SHORT COMMUNICATION

Decadal forest soil respiration following stem girdling

Elizabeth A. Clippard¹ · Samuel I. Haruna¹ · Peter S. Curtis² · Cameron Clay³ · Ben Bond-Lamberty⁴ · Kayla Mathes³ · Christoph S. Vogel⁵ · Christopher M. Gough³

Received: 18 November 2021 / Accepted: 17 August 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Key message Large-scale stem-girdling experiment reduced soil respiration for five consecutive years. Timing and magnitude of soil respiration declines are better explained by changes in leaf area rather than in soil microclimate. Abstract Soil respiration (Rs) represents the largest flux of carbon (C) from forests to the atmosphere, but the long-term influence of phloem-disrupting disturbance on Rs is poorly understood, limiting robust forecasts of ecosystem C balance. Using a decade of observations from the Forest accelerated succession experiment (FASET), we examined relationships among Rs, soil temperature, soil moisture, and leaf area index (LAI) following the stem girdling-induced mortality of 40% of all canopy trees within a 39-ha area. Mean annual Rs declined by about 20% relative to the control two years after disturbance, but recovered to near pre-disturbance values within five years; this reduction correlated with LAI losses and lower Rs temperature sensitivity (i.e., Q_{10}), with the latter counteracting soil warming caused by partial canopy defoliation. These observations are consistent with progressive reductions in belowground labile C causing reductions in Rs. We conclude that the effects of stem girdling on Rs (1) were not immediate, occurring two years after the treatment, (2) were primarily influenced by biotic rather than soil microclimate changes, and (3) persisted for nearly a decade but were temporally dynamic, underscoring the value of long-term experiments.

Keywords Soil respiration \cdot Moderate disturbance \cdot Temperature sensitivity \cdot Leaf area index

Communicated by Steven W. Leavitt.

Samuel I. Haruna
Samuel.Haruna@mtsu.edu

Published online: 27 August 2022

- School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W 12th Ave, Columbus, OH 43210, USA
- Department of Biology, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
- ⁵ University of Michigan Biological Station, 9133 Biological Rd, Pellston, MI 49769, USA

Introduction

The soil-to-atmosphere flux of CO₂ generated by root and microbial respiration, commonly termed soil respiration (Rs), is a large component of ecosystem- to global-scale carbon (C) cycling and a primary determinant of ecosystem net C balance (Li et al. 2018). Interannual variation in Rs is driven by abiotic and biotic factors (Hursh et al. 2017; Xu and Shang 2016), including shifts in soil temperature (Davidson and Janssens 2006) and the supply of photosynthate supporting root respiration. Conditions that increase Rs may drive significant positive climate feedbacks as soil organic carbon is mineralized in a warming world (Bond-Lamberty et al. 2018), particularly in mid-latitude forests that are currently substantial carbon sinks (Pan et al. 2011).

Forest disturbances are increasing in many areas of the world, affecting these ecosystems' carbon, nutrient, and energy cycling (McDowell et al. 2020). Disturbances including fires (Pellegrini et al. 2021; Ribeiro-Kumara et al. 2020), storms (Vargas and Allen 2008; Lindauer et al. 2014; Fahey et al. 2020), and biotic pests (Moore

et al. 2013; Borkhuu et al. 2015) may have lasting effects on Rs, and biotic disturbances are likely to increase with climate change (Weed et al. 2013; Seidl et al. 2017). Many insect pests operate by restricting or blocking the phloem, starving roots and eventually killing the tree. The effect of such insect disturbances on the C cycle may be large but temporally variable (Speckman et al. 2014; Kurz et al. 2008), resulting in an uncertain future for the land C sink.

Experimentally, phloem disturbance has been shown to restrict belowground carbon allocation, selectively kill trees, and mimic both biotic agents and successional change (Gough et al. 2021a). Stem girdling has been used for decades (Edwards and Ross-Todd 1979) to restrict belowground C accumulation, for the selective termination of trees and to mimic successional change, allowing for measurement of heterotrophic-dominated C fluxes (Högberg et al. 2001). For example, Högberg et al (2001) observed significant declines in Rs following girdling resulting from root rather than heterotrophic activity, although heterotrophic respiration may increase for a short time as well (Bhupinderpal-Singh et al. 2003). Such girdling experiments measuring Rs, however, have been quite short-term, typically only 1–2 years (e.g. Levy-Varon et al. 2012; Högberg et al. 2001; Bhupinderpal-Singh et al. 2003; Matteucci et al. 2015). While understandable research funding cycles are short—this preponderance of short-term observations means that the longer-term Rs dynamics and drivers following phloem disturbance remain highly uncertain (Amiro et al. 2010; Gough et al. 2021a, b). Consequently, longer-term forecasts of disturbance response are poorly constrained (Goetz et al. 2012).

The goal of this study was to understand decadal Rs change following phloem disruption and subsequent mortality in a mixed temperate forest. Our specific objectives were to (1) characterize the 10-yr response of Rs to a phloem-disrupting disturbance (O1); (2) probe how such disturbances can modify Rs temperature sensitivity (O2); and (3) test whether disturbance-driven changes in Rs are caused primarily by biotic or abiotic (i.e., microclimatic) factors (O3). We hypothesized that (1) the effects of disturbance would be relatively short-lived, resolving by the end of the decade, (2) the temperature sensitivity of Rs would decrease as labile root carbohydrate diminished, and (3) that large biotic (i.e., LAI) effects would overwhelm more modest abiotic changes following disturbance. We leverage long-term observations from the Forest accelerated succession experiment (FASET) in which 40% of mature canopy trees within a 39-ha area were stem girdled. Our Short Communication provides a focused interpretation of Rs responses to the FASET treatment as a complement to analyses emphasizing meteorological tower-based C fluxes (Gough et al. 2021b).

Materials and methods

Site description

The study was conducted at the University of Michigan Biological Station (UMBS) in Pellston, Michigan, USA (45° 35′N, 84°43′W), about 213 m above sea level. The 30-year average precipitation and air temperatures are 1113 mm per year and 4.6 °C, respectively, and most soils are frigid Entic Haplorthods. The UMBS landscape is primarily a secondary forest, established following clearcutting and wildfires that occurred in the late nineteenth century through the early twentieth century. The UMBS hosts long-term control (US-UMB) and FASET (hereafter, "disturbed", US-UMB) Ameriflux sites (Gough et al. 2021b), which have collected C cycling data using meteorological flux towers and ground observations since 1998 and 2007, respectively.

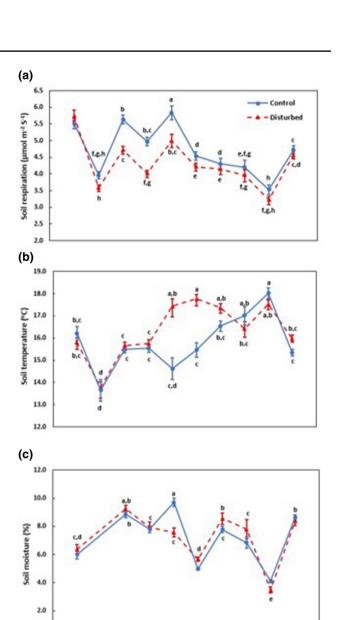
The goal of the FASET study is to examine how a moderate severity disturbance, which kills early- but not midlate successional tree species, affects C cycling processes. Canopy dominant species, prior to the FASET disturbance, included bigtooth aspen (Populus grandidentata), eastern white pine (Pinus strobus), red oak (Quercus rubra), red maple (Acer rubrum), and white birch (Betula papyrifera). In 2008, the FASET treatment was implemented by stem girdling 6,700 aspen and white birch trees within a 39-ha area (Nave et al. 2011), constituting 39% of the total basal area. One 1-ha and seven 0.1-ha plots in each of the control and disturbed sites were paired (for 16 total) based on pre-disturbance similarities in leaf area index (LAI) and aspen and birch abundance. Within paired plots, measurements of LAI from litter traps, and concurrent Rs, soil temperature (Ts), and soil moisture (Ms) were conducted for 10 years, beginning in 2008. Data collection methods are detailed elsewhere (Gough et al. 2021b) and briefly described below. Prior C cycling-focused studies emphasized meteorological tower-based observations of production and ecosystem respiration, but not Rs (Nave et al. 2011; Gough et al. 2013, 2021b).

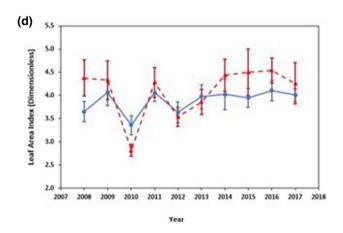
Field measurements

We repeatedly measured Rs, Ts, and Ms from five locations within each of the 16 plots monthly during April through September each year. Rs was measured using a LI-COR 6400 (LI-COR Biosciences, Lincoln, NE, USA) from randomly distributed PVC collars. At the same location, Ts was measured at a soil depth of 7 cm and volumetric water content (Ms) was measured using a HydroSense II Handheld Soil Moisture Sensor (Campbell Scientific,

Logan, UT, USA) at 20 cm soil depth. Due to equipment malfunction, Ms was not measured in 2009. A total of 4359 Rs measurements were co-located with Ts, and Ms observations during a 10-yr period for an average of 217 measurements per treatment (control and disturbed site) each year. Data are available via the COSORE database (Bond-Lamberty et al. 2020).

We estimated LAI from repeated collections of leaf litterfall. Leaf litter was removed from three litter traps (0.264 m²) per 0.1-ha plot and 20 litter traps per 1.1-ha plot weekly during autumn and monthly during other seasons, pooled by plot, separated by species, dried, and weighed. The LAI was calculated from species- and site-specific litterfall mass and specific leaf area values (Gough et al. 2021b).


Statistical analysis


Supporting O1, analysis of variance (ANOVA) was performed using the PROC GLM procedure in SAS V9.4 (SAS Institute) to compare the Rs, Ts, and Ms means of control and disturbed sites (Tables S1, S2). Pairwise comparisons were conducted using the PROC MEANS procedure from SAS via Duncan's test (alpha = 0.05). For O2, we calculated the temperature sensitivity of soil respiration (Q_{10}) separately for periods during which control and disturbed sites exhibited statistically similar and different soil respiration using a 2-parameter exponential function (Sigmaplot V14.01). Control and disturbed Q10 values were considered statistically different when the 95% confidence intervals were non-overlapping. For O3, we conducted path analysis using PROC CALIS in SAS V9.4, testing whether differences in control and disturbed Rs (e.g., as mean control Rs-disturbed Rs) were explained directly by treatment differences in LAI, Ts, and/or Ms or whether LAI's influence on Rs was indirect, through its influence on Ts and/or Ms.

Results and discussion

Our decade-long observations of soil respiration, microclimate, and LAI following the stem girdling of 40% of canopy trees provide insight into the long-term patterns and mechanisms controlling soil C efflux following a partial (i.e., non-stand replacing) disturbance. Long-term observations of soil respiration following disturbance are rare, but critical to assessing ecosystem disturbance-response dynamics, from initial response through recovery (Mathes et al. 2021).

We found that, (1) Rs in the disturbed site was 10 to 24% lower than that of the control for five of 10 years, with treatment differences emerging two years after stem girdling (Fig. 1a, O1), suggesting root non-structural carbohydrates may have sustained root metabolism (Gough et al. 2009), (2) Rs was lower in the disturbed forest even when soil

0.0

Fig.1 Mean soil respiration (**a**), soil temperature (**b**), soil moisture (**c**), and leaf area index (**d**) for the control and disturbed sites, 2008–2017. Non-overlapping letters denote significant pairwise differences among mean (P < 0.05). Means ± 1 S.E

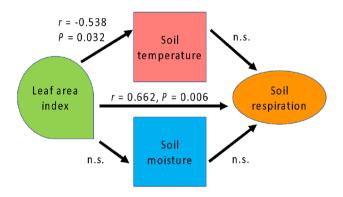


Table 1 Q10 values for the control and disturbed sites calculated from soil respiration temperature-response curves

Period	Rs treatment differences?	Treatment	Q_{10}	95% C.I
2008–2009	No	Control	2.39	0.18
		Disturbance ¹	2.35	0.21
2010–2014	Yes ²	Control	2.28	0.12
		Disturbance	1.86	0.11
2015–2017	No	Control	1.52	0.25
		Disturbance	1.33	0.34

¹The stem-girdling treatment was implemented in 2008

²Italics denote significance between treatments, P < 0.05

Fig. 2 Maximum likelihood estimates derived from path analysis, relating differences in mean soil respiration between the control and disturbed forests to differences in mean annual leaf area index, mean soil temperature, and mean soil moisture, 2008–2017

temperatures were elevated over the control because the temperature sensitivity of Rs (i.e., Q_{10}) temporarily declined (Table 1, O2), and (3) control and disturbed site Rs differences were driven by relatively small treatment departures in LAI rather than microclimatic differences (Fig. 2, O3). These findings suggest a mechanistic basis for the timing and magnitude of Rs decline and recovery, in which the exhaustion of the root labile carbohydrate pool lagged behind an immediate reduction in photosynthate supply. Our findings also demonstrate the value of decadal observations when characterizing disturbance responses (Harmon et al. 2011), illustrating a long-term pattern of decline and recovery over several years.

Specific to our first objective, we found Rs and microclimatic responses lagged stem girdling and this lag declined as the decade progressed (Fig. 1). Soil respiration was significantly lower—by up to 20%—for five consecutive years in the disturbed forest when compared to the control, but treatment differences did not emerge until two years after stem girdling, which is a contrast to some experiments observing immediate declines in Rs (Högberg

et al. 2001; Levy-Varon et al. 2012). Interestingly, the period of lower Rs in the disturbed forest relative to the control coincided with higher soil temperatures and lower soil moistures during the two years, with soils up to about 3 °C warmer and 20% drier in the stem-girdled forest. LAI did not differ significantly between treatments after stem girdling. Soil respiration and microclimate values in disturbed forests returned to control levels within seven years of stem girdling, underscoring the relatively long-term interval between response and recovery, a duration that matches theoretical expectations (Harmon et al. 2011) and eddy-covariance tower C fluxes following partial disturbance (Amiro et al. 2010).

The observed timing and duration of Rs decline following stem girdling is also similar to that predicted by model simulations of the FASET disturbance (Bond-Lamberty et al. 2015) and congruent with some, but not all, shorterterm (1 to 5-yr) forest disturbance studies (Vargas and Allen 2008; Moore et al. 2013; Borkhuu et al. 2015). Paralleling our observations, ecosystem respiration, of which Rs is the largest component (Curtis et al. 2005), was predicted by two of three models to reach a low point two years after stem girdling and then gradually return to control levels (Bond-Lamberty et al. 2015). Elsewhere, observations indicate that the timing, extent, duration, and sign of Rs response to stem girdling varies depending on the plant taxa affected (Levy-Varon et al. 2012), the source of phloem-disrupting disturbance (Concilio et al. 2006), and the degree of tree mortality (Borkhuu et al. 2015).

While the stem girdling of all trees within an experimental unit rapidly dampens Rs by immediately eliminating photosynthate allocation to roots (Högberg et al. 2001), we may have observed a more moderate and lagged Rs response because (1) the FASET treatment targeted only 40% of canopy trees, and (2) root systems at our site and elsewhere (Binkley et al. 2006) contain a large pool of labile carbohydrates with which to temporarily sustain root metabolism (Gough et al. 2009). Focusing on our second objective, mean Rs was lower in the disturbed forest because diminished temperature sensitivity offset the positive influence of temporary increases in soil temperature, a primary abiotic driver of Rs in forest ecosystems (Bond-Lamberty et al. 2018). From 2010–2014, when Rs was significantly lower in the disturbed forest relative to the control (Fig. 1a), Ts was intermittently higher (Fig. 1B) while the Q₁₀ values of disturbed and control forest Rs were 1.86 and 2.28, respectively. Lower Q₁₀ was associated with short-term reductions in Rs following the stem girdling of planted forest trees, and may reflect a reduction in photosynthate supply to the roots (Chen et al. 2009; Maier et al. 2010). Even so, the extent to which Rs temperature sensitivity shifts in response to disturbance is variable across disturbance types, severities, and forest compositions and thus remains a source of uncertainty when

projecting ecosystem C balance following perturbation (Hu et al. 2017).

Finally, our path analysis suggested that disturbancedriven changes in LAI, rather than soil temperature or moisture, was the primary determinant of Rs responses to stem girdling, possibly because LAI losses caused a reduction in the supply of metabolically-critical photosynthate to the roots. This should be considered a tentative finding, given that the LAI differences were themselves not statistically significant, but is nonetheless intriguing. It implies that small differences in LAI between the control and disturbed forests had disproportionate effects on soil respiration, with a temporary loss of leaf area in the stem-girdled forest directly reducing Rs even while increasing Ts (Fig. 2). This stronger influence of LAI over microclimate has been reported for some undisturbed forests (Reichstein et al. 2003; Lindroth et al. 2008) and is consistent with progressive limitations in belowground C allocation constraining Rs following stem girdling.

In summary, our findings suggest the primary mechanism regulating the response of Rs through a full disturbance-recovery cycle is biotic rather than abiotic, and likely associated with a lagged reduction in belowground labile C pools following disturbance (Gough et al. 2009). The divergence of control and disturbed forest Rs two years after stem girdling is coincident with peak tree mortality in the FASET manipulation (Gough et al. 2013). Somewhat unexpectedly, large but transient increases in soil temperature were not substantial enough to overcome a reduction in Rs temperature sensitivity.

Conclusion

In a world of rising biotic disturbances driven by landuse and climate changes (Weed et al. 2013; Seidl et al. 2017), understanding the resulting ecosystem carbon-cycle changes—and possible climate feedbacks—is increasingly critical. This study elucidates the complex and unexpected interplay that can occur between biotic (e.g. LAI) and abiotic (Ts and Ms) drivers. It emphasizes the value of longerterm experiments and observational campaigns in characterizing ecosystem response to disturbance—particularly when responses may be transient or unsustainable (Norby et al. 2010)—and the necessity of robust theoretical frameworks for synthesizing understanding (Mathes et al. 2021). For these reasons we concur that decadal observations are necessary to understand ecosystem response to disturbance (Harmon et al. 2011). Our study also underlines the value of early and long-term observations of disturbance events in a world of increasing climate variability in which predisturbance conditions can never be re-created, and subtle responses require synthesis to fully understand (Wolkovich et al. 2012; Yang et al. 2021).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00468-022-02340-x.

Acknowledgements This work was supported by the National Science Foundation Division of Environmental Biology, Award 1655095 and by the Department of Energy AmeriFlux Core Site support to US-UMB and US-UMd sites. We thank the University of Michigan Biological Station for hosting and supporting our work.

Author contributions EAC and SIH wrote the original draft. SIH and CMG performed the statistical analysis. PSC, BBL, CC, KM, CSV, and CMG reviewed the original draft in several rounds.

Funding This work was supported by the National Science Foundation Division of Environmental Biology, Award 1655095 and by the Department of Energy AmeriFlux Core Site support to US-UMB and US-UMd sites.

Availability of data and materials All data have been previously published (see Bond-Lamberty et al. 2020; Gough et al. 2021a, b). All codes used are publicly available on Figshare (https://doi.org/10.6084/m9.figshare.16958794.v1).

Declarations

Competing interest The authors declare that there are no personal, professional or financial relationships that could potentially be construed as a conflict of interest.

References

Amiro BD, Barr AG, Barr JG, Black TA et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res Biogeosci. https://doi.org/10.1029/2010JG001390

Bhupinderpal-Singh NA, Ottosson-Löfvenius M, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296. https://doi.org/10.1046/j.1365-3040.2003.01053.x

Binkley D, Stape JL, Takahashi EN, Ryan MG (2006) Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in Brazil. Oecologia 148:447–454. https://doi.org/10.1007/s00442-006-0383-6

Bond-Lamberty B, Fisk JP, Holm JA, Bailey VL, Bohrer G, Gough CM (2015) Moderate forest disturbance as a stringent test for gap and big-leaf models. Biogeosciences 12:513–526. https://doi.org/10.5194/bg-12-513-2015

Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018) Globally rising soil heterotrophic respiration over recent decades. Nature 560:80–83. https://doi.org/10.1038/s41586-018-0358-x

Borkhuu B, Peckham SD, Ewers BE, Norton U, Pendall E (2015) Does soil respiration decline following bark beetle induced forest mortality? Evidence from a lodgepole pine forest. Agric for Meteorol 214–215:201–207. https://doi.org/10.1016/j.agrformet.2015.08. 258

Chen D, Zhang Y, Lin Y, Zhu W, Fu S (2009) Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations

- after tree girdling. Plant Soil 326:123. https://doi.org/10.1007/s11104-009-9986-0
- Concilio A, Ma S, Ryu SR, North M, Chen J (2006) Soil respiration response to experimental disturbances over 3 years. For Ecol Manage 228:82–90. https://doi.org/10.1016/j.foreco.2006.02.029
- Curtis PS, Vogel CS, Gough CM, Schmid HP, Su HB, Bovard BD (2005) Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytol 167:437–455. https://doi.org/10.1111/j.1469-8137.2005.01438.x
- Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514
- Edwards NT, Ross-Todd BM (1979) Effects of stem girdling on biogeochemical cycles within a mixed deciduous forest in eastern Tennessee. 1. Soil solution chemistry, soil respiration, litterfall and root biomass studies. Oecologia 40:247–257. https://doi.org/10.1007/BF00345323
- Fahey RT, Atkins JW, Campbell JL, Rustad LE, Duffy M, Driscoll CT et al (2020) Effects of an experimental ice storm on forest canopy structure. Can J for Res 50:136–145. https://doi.org/10.1139/cjfr-2019-0276
- Goetz SJ, Bond-Lamberty B, Law BE, Hickle JA, Huang C, Houghton RA, McNulty S et al (2012) Observations and assessment of forest carbon dynamics following disturbance in North America. J Geophys Res Biogeosci 117:G02022. https://doi.org/10.1029/ 2011JG001733
- Gough CM, Flower CE, Vogel CS, Dragoni D, Curtis PS (2009) Whole-ecosystem labile carbon production in a north temperate deciduous forest. Agric for Meteorol 149:1531–1540. https://doi.org/10.1016/j.agrformet.2009.04.006
- Gough CM, Hardiman BS, Nave LE, Bohrer G, Maurer KD, Vogel CS, Nadelhoffer KJ (2013) Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol Appl 23:1202–1215. https://doi.org/10.1890/12-1554.1
- Gough CM, Atkins JW, Bond-Lamberty B, Agee EA, Dorheim KR, Fahey RT et al (2021a) Forest structural complexity and biomass predict first-year carbon cycling responses to disturbance. Ecosystems 24:699–712. https://doi.org/10.1007/s10021-020-00544-1
- Gough CM, Bohrer G, Hardiman BS, Nave LE, Vogel CS, Atkins JW, Bond-Lamberty B et al (2021b) Disturbance-accelerated succession increases the production of a temperate forest. Ecol Appl 31:e02417. https://doi.org/10.1002/eap.2417
- Harmon ME, Bond-Lamberty B, Vargas R, Tang J (2011) Heterotrophic respiration in disturbed forests: a review with examples from North America. J Geophys Res Biogeosci. https://doi.org/10.1029/2010JG001495
- Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. https://doi.org/10.1038/35081058
- Hu T, Sun L, Hu H, Weise DR, Guo F (2017) Soil respiration of the dahurian larch (Larix gmelinii) forest and the response to fire disturbance in Da Xing'an Mountains. China Sci Rep 7:2967. https://doi.org/10.1038/s41598-017-03325-4
- Hursh A, Ballantyne A, Cooper L, Maneta M, Kimball J, Watts J (2017) The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Chang Biol 23:2090–2103. https://doi.org/10.1111/gcb.13489
- Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. https://doi.org/10.1038/ nature06777
- Levy-Varon JH, Schuster WSF, Griffin KL (2012) The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance. Oecologia 169:211–220. https://doi.org/10.1007/s00442-011-2182-y

- Li W, Ciais P, Wang Y, Yin Y, Peng S, Zhu Z, Bastos A et al (2018) Recent changes in global photosynthesis and terrestrial ecosystem respiration constrained from multiple observations. Geophys Res Lett. https://doi.org/10.1002/2017GL076622
- Lindauer M, Schmid HP, Grote R, Mauder M, Steinbrecher R, Wolpert B (2014) Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest—measurements and simulations. Agric for Meteorol 197:219–234. https://doi.org/10.1016/j.agrformet.2014.07.005
- Lindroth A, Lagergren F, Aurela M, Bjarnadottir B, Christensen T, Dellwik E, Grelle A et al (2008) Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus B Chem Phys Meteorol 60:129–142. https://doi.org/10.1111/j. 1600-0889.2007.00330.x
- Maier CA, Johnsen KH, Clinton BD, Ludovici KH (2010) Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees. New Phytol 185:502–513. https://doi.org/10.1111/j.1469-8137.2009.03063.x
- Mathes KM, Ju Y, Kleinke C, Oldfield C, Bohrer G, Bond-Lamberty B, Vogel CS, Dorheim K, Gough CM (2022) A multidimensional stability framework enhances interpretation and comparison of carbon cycling response to disturbance. Ecosphere 12:e03800. https://doi.org/10.1002/ecs2.3800
- Matteucci M, Gruening C, Goded Ballarin I, Seufert G, Cescatti A (2015) Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biol Biochem 88:224–235. https://doi.org/10.1016/j.soilbio.2015.05.017
- McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B (2020) Pervasive shifts in forest dynamics in a changing world. Science 368:6494. https://doi.org/10.1126/science.aaz9463
- Moore DJP, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K et al (2013) Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett 16:731–737. https://doi.org/10.1111/ele.12097
- Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373. https://doi.org/10.1073/pnas.1006463107
- Pan Y, Birdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA, Phillips OL et al (2011) A large and persistent carbon sink in the world's forests. Science 333:988–993. https://doi.org/10.1126/ science.1201609
- Pellegrini AFA, Caprio AC, Georgiou K, Finnegan C, Hobbie SE, Hatten JA, Jackson RB (2021) Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob Chang Biol 27:3810–3823. https://doi.org/10.1111/gcb.15648
- Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J et al (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cycles 17:4. https://doi.org/10.1029/2003gb002035
- Ribeiro-Kumara C, Köster E, Aaltonen H, Köster K (2020) How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A Review Environ Res 184:109328. https://doi.org/10. 1016/j.envres.2020.109328
- Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G et al (2017) Forest disturbances under climate change. Nat Clim Chang 7:395–402. https://doi.org/10.1038/nclimate3303
- Speckman HN, Frank JM, Bradford JB, Miles BL, Massman WJ et al (2014) Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Glob Chang Biol 21:708– 721. https://doi.org/10.1111/gcb.12731

- Vargas R, Allen MF (2008) Diel patterns of soil respiration in a tropical forest after Hurricane Wilma. J Geophys Res 113:G03021. https:// doi.org/10.1029/2007JG000620
- Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470. https://doi.org/10.1890/13-0160.1
- Wolkovich EM, Regetz J, O'Connor MI (2012) Advances in global change research require open science by individual researchers. Glob Chang Biol 18:2102–2110. https://doi.org/10.1111/j.1365-2486.2012.02693.x
- Xu M, Shang H (2016) Contribution of soil respiration to the global carbon equation. J Plant Physiol 203:16–28. https://doi.org/10.1016/j.jplph.2016.08.007

Yang Y, Hillebrand H, Lagisz M, Cleasby I, Nakagawa S (2022) Low statistical power and overestimated anthropogenic impacts, exacerbated by publication bias, dominate field studies in global change biology. Glob Chang Biol 28:969–989. https://doi.org/10. 1111/gcb.15972

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

