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Abstract

Key message Large-scale stem-girdling experiment reduced soil respiration for five consecutive years. Timing and
magnitude of soil respiration declines are better explained by changes in leaf area rather than in soil microclimate.
Abstract Soil respiration (Rs) represents the largest flux of carbon (C) from forests to the atmosphere, but the long-term
influence of phloem-disrupting disturbance on Rs is poorly understood, limiting robust forecasts of ecosystem C balance.
Using a decade of observations from the Forest accelerated succession experiment (FASET), we examined relationships
among Rs, soil temperature, soil moisture, and leaf area index (LAI) following the stem girdling-induced mortality of 40%
of all canopy trees within a 39-ha area. Mean annual Rs declined by about 20% relative to the control two years after distur-
bance, but recovered to near pre-disturbance values within five years; this reduction correlated with LAI losses and lower
Rs temperature sensitivity (i.e., Q;q), with the latter counteracting soil warming caused by partial canopy defoliation. These
observations are consistent with progressive reductions in belowground labile C causing reductions in Rs. We conclude that
the effects of stem girdling on Rs (1) were not immediate, occurring two years after the treatment, (2) were primarily influ-
enced by biotic rather than soil microclimate changes, and (3) persisted for nearly a decade but were temporally dynamic,
underscoring the value of long-term experiments.
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Introduction

The soil-to-atmosphere flux of CO, generated by root and
microbial respiration, commonly termed soil respiration
(Rs), is a large component of ecosystem- to global-scale
carbon (C) cycling and a primary determinant of ecosystem
net C balance (Li et al. 2018). Interannual variation in Rs
is driven by abiotic and biotic factors (Hursh et al. 2017,
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et al. 2013; Borkhuu et al. 2015) may have lasting effects
on Rs, and biotic disturbances are likely to increase with
climate change (Weed et al. 2013; Seidl et al. 2017). Many
insect pests operate by restricting or blocking the phloem,
starving roots and eventually killing the tree. The effect
of such insect disturbances on the C cycle may be large
but temporally variable (Speckman et al. 2014; Kurz et al.
2008), resulting in an uncertain future for the land C sink.

Experimentally, phloem disturbance has been shown
to restrict belowground carbon allocation, selectively
kill trees, and mimic both biotic agents and succes-
sional change (Gough et al. 2021a). Stem girdling has
been used for decades (Edwards and Ross-Todd 1979) to
restrict belowground C accumulation, for the selective
termination of trees and to mimic successional change,
allowing for measurement of heterotrophic-dominated C
fluxes (Hogberg et al. 2001). For example, Hogberg et al
(2001) observed significant declines in Rs following gir-
dling resulting from root rather than heterotrophic activ-
ity, although heterotrophic respiration may increase for a
short time as well (Bhupinderpal-Singh et al. 2003). Such
girdling experiments measuring Rs, however, have been
quite short-term, typically only 1-2 years (e.g. Levy-Varon
et al. 2012; Hogberg et al. 2001; Bhupinderpal-Singh et al.
2003; Matteucci et al. 2015). While understandable—
research funding cycles are short—this preponderance
of short-term observations means that the longer-term
Rs dynamics and drivers following phloem disturbance
remain highly uncertain (Amiro et al. 2010; Gough et al.
2021a, b). Consequently, longer-term forecasts of distur-
bance response are poorly constrained (Goetz et al. 2012).

The goal of this study was to understand decadal Rs
change following phloem disruption and subsequent mor-
tality in a mixed temperate forest. Our specific objectives
were to (1) characterize the 10-yr response of Rs to a
phloem-disrupting disturbance (O1); (2) probe how such
disturbances can modify Rs temperature sensitivity (02);
and (3) test whether disturbance-driven changes in Rs are
caused primarily by biotic or abiotic (i.e., microclimatic)
factors (O3). We hypothesized that (1) the effects of distur-
bance would be relatively short-lived, resolving by the end
of the decade, (2) the temperature sensitivity of Rs would
decrease as labile root carbohydrate diminished, and (3)
that large biotic (i.e., LAI) effects would overwhelm more
modest abiotic changes following disturbance. We lever-
age long-term observations from the Forest accelerated
succession experiment (FASET) in which 40% of mature
canopy trees within a 39-ha area were stem girdled. Our
Short Communication provides a focused interpretation of
Rs responses to the FASET treatment as a complement to
analyses emphasizing meteorological tower-based C fluxes
(Gough et al. 2021b).
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Materials and methods
Site description

The study was conducted at the University of Michigan
Biological Station (UMBS) in Pellston, Michigan, USA
(45° 35'N, 84°43'W), about 213 m above sea level. The
30-year average precipitation and air temperatures are
1113 mm per year and 4.6 °C, respectively, and most soils
are frigid Entic Haplorthods. The UMBS landscape is pri-
marily a secondary forest, established following clearcut-
ting and wildfires that occurred in the late nineteenth cen-
tury through the early twentieth century. The UMBS hosts
long-term control (US-UMB) and FASET (hereafter, “dis-
turbed”, US-UMB) Ameriflux sites (Gough et al. 2021b),
which have collected C cycling data using meteorological
flux towers and ground observations since 1998 and 2007,
respectively.

The goal of the FASET study is to examine how a mod-
erate severity disturbance, which kills early- but not mid-
late successional tree species, affects C cycling processes.
Canopy dominant species, prior to the FASET disturbance,
included bigtooth aspen (Populus grandidentata), eastern
white pine (Pinus strobus), red oak (Quercus rubra), red
maple (Acer rubrum), and white birch (Betula papyrif-
era). In 2008, the FASET treatment was implemented by
stem girdling 6,700 aspen and white birch trees within
a 39-ha area (Nave et al. 2011), constituting 39% of the
total basal area. One 1-ha and seven 0.1-ha plots in each
of the control and disturbed sites were paired (for 16 total)
based on pre-disturbance similarities in leaf area index
(LAI) and aspen and birch abundance. Within paired plots,
measurements of LAI from litter traps, and concurrent Rs,
soil temperature (Ts), and soil moisture (Ms) were con-
ducted for 10 years, beginning in 2008. Data collection
methods are detailed elsewhere (Gough et al. 2021b) and
briefly described below. Prior C cycling-focused studies
emphasized meteorological tower-based observations of
production and ecosystem respiration, but not Rs (Nave
et al. 2011; Gough et al. 2013, 2021b).

Field measurements

We repeatedly measured Rs, Ts, and Ms from five loca-
tions within each of the 16 plots monthly during April
through September each year. Rs was measured using a
LI-COR 6400 (LI-COR Biosciences, Lincoln, NE, USA)
from randomly distributed PVC collars. At the same loca-
tion, Ts was measured at a soil depth of 7 cm and volumet-
ric water content (Ms) was measured using a HydroSense
IT Handheld Soil Moisture Sensor (Campbell Scientific,
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Logan, UT, USA) at 20 cm soil depth. Due to equipment
malfunction, Ms was not measured in 2009. A total of
4359 Rs measurements were co-located with Ts, and Ms
observations during a 10-yr period for an average of 217
measurements per treatment (control and disturbed site)
each year. Data are available via the COSORE database
(Bond-Lamberty et al. 2020).

We estimated LAI from repeated collections of leaf lit-
terfall. Leaf litter was removed from three litter traps (0.264
m?) per 0.1-ha plot and 20 litter traps per 1.1-ha plot weekly
during autumn and monthly during other seasons, pooled by
plot, separated by species, dried, and weighed. The LAI was
calculated from species- and site-specific litterfall mass and
specific leaf area values (Gough et al. 2021b).

Statistical analysis

Supporting O1, analysis of variance (ANOVA) was per-
formed using the PROC GLM procedure in SAS V9.4 (SAS
Institute) to compare the Rs, Ts, and Ms means of control
and disturbed sites (Tables S1, S2). Pairwise comparisons
were conducted using the PROC MEANS procedure from
SAS via Duncan’s test (alpha=0.05). For O2, we calcu-
lated the temperature sensitivity of soil respiration (Q)
separately for periods during which control and disturbed
sites exhibited statistically similar and different soil respi-
ration using a 2-parameter exponential function (Sigmaplot
V14.01). Control and disturbed Q10 values were consid-
ered statistically different when the 95% confidence intervals
were non-overlapping. For O3, we conducted path analysis
using PROC CALIS in SAS V9.4, testing whether differ-
ences in control and disturbed Rs (e.g., as mean control
Rs—disturbed Rs) were explained directly by treatment dif-
ferences in LAI Ts, and/or Ms or whether LAI’s influence
on Rs was indirect, through its influence on Ts and/or Ms.

Results and discussion

Our decade-long observations of soil respiration, microcli-
mate, and LAI following the stem girdling of 40% of can-
opy trees provide insight into the long-term patterns and
mechanisms controlling soil C efflux following a partial (i.e.,
non-stand replacing) disturbance. Long-term observations
of soil respiration following disturbance are rare, but criti-
cal to assessing ecosystem disturbance-response dynamics,
from initial response through recovery (Mathes et al. 2021).

We found that, (1) Rs in the disturbed site was 10 to 24%
lower than that of the control for five of 10 years, with treat-
ment differences emerging two years after stem girdling
(Fig. 1a, O1), suggesting root non-structural carbohydrates
may have sustained root metabolism (Gough et al. 2009),
(2) Rs was lower in the disturbed forest even when soil
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Table1 QI0 values for the control and disturbed sites calculated
from soil respiration temperature-response curves

Period Rs treatment Treatment [ 95% C.1
differences?
2008-2009 No Control 2.39 0.18
Disturbance’ 2.35 0.21
2010-2014  Yes? Control 228  0.12
Disturbance 1.86 0.11
2015-2017 No Control 1.52 0.25

Disturbance 1.33 0.34

!The stem-girdling treatment was implemented in 2008

2Italics denote significance between treatments, P <0.05

r=-0.538
P =0.032 Soil n.s.
temperature

Soil
respiration

A

Fig.2 Maximum likelihood estimates derived from path analysis,
relating differences in mean soil respiration between the control and
disturbed forests to differences in mean annual leaf area index, mean
soil temperature, and mean soil moisture, 2008-2017

Leaf area

i r=0.662,P =0.006
index

v

temperatures were elevated over the control because the
temperature sensitivity of Rs (i.e., Q;,) temporarily declined
(Table 1, O2), and (3) control and disturbed site Rs differ-
ences were driven by relatively small treatment departures
in LAI rather than microclimatic differences (Fig. 2, O3).
These findings suggest a mechanistic basis for the timing and
magnitude of Rs decline and recovery, in which the exhaus-
tion of the root labile carbohydrate pool lagged behind an
immediate reduction in photosynthate supply. Our findings
also demonstrate the value of decadal observations when
characterizing disturbance responses (Harmon et al. 2011),
illustrating a long-term pattern of decline and recovery over
several years.

Specific to our first objective, we found Rs and micro-
climatic responses lagged stem girdling and this lag
declined as the decade progressed (Fig. 1). Soil respira-
tion was significantly lower—by up to 20%—for five con-
secutive years in the disturbed forest when compared to
the control, but treatment differences did not emerge until
two years after stem girdling, which is a contrast to some
experiments observing immediate declines in Rs (Hogberg
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et al. 2001; Levy-Varon et al. 2012). Interestingly, the
period of lower Rs in the disturbed forest relative to the
control coincided with higher soil temperatures and lower
soil moistures during the two years, with soils up to about
3 °C warmer and 20% drier in the stem-girdled forest.
LAI did not differ significantly between treatments after
stem girdling. Soil respiration and microclimate values in
disturbed forests returned to control levels within seven
years of stem girdling, underscoring the relatively long-
term interval between response and recovery, a duration
that matches theoretical expectations (Harmon et al. 2011)
and eddy-covariance tower C fluxes following partial dis-
turbance (Amiro et al. 2010).

The observed timing and duration of Rs decline follow-
ing stem girdling is also similar to that predicted by model
simulations of the FASET disturbance (Bond-Lamberty
et al. 2015) and congruent with some, but not all, shorter-
term (1 to 5-yr) forest disturbance studies (Vargas and Allen
2008; Moore et al. 2013; Borkhuu et al. 2015). Paralleling
our observations, ecosystem respiration, of which Rs is the
largest component (Curtis et al. 2005), was predicted by two
of three models to reach a low point two years after stem
girdling and then gradually return to control levels (Bond-
Lamberty et al. 2015). Elsewhere, observations indicate that
the timing, extent, duration, and sign of Rs response to stem
girdling varies depending on the plant taxa affected (Levy-
Varon et al. 2012), the source of phloem-disrupting distur-
bance (Concilio et al. 2006), and the degree of tree mortality
(Borkhuu et al. 2015).

While the stem girdling of all trees within an experimen-
tal unit rapidly dampens Rs by immediately eliminating
photosynthate allocation to roots (Hogberg et al. 2001), we
may have observed a more moderate and lagged Rs response
because (1) the FASET treatment targeted only 40% of can-
opy trees, and (2) root systems at our site and elsewhere
(Binkley et al. 2006) contain a large pool of labile carbohy-
drates with which to temporarily sustain root metabolism
(Gough et al. 2009). Focusing on our second objective, mean
Rs was lower in the disturbed forest because diminished tem-
perature sensitivity offset the positive influence of temporary
increases in soil temperature, a primary abiotic driver of
Rs in forest ecosystems (Bond-Lamberty et al. 2018). From
2010-2014, when Rs was significantly lower in the disturbed
forest relative to the control (Fig. 1a), Ts was intermittently
higher (Fig. 1B) while the Q values of disturbed and con-
trol forest Rs were 1.86 and 2.28, respectively. Lower Q
was associated with short-term reductions in Rs following
the stem girdling of planted forest trees, and may reflect a
reduction in photosynthate supply to the roots (Chen et al.
2009; Maier et al. 2010). Even so, the extent to which Rs
temperature sensitivity shifts in response to disturbance is
variable across disturbance types, severities, and forest com-
positions and thus remains a source of uncertainty when
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projecting ecosystem C balance following perturbation (Hu
et al. 2017).

Finally, our path analysis suggested that disturbance-
driven changes in LAI, rather than soil temperature or mois-
ture, was the primary determinant of Rs responses to stem
girdling, possibly because LAI losses caused a reduction
in the supply of metabolically-critical photosynthate to the
roots. This should be considered a tentative finding, given
that the LAI differences were themselves not statistically sig-
nificant, but is nonetheless intriguing. It implies that small
differences in LAI between the control and disturbed forests
had disproportionate effects on soil respiration, with a tem-
porary loss of leaf area in the stem-girdled forest directly
reducing Rs even while increasing Ts (Fig. 2). This stronger
influence of LAI over microclimate has been reported for
some undisturbed forests (Reichstein et al. 2003; Lindroth
et al. 2008) and is consistent with progressive limitations in
belowground C allocation constraining Rs following stem
girdling.

In summary, our findings suggest the primary mechanism
regulating the response of Rs through a full disturbance-
recovery cycle is biotic rather than abiotic, and likely associ-
ated with a lagged reduction in belowground labile C pools
following disturbance (Gough et al. 2009). The divergence
of control and disturbed forest Rs two years after stem gir-
dling is coincident with peak tree mortality in the FASET
manipulation (Gough et al. 2013). Somewhat unexpectedly,
large but transient increases in soil temperature were not
substantial enough to overcome a reduction in Rs tempera-
ture sensitivity.

Conclusion

In a world of rising biotic disturbances driven by land-
use and climate changes (Weed et al. 2013; Seidl et al.
2017), understanding the resulting ecosystem carbon-cycle
changes—and possible climate feedbacks—is increasingly
critical. This study elucidates the complex and unexpected
interplay that can occur between biotic (e.g. LAI) and abi-
otic (Ts and Ms) drivers. It emphasizes the value of longer-
term experiments and observational campaigns in charac-
terizing ecosystem response to disturbance—particularly
when responses may be transient or unsustainable (Norby
et al. 2010)—and the necessity of robust theoretical frame-
works for synthesizing understanding (Mathes et al. 2021).
For these reasons we concur that decadal observations are
necessary to understand ecosystem response to disturbance
(Harmon et al. 2011). Our study also underlines the value
of early and long-term observations of disturbance events
in a world of increasing climate variability in which pre-
disturbance conditions can never be re-created, and subtle

responses require synthesis to fully understand (Wolkovich
etal. 2012; Yang et al. 2021).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00468-022-02340-x.
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