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Abstract—Today’s high performance computing (HPC) systems
are limited by the expensive data movement between processing
and memory units. An emerging solution strategy is to per-
form in-memory computing (IMC) using non-volatile memory.
However, state-of-the-art in-memory computing paradigms fail to
simultaneously deliver high precision and high energy-efficiency.
Analog in-memory computing is extremely energy-efficient but
inherently vulnerable to errors. In contrast, digital in-memory
computing based on Boolean logic is robust to errors but less
energy-efficient. In this paper, we propose a new paradigm
called hybrid analog-digital in-memory computing. The paper
also proposes the associated in-memory computing platform and
design automation tool chain needed to perform computation
using the paradigm. The paradigm is capable of performing
matrix-vector multiplication with both high energy-efficiency and
precision. The key idea of the paradigm is to first decompose
the most significant bits (MSBs) of the desired computation
into Boolean functions and the least significant bits (LSBs) into
matrix-vector multiplication operations. Next, the operations are
mapped to digital and analog in-memory computing hardware,
respectively. The proposed paradigm is evaluated using applica-
tions from the domains of structural engineering, mathematics,
and statistics. Compared with analog in-memory computing, the
proposed paradigm is capable of meeting the constraints on
the computational accuracy. Compared with digital in-memory
computing, systems, power, speed, and area are respectively
improved with 2.44X, 2.45X and 2.32X.

I. INTRODUCTION

The simulation of complex physical systems is integral to

predicting and mitigating the impact of catastrophic events.

Complex physical systems within high-energy physics [22],

weather forecasting [21], and biology [25] are modeled using

systems of partial differential equations (PDEs). These models

are commonly required to be simulated for months using

high performance computing (HPC) systems. The increasing

demand for large scale simulation is putting undue pressure

on the underlying computational substrates [8]. Unfortunately,

it is notoriously difficult for HPC systems based on von-

Neumann architecture to handle exascale or even petascale

data. Mainly, due to the separation of memory and computing

units, which translates into power hungry and bandwidth

limited data transfer [30].

An emerging solution strategy is to perform in-memory

computing using emerging non-volatile resistive devices.

Non-volatile resistive devices are two terminal devices with

programmable resistance, which includes resistive random
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access memory (ReRAM), phase change memory (PCM),

spin-transfer torque magnetic random access memory (STT-

MRAM). By integrating the devices in dense crossbar ar-

rays, the amount of data transfer on the system bus can be

greatly reduced by performing in-memory computation. The

acceleration of matrix-vector multiplication (MVM) using in-

memory computing has recently attracted significant attention

because it is the dominating computational kernel within

many important applications. In particular, it is the dominating

computational kernel within the simulation of physical sys-

tems within scientific computing applications. Consequently,

it is not surprising that the acceleration of MVM has been

extensively explored using both analog and digital in-memory

computing paradigms.

Analog in-memory computing is based on performing ana-

log MVM using the natural multiply-and-accumulate feature

of memristor crossbar arrays, which is extremely energy-

efficient [19]. Unfortunately, analog in-memory computing is

inherently vulnerable to errors introduced by random tele-

graph noise, sneak currents, temperature fluctuations, and other

sources of variation [11]. While the relaxed precision may be

acceptable for image processing [17] and artificial intelligence

applications [18], computation within scientific computing

applications must meet strict precision requirements [12].

Digital in-memory computing is focused on executing

Boolean functions in-memory. The acceleration of MVM using

digital in-memory computing has been investigated using logic

families such as Material Implication (IMP) [3], MAGIC [14],

programmable OR plane [7], path-based logic [28]. While the

robustness of digital computing allows arbitrary precision re-

quirements to be satisfied, the energy-efficiency is substantially

lower than for analog in-memory computing. Consequently,

neither of the state-of-the-art in-memory computing paradigms

can deliver both high precision and high energy efficiency.

In this paper, we propose a new computing paradigm called

hybrid analog-digital in-memory computing. The paradigm

is capable of performing matrix-vector multiplication with

high energy-efficiency and precision. The paper also proposes

the associated in-memory computing platform and design

automation tool chain needed to perform computation using

the platform. The key idea is to decompose the most significant

bits (MSBs) of the desired computation into Boolean func-

tions and the least significant bits (LSBs) into matrix-vector

multiplication operations. Next, the respective kernels are

mapped to digital and analog in-memory computing hardware.
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