifying calculations later.

2
__n _ ~1/16 ,_p° [Ma

Remark 6.9. Recall that p := C =% with C from Proposition 5.3. As observed in Remark 5.4, due to the assumption
that p > n~!7%, we have that

cs < p < cj
for two constants c;, ¢ only depending on 8. We will often implicitly make use of the fact that np — oc.

6.2. Vectors with mid-range and small LCD

In this section, we show that matrices of the form M,, — A are unlikely to have vectors in their nullspace with mid-range
or small LCD.

6.2.1. Mid-range LCD: %(,,':,I)% < D <exp((np)'/3?)

One of the main technical contributions of this article is the following proposition.

Proposition 6.10 (Mid-range LCD). For 8 >0, p > n~'*% and » € [—-K /pn, K \/pn]. There exist constants
c,c,c>0

such that for M = W’

P(Ive Sp s.t. H (M, — )\.)UH2 < Eso(pn)7/16) <exp(—c'n),

where %% < D <exp((np)'??), g0 =c

172
n
o) 5 and

(np)!/

~

Sp := {v e Incomp(M, p) : D < D(v) <2D}.

Recall that p := C~ %06 ¢ := fl?fglf/(%)] where C is the constant from Proposition 5.3.

6.2.2. Level sets for the usual LCD

We remind the reader of some key terminology. Working in some metric space, a S-net of a set S is a subset §’ C S such
that for every s € S, there exists a s’ € S’ such that ||s — s’|| < 8. We first construct level nets of the LCD (not regularized)
for vectors of length [an]. We drop the ceiling function when such precision is not crucial. We keep the n dependence in
this section as various parameters, e.g. p(n), more conveniently depend on n rather than an.

Lemma 6.11. For p > n~ 18

g 24/10g(2+/80 p Do)
Do+/dop
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and Dgy > 0, the set {v € S**~!: D(v) € (Dy, 2Do]} has a B-net, N, such that

ED() an
V| < <2+ «/@)

for a universal constant c.

Proof. For a v with D(v) € (D, 2Dy], by the definition of LCD, there exists a 8 € (Dg,2Dg] and z € Z such that

log(1/80p0)
A/dop

[0v —zll2 <

which implies that

2| log(2+/80p Do)
0 2 Do+/Sop )

‘We also have

z lIzll2 llzll2 z
= = =2 =l - 2] <|v-
lzll2ll, @ s N P 01l

Combining the above estimates gives

_ <Hv_£ N

lzll2 fl, Ol, 16 lizll2fl,

B +H‘L 2l

0 2 Izl 2 0 2
_ 2/10g(/3pb)
~ Dovéop
Note that
log(+/80p86)
lzll2 < llz = 0vll2 + [0vll2 < ——F——— 4+ 2D < 4Dy.
véop

2 2
The last inequality follows from recalling that Dy > p'v/M = 750 50 Do /p = G (np)1/ = \/log(/Bopb). Let
Z:={zeZ" :supp(z) € I and 0 < ||z]|l2 <4Do}.

Define N := {z/||z||2 : z € Z}. By the standard volumetric calculation,

cDp\"™
|N|§(2+ﬁ>

for some universal constant ¢. A serves as an appropriate net.

The above lemma can be modified so that § is a function of D rather than Dy.

Lemma 6.12. For
2/log(2/8pD)
b= ol
and Dg > 0, the set {v € S~ : D(v) € (Dy, 2Dy} has a B-net, N, such that

D \ "
V| < (12+ﬁ>

for a universal constant c.
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Proof. By Lemma 6.11, the set is covered by at most (2 + %)“” balls of radius Sy = 2y/10g2veopDo) g B > Bo then

the result follows immediately. Assume 8 < Bo. A B/2 net of size (489/8)*" < (3D/Dy)*". Therefore, the number of
small balls is at most

5D() an 3D an EDO on
2+ — <({12+ .
Jon Dy Jan U

Now we extend the net to cover all vectors with LCD less than 2Dy.

Lemma 6.13. For D > f(n) = w(1), then the set
{ves*™ ' f(n) < D(v) < D}

has a B-net of size at most

(12+ ﬂynl (D)
Jan og(D).

Proof. Decompose the set
{res"':Dpw)<D}=|J{ves" " :Dx)e (27D, 27" D]},
k
where the union is over all k such that (2~% D, 27%*1 D] has non-zero intersection with [ f (n), D]. Each of these intervals
has a -net by Lemma 6.11. There are at most log D such k. (|

6.2.3. Nets for the level sets of the regularized LCD

Let
Sp = {v € Incomp(M, p) : D < D(v) <2D}
and set
_ n i —1/16 _C«/C(l’l
_W, o= (np) and ¢go= D

where c is the constant from Proposition 6.10. We record several useful bounds which are consequences of our choice of
parameters,

C(% 1/16 Cfsz 1/16
) V0 <l < ap) T,

One can check that p~! < M since np — oo so that M is in the range of Corollary 5.5.
Let ¢* be a constant less than 1/2C with C the constant from Proposition 6.7. We first create an ¢*p’gg/10K -net for
the coordinates in Iy. For this set, we use a trivial-net Ny of size at most

10K \*M
cteop’)

Recall that [|vy, [|eo <

1
N7k

by Lemma 6.13 and the fact that LCD(vy, /llvy, Il2) < 2D, we can create a f =

—D oan
<1z+ C—°> log(D).

so by Porposition 6.8, ﬁ(v) > p’+/M for any v € Incomp(M, p). For each I} with 1 <k < ko,

24/1og(2/80p D)
D+/éop

-net of size at most

Jon
"/ c*p’eg ’ . 30K kg
Let A7 be an T0K Ky -net of [p’, 1] of size at most Feop
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Define

M= {x-I—Ztkyk:x GJ\/o,yE/\f/(,IEJ\_fk}.
k

‘We note that

10K \*M éDo \ " 30K ko
M| < 12+ -2 log(D .
M= <C*80,0/) 1;[( + «/An) og( )<c*£0p/>

For any v € Sp, there existsam = x + Zk teyr € M such that

c*p'eo
~ 10Kko

c*p'sg
10K’

v

lx —vpll2 < Yk — <B. and i — llvgll2| <

lvg 2 |l»

Therefore,

c*p'eg
o —mll> = =52 + ) (Jor = lvr e, + [ vrc vk — seve))
k
VI

T2
< +
10K %: AR

c*p'eg cp'go
< kol 2
=Tox T °< TV
- c*p/so 12y/log(2/30p D)
- 5K Ol D.\/sop

c*p/so 4 12ylog(2y/SopD e
5K a/_pza c/Sop '

— Yk

HQM+HM@MM—%WH>

; 1/32 AMp*a?p . ..
Using the upper bound on D < exp((np)'/°*) < exp(—z ) where c is the constant from Proposition 6.10, we deduce
that

* /

5K

&0
T 4K

lv—ml> < % 4 o(p'e0) <

At this point, there is no guarantee that the elements of M lie in Sp. We rectify this issue by slightly adjusting M. For
c*p'eg
4K

every m € M, if there exists a v € Sp such that v —m|, < then replace m by v. Otherwise, simply discard m. We

x 7 N
call this new set M’ and note that |M’| < | M|. By the triangle inequality, M’ is a <52 -net of Sp.

6.2.4. Proof of Proposition 6.10

Proof.AFix a A € [—K, K]. In the last section, we showed that for all the vectors with the same o, T, M’ is an cp’gg /2K -
net of Sp. Let Epq be the event that there exists a m € M’ such that || (M,, — A)m||2 > c*p'go/pn. As we fixed ¢ < 1/2C
with C from Proposition 6.7, one can verify that

&0 > ——
vﬁD

by Lemma 6.7,
PEpm) < Mgy .

By our lower bound on D, we have that cD//an > 1.

—1
n n 10K \** /2¢D\". - 30Kko\*  nefam]
P(Epg) < = =) log* (2D
0= () () () () o e (557)
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n\( (10K \M 28D\ o o (0K o7t o Jan\ " Ten1-2M—a”!
. (0]
2m ) \Mp?) \ c*p’ Jan) * c*p! D

2M c/(;zM 2M n—an—2M—a”!
exp| —n| —— logn — logn — o log(pn) + log(1/c)
n n

IA

n n

_ o ! 120Kk an+2M + o~
—10g(22) — 7o log(pn) — —1og<—2°(pn>””) e log(D/\/om)>>
On n c*cj n

—1
exp(—n (—log(za + %logG) = O‘"H#(np)”32 n o(1)>>

exp(—n (— log(2¢) + %log(%) + 0(1)))

< exp(—c"n)

IA

IA

for small enough ¢ from Proposition 6.10. On the event £ o/, for any v € Sp, we can find a m € M’ such that lv—m|2 <
0'80/2K . Therefore,

cp'eo. /PN
[ M =230 ][, = | (M = 2ym ][, = 1M = 2l = ml2 = ——.
The proof is complete upon setting ¢ = c*c(%c. O

Remark 6.14. Note that a trivial gg net of the unit sphere is of size (3D/c+/an)" which is of the same order as our more
involved construction. However, the key gain of our design is that it is ¢ that appears in the dominant term of our net size
and ¢ from Proposition 6.10 can be defined independently.

6.2.5. Small LCD
For this range of regularized LCD, a nearly identical argument as Proposition 6.10 applies. As the choice of parameters

is different, we show the necessary computations below.
Proposition 6.15 (Small LCD). Foré >0, p > n~ 18 and A e [—K./pn, K./pn]. There exist constants
" ¢>0
such that for M = W
IE”(EIU e Sp sit. “ (M, — A)v||2 < Eeo(pn)7/16) < exp(—c”n),
where p'~/M < D < %W, gh= (o' pM)~'? and

Sp := {v € Incomp(M, p) : D < D(v) <2D}.

Recall that p := C—t—6, Lo = %.

Using this new &, we have

cp’eo
10K

cp'e,
o+

cp'e; cp'e;,
k
10K T 0(’6+ 10K ko

lv—ml2 =< + Z(”Wk — Nvgllaye |, + [lvr l2ye — tve | )
k

IA

= yi|| llvrll2 + | lvrllzyx — vk ||2)
2

lvr N2

IA
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el 2\/10g(2«/_50 o)
SK p'N'M/Sop

e, 2,/log(2 /50 M w
T SK (P P (Mp) T8y

. . . . . V1 . . .
The third to last inequality follows from the observation that the function x — % is a decreasing function

for large values of x, /Sopp'~/M > (np)3/® and np — oo. The last inequality follows from the simple calculation
/ /]/Z(Mp)l/4_>oo

Again, it is easy to check that g9 > so by Lemma 6.7,

ol
P(Ep) < IMey ™",

As,cD/\Jan <1,
-1

n 10K \*M 30Kko\*  ne o]
P(gM)<<2M> (Mpz) (CSOp’) (13 log QD)(CSoﬂ’) %0

< n n 10K ZM(13)n ) ol (2D) 30Kk0 a! 1 n—[an] —2M—a~!
e (0] e —
- MM\ ! ¢ o 77 (pM)1 /A

<exp(—n).

We extend this to all the vectors in Sp by the same approximation argument.

7. Proof of Theorem 2.1

Proof. By Corollary 5.5, with probability 1 — exp(—cn) with ¢ from Corollary 5.5, the eigenvectors of M, _; are not
compressible. We now show that the eigenvectors of M,,_; do not have mid-range or small regularized LCD. We begin

with the mid-range vectors. Let = % <

Sp.Let P be a Geo(pn)"/1%-net of [—K ./pn, K \/pn] with & from Proposition 6.10 and

2K pn

Zoa(pmyTTe = P(P)

D < exp((np)l/ 32). We demonstrate that an eigenvector is unlikely to be in

|7D| < 1/16)'

IfveS p and is an eigenvector with eigenvalue A, then there is a 1o € P with |A — Xg| < ceo( pn)’/16_ Therefore,

(M — 2o)v], < 1A — Aol < Eeo(pn)”/16.

I

Thus, by Proposition 6.10 and a union bound, with probability greater than 1 — exp(—c”’n/2), an eigenvector of M, _;
will not lie in Sp. Consider the following decomposition.

1 n'/? 1/32
v € Incomp(M, p) : Z mE = <D@) < exp((np)'/>?)
= U{v € Incomp(M, p) : D(v) € (2~ exp((np)1/32) —k+1 exp((np)1/32)]}
k
a2
such k, so by a 51mple union bound, we can guarantee that the event, 5m1d,

where k takes values such that (2~ exp((np)1/32) 2—k+l exp((np)1/32)] has a non-zero intersection with [
exp((np)l/n] There are at most (np)l/16

that M, _; does not have eigenvectors with regularized LCD in [ T 1)/12/;2 ,exp((np)'/3?] occurs with probability at least
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1 — exp(—c”/3). By an identical argument, replacing Proposition 6.10 with Proposition 6.15, we have that the event,

. . . . . 2
Esmall, that the eigenvectors of M,,_; have regularized LCD that lie outside of the interval [p'v/M, %(p’:)%

probability at least 1 — exp(—cn/3) with ¢ from Proposition 6.15. On the event Epig N Esmall, by Proposition 6.5,

] occurs with

C

P(& [Emia N Esman) < P(X - v = 01Emig N Esman) < W

< exp(—(np)"/*),

where X is from the decomposition of M, in (1). Taking a union bound over all i, we conclude that M,, has simple
spectrum with probability at least 1 — exp(—(np)'/%*/2). |

8. Erdds—Rényi random graphs

Let G, be a random variable that takes values in the simple graphs on n vertices with vertex set [n]. G, is distributed
such that an edge appears between two vertices independently with probability p. Let A, denote the adjacency matrix
of G,. Note that the entries of A, have mean p. Thus, Theorem 2.1 does not immediately apply. However, the expected
adjancecy matrix is p(J — I) where J is the n x n all ones matrix. However, J is a rank one matrix and we can exploit
this fact to adjust our proof to handle this case. As the proof is only slightly modified, we do not repeat the argument and
only highlight the necessary changes. These adjustments follow those in [3, Section 7].

In preparation for the proof of Theorem 2.2, we need analogues of Proposition 5.3, Proposition 6.10 and Proposi-
tion 6.15. The necessary changes for Proposition 5.3 are discussed in Appendix B. For Propositions 6.10 and Proposi-
tion 6.15, the first step was to obtain estimates on the Lévy concentration. As this function is insensitive to shifts in the
mean, the first part of the proof holds without change. For the net arguments to hold, we simply make the observation that
A, — p(J, — I,,) is a mean zero random matrix so the standard arguments (e.g. those in Proposition 5.2) yield

P(|Ay — p(Jy — In)”2 > K'\/pn) <exp(c'pn).

Therefore we have the following two propositions.

Proposition 8.1 (Mid-range LCD). For§ >0,n~'"0 < p <1/2 and » € [-K /pn, K ./pn]. There exist constants

such that for M = (np;lW’

P(v e Sp s.t. [(An = p(n — 1) — )L)v”2 < Eeo(pn)7/l6) <exp(—c"n),

where %(HZI)% < D <exp((pn)'/3?), g9 = cn'/?>=912 /D and

S’D = {v € Incomp(M, p) : D < B(U) < 2D}.

Proposition 8.2 (Small LCD). For § > 0, n~1 < p<1/2and r» € [—K /pn, K ./pn]. There exist constants

/A
c,c,c>0

such that for M = W

P(Elv e Sp sit. || (M — p(Jy — I) — A)v“2 < gso(pn)7/]6> <exp(—c'n),

where p'A/M < D < % fan, &) = (o' M)~ \2 and

A

Sp := {v € Incomp(M, p) : D < D(v) <2D}.
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8.1. Proof of Theorem 2.2

Proof. (Sketch) We first handle the case where p < 1/2. Observe that the set {J,x :x € S" 1} ={0-1:6 € [—n,n]}
where 1,, is the vector of all ones. Let X, = {« - 1: x € [—pn, pn]}. As this is a one-dimensional set, we can create a net
with small cardinality. Let BB be a éeo(pn)’/10-net of X, with & from Proposition 8.1 and

B < — 22"

1/16
= Zeo(pn)7/16 )

<exp((np)

By the triangle inequality, for x, x" € X},
i (s = pC = 1) = 20 =, = | (s = P = ) =20 =] =[x x|
Therefore, the standard union bound and triangle inequality argument shows that for D in the mid-range LCD,

IP’( inf inf |[(Ay— p(Jn — L) — Ao — v, < 580(pn)7/16) < exp(—cn).

XGXH UES[)

The same applies for the low-range. Finally observing that,

inf inf |(Ay — p(Jy — I,) = X)v — y|, < inf | (A, — k= p))v],.
veSp

xeX, veSp

summing over the level sets as before and using the same net argument on A, we can conclude that any eigenvector of A,
has large LCD. The rest of the argument proceeds as in the proof of Theorem 2.1.

For the remaining p > 1/2 case, we observe that the adjacency matrix of G(n, p), A, (p), has the same distribution as

Jn — I, — Ay (1 — p). Therefore, to control || (A, (p) — p(Jn — I,)X)v]|2 it suffices to manage || (A, (1 —p) — (1 — p)(J, —

I,,))v]2, for which our previous argument applies. (I

9. Concluding remarks

As mentioned before, we believe the threshold for a random matrix to have simple spectrum should be p ~ logn/n
rather than p ~ n~'*%_ The calculations near the threshold are more involved and will appear elsewhere. Additionally,
our arguments naturally offer a quantitative bound on the size of the gaps between eigenvalues and the smallest absolute
value of an eigenvalue (which is needed to bound the condition number of the matrix). We have made no attempt to
optimize these bounds so we pursue this line of work in a separate article.

The proof of our result for adjacency matrices applies almost without change to matrices of the form R, + M,, where
R, is a deterministic low-rank matrix. However, to generalize this result to arbitrary non-zero mean matrices requires
several new tools which we are currently developing. The ¢-net arguments that lie at the core of our current work fail in
this setting as we no longer have the necessary control on the operator norm of the matrix and the image of the matrix
may not be a perturbation of a low-dimensional space as for the adjacency matrix. To address these new concerns, it will
be necessary to use sparse versions of the Inverse Littlewood—Offord theorems of the second author and Nguyen.

Appendix A: Proof of Proposition 5.3
A.l. Matrix lemma

The following observation was first utilized in [3]. If we fix the submatrix corresponding to the support of a sparse vector,
it is likely that many of these rows will contain exactly one non-zero entry. In this case, in the product of the matrix with
the sparse vector, there is no cancellation in these coordinates. As we are dealing with deviations of a matrix from a fixed
vector u, we simply modify the lemma to show that there are many rows with exactly one non-zero coordinate with a
convenient sign.

Lemma A.1. Let M, be a n x n matrix with independent entries m;; = §;;§;; where §;; are Bernoulli random variables
with P(8;; = 1) = p, where p > Clogn/n and §;; are iid random variables with max{P(§;; > 1),P(§;; < —1)} > co. For
k € N, we define Sc”/ to be the event that for any vector of signs {sj};le there are at least ck pn rows of My, for which
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there is exactly one non-zero entry m;; withm;je; > 1 and i # j in the columns corresponding to J, and all zero entries
in the columns corresponding to J'. Let

1
M=K :=Kk./pnA—.
8p

Then, there exists constants 0 < ca 1, 614_1’ depending only on cq such that

IE”( ﬂ ﬂ ﬂ 5!,/;?) > 1 —exp(—cpn).

e=@pyrm Vi ge(tl) ye() ynr=o

Proof. The same proof as in [3, Proof of Lemma 3.2] yields the result when applied to the upper |n/2] x |n/2] submatrix
of M,,. The entries in this submatrix are independent. |

A.2. Very sparse vectors

Definition A.2. For any x € S n=1 let 7, : [n] = [n] be a permutation which arranges the absolute values of the coordi-
nates of x in an non-increasing order. For 1 <m <m’ < n, denote by Xm:m) € R" the vector with coordinates

x[m:m’](j) =x(j)- 1[m:m’] (ﬂx (]))

In other words, we include in xp,.,] the coordinates of x which take places from m to m’ in the non-increasing rearrange-
ment.
For o < 1 and m < n define the set of vectors with dominated tail as follows:

Dom(m, &) := {x € S" " | | xpm+1m1ll2 < /M| Xpmt 11|00 -

Lemma A.3. Denote

e {MW
7 logypn |
P(3x € Dom(1/8p. (CK)™")

such that || (M, — M\)x ||2 < (C/K)_ZO\/p_n
and | My — 11| < K /pn)

<exp(—cpn).

Proof. We begin by diving [n] into two roughly equal sets. Let ng = [rn/2]. We denote this decomposition by

_(A B _(y
o= (3 B ().

Thus, we have the following equivalence.
2 2
(M, — x| = 1Ay + Bzl3 + | BTy + Cz|.
We condition on a realization of A and C.
IP’(EIx € Sparse(m) N S"~! such that || (M,, — AM)x H2 < cnp).

Let us begin with the assumption that p > (1/4)n=1/3. In this regime, £o = 1. For k € [n] let Jy = {k} and J| =
supp(x) \ Jk. Define the following vectors of signs. {¢; };'.zl = {sgn(z;) - sgn((Ay);) ?‘:1'

[s—ax5= Y S(Bai+@m)+ > Y ((BTy), +€Cai)

kesupp(x)N[1,ngliel kesupp(x)N[no+1,n]iely
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= Y Yt 3 (BN

kesupp(x)N[1,npliel kesupp(x)N[no+1,n]iely
2 2 _
> Z caapnz; + Z cpny; = cpn,
kesupp(x)N[1,n0] kesupp(x)N[np+1,n]

where in the final inequality we have invoked Lemma A.l with the necessary signs. Now we extend this estimate to
Dom(1/8p, (CK)™!). Let m = (8p)~!. Assume that

| (M, — x| < %\/cp—n.
Since x € 8", we have lxpn+1:n1lloo < m~1/2. Therefore,
Ixpa-+ 11112 < (CK) ™' mlxpn i lloo < (CK) ™
Therefore we have
| (M = Wxp1m]y < | (Mo = 2x |, + (K /P)(CK) ™ < f—lwp—n

4
for C > 7

Furthermore,

cpn

E

1My — ) pra/ xpem) |5 = [ (M = Dxpimy |, < K1 = lIximll2] <

2
Now we address the remaining % <p< (1/4)n’1/ 3. Note that
1
> 1.
8p./pn
Let x € Dom(1/8p, (CK)™"). We rearrange the coordinates of x by decreasing magnitude and group them into blocks
of size (pn)t/? with £ =1, ..., £o. From here on, for simplicity, we assume that (pn)?/2 = 1/8p. In other words, set

2= X(pm) E D24 1:(pn) 2]

and
Zlo+1 = X(pnylo/241:n]"

For ease of notation, let m = ( pn)l‘)/ 2 'We now find a block of substantial £> norm. Observe that

lzegr1ll2 < (CK) ™ /mllzeg+1lloo < V2(CK) Vizgy ll2- 4)
Since x € S"! implies Zﬁ‘_ﬁl ||z@||% =1, we have

Lo

D llzel3 = 1-2(CK)2,

=1

On the other hand, for K > 1,if C > 2, then 3 ZZ‘;I (CK)’Z < 1. Therefore,

Ly

£o
D CK)YTH <Yzl

=1 =1

from which one can deduce that there exists £ < £y such that ||z¢|l» > (CK)~*. Let £, be the largest index with this
property and define u = Zﬁ*zl ¢, V= Zﬁféi 41 2¢- We begin with the case €, < {o. By the triangle inequality and (4),
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we have
Z()-Q—l
lla< D llzells <2v2(CK) 5T
{=l+1

Letk = (pn)“*_l)/z. Note that

c<aptoe L

We apply Lemma A.1 with this choice fo «. Divide the support of u into ,/pn blocks of size «. Define L, :=
T Y([1, (np)*+/?]), where 7, is the permutation arranging the coordinates of x in decreasing order with respect to magni-
tude. For s € [(pn)'/?], define J; := w1 ([(s — i + 1, sk1), and set J| = Ly, \ Js. Since |J!| < |L¢,| =k /pn, we apply
Lemma A.1 to get a set A with large probability, such that on A, there exists subset of rows I with |I;| > ckpn for all
s € [/pn], such that for every i € Iy, we have |g; j,| > 1 for only one index jo € J; and a; ; =0 forall j € JyU I\ {Jo}-
It can further be checked that I, I, ..., I J/pn are disjoint subsets. Therefore, on set A for any i € I,

(M = 2u), | = [(M)ijou o) | = | (Ma)i,jo - [uCio)| =[x (s50) |-
Here we used that ;. is a non-increasing rearrangement. Now note that for i ¢ supp(u),
(M, — A)u)i = (Myu);, and supp(u)=k./np <K cknp,

as long as np — oo. Therefore,

My =2z 3 ¥ (M)’

s=1 iely\supp(u)

cpn (pm)'/2
_ 2
= N K(x(n’x 1(S/()))
s=1
pn "
—1 2
= 2 (W)
k=(pn)x—1/2

cpn cpn _

= THZE*H% > - (CazK)™2%, 3)

where the third inequality uses the monotonicity of the sequence {|x (7 L(ky)| }i—,- Combining the above with the bound
on ||v]|2, on the set A, we get that

(M, — x|, = | (M — V|, — 1My = 2| [Jvll2

I, =
> ,/%(CK)%* — (K + R)pi - 2V2(CK)"&HD > /pm(C'K) ™ /.

where the last inequality follows if the constants C, C’ are chosen large enough independently of £,.
Now we consider the case when £, = £. Note that in this setting, using (5), we have that

cpn
My — dull2 =, - llzeoll2,

and from (4), we have |[v|l2 = ||z¢g+1l2 < V2(CK)™! lz¢, ll2. Now proceeding similarly as before, on .A, we obtain that

| (M, — x|, = /Pr(CK + R)) ™ y/pn.

Since by Lemma A.1, P(A) > 1 — exp(—cpn), the proof is complete. (|
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A.3. Moderately sparse vectors

A.3.1. Small ball probability

Lemma A4. Let §; be independent Bernoulli random variables taking value 1 with probability p and &; be independent
random variables with mean 0, variance 1, and subgaussian moment bounded by B. For a vector x = (x1,...,x,) € R",
we have

" 1 cp
L Si&ixi, —llx]| <1- :
(; r zﬁ) (lloe/ X122+ 7

Proof. We can assume that x is a unit vector. We use the symmetrization technique to reduce the Levy function to a
bound on the small ball probability around the origin. Let 8}, ...,8, and &/, ..., &, be independent copies of 41, ..., 8,
n
Z Si&lxi —r
i=1

and &, ...,&,. Forany r € R,
5;)1?( 5;) (6)

(o)
Szt). )

n n
D Sikixi—r > siixi —r
i=l1 i=1

=

Let ¢; :=8;& — 8/&/ and S := Y_I'_| ¢ix;. Observe E¢; =0, E¢? = 2p, E¢? = 0 and E¢* = 2pE&* + 6p2(E£2)? < Cp
for some constant C depending only on the subgaussian moment B. ES? = I E;iz . xi2 =2p and

n

Z(&'Si — 8/&])xi

i=1

n
Est=) Egt-x!+3) Eejx Eixi < Cllxl%p +12p°
i=1 Jj#k

for some constant C’ depending only on B. Thus by the Paley—Zygmund inequality, for 2t < \/2p,

(ES? — 41%)?

P(|S|<2t)<1-— 5

Therefore,

1
P<|S| < 5@) <1 P

Clixliz +p

Combining this with inequality (6) yields

1 c'p
P <-Jrl= - ——
<4 4f> Vo Rt

n
Z Sifixi —r
i=1
and setting ¢ = ¢’/2 yields the result. O

Lemma A.5. For a random variable, X, with subgaussian moment bounded by B. Then for any k € N, we have
E(x*)* <2BVE.

Lemma A.6. Let Vi,...,V, be non-negative independent random variables such that P(V; > 1) > q, for all i € [n], and
for some q € (0, 1/2). Then there exist constants 0 < ¢, ¢’ < 0o, such that

IE”(Z Vi < %) < exp(—cy ¢1).

j=1
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Corollary A.7. Let M,, be a symmetric random matrix. Then for any a > 1, there exist 8,y > 0 such that for x € R"
satisfying

xlloo/llxll2 < ay/P,
we have
P(|| (M, — 2)x 5 B/ Prx]12) < exp(—yn).

Proof. Without loss of generality, we can assume that the coordinates of x are organized by their magnitudes in decreasing
order. Let ng = [n/2].

A B y
wi=( 2. e=()

Then,

1
1yl = 7 llxll2

16
plyl3

so then [|ylleo/llyll2 < 20/p. Fixaw € R" and let V; = ((BTy + Ez)j — wj)z. Also, by our assumptions,

c c
>
(ylloo/lIyII2)* 4+ p — 42 +1

with ¢ from Lemma A.4. By Lemmas A.4 and A.6 we have

5. B/Prllxl2) <P(| BTy + Ez|,.28/pnlyll2). 0

P(|| (M, — A)x

A.4. Compressible vectors

Proof of Proposition 5.3. We begin by diving [n] into two roughly equal sets. Let ng = [rn/2]. We denote this decom-
position by

(A B (Y (v
w8 50 +-()

where A is ng x ng and C is n — ng X n — ng. Thus, we have the following equivalence.

| (M, = ADx |3 = 1Ay + BzI3 + | BTy + Ez|5.
We condition on a realization of A and E. Let
W := Sparse(M) \ (Comp((8p)~", p) UDom((8p) ', (CK)™1).
Denote m = (8p) ! som < M/2.
Case I: Let’s begin by assuming p > }Tn_l/3. In this regime, €9 = 1 and so p = (C’K)~2 for C’ from Lemma A.3.
Observe that forx € V,
1Xtm -+ 1:001 oo/ IXpm 4 1:001 12 < CK/8p
for C from Lemma A.3. Since, x ¢ Comp(m, p), ||Xpn+1:m1ll2 = p. Thus, by Corollary A.7,
P(]| My —)x ||2 = (C/K)%«/P_”llx[mH:M] I2) <exp(—c'n).

Now we extend this bound to all vectors in V. Define ¢ = (C'K)~*p. There exists an e-net N C V of cardinality less

than
n\ (3\M - oaf 3¢
- xp| cn .
M e =exp & C53€
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Since lim,_,¢ x log(1/x) = O there exists a constant ¢ so that clog(i—g) < ¢’/2. Therefore, by the union bound,

P(Ex e N : | (My — ADx||, < (C'K) 7> /prllxpms 1 l2) < exp(—(c'/2)n).
We now extend this result to all of W. Assume for all x € N,

| My = 2D)x |, = (C'K) ™ /plxim 1 2.
Let x’ € V. There exists a x € N such that ||x" — x|, < e. We have

|(My, —aDx'|, > (M — 2Dx |, — 1My — M| | x — x|,

I
> (C/K)_S\/P_””x[m+1:M]”2 —Ke
> %(C'K)_3«/P_"p-

Case ITI: We now tackle the remaining case where $1%8% <p< 1n=13 Let 1 ,J C [n] be disjoint sets such that
g n P =7 ]

|[I|=m, |J| =M —m. Let ¢, T be positive numbers to be chosen later. The sets
By :={u € BY : supp(u) C 1},

and
Ry :={ueS" " :supp(u) C J and ||ulloc <4CK /p}

admit an e-net N; C By and a t-net N C R of sizes

[1]
INTI < <§>
P
[J]
Nyl < <§> .
T

Let NV be an e-net in [p/+/2, 1] C R, and let

and

My = {u+lw:u€/\f1,w€/\/1,le./\/o}

and

M:=<U U M,,).

IC[n], JCln],
[|=m |J|=M—-m,INI=2

We now verify that this is an appropriate net for W. Let x € W be decomposed as x = u, + v, where uy = x[1.) and
Uy = X[m+1:M]. Since x ¢ Comp(m, p) U Dom(m, (CK)™1), this implies that

luxll2>p and |lvxlleo < CK+/8pllvxll2. (8)
Choose u € N7, v € Ny and [ € Ny such that
l —ull <e, Hvx/||vx||2—5”2§f and ’”Ux”Z_l’fS-

We can easily modify the net M so that M C W at the cost of adjusting ¢ and t by a factor of 2. Thus, by (8) we have
for a fixed x € M

P((M, — D)% < (C'K) ™ /prvslla) < e™™.
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Now forx e W,
[(My —2)x |, = | (M = 2)x||, — 1My = A (1w — uzll2 + lve —vill2).
We observe that

| el

lvxll2

Uy Ui

loxllz llvzll2

llvzll2 + llvxll2 < 2t|lvgll2 + 2e.

2

lvx —vzll2 <

Therefore, letting 1’ := (CK) ™3,
|(My = 2)x|, = i llvzlla/pn — K /pr(3e 4 2t [[vz]l2).

! ’
; . Wp — W
Setting ¢ := 7% and T = g implies

1
| M = 2)x], = S0 /P

To take the union bound over all points in the net, we must obtain an upperbound on the size of the cardinality of the net.

=) C)

We first bound

(o) G =) (o) = () (5 = semmr ()

Thus,

288¢Kpn \ 8P [ 24eK \ "
wp cw' )

=(

We claim that

288¢K pn (8">*1< 24eK \"
wp “\ew )

This reduces to the assertion that
p! log(ﬂ) =o(n)
0

which is obvious by our assumption that np — oo and £g = o(np). Finally, we conclude that

IM| < exp(—c'n/2)

if we choose ¢ small enough since lim,_, ¢ x log(1/x) = 0. Therefore, a union bound concludes the proof. ]

Appendix B: Non-centered version of Proposition 5.3

To derive an analogue of Proposition 5.3. We begin by diving [#] into two roughly equal sets. Let ng = [n/2]. We denote
this decomposition by

An—p(J,,—I,,)=<BET 2) x=(§>.

To lowerbound || (A, — p(J, — I,,))x||§, it suffices to lower bound ||Ey + Bz||%. For very sparse vectors, we can use the
sign-matching argument from Section A.3 after conditioning on a realization of E. For moderately sparse vectors, the
Lévy concentration argument is insensitive to shifts and for the net argument, we add an extra net over the low-dimensional
image as in Section 8. We omit the details.
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