
&HQWUDO�OLPLW�WKHRUHPV�IRU�WKH�UHDO�]HURV�RI�:H\O�

SRO\QRPLDOV�

<HQ�'R��9DQ�9X

$PHULFDQ�-RXUQDO�RI�0DWKHPDWLFV��9ROXPH������1XPEHU����2FWREHU
������SS�������������$UWLFOH�

3XEOLVKHG�E\�-RKQV�+RSNLQV�8QLYHUVLW\�3UHVV
'2,�

)RU�DGGLWLRQDO�LQIRUPDWLRQ�DERXW�WKLV�DUWLFOH

[ Access provided at 29 Aug 2022 16:02 GMT from Yale University Library ]

KWWSV���GRL�RUJ���������DMP����������

KWWSV���PXVH�MKX�HGX�DUWLFOH��������VXPPDU\

https://doi.org/10.1353/ajm.2020.0034
https://muse.jhu.edu/article/763847/summary


CENTRAL LIMIT THEOREMS FOR THE REAL ZEROS OF WEYL
POLYNOMIALS

By YEN DO and VAN VU

Abstract. We establish the central limit theorem for the number of real roots of the Weyl polynomial
Pn(x)= ξ0+ξ1x+ · · ·+ 1√

n!
ξnxn, where ξi are iid Gaussian random variables. The main ingredients

in the proof are new estimates for the correlation functions of the real roots of Pn and a comparison
argument exploiting local laws and repulsion properties of these real roots.

1. Introduction. In this paper, we discuss random polynomials with
Gaussian coefficients, namely, polynomials of the form

Pn(x) =
n∑

i−0

ciξix
i

where ξi are iid standard normal random variables, and ci are real, deterministic
coefficients (which can depend on both i and n).

The central object in the theory of random polynomials, starting with the clas-
sical works of Littlewood and Offord [16, 17, 18], is the distribution of the real
roots. This will be the focus of our paper. In what follows, we denote by Nn the
number of real roots of Pn.

One important case is when c1 = · · · = cn = 1. In this case, the polynomial
is often referred to as Kac polynomial. Littlewood and Offord [16, 17, 18] in the
early 1940s, to the surprise of many mathematicians of their time, showed that Nn

is typically polylogarithmic in n.

THEOREM 1. (Littlewood-Offord) For Kac polynomials,

logn
log logn

≤Nn ≤ log2n

with probability 1− o(1).

Almost simultaneously, Kac [15] discovered his famous formula for the density
function ρ(t) of Nn; he show
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1328 Y. DO AND V. VU

ρ(t) =

∫ ∞

−∞
|y|p(t,0,y)dy,(1.1)

where p(t,x,y) is the joint probability density for Pn(t) = x and the derivative
P ′n(t) = y.

Consequently,

ENn =

∫ ∞

−∞
dt

∫ ∞

−∞
|y|p(t,0,y)dy.(1.2)

For Kac polynomials, he computed p(t,0,y) explicitly and showed [15]

ENn =
1
π

∫ ∞

−∞

√
1

(
t2−1

)2 +
(n+1)2t2n

(t2n+2−1)2dt=

(
2
π
+ o(1)

)
logn.(1.3)

More elaborate analysis of Wilkins [30] and also Edelman and Kostlan [8]
provide a precise estimate of the RHS, showing

ENn =
2
π

logn+C+ o(1),(1.4)

where C = 0.65 . . . is an explicit constant.
The problem of estimating the variance and establishing the limiting law has

turned out to be significantly harder. Almost thirty years after Kac’s work, Maslova
solved this problem.

THEOREM 2. [19, 20] Consider Kac polynomials. We have, as n tends to in-
finity

Nn−ENn
(

VarNn
)1/2
−→N(0,1).

Furthermore VarNn = (K+ o(1)) logn, where K = 4
π (1−

2
π ).

Both Kac’s and Maslova’s results hold in a more general setting where the
gaussian variable is replaced by any random variable with the same mean and vari-
ance; see [13, 19, 20].

Beyond the case c1 = · · · = cn = 1, the expectation of Nn is known for many
other settings, see for instance [4, 8, 9, 19] and the references therein and also the
introduction of [7] for a recent update. In many cases, the order of magnitude of the
coefficients ci (rather than their precise values) already determines the expectation
ENn almost precisely (see the introduction of [7]).

The limiting law is a more challenging problem, and progress has been made
only very recently, almost 40 years after the publication of Maslova’s result. In
2015, Dalmao [5] established the CLT for Kostlan-Shub-Smale polynomials (the



CENTRAL LIMIT THEOREMS FOR REAL ZEROS OF WEYL POLYNOMIALS 1329

case when ci =
√(n

i

)
). It is well known that in this case the expectation ENn is

precisely 2
√
n [8].

THEOREM 3. [5] Consider Kostlan-Shub-Smale polynomials. We have, as n
tends to infinity

Nn−ENn
(

VarNn
)1/2
−→N(0,1).

Furthermore VarNn = (K+ o(1))
√
n, where K = 0.57 . . . is an explicit con-

stant.

There are also many recent results on random trigonometric polynomial; see
[2, 3, 11, 27]; in fact, [5] is closely related to [2], and the proof of Theorem 3 used
the ideas developed for random trigonometric polynomials from [2]. In particular,
the papers mentioned above made essential use of properties of gaussian processes.

In this paper, we first establish the central limit theorem for Nn for another
important class of random polynomials, the Weyl polynomials

Pn(x) =
n∑

k=0

ξk√
k!

xk.

THEOREM 4. Consider Weyl polynomials. We have, as n→ ∞,

Nn−ENn
(

VarNn
)1/2 −→N(0,1).

Furthermore VarNn = (2K+ o(1))
√
n, where K = 0.18198 . . . is an explicit

constant.

It is well known that for Weyl polynomials ENn = ( 2
π + o(1))

√
n (see e.g.,

[29, Theorem 5.3]). We give the exact value of K in the next section.
Our method for proving the CLT is new, and it actually yields a stronger result,

which establishes the following CLT for a very general class of linear statistics.
To fix notation, let h : R→ R. Given 0 < α ≤ 1, we say that h is α-Hölder

continuous on an interval [a,b] if |h(x)−h(y)| ≤ C|x− y|α for any a≤ x,y ≤ b,
and the constant C is uniform over x,y. Below let Zn denote the (multi)set of the
real zeros of Pn.

THEOREM 5. There is a finite positive constant K such that the following
holds.

Let h : R→ R be bounded, nonzero, and supported on [−1,1] such that
(i) h has finitely many discontinuities and
(ii) h is Hölder continuous when restricted to each interval in the partition of

[−1,1] using these discontinuities.



1330 Y. DO AND V. VU

Let (Rn)→ ∞ such that Rn ≤ n1/2 + o(n1/4) and let Nn =
∑

x∈Zn
h(x/Rn).

Then

lim
n→∞

Var
[
Nn
]

Rn‖h‖2
2
=K.

Furthermore, as n→ ∞ we have the following convergence in distribution:

Nn−ENn
(

VarNn
)1/2
−→N(0,1).(1.5)

Taking h= 1I where I is union of finitely many intervals in [−1,1], we obtain
the following corollary, which establishes the CLT for the number of real roots in
unions of intervals with total length tending to infinity.

COROLLARY 1. There is a finite positive constant K such that the following
holds. Let I ⊂ [−1,1] be union of finitely many intervals. Let (Rn)→ ∞ such that
Rn ≤ n1/2+o(n1/4) and let Nn be the number of zeros of Pn in RnI = {Rnx, x∈
I}.

Then

lim
n→∞

Var
[
Nn
]

Rn|I|
=K.

Furthermore, as n→ ∞ we have the following convergence in distribution:

Nn−ENn
(

VarNn
)1/2
−→N(0,1).

For the special case when I is an interval of the form [−a,a], the above asymp-
totics for the variance of the number of real roots was obtained in [25].

The assumption (Rn)→ ∞ on the length is fairly optimal in the sense that
asymptotic normality is unlikely to hold for bounded sequences (Rn) due to the
repulsion between nearby real roots and the fact that there are not many real roots
inside a bounded interval (see Lemma 4). A similar result of this type was obtained
by Granville and Wigman [11] for random trigonometric polynomials, in the spe-
cial case where the union I consists of one interval.

2. A sketch of our argument and the outline of the paper. The heart
of the matter is Theorem 5. It is well known that most of the real roots of the
Weyl polynomial (which we will denote by Pn in the rest of the proof) are inside
[−
√
n,
√
n]; see for instance [8, 29] (see also Lemma 4 of the current paper for a

local law for the number of real roots of Pn). Instead of considering Nn, we restrict
to the number of real roots inside [−

√
n,
√
n]. By Theorem 5, this variable satisfies

CLT. To conclude the proof of Theorem 4, we will use a tool from [29] to bound the
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number of roots outside this interval, and show that this extra factor is negligible
with respect to the validity of the CLT.

In order to establish Theorem 5, we first prove a central limit theorem for the
random Weyl series

P∞(x) =
∞∑

k=0

ξk√
k!
xk.

Let Z denote the (multi)set of the real zeros of P∞ where each element in Z is
repeated according to its multiplicity.

For h : R→ R and R > 0 let n(R,h) =
∑

x∈Z h(x/R).

THEOREM 6. There is a finite positive constant K such that the following
holds.

Let h : R→ R be nonzero compactly supported and bounded. Then

lim
R→∞

Var
[
n(R,h)

]

R‖h‖2
2

=K

and as R→ ∞ we have the following convergence in distribution:

n(R,h)−En(R,h)√
Var
[
n(R,h)

] −→N(0,1).

Furthermore, for any k ≥ 1 it holds that E[n(R,h)k]≤Ch,kRk.

The constant K is the same in Theorem 4, Theorem 5, and Theorem 6, and
could be computed explicitly:

K =
1
π
+

∫ (
ρ(0, t)− 1

π2

)
dt(2.1)

where ρ(s,t) is the two-point correlation function for the real zeros of P∞. In fact,
numerical computation of K was done by Schehr and Majumdar [25] using an
explicit evaluation of ρ(s,t) (from the Kac-Rice formula), giving K = 0.18198 . . ..
For the convenience of the reader and to keep the paper self-contained we sketch
some details in Appendix C.

We deduce Theorem 5 from Theorem 6 via a comparison argument. Roughly
speaking, we try to show that, restricted to certain intervals, there is a bijection
between the real roots of the two functions. This argument relies critically on the
repulsion properties of the real roots of Pn and P∞ (see Section 6).

The rest of the paper is devoted to proving Theorem 6. By extending the poly-
nomial to the full series, we can take advantage of the invariance properties of the
root process. The main ingredients of the proof are estimates for the correlation
functions of the real zeros of P∞. These correlation function estimates are inspired



1332 Y. DO AND V. VU

by related results for the complex zeros of P∞ by Nazarov and Sodin [22], and we
adapt their approach to the real setting. One of the essential steps in [22] is to use
a Jacobian formula (which relates the distribution of the coefficients of a polyno-
mial to the distribution of its complex roots) to estimate the correlation functions
of random polynomials with fixed degrees. Such formula is, however, not avail-
able for real roots, and to overcome this difficulty we use a general expression for
correlation functions of real roots of random polynomials due to Götze, Kaliada,
Zaporozhets [10]. This expression turns out to be useful to study correlation of
small (real) roots, and to remove the smallness assumption we appeal to various
invariant properties of the real roots of P∞.

Outline of the paper. In Section 3 we will prove several estimates concern-
ing the repulsion properties of the real zeros of Pn and P∞. In Section 4 we will
prove some local estimates for the real roots of Pn. In Section 6 we will use these
estimates to prove Theorem 5 assuming the validity of Theorem 6.

In Section 7 we summarize the new estimates for the correlation functions for
the real zeros of P∞, which will be used in Section 8 to prove Theorem 5.

The proof of the correlation function estimates stated in Section 7 will be pre-
sented in the remaining sections.

Notational convention. By A ! B we mean that there is a finite positive
constant C such that |A| ≤ CB. By A !t1,t2..., B we mean that there is a finite
positive constant C that may depend on t1, t2, . . . such that |A| ≤ CB. Sometimes
we also omit the subscripts when the dependency is clear from the context.

We also say that an event holds with overwhelming probability if it holds with
probability at least 1−OC(n−C) where C > 0 is any fixed constant.

For any I ⊂ R we will let Nn(I) be the number of real roots of Pn in I .

Acknowledgments. The authors would like to thank Manjunath Krishnapur for
useful suggestions and Gregory Schehr for a correction concerning the computa-
tion of the explicit constant K.

This work was initiated during our visit at the Vietnam Institute for Advanced
Study in Mathematics during 2016. We thank the Institute for the hospitality and
support.

3. Real root repulsion. In this section we will prove some repulsion esti-
mates for the real roots of Pn (and P∞). These estimates will be used to deduce
Theorem 5 from Theorem 6.

3.1. Uniform estimates for Pn and P∞. We first establish several basic
estimates for the derivatives of Pn and P∞. For convenience of notation let P>n =
P∞−Pn.

LEMMA 1. Let In = [−n1/2 +n1/6 logn, n1/2−n1/6 logn].
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For any m≥ 0 integer and C > 0 there is a constant c= c(m,C)> 0 such that
for any N > 0 and n≥ 1

P
(

sup
y∈In

∣∣e−y2/2P (m)
n (y)

∣∣>Nnm/2

)
! ne−cN

2
,(3.1)

P
(

sup
y∈In

∣∣e−y2/2P (m)
∞ (y)

∣∣>Nnm/2

)
! ne−cN

2
,(3.2)

P
(

sup
y∈In

∣∣e−y2/2P (m)
>n (y)

∣∣>Nn−C
)

! ne−cN
2
.(3.3)

The implicit constants may depend on C and m.

Proof. Without loss of generality we may assume N > 1.
We first show (3.1). For any fixed y, we have

Var[e−y
2/2P (m)

n (y)] = e−y
2

n∑

k=m

(k+m)2 . . . (k+1)2 y2k

(k+m)!

= e−y
2
n−m∑

k=0

(k+m) . . . (k+1)
y2k

k!

< nm.

Since e−y
2/2P (m)

n (y) is centered Gaussian, it follows that for each fixed y we have

P
(∣∣e−y2/2P (m)

n (y)
∣∣≥Nnm/2)! e−N

2/4.

Let X = (ξ0, . . . ,ξn) and let ‖ · ‖ denote the %2 norm on Rn+1. By Cauchy-
Schwarz, we have the deterministic estimate

∣∣e−y2/2P (m)
n (y)

∣∣≤ ‖X‖Var
[
e−y

2/2P (m)
n (y)

]
< ‖X‖nm/2.

Let δ ∈ (0,1) to be chosen later. Divide the interval In into O(n1/2δ−1) inter-
vals of length at most δ. Let K be the collection of the midpoints of these intervals,
then by an union bound we have

P
(
∃y ∈K :

∣∣e−y2/2P (m)
n (y)

∣∣>Nnm/2)≤ n1/2δ−1e−N
2/4.
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For any y′ ∈ In, then there is y ∈ K such that |y′ − y| ≤ δ. Now, for any ε ∈
(0,1), using the mean value theorem we have

∣∣e−(y+ε)2/2P (m)
n (y+ ε)− e−y

2/2P (m)
n (y)

∣∣

≤ e−(y+ε)
2/2
∣∣P (m)

n (y+ ε)−P (m)
n (y)

∣∣+
∣∣[e−(y+ε)2/2− e−y

2/2]P (m)
n (y)

∣∣

≤ εe−(y+ε)2/2 sup
α∈(y,y+ε)

∣∣P (m+1)
n (α)

∣∣+ ε(y+ ε)e−y2/2
∣∣P (m)

n (y)
∣∣

≤ ‖X‖ε
[
n(m+1)/2 +(y+ ε)nm/2]

! εn(m+1)/2‖X‖.

One could crudely estimate P (‖X‖ > eN
2/8) ≤ e−N

2/4E‖X‖2 = (1+n)e−N
2/4.

(There are sharper estimates for X which follows the chi-squared distribution, but
the above estimate is good enough for our purposes.) Therefore by letting δ =
Nn−1/2e−N

2/8 and conditioning on the event ‖X‖ ≤ eN
2/8 we obtain

P
(
∃y ∈ In :

∣∣e−y2/2P (m)
n (y)

∣∣> 4Nnm/2)

≤ nN−1e−N
2/8 +(n+1)e−N

2/4

! ne−N
2/8.

This completes the proof of (3.1).
By the triangle inequality it remains to show (3.3).
We proceed as before. Given any fixed y we have

Var
[
e−y

2/2P (m)
>n (y)

]
= e−y

2
∞∑

k=n−m+1

(k+1)2 . . . (k+m)2 y2k

(k+m)!

! y2me−y
2

∞∑

k=n−m+1

y2(k−m)

(k−m)!
.

Let y0 = n1/2−n1/6 logn. Then for n large enough (relative to m) we have
n−m+ 1≥ y2

0 > y2, consequently for each k ≥ n−m+ 1 the function h(y) =
2k log |y|− y2 is increasing over y ∈ (0,y0). It follows that

Var
[
e−y

2/2P (m)
>n (y)

]
! nme−y

2
0

∞∑

k=n−2m+1

y2k
0

k!
.
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Since
√
n! y0 ≤

√
n and m= (1), it follows that

Var
[
e−y

2/2P (m)
>n (y)

]
! nme−y

2
0

∞∑

k=n

y2k
0

k!

! nme−y
2
0

[(1.01)n]∑

k=n

y2k
0

k!

! nm+1e−y
2
0
y2n

0

n!

(here we used the fact that y2
0/k < 1/1.01 < 1 if k ≥ (1.01)n, and y2/k ≤ 1 for

k ≥ n). Consequently,

Var
[
e−y

2/2P (m)
>n (y)

]
! nm+1e−y

2
0
y2n

0

n!

! nm+1e−y
2
0

y2n
0

(n/e)n+1/2

= nm+1/2e−y
2
0+2n logy0−n logn+n.

Now, for brevity write y0 =
√
n(1−β) where β = n−1/3 logn= o(1), then

−y2
0 +2n logy0−n logn+n

=−n
(
1−2β+β2)+n logn+2n log(1−β)−n logn+n

= 2n
[
β− β

2

2
+ log(1−β)

]

=−2n
β3

3

(
1+O(β)

)

≤−nβ3/3 =− logn3/3

when n is large. Therefore

Var
[
e−y

2/2P (m)
>n (y)

]
! nm+1/2e− logn3/3 !C,m n−C(3.4)

for any C > 0. Therefore for any fixed y such that |y| ≤
√
n(1− logn/n1/3) we

have

P(|e−y2/2P (m)
>n (y)|>Nn−C)! e−N

2/4.



1336 Y. DO AND V. VU

Let X = (ξn+1,ξn+2, . . . ,ξ3n,ξ3n+1/2, . . . ,ξm/2m−3n, . . .) and let ‖ · ‖ denote
the %2 norm on Rn+1. By Cauchy-Schwarz and using y2 ≤ n, we have the deter-
ministic estimate

∣∣e−y2/2P (m)
>n (y)

∣∣≤ ‖X‖e−y2/2

(
3n−m∑

k=n+1−m

(k+1) . . . (k+m)y2k

k!

+
∑

k>3n−m

4k+m−3n(k+1) . . . (k+m)y2k

k!

)1/2

! ‖X‖e−y2/2

(
3n∑

k=n+1

kmy2k

k!
+O

(
nmy6n

(3n)!

))1/2

! ‖X‖nm/2.

Let δ ∈ (0,1) to be chosen later. Divide the interval In into O(n1/2δ−1) inter-
vals of length at most δ. Let K be the collection of the midpoints of these intervals,
then by an union bound we have

P
(
∃y ∈K :

∣∣e−y2/2P (m)
>n (y)

∣∣>Nn−C
)
≤ n1/2δ−1e−N

2/4.

For any y′ ∈ In, then there is y ∈ K such that |y′ − y| ≤ δ. Now, for any ε ∈
(0,1), using the mean value theorem we have

∣∣e−(y+ε)2/2P (m)
>n (y+ ε)− e−y

2/2P (m)
>n (y)

∣∣

≤ e−(y+ε)
2/2
∣∣P (m)

>n (y+ ε)−P (m)
>n (y)

∣∣+
∣∣[e−(y+ε)2/2− e−y

2/2]P (m)
>n (y)

∣∣

≤ εe−(y+ε)2/2 sup
α∈(y,y+ε)

∣∣P (m+1)
>n (α)

∣∣+ ε(y+ ε)e−y2/2∣∣P (m)
>n (y)

∣∣

! ‖X‖ε
[
n(m+1)/2 +(y+ ε)nm/2]

! εn(m+1)/2‖X‖.

One could crudely estimate P (‖X‖> eN
2/8)≤ e−N

2/4E‖X‖2 ! ne−N
2/4. There-

fore by letting δ =Nn−1/2e−N
2/8 and conditioning on the event ‖X‖ ≤ eN

2/8 we
obtain

P
(
∃y ∈ In :

∣∣e−y2/2P (m)
>n (y)

∣∣"Nnm/2)

! nN−1e−N
2/8 +ne−N

2/4

! ne−N
2/8.

This completes the proof of (3.3). #
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3.2. Repulsion of the real roots. In this section we prove estimates con-
cerning the separation of real roots of Pn and P∞ in

In =
[
−n1/2 +n1/6 logn, n1/2−n1/6 logn

]
.

LEMMA 2. For any c2 > 0 the following estimates hold for c1 > c2 +2:
(i) P

(
∃x ∈ In : Pn(x) = 0, | d

dx (e
−x2/2Pn(x))| < n−c1

)
! n−c2

(ii) P
(
∃x,x′ ∈ In : Pn(x) = Pn(x′) = 0, 0 < |x−x′|< n−c1

)
! n−c2 .

Proof. For convenience of notation let qn(x) = e−x
2/2Pn(x). Clearly qn and

Pn have the same real roots. Furthermore, for x ∈ In it holds that

q′n(x) = e−x
2/2P ′n(x)+ (−x)e−x2/2Pn(x)

≤ e−x
2/2
∣∣P ′n(x)

∣∣+
√
ne−x

2/2
∣∣Pn(x)

∣∣

and similarly

q′′n(x) = e−x
2/2P ′′n (x)+2(−x)e−x2/2P ′n(x)+

(
x2−1

)
e−x

2/2Pn(x)

! e−x
2/2
∣∣P ′′n(x)

∣∣+
√
ne−x

2/2
∣∣P ′n(x)

∣∣+ne−x
2/2
∣∣Pn(x)

∣∣.

Thus, using Lemma 1 with N = C log1/2n with C > 0 large, we obtain

P
(

sup
y∈In

∣∣q′′n(y)
∣∣" n log1/2n

)

! ne−cC logn < n−c2.(3.5)

(i) Let δ = n−c1.
Suppose that qn(x) = 0 and |q′n(x)|< δ for some fixed x ∈ In. Then for every

x′ ∈ In with |x′ −x| ≤ δ, conditioning on the event sup|y|∈In |q
′′
n(y)| ! n log1/2n

and using the mean value theorem, we have

qn(x
′) = qn(x)+ (x′ −x)q′n(x)+O

(
(x−x′)2n log1/2n

2

)

! δ2 + δ2n log1/2n

! δ2n log1/2n=: β.

Now, divide the interval In into O(n1/2δ−1) intervals of length at most δ/2. Using
the above estimates and using an union bound, it follows that

P
(
∃x ∈ In : qn(x) = 0,

∣∣q′n(x)
∣∣< δ

)
!
√
nδ−1 sup

x∈In
P
(∣∣qn(x)

∣∣! β
)
+n−c2.



1338 Y. DO AND V. VU

Now, for each x∈ In there is 0≤ j ≤ n depending on x such that |e−x2/2 xj
√
j! |"

n−1/2. To see this, we invoke (3.4) for m= 0 and obtain

e−x
2∑

j>n

x2j

j!
= Var

[
e−x

2/2P>n(x)
]
! n1/2e− log3n/3.

Consequently for x ∈ In we have
∑n

j=0
x2j

j! " ex
2

and therefore one could select a
j ∈ [0,n] with the stated properties.

Given such a j, we condition on e−x
2/2∑

i +=j ξi
xi
√
i!

, which is independent from
ξj , obtaining (for any absolute constant C > 0)

P
(∣∣qn(x)

∣∣≤ Cβ
)
≤ sup

z
P

(
xje−x

2/2
√
j!

ξj ∈ (z−Cβ,z+Cβ)

)

! ex
2/2√j!
|xj |

β ! n1/2β

since the density of the Gaussian distribution (of ξj) is bounded. Note that the
implicit constants are independent of x ∈ In. Consequently,

P
(
∃x ∈ In : Pn(x) = 0,

∣∣P ′n(x)
∣∣< δ

)

! n−c2 +nδ−1β = n−c2 + δn2 log1/2n= n−c2 +n2−c1 log1/2n! n−c2

provided that c1 > c2 +2.
(ii) Assume that for some x += x′ in In we have qn(x) = qn(x′) = 0. By the

mean value theorem there is some x′′ between x,x′ such that q′n(x
′′) = 0. Let

δ= n−c1 as before. Conditioning on the event sup|y|∈In |q
′′
n(y)|! n log1/2n (which

holds with probability 1−O(n−c2)) and using the mean value theorem we have

q′n(x) = q′n(x
′′)+ |x−x′′|O

(
n log1/2n

)
=O

(
δn log1/2n

)

therefore for any y ∈ [x− δ,x+ δ] it holds that

qn(y) = qn(x)+ (y−x)q′n(x)+ (y−x)2O
(
n log1/2n

)
=O

(
δ2n log1/2n

)
.

The rest of the proof similar to (i). #

Using an entirely similar argument, we also have the following series analogue
of Lemma 2.

LEMMA 3. For any c2 > 0 the following estimates hold for c1 > c2 +2:
(i) P

(
∃x ∈ In : P∞(x) = 0, | d

dx (e
−x2/2P∞(x))|< n−c1

)
! n−c2

(ii) P
(
∃x,x′ ∈ In : P∞(x) = P∞(x′) = 0, 0 < |x−x′|< n−c1

)
! n−c2 .
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4. Local law for Pn. In this section we prove a local law for Pn, which will
be used in the proof of Theorem 5 and Theorem 4.

LEMMA 4. The following holds with overwhelming probability: for any inter-
val I ⊂ R it holds that

Nn(I)!
(
1+
∣∣I ∩ [−

√
n,
√
n]
∣∣)no(1).

A variant of Lemma 4 for complex zeros of (non-Gaussian) Weyl polynomials
was considered in [29] (see estimates (87,88) of [29]). The proof given below for
Lemma 4 is inspired by the (complex) argument in [29]. Our setting is simpler
because Pn is Gaussian thus our condition on I is weaker (in comparison to the
requirement that I ⊂ {n−C ≤ |x|≤C

√
n} in [29]).

We will need the following estimate [29, Proposition 4.1, arXiv version].

PROPOSITION 1. Let n≥ 1 be integer and f be a random polynomial of degree
at most n. Let z0 ∈ C be depending on n, and let n−O(1) ! c ≤ r ! nO(1) be
quantities that may depend on n.

Let G : C→ C be a deterministic smooth function that may depend on n such
that

sup
z∈B(z0,r+c)\B(z0,r−c)

∣∣G(z)
∣∣! nO(1).

Assume that for any z ∈B(z0,r+ c)\B(z0,r− c) one has

log
∣∣f(z)

∣∣=G(z)+O
(
no(1))

with overwhelming probability.
Then with overwhelming probability the following holds: f +≡ 0 and the number

N of roots of f in B(z0,r) satisfies

N =
1

2π

∫

B(z0,r)
∆G(z)dz+O

(
no(1)c−1r

)

+O

(∫

B(z0,r+c)\B(z0,r−c)

∣∣∆G(z)
∣∣dz
)

where ∆G is the Laplacian of G.

We will use a crude estimate for the roots of Pn:

LEMMA 5. Given any C > 0, with probability at least 1−O(n−C) the roots
of Pn satisfy |z|≤ n(3C+2)/2.

Proof. Without loss of generality assume n ≥ 2. Let X = (ξ0, . . . ,ξn−1) and
let ‖.‖ denote the %2 norm on Rn. By Cauchy-Schwartz, we have the deterministic
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estimate
∣∣∣∣∣∣

n−1∑

j=0

ξj
zj√
j!

∣∣∣∣∣∣
≤ ‖X‖




n−1∑

j=0

|z|2j

j!




1/2

.

For any |z|> n(3C+2)/2 it is clear that the sequence (|z|2j/j!)nj=0 is lacunary

|z|2j/j!
|z|2j−2/(j−1)!

=
|z|2

j
≥ n3C+2/j ≥ n3C+1 > 1

therefore we have the deterministic bound



n−1∑

j=0

|z|2j

j!




1/2

!C n−(3C+1)/2 |z|n√
n!

.

Consequently it suffices to show that the event {‖X‖ ≤ 1
M n(3C+1)/2|ξn|} has prob-

ability at least 1−OM,C(n−C), any M > 0. Since E‖X‖2 = n, it follows that

P
(
‖X‖ < n(C+1)/2)= 1−O

(
n−C

)

and using boundedness of the density of Gaussian we have

P
(∣∣ξn

∣∣≥Mn−C
)
= 1−OM

(
n−C

)

thus taking the intersection of these two events we obtain the desired claim. #

4.1. Proof of Lemma 4. We now begin the proof of Lemma 4. Note that
Pn/|V arPn|1/2 is normalized Gaussian. It follows that for any z

log
∣∣Pn(z)

∣∣= 1
2

log
∣∣VarPn(z)

∣∣+O
(
no(1))

with overwhelming probability (the implicit constant is independent of z but the
bad event may depend on z). And

VarPn(z) =
n∑

j=0

|z|2j

j!
.

Let z be such that |z|≥
√
n. Then the sequence 1≤ |z|2/1!≤ · · ·≤ |z|2n/n! is

increasing. It follows that |z|2n/n!≤Var[Pn]≤ (n+1)|z|2n/n!, and consequently
using Stirling’s formula we have the uniform bound

log
∣∣VarPn(z)

∣∣ = 2n log |z|− log(n!)+O(logn)

= 2n log |z|− (n logn−n)+O
(
no(1)).
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If |z|≤ n1/2 then |z|2k/(k)!≥ |z|2k+2/(k+1)! for any k≥n and when k > 2n
we have |z|2k/k! ≥ 2|z|2k+2/(k+1)!. Thus n−1e|z|

2 ! Var[Pn]≤ e|z|
2

therefore

log
∣∣VarPn(z)

∣∣= |z|2 +O
(
no(1)).

We now take G(z) = 1
2g(|z|)|z|

2+(1−g(|z|))[n log |z|− 1
2n(logn−1)] which

is smooth where g : R→ [0,1] a bump function such that g(x) = 1 for |x| ≤
√
n

and g(x) = 0 for |x| ≥
√
n+ 1. In the transitional region

√
n ≤ |z| ≤

√
n+ 1, by

examination we have

2n log |z|−n logn+n= |z|2 +O(1).

Therefore for each z with overwhelming probability it holds that

log
∣∣Pn(z)

∣∣= 1
2

log
∣∣VarPn(z)

∣∣+O
(
no(1))=G(z)+O

(
no(1)).

Note that G is depending only on |z| and satisfies polynomial bound G(z) =
O(nO(1)) if |z| is also at most polynomial in n. Furthermore,

∆G(z) =

{
2, |z|≤

√
n

0, |z|≥
√
n+1

and for
√
n < |z|<

√
n+1 using the polar coordinate form of ∆ it holds that

∆G(z) =

[
1
r
∂r+∂rr

](
g(r)

r2

2
+
(
1− g(r)

)(
n logr− 1

2
n logn+

n

2

))

=O

(
1
r

∣∣g′(r)
∣∣
)
+O

(
|g′′(r)|

)
+O

(
|g′(r)|

∣∣∣∣r−
n

r

∣∣∣∣

)
=O(1).

Now, let C > 0, then by Lemma 5 with probability 1−O(n−C) the roots of
Pn satisfy |z|≤N := n(3C+2)/2.

We now apply Proposition 1 with z0 =N , r =N/2, and c =N/4. Then with
overwhelming probability

Nn[N/2,3N/2] !
∫

B(N,N/2)
1B(0,

√
n+1) +O

(
no(1))

+

∫

B(N,3N/2)\B(N,N/2)
1B(0,

√
n+1)

=O
(
no(1)).

We then repeat (variance of) this argument O(logN) times with a decreasing la-
cunary sequence of z0 (starting from N ). Then with overwhelming probability, in
[
√
n+2,N ] there are O(no(1) logN) =O(no(1)) real roots. By a similar argument,

we have the same bound in [−N,−
√
n−2] with overwhelming probability.

We now consider the real roots in [−
√
n−2,

√
n+2].
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Let z0 =
√
n and r = c= 2, it follows that with overwhelming probability the

number of real roots in [
√
n−2,

√
n+2] is O(no(1)). By repeating this argument it

follows that for any interval I0⊂ [−
√
n−2,

√
n+2] of length 1 with overwhelming

probability the number of real roots in I is O(no(1)). Of course if I0 has length less
than 1 then using monotonicity of Nn(I) we also have the same upper bound.
Dividing [−

√
n−2,

√
n+2] into intervals of length 1 and taking the union bound,

it follows that one could could ensure that for all subintervals of length 1 with
overwhelming probability.

Consequently, given any C > 0, with probability 1−O(n−C), for any interval
I ⊂ R we have

Nn(I)!
(
1+
∣∣I ∩

[
−
√
n,
√
n
]∣∣)no(1).

This completes the proof of Lemma 4.

5. Proof of Theorem 4 assuming Theorem 5. Recall the notation that
Nn(I) denotes the number of real roots of Pn in I ⊂ R. Let h = 1[−1,1] and
Rn =

√
n. Let Nn,in :=Nn([−

√
n,
√
n]) and Nn,out =Nn−Nn,in. Then by Theo-

rem 5, we have

Var
[
Nn,in

]
/2
√
n−→K ∈ (0,∞)

Nn,in−ENn,in√
Var[Nn,in]

−→N(0,1)

as n→ ∞, and the second convergence is in distribution. By Lemma 4, with over-
whelming probability we have Nn,out = O(no(1)), and we always have Nn,out ≤ n
deterministically. Consequently

EN 2
n,out =O

(
no(1))= o

(
EN 2

n,in
)

and therefore Var[Nn,out] =O(no(1)) and so

Var
[
Nn
]
= Var

[
Nn,in

](
1+ o(1)

)
= 2
√
nK
(
1+ o(1)

)

Furthermore, with overwhelming probability we have

Nn−ENn√
Var
[
Nn
] = o(1)+

Nn,in−ENn,in√
Var
[
Nn
]

= o(1)+
(
Nn,in−ENn,in

)
[

1√
Var
[
Nn,in

]+
O
(
no(1)

)
√

Var[Nn,in]
√

Var[Nn]

]

= o(1)+
Nn,in−ENn,in√

Var[Nn,in]

(
1+ o(1)

)
.
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Thus by Slutsky’s theorem (see e.g., [1, Chapter 7]) it follows that Nn−ENn√
Var[Nn]

→
N(0,1) in distribution.

6. Proof of Theorem 5 assuming Theorem 6. The comparison argument
in this section is inspired by similar arguments in [6, 23].

Recall that Nn =
∑

x∈Zn
h(x/Rn) and Zn is the multiset of the real zeros of

Pn.
Denote N∞ := n(R,h) =

∑
x∈Z h(x/Rn) where Z is the multiset of the real

zeros of P∞. Let NG =N(0,1) be the standard Gaussian random variable, and

N ∗n :=
Nn−ENn
(

VarNn
)1/2

, N ∗∞ =
N∞−EN∞

(VarN∞)1/2
.

Applying Theorem 6, we obtain

lim
n→∞

Var
[
N∞
]

‖h‖2
2Rn

=K

and N ∗∞→NG in distribution.
To deduce Theorem 5, we will compare Nn with N∞.

LEMMA 6. As n→ ∞, it holds that

E
∣∣Nn−N∞

∣∣2 = o
(
Rn
)
.

Below we prove Theorem 5 assuming Lemma 6.

Proof of Theorem 5. For convenience let ∆Nn = Nn −N∞. It follows from
Lemma 6 that |E∆n|= |ENn−EN∞|= o(R1/2

n ). Using the L2 triangle inequality
we also obtain |

√
Var[Nn]−

√
Var[N∞]|= o(R1/2

n ). Since Var[N∞] = 2RnK(1+
o(1)) = Θ(

√
n) as n→ ∞ (in other words Var[N∞] is bounded above and below

by constant multiples of
√
n), we obtain Var[Nn] = 2RnK(1+o(1)), in particular

Var[Nn] =Θ(Rn).
Now,

N ∗n =
∆Nn−E∆Nn

[VarNn]1/2
+

N∞−EN∞
[

VarNn
]1/2

=O

(
|∆Nn−E∆Nn|

R1/2
n

)
+N ∗∞

(
1+
√

VarN∞−
√

VarNn√
VarNn

)

=O

(
|∆Nn|
R1/2

n

+ o(1)
)
+N ∗∞

(
1+ o(1)

)
.
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Since E|∆n|2 = o(Rn), it follows that |∆Nn|
R1/2

n
→ 0 in probability. Therefore by Slut-

sky’s theorem (see e.g., [1, Chapter 7]) it follows that N ∗n converges to N(0,1) in
distribution. #

Our proof of Lemma 6 will use a comparison argument. More specifically,
we will show that with high probability supx∈In |Pn(x)−P∞(x)| is very small in
comparison to the typical distance between the real roots inside In of Pn and P∞.
Via geometric considerations and properties of h, it will follow that |Nn−N∞| =
O(1) with high probability, which implies the desired estimates for |N ∗n−N ∗∞|.

We will use an elementary result whose proof is elementary (see e.g., [23]).

PROPOSITION 2. Let F and G be continuous real valued functions on R, and
F ∈ C2. Let ε1,M,N > 0 and I := [x0− ε1/M,x0 + ε1/M ]. Assume that

• F (x0) = 0, |F ′(x0)|≥ ε1;
• |F ′′(x)|≤M for x ∈ I;
• supx∈I |F (x)−G(x)|≤M ′.

Then G has a root in I if M ′ ≤ 1
4ε

2
1/M .

Proof of Lemma 6. Let ht(x) := h(x/t), for t > 0.
Let qn(x) = e−x

2/2Pn(x) and q∞(x) = e−x
2/2P∞(x). Note that the real roots

of qn and Pn are the same, and the real roots of q∞ and P∞ are the same.
Let c2 > 0 and c1 > c2+2. Let In = [−n1/2+n1/6 logn,n1/2−n1/6 logn] and

let Jn = supp(hRn)\ In.
Applying Lemma 1 (with N = C0 log1/2n, C0 large), Lemma 2, Lemma 3,

with probability 1−O(n−c2) the following event (denoted by E) holds: For every
x ∈ In, we have

(i) |qn(x)− q∞(x)|≤M ′ := n−C

(ii) if qn(x) = 0 then |q′n(x)|≥ ε1 := n−c1 and qn(x′) += 0 for all x′ ∈ In such
that |x−x′|≤ ε1.

(iii) |q′′n(x)|≤M := C1n log1/2n, C1 absolute constant.
By choosing C > 2c1 +1, it follows that

1
4
ε2

1

M
=

n−2c1−1

4C1 logn
>M ′ = n−C .

Consequently, Proposition 2 applies. (Note that the zeros of Pn are at least ε1 apart
by (ii)). Thus for each zero of Pn in In (except for those near the endpoints) we
could pair with one real zero of P∞ that is within a distance ε1/M < ε1/2.

Similarly, we consider the event E′ with P(E′) ≥ 1−O(n−c2) where the fol-
lowing holds: for every x ∈ In,

(i) |qn(x)− q∞(x)|≤ n−C .
(ii) If q∞(x) = 0 then |q′∞(x)| ≥ n−c1 and q′n(x

′) += 0 for all x′ ∈ In such that
|x−x′|≤ e−c1n.

(iii) |q′′∞(x)|! n log1/2n.
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Thus by applying Proposition 2 as before it follows that on the event E′ for
each zero of P∞ in In (except for those near the endpoints) we could pair with one
real zero of Pn that is within a distance ε1/M < ε1/2.

Consequently, on the event G= E′ ∩E the zeros of Pn and P∞ inside In will
form pairs, except for O(1) zeros near the endpoints.

Now, if |x−x′|≤ ε1/M is such a pair then there are three possibilities: (i) both
x and x′ are inside one interval forming supp(h), or (ii) both x and x′ are outside
supp(h), or (iii) one of them is inside and one is outside.

In the last two cases we have |h(x/Rn)−h(x′/Rn)|=O(1), while in the first
case using Hölder continuity of h we have

∣∣h
(
x/Rn

)
−h
(
x′/Rn

)∣∣!
(
ε1/M

Rn

)α
<

1
n

by choosing c2, c1 large compare to 1/α. Since there are at most n such pairs, it
follows that on the event G we have

∣∣N∞−Nn

∣∣! 1+Mn+M∞,

where Mn and M∞ are the numbers of zeros of Pn and P∞ in Jn, respectively.
Note that if Rn ≤ n1/2−n1/6 logn then supp(hRn) ⊂ In and Mn = M∞ =

0, so clearly EM2
n = EM2

∞ = 0 = o(Rn). On the other hand, if Rn > n1/2 −
n1/6 logn (recall that Rn ≤ n1/2 + o(n1/4) by given assumption) then we have
|Jn|2 = o(n1/2) = o(Rn). By translation invariance of the real zeros of P∞ and
using Theorem 6, it follows that

EM2
∞ =O

(
|Jn|2

)
= o
(
Rn
)
.

By Lemma 4 we also have Mn ≤ no(1)(1+ |Jn ∩ [−n1/2,n1/2]|) = O(no(1)+1/6)
with overwhelming probability. Since Mn ≤ n always, it follows that

EM2
n =O

(
n1/3+o(1))= o

(
Rn
)
.

Therefore, taking c2 large we obtain

E
∣∣Nn−N∞

∣∣2 ! 1+EM2
∞ +EM2

n+E
((
N 2

n+N 2
∞
)
1Gc

)

! o
(
Rn
)
+P

(
Gc
)1/2(E

[
N 4

n

]
+E

[
N 4

∞
])1/2

= o
(
Rn
)
+O

(
n−c2/2)O

(
n4)= o

(
Rn
)

here we have used the crude estimate Nn = O(n) and the estimate EN 4
∞ ! R4

n =
O(n2) (which is a result of Theorem 6).
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It follows that in both cases we have

E
∣∣Nn−N∞

∣∣2 = o
(
Rn
)
.

This completes the proof of Lemma 6. #

7. Estimates for correlation functions. In this section we summarize sev-
eral new estimates for the correlation function for the real zeros of P∞, which will
be used in the proof of Theorem 6.

We first recall the notion of correlation function. Let X be a random point
process on R. For k≥ 1, the function ρ :Rk→R is the k-point correlation function
of X if for any compactly supported C∞ function f : Rk→ R it holds that

E
∑

x1,...,xk

f
(
x1, . . . ,xk

)
=

∫
. . .

∫

Rk
f
(
ξ1, . . . ,ξk

)
ρ
(
ξ1, . . . ,ξk

)
dξ1 . . .dξk

where on the left-hand side the summation is over all ordered k-tuples of different
elements in X. (In particular if (xα)α∈I is a labeling of elements of X then we
are summing over all (xα1 , . . . ,xαk) where (α1, . . . ,αk) ∈ Ik such that αi += αj if
i += j. The correlation function is symmetric and the definition does not depend on
the choice of the labeling.) Note that this implies ρ is locally integrable on Rk. If
there is ε> 0 such that ρ is locally L1+ε integrable, then by a simple approximation
argument it follows that the above equality holds when f is only bounded and
compactly supported. In particular, for every interval I ⊂ R it holds that

EX(I)
(
X(I)−1

)
. . .
(
X(I)−k+1

)
=

∫
. . .

∫

Ik
ρ(ξ1, . . . ,ξk)dξ1 . . .dξk

in the above display X(I) := |X ∩ I|.
One should point out that the k-point correlation function does not always

exists (however existence of the correlation measure, generalizing
ρ(ξ1, . . . ,ξk)dξ1 . . .dξk, follows from the Riesz representation theorem). For
the setting of the current work (namely Pn and P∞), existence of the corre-
lation functions is a consequence of the Kac-Rice formula (see also [12] for
generalizations to all real Gaussian analytic functions).

Let ρ(k) be the k-point correlation function for the real zeros of P∞.
When it is clear from the context we will simply write ρ instead of ρ(k).

LEMMA 7. For every M > 0 and k ≥ 1 there is a finite positive constant CM,k

such that for all x1, . . . ,xk ∈ [−M,M ] it holds that

1
CM,k

∏

1≤i<j≤k

∣∣xi−xj
∣∣≤ ρ

(
x1, . . . ,xk

)
≤ CM,k

∏

1≤i<j≤k

∣∣xi−xj
∣∣.

Lemma 7 is a special case of the following more general result, which holds
for any 2k-nondegenerate real Gaussian analytic functions on C, examples include
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random series
∑

j=0 cjξjx
j where ξj are iid normalized Gaussian, c0, c1, . . . ∈ R

such that
∑

j c
2
j < ∞ and c0, . . . , c2k−1 += 0. This notion of nondegeneracy is a real

variant of the complex nondegeneracy notion in [22], see Section 9 of the current
paper for details.

LEMMA 8. Let k ≥ 1. Let f be a 2k-nondegenerate real Gaussian analytic
function on C. Let ρf denote its k-point correlation function for the real zeros. For
every M > 0 there is a finite positive constant CM,k,f such that for all x1, . . . ,xk ∈
[−M,M ] it holds that

1
CM,k,f

∏

1≤i<j≤k

∣∣xi−xj
∣∣≤ ρf

(
x1, . . . ,xk

)
≤ CM,k,f

∏

1≤i<j≤k

∣∣xi−xj
∣∣.

Our next estimates will be about clustering properties for ρ.

LEMMA 9. There are finite positive constants ∆k and Ck such that the fol-
lowing holds: Given any X = (x1, . . . ,xk) of distinct points in R, for any partition
X =XI ∪XJ with d= d(XI ,XJ )≥ 2∆k we have

∣∣∣∣
ρ(X)

ρ(XI)ρ(XJ )
−1
∣∣∣∣≤ Ck exp−

1
2 (d−∆k)

2
.(7.1)

Using Lemma 7, it follows that if X = (x1, . . . ,xk) splits into two clusters XI

and XJ that are sufficiently far part, then the correlation function essentially fac-
tors out. From these clustering estimates and the well-known translation invariant
properties of the real zeros of P∞ (see Lemma 20 in Appendix A for a proof), it
follows that ρ is bounded globally.

LEMMA 10. Let %(t) = min(1, |t|) for every t ∈ R. For every k ≥ 1 there is a
finite positive constant Ck such that

1
Ck

∏

1≤i<j≤k
%
(∣∣xi−xj

∣∣)≤ ρ
(
x1, . . . ,xk

)
≤ Ck

∏

1≤i<j≤k
%
(∣∣xi−xj

∣∣).

Indeed, if k = 1 then the estimates hold trivially. The proof of the general case
uses induction: for k ≥ 2, if we could split X = (x1, . . . ,xk) into two groups X1,
X2 with distance C∆k where C is sufficiently large (depending on k) then using
Lemma 9 we have

∣∣∣∣
ρ(X)

ρ(X1)ρ(X2)
−1
∣∣∣∣≤ Cke

− 1
2 (C−1)2∆2

k <
1
2

therefore the desired claim follows from the induction hypothesis. If no such split-
ting could be found then it follows from geometry that diam(X) is bounded. Con-
sequently, the desired bounds follow from the local estimates for the correlation
function (Lemma 7) and the translation invariant properties of the real zeros.



1348 Y. DO AND V. VU

Using Lemma 10 and Lemma 9, we immediately obtain the additive form of
(7.1):

LEMMA 11. There are finite positive constants ∆k and Ck such that the fol-
lowing holds: Given any X = (x1, . . . ,xk) ∈ Rk, for any partition X =XI ∪XJ

with d= d(XI ,XJ )≥ 2∆k we have

∣∣ρ(X)−ρ
(
XI
)
ρ
(
XJ
)∣∣≤ Ck exp−

1
2 (d−∆k)

2
.(7.2)

8. Proof of Theorem 6 using correlation function estimates. Recall that
Z denotes the (multi-set of the) zeros of P∞ and h : R→ R+ is bounded and com-
pactly supported, and

n(R,h) =
∑

x∈Z
h(x/R)

for each R> 0. Note that n(R,h) = n(1,hR) where hR(x) = h(x/R). For conve-
nience of notation, let σ(R,h)2 be the variance of n(R,h) and let n∗(R;h) be the
normalization of n(R,h), namely

n∗(R;h) =
n(R,h)−En(R,h)

σ(R,h)
.

8.1. Bound on the moments. In this section, we will show that E[n(R,h)k]
!Rk. Clearly it suffices to consider h= 1I for some fixed interval I . Let X denote
n(R,h) and let IR denote {Rx : x ∈ I}, note that |IR|=R|I|!R. Using the uni-
form bound for the correlation function of real zeros of P∞ proved in Lemma 10,
we have

EX(X−1) . . . (X−k+1) =
∫∫

IR×···×IR
ρ(x1, . . . ,xk)dx1 . . .dxk

!
∣∣IR
∣∣k min

(
1,diam

(
IR
))k(k−1)/2 !Rk

then the claims follow from writing Xk as a linear combination of X(X − 1) . . .
(X− j) with j = 0,1, . . . ,k−1.

8.2. Asymptotic normality. The convergence of n∗(R,h) to standard
Gaussian follows from the following two lemmas:

LEMMA 12. Let h : R→ R+ be bounded and compactly supported. Assume
that there are C,ε > 0 such that σ(R,h) ≥ CRε for R sufficiently large. Then
n∗(R;h) converges in distribution to the standard Gaussian law as R→ ∞.

LEMMA 13. If h ∈ L2 then σ(R,h) "R1/2.
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We will prove Lemma 13 in Section 8.2.1. In this section we will prove
Lemma 12.

We will use the cumulant convergence theorem which will be recalled below.
The cumulants sk(N) of the random variable N =

∑
x∈Z h(x) are defined by the

formal equation

logE
(
eλN

)
=
∑

k≥1

sk(N)

k!
λk

in particular

s1(N) =
d

dλ

(
logE

(
eλN

))∣∣
λ=0 = EN

s2(N) =
d2

dλ2

(
logE

(
eλN

))∣∣
λ=0 = EN 2− (EN)2 = Var(N).

The version of the cumulant convergence theorem that we use is the following
result of S. Janson [14]:

THEOREM 7. (Janson) Let m ≥ 3. Let X1,X2, . . . be a sequence of random
variables such that as n→ ∞ it holds that

• s1(Xn)→ 0, and
• s2(Xn)→ 1, and
• sj(Xn)→ 0 for each j ≥m.

Then Xn → N(0,1) in distribution as n → ∞, furthermore all moments of Xn

converges to the corresponding moments of N(0,1).

Since s1(N) ≡ EN and s2(N) ≡ Var(N) and n∗(R;h) has mean 0 and vari-
ance 1, it remains to show that the higher cumulants of n∗(R;h) converge to 0 as
R→ ∞. We will show that

LEMMA 14. For some finite constant Ck depending only on k it holds that

sk
(
n(1,h)

)
≤Ck‖h‖k∞

∣∣supp(h)
∣∣

here |supp(h)| is the Lebesgue measure of the support of h.

Applying Lemma 14 to hR(x) = h(x/R), it follows that sk(n(R,h))≤Ch,kR.
It follows from scaling symmetries and the definition of cumulants that if N ′ =
aN+b where a > 0 and b∈R are fixed constants, then sk(N ′) = aksk(N) for any
k ≥ 2. Thus, sk(n∗(R,h)) = σ(R,h)−ksk(n(R,h)) for all k ≥ 2. Consequently,
using the fact that σ(R,h) grows as a positive power of R, it follows that for k
sufficiently large sk(n∗(R;h))→ 0 as R→ ∞, as desired.

Thus it remains to prove Lemma 14. The proof uses the notion of the truncated
correlation functions, whose definition is recalled below (see also Mehta [21, Sec-
tion 6.1]). First, given Z = (x1, . . . ,xk) let |Z| := k and let ZI denote (xj)j∈I . Let
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Π(k) be the set of all partitions of {1,2, . . . ,k} (into nonempty disjoint subsets).
The truncated correlation function ρT is defined using the following recursive for-
mula (see e.g., Mehta [21, Appendix A.7]):

ρ(Z) =
∑

γ∈Π(k)

ρT (Z,γ)(8.1)

here if γ is the partition {1, . . . ,k} = I1 ∪ · · ·∪ Ij then ρT (Z,γ) := ρT (ZI1) . . .
ρT (ZIj). For example, explicit computation gives ρT (x1) = ρ(x1), ρT (x1,x2) =
ρ(x1,x2)−ρ(x1)ρ(x2).

To prove Lemma 14, we will use the following two properties:

LEMMA 15. For any k ≥ 1 it holds that

sk
(
n(1,h)

)
=
∑

γ∈Π(k)

∫

R|γ|
hγ(x)ρT (x)dA(x)(8.2)

where |γ| is the number of subsets in the partition γ, dA(x) is the Lebesgue mea-
sure on R|γ|, and if γ1, . . . ,γj are the cardinality of the subsets in γ then

hγ(x) = h
(
x1
)γ1 . . .h

(
xj
)γj .

LEMMA 16. There are finite positive constants ck,Ck such that for any Z =
(x1, . . . ,xk) it holds that

ρT (Z)≤ Ck min
(
1,e−ck |diam(Z)|2).

A complex variant of Lemma 15 was also considered by Nazarov-Sodin in
[22], who provided a proof using a detailed algebraic computation. Lemma 15
could be proved using a similar argument, and we include a proof in Appendix B.

Proof of Lemma 16. We will use mathematical induction on k. If k = 2 this
follows from the uniform boundedness and clustering properties of ρ:

∣∣ρT
(
x1,x2

)∣∣=
∣∣ρ
(
x1,x2

)
−ρ
(
x1
)
ρ
(
x2
)∣∣≤ C min

(
1,e−c|x1−x2|2

)
.

Let k ≥ 3 and assume the estimates hold for all collection k′ points where
1 ≤ k′ < k. Then there is a partition of Z = ZI ∪ZJ based on {1, . . . ,k} = I ∪J
such that dist(ZI ,ZJ)≥ diam(Z)/Zk and I and J are nonempty. It suffices to show
that |ρT (Z)|≤ Cke−ckd(ZI ,ZJ )2

.
Let Π1(k) be the set of non-trivial partitions of {1, . . . ,k} that mixes ZI and

ZJ , i.e., there is at least one block in the partition that intersects both ZI and ZJ ,
and the partition has at least two blocks. Let Π2(k) be Π(k) \Π1(k). It follows
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from (8.1) that

ρ(Z) = ρT (Z)+
∑

γ∈Π1(k)

ρT (Z,γ)+ρ
(
ZI
)
ρ
(
ZJ
)

consequently using clustering of ρ and the triangle inequality
∣∣ρT (Z)

∣∣≤
∣∣ρ(Z)−ρ

(
ZI
)
ρ
(
ZJ
)∣∣+

∑

γ∈Π1(k)

∣∣ρT (Z,γ)
∣∣.

Now, using the induction hypothesis and boundedness of ρ, it follows that
∣∣ρT (Z)

∣∣≤ Cke
−ck dist(ZI ,ZJ )2 ≤ Cke

−ck diam(Z)2

(note that the constants ck in different lines are not necessarily the same). #

We now finish the proof of Lemma 14. Since |Π(k)| !k 1, using Lemma 15 it
suffices to show that

∣∣∣∣

∫

R|γ|
hγ(x)ρT (x)dA(x)

∣∣∣∣ ≤Ck‖h‖k∞
∣∣supp(h)

∣∣

for each γ ∈ Π(k). Fix such a γ. Let γ1, . . . ,γj be the length of its blocks. Using
the uniform boundedness of the correlation function ρ(k) (Lemma 10), we obtain

∣∣∣∣

∫

R|γ|
hγ(x)ρT (x)dA(x)

∣∣∣∣

≤
∫

Rj

∣∣h
(
x1
)∣∣γ1 . . .

∣∣h
(
xj
)∣∣γj ∣∣ρT

(
x1, . . . ,xj

)∣∣dx1 . . .dxj

≤ ‖h‖k∞
∣∣ supp(h)

∣∣ sup
x1∈R

∫

Rj−1

∣∣ρT
(
x1,x2, . . . ,xj

)∣∣dx2 . . .dxj

≤ Ck‖h‖k∞
∣∣supp(h)

∣∣

in the last estimate we used Lemma 16. #

8.2.1. Growth of the variance. In this section we prove Lemma 13. We
have σ(R,h) = σ(1,hR), so we first estimate σ(1,h) and then apply the estimate
to hR. Note that for x ∈R we have ρ(x) = 1

π . (See e.g., Edelman-Kostlan [8].) We
then have

σ(1,h)2

=

∫∫

R2
h
(
x1
)
h
(
x2
)(
ρ
(
x1,x2

)
−ρ
(
x1
)
ρ
(
x2
)
+ δ
(
x1−x2

)
ρ
(
x1
))
dx1dx2.

Let k(x1,x2) = ρ(x1,x2)− ρ(x1)ρ(x2), since the distribution of the real zeros
is translation invariant it follows that ρ(x1,x2) depends only on x1− x2 (while
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ρ(x1) = ρ(x2) =
1
π ). Thus, we may write k(x1,x2) = k(x1−x2) with

|k(x)|≤ Ce−Cx2

uniformly over x ∈R, thus in particular the Fourier transform k̂ ∈ L∞∩L1, and

σ(1,h)2 =

∫∫

R2
h
(
x1
)
h
(
x2
)[
k
(
x1−x2

)
+

1
π
δ(x1−x2)

]
dx1 dx2

where δ is the Dirac delta function. Let ∗ denote the convolution operation. Let ĥ
be the Fourier transforms of h. Using Plancherel’s identity and note that k is real
valued, we obtain

σ(1,h)2 =

∫

R
h
(
x1
)[
(h∗k)

(
x1
)
+

1
π
(h∗ δ)

(
x1
)]
dx1

=

∫

R
ĥ(ξ)[ĥ(ξ)k̂(ξ)+

1
π
ĥ(ξ)]dξ

=

∫

R

∣∣ĥ(ξ)
∣∣2
[ 1
π
+ k̂(ξ)

]
dξ =

∫

R

∣∣ĥ(ξ)
∣∣2
[ 1
π
+ k̂(ξ)

]
dξ

here in the last equality we use the fact that σ(1,h)2 is real valued to remove the
conjugate in k̂. Consequently,

σ(R,h)2 =

∫

R

∣∣Rĥ(Rξ)
∣∣2
[

1
π
+ k̂(ξ)

]
dξ

=R

∫

R

∣∣ĥ(u)
∣∣2
[ 1
π
+ k̂
( u
R

)]
du.

Using k̂ ∈ L∞ and the dominated convergence theorem, it follows that

lim
R→∞

σ(R,h)2

R
= lim

R→∞

∫ ∣∣ĥ(u)
∣∣2
( 1
π
+ k̂
( u
R

))
du=

( 1
π
+ k̂(0)

)
‖h‖2

2.

Explicit computation [25] gives k̂(0)+ 1
π = 0.18198 . . . > 0 (for the reader’s

convenience we include a self-contained derivation in Appendix C). Consequently
σ(R,h)"R1/2. #

9. Real Gaussian analytic functions and linear functionals. In this sec-
tion we discuss real Gaussian analytic functions and linear functionals on C. These
notions are adaptations of analogous notions in [22] and will be used in Section 10
where we prove the correlation function estimates summarized in Section 7.
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9.1. Real Gaussian analytic functions. We say that g is a real Gaussian
analytic function (real GAF) if

g(z) =
∞∑

j=1

ξjgj(z)

where ξi are iid normalized real Gaussian, and g1,g2, . . . are analytic functions on
C such that

∑
j |gj |2 < ∞ uniformly on any compact subset of C. In particular,

uniformly over any compact subset of C we have E|g(z)|2 =
∑

j |gj(z)|2 < ∞.

9.2. Linear functionals. We say that L is a linear functional if for some
K ≥ 1 there are m1, . . . ,mK ∈ Z nonnegative and z1, . . . ,zK ∈C and γ1, . . . ,γK ∈
C such that for any real GAF g it holds that

Lg =
K∑

j=1

γjg
(mj )

(
zj
)
.

Here we require (mj,zj) += (mh,zh) for j += h. We loosely say that zj are the poles
of L (technically speaking only the distinct elements of {zj} should be called the
poles of L, although in this case one has to count multiplicity).

Since
∑

j |gj |2 < ∞ uniformly on compact subsets of C, by standard arguments
it follows that almost surely

∑∞
n=1 ξngn(z) converges absolutely on compact sub-

sets of C to an analytic function (for a proof see e.g., [12]). Writing

Lg =
∑

n≥1

ξnL
(
gn
)

and using independence of ξn’s, it follows that Lg = 0 a.s. iff L(gn) = 0 for all n.

9.3. Rank of linear functions. Let L be a linear functional with poles
z1, . . . ,zK . Let G⊂C be a bounded domain with simple smooth boundary γ = ∂G
such that the poles zj are inside the interior Go. By Cauchy’s theorem, if g is ana-
lytic then

Lg =

∫

γ
g(z)rL(z)dz, rL(z) =

1
2πi

K∑

j=1

γjmj!
(z− zj)mj+1 .(9.1)

Now, rL is a rational function vanishing at ∞, and will be referred to as the kernel
of L. We define the rank of L to be the degree of the denominator in any irreducible
form of rL (this notion of rank is well defined and is independent of G).

9.4. Degenerate and nondegenerate GAFs. We say that a real GAF g is
d-degenerate if there is a linear functional L += 0 of rank at most d such that Lg= 0
almost surely. If no such linear functional exists, we say that g is d-nondegenerate.
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9.5. Linear functional arises from the Kac-Rice formula. We discuss
linear functionals used in the proof. Let f be a real Gaussian analytic function.
Using the Kac-Rice formula for correlation functions of the real zeros of f (see
e.g., [12]) asserts that: for any (x1, . . . ,xk) ∈ Rk, we have

ρk
(
x1, . . . ,xk

)
=

1

(2π)k
∣∣det(Γ)

∣∣1/2

∫

Rk

∣∣η1 . . .ηk
∣∣e−

1
2 〈Γ

−1η,η〉dη1 . . .dηk(9.2)

where Γ is the covariance matrix of (f(x1),f ′(x1), . . . ,f(xk),f ′(xk)), and

η =
(
0,η1, . . . ,0,ηk

)
∈ R2k.

Given γ = (α1,β1, . . . ,αk,βk) ∈ R2k, via elementary computations we have

〈γ,Γγ〉= 〈Γγ,γ〉= E|Lf |2, Lf :=
k∑

j=1

αjf
(
xj
)
+βjf

′(xj
)
.(9.3)

One could also define local version of L, namely for any I ⊂ R we LIf =∑
i∈I αif(xi)+βif ′(xi) is also a linear functional. Certainly L and LI depend on

γ, however we will suppress the notational dependence for brevity, and none of
the implicit constants in our estimates will depend on γ. Note that in the Kac-Rice
formula, γ = (0,η1, . . . ,0,ηk).

9.6. Nondegeneracy of random series. Consider random infinite se-
ries f(z) =

∑
j≥0ajξjz

j such that (ξj) are iid standard Gaussian, aj ∈ C and
supz∈K

∑
j |ajzj |2 < ∞ for any compact K. We now show that for such series if

a0, . . . ,ad−1 += 0 then f is d-nondegenerate on C. (Certainly f is a real GAF.)
Assume towards a contradiction that f is d-degenerate. Then there is a linear

functional L of rank at most d such that L(anzn) = 0 for all n≥ 0. Since an += 0 for
0≤n≤ d−1, it follows that L(zn) = 0 for all 0≤n≤ d−1. Taking γ = {|z|=R}
for any R> 0 sufficiently large so that the poles of L are enclosed inside γ, we get

0 = L
(
zn
)
=

∫

γ
znrL(z)dz

for all n∈ 0,d−1. Since rank of L is at most d there is some m∈ {1,d} and C += 0
such that zmrL(z) =C(1+ o(1)) as |z|→ ∞ uniformly. Consequently,

∫

|z|=R
zm−1rL(z)dz =

∫

γ
zmrL(z)

dz

z
−→ 2πiC += 0

as R→ ∞ contradiction.
It follows from the above discussion that the infinite flat series P∞ is 2k-

nondegenerate, and the Gaussian Kac polynomial of degree 2k − 1 defined by
g2k−1(x) = ξ0 + ξ1x+ · · ·+ ξ2k−1x2k−1 is also 2k-nondegenerate.
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9.7. Equivalence of linear functionals. The following lemma is a real
Gaussian adaptation of a result in [22].

LEMMA 17. Assume that f is d-nondegenerate real GAF. Let K ⊂ C be
nonempty compact. Let G be a bounded domain such that K ⊂ Go, and assume
that γ = ∂G is a simple rectifiable curve.

Then for any d ≥ 1 there is a finite positive constant C = C(d,G,K,f) such
that for every linear functional L of rank at most d with poles in K we have

1
C

max
z∈γ

|rL(z)|2 ≤ E|Lf |2 ≤ C max
z∈γ

|rL(z)|2.

Proof. We largely follow [22].
We first show the upper bound. Let ds denote the arc length measure on γ, then

using (9.1) and Cauchy-Schwarz we have

|Lf |2 ≤ length(γ)max
z∈γ

∣∣rL(z)
∣∣2
∫

γ

∣∣f(z)
∣∣2ds,

E|Lf |2 ≤
(

length(γ)max
z∈γ

∣∣rL(z)
∣∣2
)∫

γ
E|f |2 ≤ Cγ,f max

γ
|rL|2.

We now show the lower bound. Assume towards a contradiction that the lower
bound does not hold, then there is a sequence (Ln)n≥1 of linear functionals of rank
at most d (with poles in K) such that maxγ |rn|= 1 but

lim
n→∞

E|Lnf |2 = 0.

We write rn(z) =
pn(z)
qn(z)

where pn and qn are polynomials, and by multiplying both
the numerator and denominator of rn by common factors (of the form (x−α) with
α ∈ K) if necessary we may assume that deg(qn) = d and deg(pn) ≤ d− 1 and
qn is monic. Since the zeros of qn are in K, we have supz∈γ |qn(z)| < Cd,K < ∞
(uniformly over n), therefore using supγ |rn(z)| ≤ 1 we obtain supz∈γ |pn(z)| <
Cd,K uniformly over n. Therefore, by passing to a subsequence, we may assume
that (pn) converges uniformly on γ to p. Now, using Szegö’s theorem [28] (see also
the survey [24]) we have

sup
z∈γ

∣∣p′n(z)
∣∣!deg(pn),γ Cd,K =O(1).

Thus we could again pass to a subsequence and obtain uniform convergence for
(p′n) on γ, which will converge to p′. By iteratively passing to subsequences we
may assume further that p′n,p

′′
n, . . . ,p

(d)
n converge uniformly on γ to p′,p′′, . . . ,p(d).

Since deg(pn) < d, it follows that p(d) ≡ 0 and consequently p is a polynomial of
degree at most d−1.
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Now, the d complex zeros of qn are in K, a compact set, therefore by passing
to a subsequence we may assume that uniformly on γ = ∂G we have qn→ q, and
q is a monic polynomial of degree d with zeros in K.

Using partial fractional decomposition of r(z) = p(z)/q(z), we obtain a lin-
ear functional L of rank at most d with poles in K such that maxz∈γ

∣∣rL(z)−
rLn(z)

∣∣→ 0 when n→ ∞. Consequently using the upper bound (already shown
above) we obtain

E
∣∣Lnf −Lf

∣∣2 =O
(

max
γ

∣∣rLn− rL
∣∣2
)
= o(1).

Using limn→∞E|Lnf |2 = o(1) it follows that E|Lf |2 = 0, hence Lf = 0 almost
surely. This violates the d-nondegeneracy of f . #

10. Proof of the correlation function estimates in Section 7.

10.1. Local estimates for correlation functions. In this section we prove
Lemma 7 and Lemma 8. Using Lemma 17 and the Kac-Rice formula (9.2), we
observe that if f1 and f2 are two 2k-nondegenerate real Gaussian analytic functions
and ρ[1] and ρ[2] are the corresponding k-point correlation functions for the real
zeros, then there is a finite positive constant C = CM,N,k,f1,f2 such that

1
C
ρ[2]
(
y1, . . . ,yk

)
≤ ρ[1]

(
y1, . . . ,yk

)
≤ Cρ[2]

(
y1, . . . ,yk

)
.

Indeed, let Γj be the covariance matrix for (fj(y1),f ′j(y1), . . . ,fj(yk),f ′j(yk)),
which are positive definite symmetric. Then by Lemma 17, it follows that det(Γ1)
and det(Γ2) are comparable and 〈Γ−1

1 η,η〉 and 〈Γ−1
2 η,η〉 are comparable. Con-

sequently, using the Kac-Rice formula (9.2) it follows that ρ[1](y1, . . . ,yk) and
ρ[2](y1, . . . ,yk) are comparable.

Therefore it suffices to show Theorem 7. Namely, we will show that the corre-
lation function for the real zeros of P∞ is locally comparable to the Vandermonde
product.

Let M > 0 and k ≥ 1. Assume that x1, . . . ,xk ∈ [−M,M ]. Let N =N(M,k)
be a large positive constant that will be chosen later. Thanks to the translation
invariant property of the distribution of real zeros of Z , we have ρ(x1, . . . ,xk) =
ρ(x1 +N,. . . ,xk +N). Let y1 = x1 +N , . . . , yk = xk+N . Then N −M ≤ yj ≤
N +M , and our choice of N will ensure in particular that N −M and N +M are
very large.

We now apply the above observation to f1 = P∞ and f2 = g2k−1 := ξ0 + ξ1x+
· · ·+ ξ2k−1x2k−1, the Gaussian Kac polynomial. It then suffices to show that for
any n ≥ k the correlation function ρKac for the real zeros of the Gaussian Kac
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polynomial gn(x) = ξ0 + ξ1x+ · · ·+ ξnxn satisfies

ρKac
(
y1, . . . ,yk

)
∼M,N,k,n

∏

1≤i≤j

∣∣yi−yj
∣∣

whenever y1, . . . ,yk ∈ [N −M,N +M ] and N −M 4 1.
We now observe that the distribution of the real roots of the Kac polynomial gn

is invariant under the transformation x 5→ 1/x. Indeed, gn(1/x) = x−ng̃n(x) and
g̃n = ξn+ ξn−1x+ · · ·+ ξ0xn has the same distribution as gn(x).

It follows that, with wj = 1/yj ,

ρKac
(
y1, . . . ,yk

)
∼M,N,k,n ρKac

(
w1, . . . ,wk

)
.

Indeed, using the Lebesgue differentiation theorem, we have

ρKac
(
y1, . . . ,yk

)
= lim
ε→0

1
(2ε)k

∫

Bε(y1)×···×Bε(yk)
ρKac

(
x1, . . . ,xk

)
dx1 . . .dxk

and using the definition of correlation function this is the same as

= lim
ε→0

P
(∣∣u1−y1

∣∣≤ ε, . . . ,
∣∣uk−yk

∣∣≤ ε | gn
(
u1
)
= · · ·= gn

(
uk
)
= 0
)

(2ε)k

here in the limit we condition on the event that (u1, . . . ,uk) is a k-tuple of real
zeros of gn.

Now, observe that if |u1−y1|≤ ε and ε> 0 is sufficiently small then | 1
u1
− 1

y1
|!

ε where the implicit constant depends on M,N . Conversely if | 1
u1
− 1

y1
|≤ ε/C for

C very large depending on M,N then for ε > 0 sufficiently small we will have
|u1−y1|≤ ε. It follows that ρKac(y1, . . . ,yk) is comparable to the limit

lim
ε→0

P
(∣∣ 1

u1
−w1

∣∣≤ ε, . . . ,
∣∣ 1
uk
−wk

∣∣≤ ε | gn
(
u1
)
= · · ·= gn

(
uk
)
= 0
)

(2ε)k

= lim
ε→0

P
(∣∣ 1

u1
−w1

∣∣≤ ε, . . . ,
∣∣ 1
uk
−wk

∣∣≤ ε | g̃n
( 1
u1

)
= · · ·= g̃n

( 1
uk

)
= 0
)

(2ε)k

which is exactly ρKac(w1, . . . ,wk) using the Lebesgue differentiation theorem again
and the fact that g̃n has the same distribution as gn.

Now, note that we also have
∏

1≤i<j≤k

∣∣wi−wj

∣∣∼M,N,k,n

∏

1≤i<j≤k

∣∣yi−yj
∣∣

and note that |wj |≤ 1
N−M which could be made small if N is chosen large. There-

fore it suffices to show that for δ > 0 sufficiently small depending on k and n there
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is a finite positive constant C = Cδ,k,n such that for any w1, . . . ,wk ∈ [−δ,δ] it
holds that

1
C
≤

ρKac
(
w1, . . . ,wk

)
∏

1≤i<j≤k
∣∣wi−wj

∣∣ ≤ C.

To show this estimate, our starting point is an explicit formula due to Gotze-
Kaliada-Zaporozhets [10, Theorem 2.3] for the real correlation of the general ran-
dom polynomial

f(x) = γ0 +γ1x+ · · ·+γnxn

where γj’s are independent real-valued random variables, and the distribution of γj
has probability density fj . To formulate the formula, we first fix some notations.
Given w = (w1, . . . ,wk) and 0 ≤ i ≤ k we define σi(w) to be the ith symmetric
function of x, namely the sum of all products of i coordinates of w:

σi(w) =
∑

1≤j1<j2<···<ji≤k
wj1 . . .wji

(if i > k or k < 0 then σi := 0). Then we have, using [10, Theorem 2.3],

ρ
(
w1, . . . ,wk

)
=

∏

1≤i<j≤k

∣∣wi−wj

∣∣
∫

Rn−k+1

n∏

i=0

fi




n−k∑

j=0

(−1)k−i+jσk−i+j(w)tj





×
k∏

i=1

∣∣∣∣∣∣

n−k∑

j=0

tjw
j
i

∣∣∣∣∣∣
dt0 . . . dtn−k.

We apply this to f = gn the Gaussian Kac polynomial of degree n, note that fj(t) =
1√
2π
e−t

2/2 ! 1.
Note that if max |wi|≤ δ for δ very small then for k ≤ i≤ n we have

n−k∑

j=0

(−1)k−i+jσk−i+j(w)tj = ti−k+O
(
δmax

j

∣∣tj
∣∣)

therefore with δ small enough (depending on k and n)

n∑

i=k

∣∣∣∣∣∣

n−k∑

j=0

(−1)k−i+jσk−i+j(x)tj

∣∣∣∣∣∣

2

∼n,k

n−k∑

j=0

t2
j .
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Since 0 ≤ |
∑n−k

j=0 (−1)k−i+jσk−i+j(x)tj |2 !k,n
∑n−k

j=0 t2
j for any i (in particular

for those 0≤ i < k), it follows immediately that

n∑

i=0

∣∣∣∣∣∣

k∑

j=0

(−1)k−i+jσk−i+j(x)tj

∣∣∣∣∣∣

2

∼n,k

n−k∑

j=0

t2
j .

Therefore for some finite positive constants C1,C2 that may depend on k,n it
holds that

e−C1
∑n−k

j=0 t2
j !k,n

n∏

i=0

fi




n−k∑

j=0

(−1)k−i+jσk−i+j(x)tj



!k,n e−C2
∑n−k

j=0 t2
j .

From here it follows easily that

ρ
(
x1, . . . ,xk

)
!δ,k,n

∏

1≤i<j≤k

∣∣xi−xj
∣∣.

For the lower bound, note that if t1, . . . , tn−k ∈ [−1,1] then

k∏

i=1

∣∣∣∣∣∣

n−k∑

j=0

tjw
j
i

∣∣∣∣∣∣
=
∣∣t0
∣∣k+Ok,n(δ),

so

∫

Rn−k+1

n∏

i=0

fi




n−k∑

j=0

(−1)k−i+jσk−i+j(w)tj




k∏

i=1

∣∣∣∣∣∣

n−k∑

j=0

tjw
j
i

∣∣∣∣∣∣
dt0 . . .dtn−k

"k,n

∫

R×[−1,1]n−k

(∣∣t0
∣∣k+O(δ)

)
e−C1(t2

0+···+t2
n−k)dt0 . . .dtn−k

"
∫

R
|t0|ke−C1t2

0dt0 +O(δ)"k,n 1

if δ is sufficiently small.
This completes the proof of Lemma 7. #

10.2. Clustering estimates for correlation functions. For a set X =
{x1, . . . ,xk} of k distinct points and for any nonempty subset I ⊂ {1, . . . ,k},
we denote by XI the corresponding subset {xi : i ∈ I}. Recall that ρ denote the
correlation function of the real zeros of P∞. For simplicity of notation in this
section let f = P∞.

In this section we will prove Lemma 9, namely we will show that there is
a constant ∆k > 0 and Ck finite such that the following holds: Given any X =
(x1, . . . ,xk) of distinct points in R, for any partition X = XI ∪XJ with d =
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d(XI ,XJ )≥ 2∆k we have

∣∣∣∣
ρ(X)

ρ(XI)ρ(XJ )
−1
∣∣∣∣≤ Ck exp−

1
2 (d−∆k)

2
.

We will need the following lemma. Below fix η = (0,η1, . . . ,0,ηk) where
η1, . . . ,ηk ∈ R, none of the implicit constants will depend on η. Let the linear
functionals L be defined using

Lf =
∑

1≤j≤k
ηjf

′(xj
)

(10.1)

and define LIf for any I ⊂ {1, . . . ,k} using the summation over j ∈ I instead of
1≤ j ≤ k.

LEMMA 18. There are finite positive constants ∆k and Ck such that the fol-
lowing holds: Given any X = (x1, . . . ,xk) of distinct points in R, for any partition
X =XI ∪XJ with d= d(XI ,XJ)≥ 2∆k we have

∣∣E
(
LIf

)(
LJf

)∣∣≤ Cke
− 1

2 (d−∆k)
2
(
E
∣∣LIf

∣∣2 +E
∣∣LJf

∣∣2
)
.

We defer the proof of this lemma to later sections. Below we prove the cluster-
ing property of the correlation function using this lemma.

Let Ck and ∆k be as in Lemma 18. Let ε = 1
2Cke−

1
2 (d−∆k)

2
where

d= d(XI ,XJ). To show clustering it suffices to show that

(
1− ε
1+ ε

)k

ρ(XI)ρ
(
XJ
)
≤ ρ(X)≤

(
1+ ε
1− ε

)k

ρ(XI)ρ
(
XJ
)
.(10.2)

Define L using (10.1). By Lemma 18 we have

∣∣E
(
LIf

)(
LJf

)∣∣≤ 1
2
ε
(
E
∣∣LIf

∣∣2 +E
∣∣LJf

∣∣2
)

therefore

(1− ε)
(
E
∣∣LIf

∣∣2 +E
∣∣LJf

∣∣2)≤ E|Lf |2 ≤ (1+ ε)
(
E
∣∣LIf

∣∣2 +E
∣∣LJf

∣∣2
)
.

Consequently using (9.3) we obtain

(1− ε)ΓI,J ≤ Γ≤ (1+ ε)ΓI,J(10.3)

where Γ is the covariance matrix of (f(x1),f ′(x1), . . . ,f(xk),f ′(xk)) and ΓI,J =(ΓI 0
0 ΓJ

)
.
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We obtain det(Γ)≥ (1− ε)2k det(ΓI)det(ΓJ), and therefore

ρ(X)≤ (1− ε)−k 1

(2π)k
∣∣det

(
ΓI,J

)∣∣1/2

∫

Rk

∣∣η1 . . .ηk
∣∣e−

1
2 (1+ε)

−1〈Γ−1
I,Jη,η〉dη

= (1− ε)−k(1+ ε)k 1

(2π)|I|
∣∣det

(
ΓI
)∣∣1/2

∫

R|I|

∣∣η1 . . .η|I|
∣∣e−

1
2 (1+ε)

−1〈Γ−1
I η,η〉dη

× 1

(2π)|J |
∣∣det

(
ΓJ
)∣∣1/2

∫

R|J |

∣∣η1 . . .η|J |
∣∣e−

1
2 (1+ε)

−1〈Γ−1
J η,η〉dη

=

(
1+ ε
1− ε

)k

ρ
(
XI
)
ρ
(
XJ
)
.

Similarly we have

ρ(X)≥
(

1− ε
1+ ε

)k

ρ(XI)ρ
(
XJ
)
.

This completes the proof of (10.2). #

10.2.1. Proof of Lemma 18. We first show a small scale version of the
lemma.

LEMMA 19. Let ρ> 0. Suppose that K1 and K2 are two intervals with length
at most 2ρ. Assume that LKj is a linear functional on C with poles inside Kj with
rank at most k. Assume that d= dist(K1,K2)≥ 2ρ. Then

E
(
LK1f

)(
LK2f

)
≤ Cf,k,ρe

− 1
2 (d−2ρ)2(E

∣∣LK1f
∣∣2 +E

∣∣LK2f
∣∣2).

Proof. Let c1 and c2 be the centers of K1 and K2. Let Txf denote

Txf(z) = f(z+x)e−(
1
2 |x|

2+xz)

then ETxf(t1)Txf(t2) = Ef(t1)f(t2) for any t1, t2 ∈ R. Therefore for any x ∈ R,
Txf and f have the same distribution (in particular the distribution of the real
zeros of f is translation invariant). Let K3 and K4 be K1− c1 and K4 =K2− c2,
thus these intervals are centered at 0 and have length at most 2ρ. Let L1 be such
that L1Tc1f = LK1f and let L2 be such that L2Tc2f = LK2 . Then it is clear that
L1 and L2 are linear functional of rank at most k with poles inside [−ρ,ρ]. Let
γ = {|z|= 2ρ}. Since f is 2k-nondegenerate on C, we then have

E
(
LK1fLK2f

)
= E

(
L1Tc1f

)(
L2Tc2f

)

≤
∣∣∣∣
∫

γ

∫

γ
rL1
(
z1
)
rL2
(
z2
)
E
(
Tc1f

)(
z1
)
Tc2f

(
z2
)
dz1dz2

∣∣∣∣

≤Cρ sup
z1,z2∈γ

∣∣E
(
Tc1f

(
z1
)
Tc2f

(
z2
))∣∣
(

max
γ

∣∣rL1
∣∣2 +max

γ

∣∣rL2
∣∣2
)
.
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By explicit computation and using |c1− c2|≥ 2ρ, we obtain

sup
z1,z2∈γ

E
(
Tc1f

(
z1
)
Tc2f

(
z2
))
≤ Cρe

−(|c1−c2|−2ρ)2

therefore

E
(
LK1fLK2f

)
≤Cρe

−(|c1−c2|−2ρ)2
(

max
γ

∣∣rL1
∣∣2 +max

γ

∣∣rL2
∣∣2
)

≤Cf,k,ρe
−|d−2ρ|2

(
E
∣∣L1f

∣∣2 +E
∣∣L2f

∣∣2
)
.

Since f and Tcjf have the same distribution, the last display is the same as

= Cf,k,ρe
−|d−2ρ|2

(
E
∣∣LK1f

∣∣2 +E
∣∣LK2f

∣∣2
)

which implies the desired estimate. #

We now start the proof of Lemma 18. We will construct a covering X by small
intervals having the following properties:

(i) The cover will consists of m≤ k intervals I1, . . . , Im each of length at most
ρ such that the distance between the centers of any two of them is at least 4ρ.

(ii) The algorithm will ensure that ρ> 1 (or any given large absolute constant)
but ρ=Ok,f (1).

We first let ρ1 = 1 and use the given points as centers of the interval.
If there are two centers with distance not larger than 4ρ1, we replace these two

centers by one center at their midpoint, and enlarge all intervals, replacing ρ1 by
ρ2 = 3ρ1.

We repeat this process if needed, and since there are only k points the process
has to stop. Clearly the last radius is at most 3k−1.

Note that we could ensure that ρ is larger than any given constant depending
on k,f if needed, by setting ρ1 the initial radius to be larger than this constant.

Now, choose ∆k > 4ρ such that ∆k−4ρ is very large compared to 1.
Notice that there is no k such that Ik intersects both I and J . Let A = {k :

Ik ∩ I += /0} and B = {k : Ik ∩J += /0}. Now using the above small scale result we
have

E
∣∣LIf

∣∣2 =
∑

k∈A
E
∣∣LIkf

∣∣2 +
∑

k,n∈A:k +=n

E
(
LIkfLInf

)
≥ 1

2

∑

k∈A
E
∣∣LIkf

∣∣2.

Similarly, E|LJf |2 ≥ 1
2

∑
k∈BE|LIkf |2.
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Now, if k ∈ A and n ∈ B it is clear that dist(Ik, In) ≥ d− 2ρ > 2ρ since d ≥
2∆k is very large compared to ρ. Therefore

∣∣E
(
LIf

)(
LJf

)∣∣≤Cf,k,ρ

∑

k∈A, n∈B
e−

1
2 |d−4ρ|2

(
E
∣∣LIkf

∣∣2 +E
∣∣LInf

∣∣2
)

≤Cf,k,ρe
− 1

2 |d−4ρ|2
(
E
∣∣LIf

∣∣2 +E
∣∣LJf

∣∣2
)
. #

Appendix A. Translation invariance of the real zeros of P∞. The follow-
ing property is standard, we include a proof for the convenience of the reader.

LEMMA 20. The distribution of the real roots of P∞ is invariant under trans-
lations on R and the reflection x 5→ −x.

Proof. Notice that f(x) is a real Gaussian process with correlation function

Kf (x,y) = Ef(x)f(y) =
∑

k≥0

xkyk

k!
= exy

Let g(x) = e−bx+
1
2 b

2
f(ax+ b) where a ∈ {−1,1} and b ∈ R. Then g is also a

centered real Gaussian process with the correlation function

Kg(x,y) =Kf (ax+ b,ay+ b) = e(ax+b)(ay+b)−b(ax+b)−b(ay+b)+b2

= exy =Kf (x,y).

It follows that g has the same distribution as f(x). Consequently the real zeros of
f(ax+ b) has the same distribution as the real zeros of f(x). #

Appendix B. Relation between cumulants and truncated correlation
functions. For the convenience of the reader, we include a self-contained proof
of Lemma 15 in this section, which largely follows an argument in Nazarov-
Sodin [22]. Recall that X is the random point process for the real zeros of P∞,
h : R → R+ is bounded compactly supported, and n(1,h) =

∑
α∈X h(α), and

Π(k) is the collection of all partition of {1, . . . ,k} into disjoint nonempty subsets,
and for each γ ∈ Π(k) let |γ| be the number of subsets in the partition γ, and if
γ1, . . . ,γj are the cardinality of the subsets in γ then

hγ(x) = h
(
x1
)γ1 . . .h

(
xj
)γj .

We first prove an analogous relation between the moment and the (standard)
correlation functions: if mk(N) = ENk denotes the kth moment of the random
variable N , then

mk
(
n(1,h)

)
=
∑

γ∈Π(k)

∫

R|γ|
hγ(x)ρ(x)dx.(B.1)
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Indeed, divide Π(k) into
⋃

j≥1Π(k,j) basing on |γ| = j. For each γ ∈ Π(k,j) let
A1, . . . ,Aj be the subsets in the partition and let γj = |Aj |. Note that the correlation
functions are uniformly bounded therefore we may use the bounded compactly
supported function H(x1, . . . ,xj) = h(x1)γ1 . . .h(xj)γj as a test function in the
defining property of correlation functions, and obtain

∫

R|γ|
hγ(x)dx=

∫

Rj
h
(
x1
)γ1 . . . h

(
xj
)γjρ

(
x1, . . . ,xj

)
dx1 . . .dxj

= E
∑

(ξ1,...,ξj)

h
(
ξ1
)γ1 . . .h

(
ξj
)γj

where the last summation is over all ordered j-tuples of different elements of X. By
summing over all possible values of j and γ1, . . . ,γj ≥ 1 (with γ1 + · · ·+ γj = k),
it follows that

∑

j

∑

γ∈Π(k,j)

∫

R|γ|
hγ(x)dx= E

∑

j

∑

γ1+···+γj=k

∑

(ξ1,...,ξj)

h
(
ξ1
)γ1 . . .h

(
ξj
)γj

= E




∑

ξ∈X
h(ξ)




k

=mk

(
n(1,h)

)
.

We now use induction on k to prove (8.2). Clearly (8.2) holds for k = 1. The
key ingredient for the induction step is the following relationship between cumulant
and moments (see e.g., [26, Chapter 2])

sk =mk−
∑

j≥2

∑

π∈Π(k,j)

sπ1 . . . sπj

which is analogous to the following reformulation of (8.1):

ρT (Z) = ρ(Z)−
∑

j≥2

∑

γ∈Π(k,j)

ρT (Z,γ)

where ρT (Z,γ) = ρT (ZΓ1) . . .ρ
T (ZΓj ) if γ = (Γ1, . . . ,Γj).

To facilitate the notation, for γ,π ∈Π(k) we say that γ ≤ π if γ is a refinement
of π, in other words the partitioning subsets of γ are subsets of the partitioning
subsets in π. If γ ≤ π and γ += π we say γ < π.

Let 1 denote the trivial partition with just one partitioning subset, clearly all
π ∈ Π(k) satisfies π6 1. We will write π = (Π1, . . . ,Π|π) below.
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Using the induction hypothesis we have

sk =mk−
∑

π<1

|π|∏

j=1

sπj

=
∑

γ≤1

∫

R|γ|
hγ(x)ρ(x)dx

−
∑

π<1

|π|∏

j=1

∑

Γ(j) partitions Πj

∫

R|Γ(j)|
hΓ(j)

(
x(j)
)
ρT
(
x(j)
)
dx(j).

Note that x(j) is a vector in R|Γ(j)|. Interchanging the sum in the second term and
let γ = (Γ(1), . . . ,Γ(|π|)) ≤ π, we obtain

sk =
∑

γ≤1

∫

R|γ|
hγ(x)ρ(x)dx−

∑

γ≤1

∑

γ≤π<1

∫

R|γ|
hγ(x)




|π|∏

j=1

ρT
(
x(j)
)
dx(j)





=
∑

γ≤1

∫

R|γ|
hγ(x)



ρ(x)−
∑

π:γ≤π<1

|π|∏

j=1

ρT (x(j))dx(j)



 , here x=
(
x(1), . . . ,x(|π|)

)
,

=
∑

γ≤1

∫

R|γ|
hγ(x)



ρ(x)−
∑

π∈Π(|γ|): π<1

ρT (x,π)



dx

=
∑

γ≤1

∫

R|γ|
hγ(x)ρT (x)dx.

This completes the induction step and the proof of Lemma 15. #

Appendix C. An explicit computation for the two-point correlation func-
tion of P∞. First thanks to translation and reflection invariance one has ρ(s,t) =
ρ(0, t−s) = ρ(0,s− t), therefore it suffices to compute ρ(0, t) for t > 0. This func-
tion was computed in an earlier paper [25] (which also contains many interesting
statistics about the real roots); we choose provide the details for the reader’s con-
venience.

Let γ(t) = e−t
2/2 and g(t) = γ(t)P∞(t). The zero distribution of P∞ and g are

the same, so it suffices to compute the two-point correlation function for the real
zeros of g. The covariance matrix for g(0),g(t),g′(0),g′(t) is a symmetric 4× 4
matrix

(
A B
C D

)
where A,B,C,D are 2× 2 matrices. It follows that the conditional

distribution of (g′(0),g′(t)) given g(0) = 0 and g(t) = 0 is a centered bivariate
Gaussian with covariance matrix Σ=D−CA−1B. Since E[g(t)g(s)] = γ(t− s),
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one has C =BT and

A=

(
1 γ(t)

γ(t) 1

)
, B =

(
0 −tγ(t)

tγ(t) 0

)
,

D =

(
1

(
1− t2

)
γ(t)(

1− t2
)
γ(t) 1

)
.

Therefore via explicit computation (below γ = γ(t) = e−t
2/2)

Σ= I+M, M =

(
x y
y x

)
, x=

−t2γ2

1−γ2 , y =
(
1− t2)γ− t2γ3

1−γ2 .(C.1)

Note that (g(0),g(t)) is a centered bivariate Gaussian with covariant A, thus the
density at (0,0) is (2π

√
1−γ2)−1. It follows that

ρ(0, t) =
1

2π
√

1−γ2
E
[
|X| · |Y |

]
(C.2)

where (X,Y ) have mean zero bivariate Gaussian distributions with covariant Σ.
Note that |α| = 1√

2π

∫ ∞
0 (1− e−α

2x/2)x−3/2dx (which follows from a simple
rescaling of the integration variable and integration by parts). Using the Kac-Rice
formula, it follows that

E
[
|X| · |Y |

]
=

1
2π

∫ ∞

0

∫ ∞

0

(
f(u,v)− f(u,0)− f(0,v)+ f(0,0)

)
u−3/2v−3/2dudv

f(u,v) = E
[
e−(uX

2+vY 2)/2]=
∣∣∣∣det

(
I+Σ

(
u 0
0 v

))∣∣∣∣
−1/2

=
(
(1+u)(1+ v)+x(u+ v+2uv)+uv

(
x2−y2))−1/2

.

Redefine A= x and B = x2−y2, we have

f(u,v) =
(
1+(A+1)v+(1+A+ v+2Av+Bv)u

)−1/2

=
(
1+(A+1)v

)−1/2(1+Mvu
)−1/2

where Mv =
1+A+(1+2A+B)v

1+(A+1)v . We now use the elementary identity

∫
(1+α)−1/2α−3/2dα=−2(1+α)1/2α−1/2 +C
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and obtain, via a simple change of variables,
∫ ∞

0

(
f(u,v)− f(0,v)

)
u−3/2du

=
1√

1+(A+1)v

∫ ∞

0

((
1+Mvu

)−1/2−1
)
u−3/2du

=
1√

1+(A+1)v

(
2u−1/2−2

(
1+Mvu

)1/2
u−1/2)|∞0

=
−2M1/2

v√
1+(A+1)v

.

In particular we could let v = 0 and obtain −2(1+ (A+ 1)u)−1/2 as the result.
Therefore

E
[
|X| · |Y |

]
=

1
2π

∫ ∞

0
2

(
√
A+1−

(
1+A+(1+2A+B)v

)1/2

1+(A+1)v

)
v−3/2dv.

Let N = 1+2A+B
(1+A)2 < 1 (since B < A2). Using the change of variables v 5→ (1+

2A+B)v/(1+A) we obtain

E
[
|X| · |Y |

]
=

1
2π

2(1+2A+B)1/2
∫ ∞

0

(
1− (1+ v)1/2

1+N−1v

)
v−3/2dv

=
1

2π
2(1+2A+B)1/2

(
2
α

arctan
(
u

α

)
+

2
u
−2v−1/2

)v=∞

v=0

where u := v1/2(1+ v)−1/2 and α=
√

N/(1−N). Thus

E
[
|X| · |Y |

]
=

1
2π

4(1+2A+B)1/2
(

1
α

arctan
(

1
α

)
+1
)
.

Note that arctan( 1
α) = arccos(α/

√
1+α2) = arccos(

√
N). Therefore

E
[
|X| · |Y |

]
=

1
2π

(
4(1+2A+B)1/2 +4

√
A2−B arccos

(√
1+2A+B

1+A

))
.

Recalling A= x and B = x2−y2 and (C.1) we obtain

ρ(0, t) =
1

π2
√

1− e−t2

(√
(1+x)2−y2 + |y|arcsin

(
|y|

1+x

))
(C.3)

where x,y are defined using (C.1). One could check that 1+x ≥ 0 ≥ y thus by
letting

δ :=
|y|

1+x
=

e−t
2/2
(
e−t

2/2 + t2−1
)

1− e−t2− t2e−t2
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Figure 1. Mathematica plot of k(t) := ρ(0, t)− 1
π2 .

we obtain

ρ(0, t) =

√(
1− e−t2)2− t4e−t2

π2
(
1− e−t2)

(
1+

δ√
1− δ2

arcsin δ
)

which recovers [25, (D8,D9)]. From here a numerical evaluation gives

COROLLARY 2. Let k(t) = ρ(0, t)− 1
π2 . Then k̂(0)+ 1

π = 0.18198 . . . > 0.
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