LADDER: Architecting Content and Location-aware Writes for
Crossbar Resistive Memories

Md Hafizul Islam Chowdhuryy =~ Muhammad R. Haq Rashed Amro Awad
Department of ECE Department of ECE Department of ECE
University of Central Florida University of Central Florida North Carolina State University
reyad@knights.ucf.edu rashed09@knights.ucf.edu ajawad@ncsu.edu
Rickard Ewetz Fan Yao
Department of ECE Department of ECE
University of Central Florida University of Central Florida
rickard.ewetz@ucf.edu fan.yao@ucf.edu
ABSTRACT KEYWORDS

Resistive memories (ReRAM) organized in the form of crossbars are
promising for main memory integration. While offering high cell
density, crossbar-based ReRAMs suffer from variable write latency
requirement for RESET operations due to the varying impact of IR
drop, which jointly depends on the data pattern of the crossbar and
the location of target cells being RESET. The exacerbated worst-case
RESET latencies can significantly limit system performance.

In this paper, we propose LADDER, an effective and low-cost
processor-side framework that performs writes with variable la-
tency by exploiting both content and location dependencies. To
enable content awareness, LADDER incorporates a novel scheme
that maintains metadata for per-row data pattern (i.e., number of
1’s) in memory, and performs efficient metadata management and
caching through the memory controller. LADDER does not require
hardware changes to the ReRAM chip. We design several optimiza-
tions that further boost the performance of LADDER, including
LRS-metadata estimation that eliminates stale memory block reads,
intra-line bit-level shifting that reduces the worst-case LRS-counter
values and multi-granularity LRS-metadata design that optimizes
the number of counters to maintain. We evaluate the efficacy of
LADDER using 16 single- and multi-programmed workloads. Our
results show that LADDER exhibits on average 46% performance
improvement as compared to a baseline scheme and up to 33% over
state-of-the-art designs. Furthermore, LADDER achieves 28.8% av-
erage dynamic memory energy saving compared to the existing
architecture schemes and has less than 3% impact on device lifetime.

CCS CONCEPTS

« Hardware — Non-volatile memory; Emerging architectures;
Computer systems organization — Processors and memory
architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MICRO °21, October 18-22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8557-2/21/10...$15.00
https://doi.org/10.1145/3466752.3480054

117

Non-volatile Memory, Crossbar ReRAM, RESET Latency, Architec-
ture Support, Performance Optimization, Metadata Management

ACM Reference Format:

Md Hafizul Islam Chowdhuryy, Muhammad R. Haq Rashed, Amro Awad,
Rickard Ewetz, and Fan Yao. 2021. LADDER: Architecting Content and
Location-aware Writes for Crossbar Resistive Memories. In MICRO’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18-22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3466752.3480054

1 INTRODUCTION

The increasing trend for data intensive and high performance com-
puting applications has significantly pushed the demand for effi-
cient and scalable memory systems [16]. Due to the poor scalability
and energy inefficiency of DRAMs, there has been a continuous
effort to search for alternative memory technologies [4, 5, 29, 42,
45, 47]. Emerging non-volatile memories (NVMs) are promising
contenders to augment or replace DRAM as they offer high den-
sity, energy efficiency, and non-volatility [27, 41]. Resistive random
access memory (ReRAM) is particularly attractive for main mem-
ory integration due to its advantageous characteristics, including
higher cell density and better data retention ([35, 53]) compared
to other NVM devices such as phase-change memory (PCM) and
spin-transfer torque MRAM (STT-MRAM) [30]. When arranged in
a crossbar architecture [52], ReRAM can obtain the theoretically
smallest cell size, which yields superior density and scalability.
Unfortunately, there are still outstanding challenges to be ad-
dressed for the adoption of NVMs. Particularly, NVM devices typi-
cally exhibit poor write performance [9, 26, 38]. This is especially
the case for crossbar ReRAM memories for RESET operations, i.e.,
switching cells from high-resistive state (HRS) to low-resistive state
(LRS). When accessing cells in the crossbars, the access latency can
be elongated by the IR-drop over the array parasitics. In fact, the
effective voltage drop across a ReRAM cell and thereby the access
latency are heavily influenced by both the data pattern stored in the
crossbar and the location of the selected cells. This leads to highly
variable RESET latency requirements for ReRAM writes [10]. Em-
ploying the worst-case RESET latency could tremendously degrade
the write performance since the RESET operation can be prolonged
up to 10x [18] under a slight reduction in effective voltage drop
(i.e., 0.4V). Although writes are generally not in the critical path

MICRO 21, October 18-22, 2021, Virtual Event, Greece

of program execution, long ongoing writes could block memory
reads, which adversely impacts system performance [38].

To mitigate the write performance issue, circuit-level techniques
such as applying ground bias and inserting non-linear selector de-
vices are proposed to limit the sneak current in crossbars [48, 52, 61,
66]. Recent work in [68] employs dynamic reset voltage to compen-
sate the IR-drop based on the location of target cells. Meanwhile,
architectural techniques are designed to enable scheduling of writes
with different RESET latencies [50, 52, 62]. Note that these tech-
niques either do not jointly exploit the data-location dependencies
(therefore not harnessing the full potential) or require additional
circuitry supports (e.g., profiling functionality) in ReRAM devices
that could increase the memory design complexity. As area and cost
are the top design constraints for memories, it is desirable to come
up with solutions that enhance ReRAM write performance without
posing unnecessary hardware burden to the memory subsystem.

In this paper, we propose a novel framework-LADDER-that har-
nesses both data and location dependencies to enable multi-tiered
write latency for ReRAM devices. To realize content-awareness,
LADDER integrates a lightweight architectural scheme that main-
tains per-wordline LRS-metadata to record the number of ‘1’s in
each row. We build an accurate latency model for the ReRAM RE-
SET operations by jointly modeling content (i.e., LRS cells along the
wordlines) and the target locations (i.e., in terms of both wordline
and bitline) for writes. With such knowledge, LADDER dynamically
determines the varying but sufficient timings as writes are persisted.
In LADDER, the memory controller stores LRS-metadata in a small
reserved region of the main memory and manages them via regu-
lar read/write interfaces, thus it does not require any change to the
ReRAM chip or memory commands. We further design a novel LRS-
metadata caching mechanism to minimize the runtime overhead
due to metadata accesses. Finally, we develop several optimizations
to significantly improve system performance and efficiency of LAD-
DER: (i) We propose an effective metadata approximation technique
that gets rid of stale memory block reads for metadata updates; (ii)
We deploy an intra-line bit-level shifting technique to balance the
data pattern in the worst-case bytes among the wordlines in which
the data line is mapped to, which further optimizes the required
write latency; and (iii) We utilize a multi-granularity LRS-metadata
design using different counter precision to reduce the metadata
maintenance cost. We implement LADDER and evaluate it with
full-system simulations using workloads from SPEC2006 and PAR-
SEC benchmarks [7, 19]. Results show that LADDER achieves 46%
performance gain over the baseline scheme using a pessimistic fixed
RESET latency, and up to 33% speedup compared to prior works
in [50] and [52]. Furthermore, LADDER achieves 53% and 28.8%
dynamic energy savings in memory over the baseline and state-of-
the-art designs exploiting bitline data patterns [50], respectively.
Lastly, LADDER introduces only 3% additional writes on average
to maintain LRS-metadata and has less than 1% memory storage
overhead after applying the optimizations. By integrating LAD-
DER with existing wear-leveling techniques [39, 59, 67], LADDER
achieves almost the same lifetime as the baseline (i.e., only 2.9%
reduction). In summary, the contributions of our work are:

e We propose LADDER, an efficient processor-side architec-
ture support that enables ReRAM writes using varying la-
tencies by modeling content and location dependencies.

118

Chowdhuryy, et al.

b;

0
vI2 >
VI2 >
vi2 >—
vi2 >—

VI2 VI2VI2 V V/2 VI2 VI2 N V2 VI2 V2 NV VI2 V[2 V2V
@ Fully-selected cell @ Half-selected cell O Unselected cell

Figure 1: Illustration of the write operation in ReRAM based
crossbar array where b1, b3, bs, b7 are under RESET.

o We design an LRS-metadata management and caching scheme
that maintains the per-row data patterns in the memory
controller and propose several enhancement techniques to
significantly boost system performance of LADDER.

e We implement a prototype of LADDER and evaluate its ef-
ficacy with representative single- and multi-programmed
workloads. Evaluations show LADDER achieves promising
improvements in performance and energy savings with in-
significant hardware cost.

e We present the ways existing wear-leveling techniques can
be integrated with LADDER and their impacts on system
performance and lifetime. We also offer several discussions
about our LADDER design, including the crash consistency
issue for LRS-metadata and the potential solutions.

2 BACKGROUND AND MOTIVATION
2.1 ReRAM Basics

ReRAM cells. While many types of resistive memory exist, a
ReRAM cell is typically built using metal and oxide layers that
enable variable resistance [64]. Each cell can either be in low-
resistance state (LRS, logical bit ‘1°) or high-resistance state (HRS,
logical bit ‘0’). To read a ReRAM cell, a small voltage is applied
across the device and the output current is measured. The write
operation is performed by applying a write voltage under certain
polarity, magnitude and duration. Typically, switching a ReRAM
cell from LRS state to HRS state is called RESET operation, and
switching from HRS to LRS state is called SET operation.

ReRAM crossbar array and memory organization. The cells
in ReRAM are typically organized in dense array structures. Such
structure allows sharing of many peripheral circuitry that offers
high area efficiency. Each memory cell can be constructed us-
ing either a combination of access transistor and ReRAM cell (i.e.,
1T1R), a selector-accessed ReRAM cell (i.e., 1SIR) or an access-
free ReRAM cell (i.e., 0T1R) [35, 50, 52]. Typically, access-free and
selector-accessed crossbar arrays have the highest area efficiency
where the memory cell can achieve the theoretical minimum area
of 4F%. The ReRAM cells then form mats (e.g., 512 X 512) to support
read and write operations. One ReRAM memory module is orga-
nized as a hierarchy of ranks, chips and banks. Each bank is built
using rows and columns of the ReRAM-based mats.

Variable latency requirement for ReRAM write. A ReRAM
write operation is typically split into a RESET followed by a SET

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

g 1.8 [Worst-case [Location-aware Ml Data/Location-aware
5 1.6
_g 1.4
© 1.2
E 101
Z 0.8-

astar bwavs cannl fsim Ibm libg mcf perlb AVG
Figure 2: Potential system performance gain using location

and content dependencies for writes in crossbar ReRAM.

operation [52]. As shown in Figure 1, the RESET operation is per-
formed by grounding the wordline of the targeted cells and apply-
ing a voltage V to the target bitlines. The remaining wordlines and
bitlines are then given a voltage of V/2 to minimize the write dis-
turbance. Note that the SET operation is done in a similar fashion
with the difference in reversing the voltage applied for the target
wordline and bitline. During the RESET operation, the wordlines
and bitlines of the target cells are selected. The ReRAM cells in the
crossbar can have three different states: fully-selected, half-selected
and unselected. The fully-selected cells are the targeted cells being
written to. The cells that are along the selected wordlines and bit-
lines are half-selected cells, while the rest of the cells in the crossbar
are unselected. Importantly, the voltage drop across the target cells
is reduced because of the IR drop in the crossbar array [60]. The
IR drop is introduced by the sneak current flowing through the
non-zero resistance of the wordlines/bitlines as well the half-selected
cells (See Figure 1). It has been observed that the RESET latency
of a ReRAM cell is exponentially proportional to the voltage drop
across the target cell, which can be modeled as t = C - e_klvd‘,
k > 0, where t is the latency of RESET operation, Vj is the voltage
drop across the selected cell and k, C are constants [61].

To mitigate the IR drop issue for RESET, circuit-level techniques
such as inserting highly non-linear selectors and applying voltage
and group biasing (e.g., DSGB [52] and DSWD [65]) have been
studied. However, these techniques only partially alleviate the IR
drop issues. Recently, Zokaee et al. proposed a dynamic RESET
voltage regulation (DRVR) and partition reset (PR) scheme that
compensates the IR drop by supplying higher voltages and having
extra RESETs and SETs for certain ReRAM cells [68]. Although
this approach can bring down the worst-case RESET latency, it
increases the complexity of the charge pump design [52] in ReRAM
devices and also introduces non-trivial degradation of energy effi-
ciency and lifetime as compared to the fixed-voltage mechanisms.
Furthermore, supplying higher voltage can introduce write distur-
bance near the write driver [34]. Due to the cost-sensitive nature of
commodity memory, it is desirable to have an architectural scheme
that takes advantage of the RESET latency asymmetry to improve
system performance without adversely impacting the complexity,
performance, and energy envelope of ReRAM devices.

2.2 Exploiting Content and Location
Dependency

We note that a significant variation in RESET latency exists across

the ReRAM crossbar. Specifically, ReRAM cells that are closer to the

write drivers suffer less from IR drop as compared to cells sitting

in the far-end of the crossbar. On the other hand, for cells to be

written in the same location, the IR drop can vary further by the

119

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

x64
vXx8 Ix8

ReRAM Memory
x8¢

Memory block, 64B
+X8 Ix8

x8y x8y X8y

mat;

maty maty
64 mats (mat-group)

Figure 3: Physical mapping of a memory block in memory.

number of half-selected cells that are in LRS state. Essentially, higher
percentage of LRS cells in the selected wordlines and bitlines leads
to greater IR drop. While applying the worst-case RESET latency
guarantees correct and reliable operation of ReRAM devices, it will
leave an excessive margin for write latency among the vast major-
ity of ReRAM cells in the crossbar. If writes are performed using
only the minimally required RESET latency values, considerable
performance improvement may potentially be achieved. Figure 2
demonstrates the performance potential under ideal write schemes
where content and/or location dependencies are known for RESET
latency determination (See Section 5 for more details). As we can
see, compared to the baseline scheme where the worst-case RESET
latency is used for all writes, writes with location-aware RESET
latency achieves maximum 24% IPC improvement. More notably,
by modeling both content and location dependencies, the write
scheme gains more than 1.6x speedup. This clearly indicates the
performance advantage of enabling content- and location-aware
writes in ReRAM memory. Note that as long as the duration for
RESET operation is higher than the minimally required time, the
ReRAM device can perform writes correctly without introducing
stability issues [50, 53, 68]. However, realizing such performance
advantage is challenging as data pattern in the crossbar is by default
unknown to the memory controller. Our work focuses on design-
ing an efficient and low-overhead processor side mechanism that
exploits the variant RESET latency to optimize system performance.

3 LADDER FRAMEWORK

3.1 Modeling Data and Location Dependency
for Writes

We assume that the memory module utilizes X8 ReRAM chip with
mat size of 512x512, which provides the best balance between
performance and reliability [34]. Typically, a 64B data line is mapped
to 64 ReRAM mats across 8 chips [50, 52, 68]. Each chip stores 8
bytes to 8 individual mats and one byte is written to a specific
wordline of a mat (as shown in Figure 3). We define these 64 mats
and 64 wordlines as a mat group and a wordline group (WLG),
respectively. Note that one WLG stores multiple memory blocks
(with bytes spreading apart). We have already established that
ReRAM cell RESET latency depends on two dimensions: 1) content
of the neighboring cells and 2) location of the cells being RESET
(i.e., the wordline and bitline indices). The location of a write can be
determined by the memory controller using the memory addressing
scheme. For content dependency, the half-selected cells in LRS state
contribute to the sneak current (shown in Figure 1). Ideally, to fully

MICRO 21, October 18-22, 2021, Virtual Event, Greece

800 T ; T :
2700 Glie ot
£600F 1
0 500 1
°’ 4005 1
<>«<»<> Oo.ir B |
255 511 £ 2001 J
BL = 100:HM
HRS State LRS State TR S S—
@ O 20 40 60 80 100

@Targetcell (O Unselected cell
(a) Crossbar showing two RESETs

WL LRS Percentage
(b) WL content dependency

Figure 4: WL-content dependency for the RESET latency. (a)
Showing two RESETs to different locations; (b) RESET la-
tency as a function of WL LRS cell percentage.

exploit content dependency, the numbers of LRS cells (logical ‘1’s)
among the 64 wordlines and 512 bitlines (for each of the 64 mats)
are required to determine the minimal RESET latency.
Unfortunately, obtaining such knowledge from the memory con-
troller is challenging. Reading all memory blocks in one WLG to
derive the data pattern is clearly impractical due to the prohibitive
performance overhead. Recent work in [50] proposes using pro-
filing circuitry to track bitline data patterns. This approach relies
on specialized circuit support and requires modifications to the
memory-access protocol. Differently, as memory controller sees all
data writes persisted to the main memory, it can keep track of num-
bers of ‘1’s in WLGs on the fly. We call these counters LRS-metadata.
The LRS-metadata can be loaded dynamically to determine RESET
timing. Keeping LRS-metadata for both wordlines and bitlines can
be prohibitively expensive as each data write will involve access to
counters corresponding to 64 wordlines and 512 bitlines (Figure 3).
To achieve a trade-off between overhead of LRS-metadata design
and RESET timing precision, we build the write latency model
where LRS-metadata is maintained for wordlines-only while assum-
ing the worst-case data pattern for bitlines. To determine the proper
write latency, the model uses a three-element tuple (WL, BL, Cﬁ’s)
Where WL and BL represent the location of wordline and bitline.
(S e denotes the maximum number of LRS cells among the 64 word-
lines where the data line is mapped to. We perform comprehensive
circuit-level simulations to generate the data-location write latency
model (i.e., a three-dimensional write timing table logically). Fig-
ure 4 demonstrates the changes of RESET latency as the wordline
content varies for the two examples of write locations (See Section 5
for details of the latency model).

3.2 Enabling Variant-latency Write

We first discuss the major challenges and design considerations for
enabling the variant-latency write mechanism. Figure 5 illustrates
a high-level overview of a potential LRS-metadata scheme that
realizes variant-latency writes. To harness the content-location de-
pendency, the memory controller maintains lookup tables based on
the derived latency model. The ReRAM main memory is logically
divided into two regions storing regular data and the LRS-metadata.
An addressing scheme can be built to determine data line address to
LRS-metadata line address mapping. When data write arrives, the
memory controller first generates the address of its corresponding
LRS-metadata line. It will then read the metadata from the main

120

Chowdhuryy, et al.

Processor Chip

Last Level Cache q
xe@
Y‘:oo\g\)‘)

LRS-
metadata C:O'l’lter omn. Control
Chi em. Controller
Gache & Write Timing
Tables
Metadata reads ’." '\ Normal reads
and writes .=~~~ *+...and writes

v

LRS-metadata

ReRAM Memory

Figure 5: High-level framework for variant-latency write.

memory. To minimize LRS-metadata writes to ReRAM, LADDER
integrates an LRS-metadata cache to temporarily store metadata
memory blocks. The C}? - derived from the LRS-metadata together
with the location of the write (WL, BL) are used to lookup the write
timing tables and determine necessary write latency. Since data
write changes the content of the corresponding wordlines, the LRS-
metadata must be updated. All metadata management operations
are done by normal read and write operations to the ReRAM mem-
ory. We note that several design goals need to be accomplished to
implement a practical variant-latency write scheme: (i) Efficiently
encoding and storing LRS-metadata to reduce storage overhead; (ii)
Minimizing the complexity of runtime LRS-metadata management;
and (iii) Effectively caching metadata on-chip to mitigate energy
and lifetime impact of counter maintenance.

3.3 Basic LADDER Design

In this section, we present a basic framework that would serve as
the foundation for LADDER.

Accurate LRS cells counting. In order to determine the write la-
tency for a data line, it is necessary to derive the maximum number
of LRS cells among wordlines within the wordline group. One plau-
sible way is to maintain counters that count the number of ‘1’s in
each of the wordlines, which we term as LRS-counter. Accordingly,
64 LRS-counters (i.e., C?rs — C83 will be used to derive CI’;’S for one
64B data line write. We call this set of LRS-counter an LRS-counter
group. Apparently, to ensure correct write operation, the RESET
latency should be determined by the wordline that has the worst
data pattern, ie., Cﬁ’s = max Cirs. The LRS-metadata essentially
consists of LRS-counters grouped based on WLGs.

LRS-metadata storage and addressing. To minimize LRS-counter
memory access for each memory write, it is beneficial to store the 64
counters in the LRS-counter group together so that the least number
of metadata line reads are needed. With accurate counting, it takes
10 bits to represent the full range of each LRS-counter (0-512). Thus,
one LRS-counter group consumes 80 bytes, which span two memory
blocks. Note that since every wordline stores one byte from each
individual memory block, the same LRS-counter group would be
used for determining write latency for 64 memory blocks mapped to
the same WLG. These memory blocks either correspond to one 4KB
physical page or two half pages if channel interleaving is enabled.
Under such scheme, the LRS-counter for the metadata block itself is
not maintained. Therefore, to perform writes to LRS-metadata lines,
we downgrade the latency model to be only location-dependent, es-
sentially assuming the worst-case data pattern for writing metadata

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

1
1
Tl
LRS-metadata
Cache

Tl
LADDER

Control Logic \I T
Spill buffer [Write Timing_|

L Tables
11 1 1

1

Memory Controller

ReRAM Memory

Figure 6: LADDER data write mechanism in basic design.

blocks. To store the LRS-metadata, the host system will pre-allocate
a physical range of the main memory during boot time. This region
is reserved for LRS-counter management and would not be exposed
to the operating system for normal operations.

LRS-metadata update mechanism. To accurately update the
LRS-metadata for data write, it is required to know the bits modified
per wordline. By default, the memory controller is not aware of the
original content upon receiving the request of writing a dirty line.
To acquire such information, when a write request is inserted into
the write queue, we augment the memory controller so that it will
issue a read of the stale memory block (SMB) in the main memory.
This SMB will be used to compare against the number of 1’s (LRS
cell) in the to-be-written cache line to provide the changes in each
LRS-counter. The write queue entries are extended to allocate space
for both the SMB and an additional Present (P) flag to indicate the
existence of its LRS-metadata line in cache. We change the mem-
ory request scheduling algorithm to prioritize write requests with
both SMB and counter line ready. When a write is dispatched from
the write queue and written back to memory, the corresponding
LRS-metadata is updated.

LRS-metadata caching. We propose a caching mechanism for
LRS-metadata aiming to minimize the performance overhead of
metadata accesses. An LRS-metadata cache is added in the proces-
sor to store active metadata lines used in the system. We leverage a
Sharer (S) field in each tag entry that tracks the number of write re-
quests (in write queue) whose to-be-written data blocks require this
metadata line. When a conflict occurs in LRS-metadata cache, S is
checked to evict an LRS-metadata line that is not used by any write
queue entry at that time. In case all metadata lines in the conflicted
set have non-zero sharer, the memory controller temporarily holds
this request in a small spill buffer, and the metadata read would be
issued once one of the lines in the corresponding set can be evicted.
This checking is performed when the scheduler is switching from
write to read mode.

Figure 6 illustrates the overview of the basic mechanism for serv-
ing writes with variable latency. We add a logic component called
LADDER control logic that maintains metadata and derives write
latencies. When a cache line write request is placed in the write
queue, LADDER control logic first checks if the LRS-metadata is
present in the LRS-metadata cache. If present, the S field of the corre-
sponding LRS-metadata is incremented; otherwise, a metadata line
read request is issued, along with the SMB read request. In this way,
the read latency for metadata and SMB are largely overlapped with
the request queuing time. Each read queue entry is augmented with

121

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

a flag to indicate the type of read requests (namely data, metadata
and SMB). When data response arrives at the memory controller,
it is forwarded to the Response Queue in case of regular data, to
the Write Queue for SMB, and to the LRS-metadata cache for meta-
data. When the data write is being serviced, LADDER logic first
determines the required latency by constructing (WL, BL, C[') and
checking the write timing tables. Then the LRS-metadata line is
updated by LADDER logic based on the delta of the number of ‘1’s
in the current data and the stale memory block. Finally, the S field
for the corresponding LRS-metadata line is decremented.
Employing Flip-N-Write (FNW) with LADDER. FNW [11] is
a write-reducing mechanism widely deployed in NVM devices.
Particularly, FNW chooses either the original memory bytes or the
inverted bytes to write based on which one yields the least number
of bit changes (including both SETs and RESETs). Note that the
classical FNW scheme may invalidate the counting mechanism in
LADDER since it can favor flipping that will decrease the total
bit changes but incur more ‘1’s to be written as compared to the
original data. To be compatible with FNW, LADDER introduces a
slight change in FNW operation by adding an additional constraint
that the number of ‘1’s in the variant written to memory cannot be
higher than that of the original (i.e., non-flipped) memory block. We
note that the corresponding hardware cost is minimal. Since FNW
mechanism is typically implemented in a separate bridge chip, this
does not involve any change in the ReRAM chips [24].

4 LADDER OPTIMIZATIONS

The basic LADDER design in Section 3 presents a framework that
enables the memory controller to issue writes with variant latency.
However, it can be subject to performance issues due to the SMB
reads, and LRS-counter reads/writes. In this section, we propose
several enhanced LADDER schemes to further boost performance.

4.1 LRS-metadata Estimation

The extra read of the stale memory block for each data write can
contend with normal data reads that impact system performance.
To tackle this issue, we propose an effective counter estimation
technique that can avoid all the SMB reads. The key observation is
that to determine the RESET latency for a cache line write, only

the maximum LRS-counter among its LRS-counter group (i.e., C[)

is needed. Let S{ denotes the number of ‘1’s (or LRS cells) in the
j*" byte of memory block i. For the wordline within its WLG with
the maximum LRS cells (i.e., Cﬁ’s), assume Sl?c denotes the number
of ‘’s in its 1-byte part from the i*" memory block. Then we have
Clrs = Zo<i<ea S; - Since S} is one of the 64B from memory block
i, it will hold that ST < maxo<j<g4 S{ If we denote maxo<j<e4 S{
as 5;\4 (i.e., the number of ‘1’s in the worst byte of block i), we can
derive the following inequality:

<y s
This means that Cl“;s can be bounded by the sum of the number

of ‘1’s of the 64 worst bytes, each from one of the 64 memory blocks.
As a result, we can use | Sﬁ” to estimate Cl“r’s while ensuring the

CW

Irs

(1)

derived latency is sufficient. We call S{VI the partial counter. Note

MICRO 21, October 18-22, 2021, Virtual Event, Greece

LRS-metadata line

i MBy|10,[00,/10,[00
| MBy {01,]01,]00,[10,
- MB; (00,[00,(00,[10,
I R | DT | o | MBs; |00,01,(01,[00,

1chip,|0x3C 0x07|0x00 0x00||0x3E 0x07| |0x00 0x00| :

——
0x3C 0x00 0x3E 0x00
4 0 5 0

g 50; T 50,) MBg3[10,11,[00,[01,
Partial counters of a memory block Total: 15 @I 11|15

(a) Estimated partial counter generation (b) LRS-metadata line
Figure 7: Counter estimation and organization. (a) An exam-
ple of partial counters for a data line from the astar bench-
mark. Each hex number is one byte from a memory block
mapping to a chip and one mat. Partial counters stored in
the main memory are shown in the shaded block; (b) An il-
lustration of partial counters in one LRS-metadata line. The
circled value represents the ;7 _and the shaded block shows
partial counters from the data line in (a).

One wordline group (4KB data)
MB, MB, MBgg
Partial-counter +} 8-bit | 8-bit | | 8-bit |

64 partial counters (64 bytes)

‘ Dirty ‘ Sharer‘ Tag ‘ LRS-metadata line l

Figure 8: Storage of the partial counters in each LRS-
metadata line (top); The LRS-metadata cache structure (bot-
tom).

that this method may considerably overestimate the Cl“r’S value as
the worst byte in each memory block may have a large number of
‘1’s. We improve the estimation accuracy by dividing the mat group
to N subgroups, correspondingly splitting each of the mapped
memory blocks to multiple sub-blocks. We then keep the per-byte
maximum number of ‘1’s for block i in each subgroup, i.e., Sjwj
for jth subgroup. Hence, under subgrouping, each memory block
corresponds to N partial counters instead of one. Accordingly, the
estimation based on Equation 1 is performed for each subgroup
(ie., C;:js for jth subgroup). The final Cl“;s can be derived based
on the maximum of the counters among all subgroups using the

inequalities:
<y

Figure 7a demonstrates how LADDER generates the partial coun-

Wi
Irs

and CV

Irs

C < max{Cer}js}

@)

ters using memory blocks from astar as an example. We empirically
set N to 4. Each WLG is divided into four subgroups. Thus, each
memory block in the WLG has 16B mapped to the subgroup. The
number of ‘1’s in worst case byte is computed among these 16B.
For the data line shown in Figure 7a, its partial counter values are
(4,0,5,0). In practice, we use 2 bits to encode each partial counter
for the range in (0..8). Specifically, ‘00’, ‘01’, ‘10’ and ‘11’ represent
partial counter values of 1 (range 0~1), 3 (range 2~3), 5 (range 4~5)
and 8 (range 6~8), respectively. In this way, one byte can store all

122

Chowdhuryy, et al.

TTTTT Write LRS-metadata
——»[fead | _|dueue |'|_
Metadata Queue T Cache
not cached [Data, Addr] | po_matadata line
LRS-metadata ® 3
Cache Latency Query
M I
T@ Metadata update OdT ad
LRS.motadata ® [LRS-cciunter, Addr]
Update Module Latency I
~ € —Write Timing
81 Partial counter ‘@ I~ Tables

| ReRAM Memory |
(b)

Figure 9: LRS-metadata estimation scheme. (a) Partial
counter generation and LRS-metadata line update; (b) LRS-
counter generation and the corresponding RESET latency
determination.

four partial counters for one data line, and the partial counters in all
data blocks in one WLG take 64B. Figure 7b shows the LRS-counter
generation for the LRS-metadata line containing partial counters.
The number (16) denotes the estimated worst-case number of ‘1’s
that would be used to determine write latency. Notably, there are
two major advantages associated with this estimation technique:
(i) When a dirty block is to be written, LADDER can update its
metadata (i.e., partial counters) based on the worst-case byte in
each sub-block of the data line. Therefore the stale memory block
reads in the basic LADDER scheme could be completely avoided,;
and (ii) The encoding of partial counters enables LADDER to pack
the counters for 4KB data (i.e., a physical page) to one memory
block, as opposed to two blocks in the basic LADDER design (Sec-
tion 3.2). This not only reduces the memory storage overhead for
LRS-metadata but also improves the spatial locality of the metadata
when writes are persisted. The top figure in Figure 8 shows the
LRS-metadata line storage with partial counters. The LRS-metadata
cache structure is shown at the bottom of Figure 8.

Figure 9 shows the optimized control logic in LADDER with
LRS-metadata estimation. It contains two major components: an
LRS-metadata Update Module and a Latency Query Module. As illus-
trated in Figure 9a, when a data write request arrives at the memory
controller, LADDER checks the corresponding LRS-metadata line
in the LRS-metadata cache (@) and issues an LRS-metadata line
read in case of a cache miss (@) The LRS-metadata Update Mod-
ule derives the partial counters for this data line following Equa-
tion 2 (@). It stores the 8-bit partial counters in the write queue
along with the memory line (@) this will be used to update the
LRS-metadata line when the data write is serviced by the memory
controller (@) Figure 9b shows the RESET latency determination
mechanism for a memory line write operation. When the write is
being dispatched from the write queue, the Latency Query Module
first generates the address of the LRS-metadata line corresponding
to the current to-be-written data line (@) The Latency Query
Module then retrieves the LRS-metadata line from the cache (@)
and computes the LRS-counter based on the partial counters (as
shown in Figure 7b). It then uses the generated LRS-counter to

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

Memory oW bt LADDER | 2-bit10, 01, 11, 00,
A e . 1 1Y2 2 2 2}
Line Addr, IControl Logic] ——— <o

[Precision control register | 1-bit: 0y 15

(b) Partial to 1-bit counters

(a) Multi-granularity LADDER ctrl.

Figure 10: The LADDER architecture with multi-granularity
counters. (a) The counter granularity determination logic us-
ing a precision control register (8-bit); (b) 1-bit low-precision
counter generation from partial counters.

Crossbar params. Value Crossbar params. | Value
Crossbar dimensions 512 X 512 | Input resistance 1009
Number of selected cells 8 Output resistance 1009
ReRAM LRS resistance 10KQ Wire resistance 2.5Q
ReRAM HRS resistance 2MQ Write voltage 3V

Selector non-linearity 200 Bias voltage 1.5V

Table 1: ReRAM crossbar parameters.

query the corresponding write latency from Write Timing Tables
(@). Finally, the memory line is written back to memory using the
latency obtained (@)

Improving estimation performance with shifting. We observe
that in many applications, the logic ‘1’s are clustered together in a
small number of mats. This pattern is consistent among consecutive
data lines in a memory page. Similar observations about repetitive
data patterns in a page were also made by prior works [59, 70].
This can lead to screwed C;:’; which results in large partial counter
values. To mitigate the impact of such phenomenon, LADDER
performs intra-line bit-level shifting in data lines, so that clustered
bytes with a large number of ‘1’s are no longer packed in the
same set of mats. For example, data pattern in Figure 7a shows
clustered worst bytes in mat g 1 4 5). We distribute these clustered
‘I’s among mats in the same chip using bit-level shifting among the
8 bytes mapped to the same chip (e.g., the 8 bytes in each row in
Figure 7a). To misalign data patterns across consecutive data lines,
each data block in the WLG leverages a distinct shift offset based on
its mapped position in the wordline. When a memory block is read
from memory, a reverse shift operation is performed to recover the
memory block in the original bit order.

4.2 Multi-Granularity LADDER Counters

Another source of overhead in the basic LADDER design is the ad-
ditional reads and writes for metadata maintenance. Such overhead
is especially pronounced when the LRS-metadata cache hit ratio is
low. Notably, we observe that wordlines at the bottom of ReRAM
crossbars are relatively insensitive to the per-row data patterns
(See Figure 4b). This is because wordlines closer to the write driver
experiences lower IR drop [62]. Consequently, reducing the precision
of counting for the data blocks in bottom rows will unlikely incur a
noticeable impact on write performance. Therefore, we propose a
multi-granularity counter design where data blocks stored in bot-
tom rows use two 1-bit partial counters (instead of 8-bit). Figure 10a
illustrates the high-level design changes from LRS-metadata esti-
mation scheme for multi-granularity counters. Specifically, we add
a precision control register that contains an 8-bit mask representing

123

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

@ Cy

Irs

range (0 — 63)

(b) cv

Irs

range (448 — 512)

Figure 11: The derived RESET latency for writes at different
WL/BL locations when the WL data pattern is (a) all ‘0’s and
(b) all ‘1’s.

Hardware Configurations
Processor 4-core, Out-of-order, x86
L1 I/D-Cache Private, 32KB, 2-way
L2 Cache Private, 4MB, 16-way
L3 Cache Shared, 32MB, 16-way

Mem. Controller 32-entry RDQ; 64-entry WRQ,
Write switching threshold: 85%

64KB, 4-way, 2 cycles access latency

Counter Cache

ReRAM Memory 16GB, dual channel, 2 ranks/channel,
8 banks/rank, 256 mats/bank, 512x512 crossbar
ReRAM Timing tCL: 13.75ns, tRCD: 13.75ns,

tBURST: 5ns, tWR: 29ns - 658ns

Table 2: Architecture parameters in LADDER architecture.

the number of bottom rows with lower-precision LRS-metadata.
An example of the 1-bit partial counter generation is shown in
Figure 10b. In the 1-bit partial counter, value 0 represents a number
of ‘I’s within (0..5), and I denotes range (6..8). The 1-bit partial
counters enable even more compact metadata design where one
64-byte metadata block can store the LRS-metadata for 4 physical
data pages in bottom rows. This can improve LRS-metadata access
locality as less LRS-metadata lines are accessed at runtime, leading
to a reduced number of LRS-metadata reads/writes from memory.

5 EXPERIMENTAL SETUP

Circuit level simulation. To generate the latency model, we model
the crossbar using the modified nodal analysis (MNA) [20]. The
MNA equations are solved using sparse LU factorization together
with backward and forward substitution. By exploiting the sparse
structure of the crossbar, the simulation time is orders of magnitude
faster than HSPICE while the same accuracy is maintained. We note
that previous works have used different crossbar parameters [50, 52].
To provide a fair and well-organized comparison, we select one
set of practical parameters based on prior works [25, 34, 50] and
evaluate previous ReRAM write performance enhancing schemes
under the same settings (See Table 1). Ideally, the most fine-grained
latency model can specify a RESET latency based on exact BL/WL
locations and WL data pattern (i.e., 512 X 512 X 512). However,
having such a fine-grained latency is impractical since the timing
tables will consume tremendous on-chip storage. Furthermore, we

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Chowdhuryy, et al.

[——1 baseline

EZZ21 Split-reset

=== BLP /1 LADDER-Basic

()
L€ 10 RXXXX] LADDER-Est [EEEEE LADDER-Hybrid Oracle
'_ . H
= |
£2 05 f
Z3 1l
astar bwavs cannl fsim Ibm libg mcf perlb mix-1 mix-2 mix-3 mix-4 mix-5 mix-6 mix-7 mix-8 AVG
Figure 12: Average write service time to ReRAM memory.
> [baseline FZZ1 Split-reset == BLP [—1 LADDER-Basic
é 1.0 RXXXX] LADDER-Est I | ADDER-Hybrid S Oracle
E % l 7
- K
23 05 = .
o] R \ N Q
astar bwavs cannl fsim Ibm libg mcf perlb mix-1 mix-2 mix-3 mix-4 mix-5 mix-6 mix-7 mix-8 AVG

Figure 13: Average latency for processor data reads.

Single-program | astar bwaves canneal facesim

Workload Ibm libquantum mcf perlbench
astar-lbm-mcf-cactusADM

cactusADM-bwaves-perlbench-zeusmp

mix-1:
mix-2:
bwaves-zeusmp-astar-mcf
zeusmp-perlbench-lbm-cactusADM
cactusADM-astar-lbm-perlbench
zeusmp-cactusADM-bwaves-mcf

mix-3:
Multi-program | mix-4:
Workload mix-5:
mix-6:
astar-lbm-bwaves-mcf

mcf-cactusADM-zeusmp-perlbench

mix-7:
mix-8:

Table 3: List of single- and multi-programmed workloads.

find that the latency difference is negligible for small changes in
location and content, indicating that a highly fine-grained model
is not necessary. In our evaluation, the timing table is logically
organized as 8 X 8 X 8 where each dimension (i.e., WL/BL/CI";]S)
is set with a granularity of 64 (for 512 X 512 crossbar size). The
memory controller maintains this timing model as 8 sub-tables (the
cer/s dimension) with the size of 8 x 8 (the BL and WL dimensions)
to determine RESET latencies. Figure 11 illustrates the RESET laten-
cies for writes at different write locations under two extreme WL
data patterns (i.e., all ‘0’s and all ‘1’s) in our latency model, corre-
sponding to two sub-tables (we do not enumerate all sub-tables due
to space limit). Our investigation shows this reduced granularity
has less than 3% impact on performance.

Architecture simulation configuration. We run experiments
using gem5 [8] with full system simulation. By default, LADDER
uses a 64KB 4-way set-associative LRS-metadata cache. We boot a
Linux-based system with kernel version 3.4.112. Table 2 illustrates
the main architectural parameters used in our LADDER framework.
The write recovery latency tWR is varying according to content and
location and is determined dynamically by LADDER.

Workloads. We configure 8 single-programmed benchmarks from
SPEC2006 (with reference input) and PARSEC suite (with sim-large
inputs) as well as 8 multi-programmed workloads (each is a mix
of 4 SPEC2006 benchmarks) with high WPKI and large working
sets [17] (shown in Table 3). We instruct each simulation to skip

124

the first 5 billion instructions followed by 100M for cache warmup
and then perform detailed simulations for half billion instructions.

6 EVALUATION

6.1 Evaluation Methodology

We implement three variants of LADDER in gem5, namely LADDER-
Basic that maintains accurate LRS-counter for wordlines, LADDER-
Est that adopts the counter estimation and bit-level shuffling tech-
niques, and LADDER-Hybrid that leverages multi-granularity coun-
ters. We empirically set the bottom 128 rows to use lower-precision
LRS-metadata. LADDER schemes incorporate the FNW variant as
discussed in Section 3.3. We empirically found that less than 4%
of flipping operations are canceled due to the addition of the con-
straint that ensures the correctness of counting, which indicates
the impact of FNW modification is minimal. We create a scheme
utilizing worst-case data- and location-dependent latency as the
first baseline. Additionally, we implement two state-of-the-art write
performance enhancing techniques that are most related to LAD-
DER: 1) BLP that harnesses bitline-level data pattern obtained from
embedded profiling circuitry to determine write latency [49, 50];
2) Split-reset that reduces RESET latency by dividing one RESET
phase into 2 possible half-RESETs, each half-RESET stage writes
maximum 4 bits to one mat (instead of 8) [52]. Split-reset utilizes
data line compression so that compressible lines only need one
half-reset, leading to faster write. We apply the same circuit-level
simulation parameters (as shown in Table 1) to generate the latency
model for Split-reset and BLP. Finally, we implement the Oracle
write scheme where the memory controller performs writes us-
ing our latency model assuming LRS-counters are known. This
mechanism can demonstrate the theoretical performance gain for
mechanisms exploiting the data-location aware latency model. We
apply classical FNW [11] for baseline, BLP and Split-reset.

6.2 Performance Evaluation

Read and write performance. We first evaluate the write and
read performance for LADDER. As we can see from Figure 12, by
enabling fast and slow writes, Split-reset achieves a 41% decrease in

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

75%

w
k) [LADDER-Basic [—] LADDER-Est M LADDER-Hybrid
Q
< 50%
©
c
2 25%
°
kel
< 0%
- 0 = Y—
c EEZCTE27Qnyweenrn o0
28 S8 8 EF XX XX XXX XZ
© 2 0 © EEEEEEE E
(a) Percentage of additional reads
0 75%
pct [LADDER-Basic [] LADDER-Est [LADDER-Hybrid
=
= 50%
©
c
2 25%
£
T
< 0%
- 0 = Y=
c EEZLC 270y woen o9
28 cS 302 EF XX XXX XX XZ
© 2 O © EEEEEEEE

(b) Percentage of additional writes

Figure 14: Additional reads/writes in LADDER due to meta-
data maintenance (normalized to the total number of
reads/writes in the baseline).

average write service time normalized to baseline. Additionally, BLP
has 14% more reduction on top of Split-reset by modeling bitline
data pattern. More notably, LADDER-Basic is able to achieve the
best write performance achieving 79% decrease in write service time
compared to baseline, while LADDER-Est and LADDER-Hybrid ex-
hibit almost the same write performance gain as LADDER-Basic.
We also observe that the counter estimation and multi-granularity
counters are effective in deriving close-to-accurate RESET latencies
(compared to Oracle). Figure 13 presents the average read latency,
including both queuing time and servicing time for all schemes.
We can see that LADDER consistently shows lower read latency.
LADDER-Hybrid has the best read performance with 37% and 16%
more latency reduction on top of Split-reset and BLP, respectively.
Furthermore, both LADDER-Est and LADDER-Hybrid perform bet-
ter than LADDER-Basic in terms of reads. This is because these
two schemes dramatically mitigate interference with normal data
reads by reducing additional SMB/metadata reads and additional
LRS-metadata writes.

To better understand the usefulness of LADDER optimization
schemes, we evaluate the additional read/write operations due to
the LRS-metadata maintenance compared to baseline. Note that dif-
ferent from the other two LADDER schemes, LADDER-Basic’s read
overhead includes two components: SMB read and LRS-metadata
read. Figure 14a shows that LADDER-Basic has additional reads
averaging at 43% among all workloads. This is mainly contributed
by the SMB reads for each data write. By avoiding the SMB reads,
the read overhead is substantially lowered to 15% in LADDER-Est
and then further lowered to 4% in LADDER-Hybrid by using a
more compact layout of metadata that considerably improves meta-
data line locality. Figure 14b shows the additional writes for our
LADDER schemes. Compared to the LADDER-Basic, LADDER-Est
has less metadata writes (at 8% on average). This is because an
LRS-metadata line in LADDER-Est can store counters for 4KB data

125

MICRO ’21, October 18-22, 2021, Virtual Event, Greece

8128

C

O 96

3 —

564_

3

c

30....=.'...'?'.|:|D|;||.]E.“.3|:|

9 [o %5 9 A N8 MmM < 1n O~ © O

¢ B EFEEEEETXYXEYXLxEZ
2 8 * a

= © 3 © E E E E E E E E
(a) LRS-counter differences without shifting

§96

64

g32-

£ la [- O o

o) e

€ -64

g-%- 77T

T - wn = o b5 9 A NN m < n o~ 0o O

¢ B FEFEEETXXEYE LI
2 8 v = o

- © 3 v € E E E E E E E

(b) LRS-counter differences with shifting enabled

Figure 15: The LRS-counter (C ;‘r’s) differences (on average) be-
tween LADDER-Est and LADDER-Basic.

blocks whereas LADDER-Basic requires two for the same. Finally,
LADDER-Hybrid can further reduce it to only 3%.

Effectiveness of LRS-metadata estimation. To evaluate the ac-
curacy of the counter estimation techniques, we run experiments
that trace the accurate and estimated counters for every write per-
sisted. Figure 15a and Figure 15b show the average counter value
difference between LADDER-Basic (that uses accurate counting)
and LADDER-Est (that performs counter estimation). When de-
ployed without intra-line bit shifting, LADDER-Est has in general
higher counter values compared to LADDER-Basic. However, only
3 out of the 16 benchmarks have average estimated counter dif-
ferences above 64. Most of these estimation errors do not result
in a worsened tWR compared to accurate counting since LADDER
encodes data patterns using 8 levels for one wordline of 512 bits
(See Section 5). Additionally, the LADDER-Est with bit shifting dis-
tributes the bits in a cacheline in a way that every bit in an 8-byte
group (that comes from the same chip) gets distributed to the mat
group. As shown in Figure 15a, LADDER-Est can actually have
smaller LRS-counters compared to the LADDER-Basic for majority
of the benchmarks, even after considering the effect of estimation.

System performance of LADDER schemes. We evaluate the
overall system performance improvement under all schemes in
Figure 16. Note that we use IPC for single-programmed workloads
and weighted IPC [40] for the multi-programmed workloads to
compute speedup. Compared to baseline, Split-reset has a perfor-
mance improvement of 13% and 27% on average for single- and
multi-programmed workloads respectively, whereas BLP has 22%
and 27%. By leveraging a more aggressive latency model with effi-
cient metadata management, LADDER schemes exhibit even higher
performance gains. Specifically, LADDER-Basic can bring on aver-
age 22% IPC improvement for single workloads and 50% for multi-
programmed workloads over baseline. Furthermore, LADDER-Est
achieves 5% more IPC improvement for single-threaded workloads
and 4.7% for mixed workloads on top of LADDER-Basic. The higher

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Chowdhuryy, et al.

2.25

2.00 [baseline FZZZ1 Split-reset =3 BLP = [LADDER-Basic
g— 1'75 BS555d LADDER-Est I LADDER-Hybrid Oracle
- N N !
@ 1.50 N [ER s gk
o A \ N Ak
8125 N HIER N |8

N D
1.00 N § g {

77.
.

mix-2 mix-3 mix-4 mix-5 mix-6 mix-7

Figure 16: Comparison of performance (i.e., speedup normalized to baseline) under different schemes.

I Read [Write

Norm. Dynamic Energy

o ‘G m < 0 © N~
8 9 | RCERVERVERG
= E X X X X X X

= ol
=

o X X
o

z EEEEEEE

‘From left to right: Split-reset, BLP, LADDER-Basic, LADDER-Est, LADDER-Hyb\

-l
s 2 £
B o]
c 2

Figure 17: Memory dynamic energy consumption analysis.

performance advantage of LADDER-Est is attained due to the re-
moval of SMB reads, which eliminates contentions with regular
data reads. Finally, the LADDER-Hybrid scheme has additional 2.8%
performance benefits over LADDER-Est. As compared to previous
techniques, LADDER-Hybrid has 21.7% and 13.2% speedup over
Split-reset and BLP. It is important to note that besides higher sys-
tem performance, LADDER-Hybrid also limits the read and write
overhead to less than 4% and 3% respectively. By utilizing a low-
overhead architectural solution, LADDER can achieve 98% of the
performance of the Oracle scheme.

6.3 Hardware Overhead Analysis

Main memory overhead analysis. We compare the dynamic en-
ergy consumption for ReRAM memory among the studied mecha-
nisms. We model a ReRAM memory with the device-level parame-
ters from [25] and use NVmain [37] to analyze the dynamic energy.
Note that all the studied schemes save write energy compared to
baseline due to the optimized write latency for data writes. Figure 17
shows the dynamic energy consumptions including read and write
energy at mat level (normalized to baseline). We can see that Split-
reset and BLP present an energy saving of 33% and 34%, respectively.
Interestingly, for the benchmarks with high data line compressibil-
ity (e.g., canneal and perlbench), Split-reset has less dynamic energy
consumption compared to BLP. This is because, for a compressed
data line, Split-reset only requires one half-reset phase in contrast
to the full-reset in BLP. LADDER-Basic reduces the memory dy-
namic energy by 46% over baseline. By further mitigating energy
cost due to SMB/metadata reads, 48% and 53% energy is saved by
LADDER-Est and LADDER-Hybrid. Impressively, LADDER-Hybrid
has 29.8% and 28.8% less dynamic energy consumption compared
to Split-reset and BLP.

LADDER-Basic requires two 64-byte memory blocks to store
counters for one logical row, which translates to 3.12% memory
space for storing LRS-metadata. LADDER-Est reduces the storage
overhead to 1.56% since this scheme only requires one 64-byte

126

Module Area Power Latency
(mm?) (mWw) (ns)
LRS-metadata Update Module 0.0061 3.71 0.17
Latency Query Module 0.0047 6.57 0.32
LRS-metadata Cache (64KB) 0.2442 48.83 0.81

Table 4: Hardware overhead of LADDER.

counter for every 4KB data. Finally, LADDER-Hybrid minimizes this
overhead even further to 0.97% with coarse-grained partial counters
for selected wordlines. Our proposed mechanisms essentially trade
a minimal cost of ReRAM memory capacity for higher performance
gains. NVM memories have significantly higher capacity compared
to traditional DRAMs, such memory storage overhead is unlikely
to have a noticeable impact on applications.

Memory controller overhead analysis. To evaluate the hard-
ware overhead in the memory controller, we implement the two
major logic components (LRS-metadata Update Module and Latency
Query Module) in the optimized LADDER schemes using Verilog.
Note that the processor-side hardware overheads for LADDER-
Est and LADDER-Hybrid are almost identical. We synthesize the
proposed logic components using Synopsis Design Compiler with
the 45nm FreePDK45 standard cell library [44]. The area, power
and latency overheads are shown in Table 4. We observe that the
LRS-metadata Update Module and Latency Query Module mecha-
nisms have negligible area overhead (e.g., compared to the 263mm?
chip area of Intel Core i7 Processor [1]). Additionally, the dynamic
power drawn by each component is only in the order of a few mWs.
Furthermore, LADDER-Est hardware has latencies less than the
processor clock cycle. Also, as LRS-metadata maintenance can be
overlapped with the queuing of write requests, they do not pose ad-
ditional latency overhead to the system. Finally, we use CACTI 7 6]
to model the 64KB 4-way LRS-metadata cache. The LRS-metadata
cache incurs about 499mW dynamic power and 0.25mm? area over-
head, which are both modest numbers. Also, we observe marginal
system performance gain when increasing cache size (< 2%).

The LADDER write timing tables require a 512B buffer as on-
chip storage. This timing information is loaded by the processor at
boot time. Since the actual RESET timing may be memory device
dependent, memory device manufacturers could choose to program
the latency information into a ROM on the memory module [2]
(e.g., Serial Presence Detect [2]) in memory DIMMs. Note that the
JEDEC standard already has supports for additional configuration
storage (e.g., model registers) to enable conveying device-level
information to the system [3]. This approach has minimal cost and
does not pose any additional complexity to the ReRAM chips. Prior

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

[Data, Addr.]

' HRow, Pagel || Seg1
! (Row, Page2 || seg2
Memory Controller SRS ‘
Wear-leveling [CC | ‘
mechanism e ‘
,{Row, Pagel|Page2| || Segil
Remapped [Data, Addr.] { I'Row, Page2 | %—iﬁﬁ Seg2
! Ml T
LADDER (Cc] |
‘ eARown Paget || Seg1
! {Row, Page? || seg2
ReRAM Memory -l \
Modules AN \

(a) Wear-leveling in LADDER (b) Segment-based wear-leveling
Figure 18: LADDER with wear-leveling mechanisms. (a)
Control flow of the combined logic; (b) Procedure of LRS-
metadata block remapping when Segment; is swapped with
Segments.

works have proposed leveraging such storage to expose certain
memory device information to the processor-side to enhance the
performance of memory subsystems [28]. We use a 16-entry spill
buffer, each entry storing the address of an LRS-metadata line.
For LADDER-Est and LADDER-Hybrid, we need 8 bits for partial
counters, 1 bit for the Present flag per write queue entry, and 1
bit for determining read operation type per read queue entry. In
LADDER-Basic, we need additional 256 bits to store data line bit
modification information instead of the partial counter. In summary,
the on-chip storage is modest. Note that LADDER is a processor-side
framework that does not require changes of ReRAM chip and the
memory interfaces, retaining the memory area and cost efficiency
for ReRAM technologies.

6.4 LADDER with Wear Leveling Techniques

Wear-leveling has been widely adopted to enhance the lifetime of
NVM devices through distributing writes evenly across the entire
memory region [39, 70]. Typically, vertical wear-leveling (VWL) [39,
43] manifests at a line or segment (e.g., IMB) granularity while
horizontal wear-leveling (HWL) [59, 67] distributes writes within a
line. Note that LADDER can be easily made compatible with existing
wear-leveling techniques by putting the wear-leveling operations
before LADDER. As shown in Figure 18a, LADDER can obtain the
LRS-metadata line based on the remapped physical location of the
data block (for VWL) and update the LRS-metadata based on the
data written back to memory (for HWL). It is worth noting that
different implementations of VWL can have distinctive impacts on
the performance of LADDER. Specifically, line-based wear-leveling
can potentially distribute the data blocks within a page to different
logical rows, leading to deteriorated LRS-metadata locality. On the
other hand, segment-based VWL typically remaps memory in large
chunks containing one or multiple pages (e.g., 16MB [67]). Under
this mechanism, when a data page is relocated from one logical row
to another, the metadata locality is maintained (mapping from one
metadata line to another). Since content in the original location
(before wear-leveling) remains unmodified, LADDER only needs to
update the metadata line corresponding to the new location (shown

127

MICRO 21, October 18-22, 2021, Virtual Event, Greece

in Figure 18b). Note that when the metadata pages are relocated,
there is no impact on normal data writes as the memory controller
can locate the remapped metadata lines. Finally, HWL generally
shifts one byte at a time [67] in a memory block that does not
change the address of the corresponding metadata line, thus no
special handling is needed.

We analyze the endurance of a crossbar based on the cell with
worst-case endurance [39, 63, 68]. Due to the variable IR-drop across
crossbars, different cells have different endurance. Note that LAD-
DER does not change the endurance of ReRAM memories from
baseline as it maintains the same RESET voltage. According to Fig-
ure 14b, LADDER-Hybrid increases write traffic by 3% compared to
the baseline. By applying wear-leveling schemes, the impact of these
additional writes in our LADDER framework can be distributed
over the entire crossbar. With the adoption of such techniques,
LADDER-Hybrid maintains 97.1% of the baseline system lifetime.
In such a system, LADDER-Hybrid has only about 1% performance
reduction (compared to that of a system without wear-leveling),
still achieving 44% improvement over baseline. LADDER-Basic and
LADDER-Est exhibit about 2% overhead for the same.

7 DISCUSSION

Crash consistency of LRS-metadata. Regular data writes are
typically guaranteed to persist to the non-volatile main memory.
However, as dirty LRS-metadata blocks can be temporarily stored
in the LRS-metadata cache, it is possible that they are not properly
flushed upon abrupt power failure. Under such circumstances, the
LRS-metadata loaded from memory after power restoration can be
obsolete, leading to inconsistency. The use of stale LRS-counters
to derive RESET latency may result in write failures for ReRAM
devices. Recent commercial processors offer eADR mechanisms that
encompass on-chip caches into the persistence domain [21], which
could provide crash consistency if extended to the LRS-metadata
cache. In systems where such mechanism is absent, one plausible
solution is to perform Lazy LRS-metadata correction. Specifically,
when restoring from a crash, the system can conservatively over-
write the LRS-metadata with maximum values in the metadata
region (less than 1% of the memory space). This ensures that later
data writes will use safe RESET timings if the corresponding LRS-
metadata were not persisted. As memory blocks that share the
same LRS-metadata are written, their LRS-counters will be gradu-
ally adjusted to the expected estimations. Note that since crashes
are infrequent and the correction happens only at the initial stage
of the system, we do not expect a noticeable long-term perfor-
mance impact with this scheme. Additionally, we note that prior
works [58, 69] have proposed techniques to identify inconsistent
metadata in secure NVMs by detecting/bookkeeping non-persistent
metadata blocks. LADDER can integrate such approaches to locate
only stale LRS-metadata blocks for conservative correction, which
could further reduce the overhead of system restoration.

Write reliability of LADDER and its optimizations. LADDER’s
latency model is built using comprehensive circuit-level analysis
using ReRAM parameters that match the prototype ReRAM devices
(Table 1). We note that the reliability of writes is maintained in
LADDER for two reasons: i) the timing model specifies varying
but sufficient RESET latency to switch the resistive states of the

MICRO 21, October 18-22, 2021, Virtual Event, Greece

ReRAM cells based on the location and data pattern; and ii) LAD-
DER implements a conservative timing model (8 X 8 X 8) and a set
of LRS-metadata maintenance techniques that offer higher but effi-
cient estimation of the LRS-counters (Section 4.1). Hence, LADDER
is always abiding by a safety margin that ensures write reliability.

Impact of process and runtime variability. ReRAM devices
from various manufacturers may have varying latency require-
ments (e.g., due to process technology differences). The perfor-
mance benefits of LADDER typically increase for ReRAM devices
with higher variations in the required RESET latency. To investigate
the effectiveness of LADDER on different dynamic ranges of RESET
timing, we run LADDER with a shrink of dynamic latency range
in the timing table (in Section 5) by 2 X. Notably, our results show
that LADDER is able to retain 85% of the original performance ad-
vantage on average. In addition to process variations, the memory
access performance can also be impacted by fluctuations in oper-
ating conditions. Particularly, prior characterization studies have
shown that the threshold voltage for the resistive state of ReRAM
cells can vary based on temperature [33]. To account for such run-
time factors, one possible way is to provide certain latency margin
in the timing table to accommodate all scenarios (JEDEC supports
up to +85°C [23]). Note that such provisioning is also necessary for
conventional ReRAM systems and is not unique to LADDER. To
limit the performance impact due to worst-case latency settings,
LADDER can utilize a few sets of timing tables, each corresponds
to a certain temperature range, similar to the use of adaptive access
latency in DRAM [28].

Security implications of LADDER design. LADDER utilizes in-
memory content-dependent latency for writes, which can poten-
tially raise concerns of side channels [12-15, 22, 31, 36, 54-57]
where adversaries may attempt to harness the write timing to exfil-
trate data stored in memory. While theoretically possible, observing
exact write service latency is difficult since writes are not in the
critical path. Moreover, write latency used in LADDER is only
loosely dependent on the estimated worst-case data pattern at the
page level. Differential latency observed at application user-space
(if any) is bound to be too coarse-grained and non-deterministic to
be leveraged for inferring useful information illegitimately. Finally,
for security-wary users, lightweight system-level confinement poli-
cies can be set so that mutually-distrusting application domains do
not share the same wordline group. This can prevent a malicious
party from trying to exfiltrate information about the victim’s data
pattern in memory. Note that a complete side channel analysis in
the ReRAM main memory is out of the scope of this paper.

8 RELATED WORK

There are several prior works on optimizing the write performance
of crossbar-based ReRAM memories. DSWD [65] augments write
drivers in both sides of the bitline to reduce the IR drop along bit-
lines. Transpose Memory [46] adds additional decoder circuitry and
sense amplifiers in both edges of the bitlines for voltage isolation.
DAWS [48] utilizes a path-dependent voltage biasing scheme to
reduce the effective path length of sneak current. Recently, Zokaee
et al. [68] propose a dynamic power regulation mechanism that
applies higher voltage to cells suffering from greater sneak current
leakage. Although such circuit-level enhancements alleviate the

128

Chowdhuryy, et al.

sneak current, these techniques do not completely eliminate IR
drop and thus the RESET latency variation still exists. Leader [62]
remaps frequently accessed pages to wordlines closer to the write
driver to optimize the write performance. However, this approach
only considers the location dependency and it is also not compatible
with existing wear-leveling techniques. Bitline profiling (BLP) [50]
utilizes a bitline content dependent write mechanism and uses ad-
ditional circuitry in the memory to profile data patterns in the
bitlines. Such approaches require non-trivial circuit-level support
in the memory system, undermining the area and cost efficiency of
ReRAM main memory. Xu et al. [52] propose the Split-reset write
scheduling mechanism that offers two RESET speed grades where
compressible data lines can benefit from shorter write latency. This
technique does not take advantage of ReRAM data patterns that
can lead to considerable write latency variations. Different from
prior studies, we note that LADDER is the first work to enable the
processor-side write optimization framework that leverages both
content and location dependencies in ReRAM write operations.
Our proposed LRS-metadata management scheme involves modest
changes to the memory controller with minimal hardware cost and
offers considerable performance advantages over state-of-the-art
works.

Several works focus on enhancing the lifetime of NVM devices
by reducing the effective number of bits written to the main mem-
ory (e.g., [32] and [11]). Mellow-write [63] extends the lifetime of
ReRAM cells by selectively performing slower writes under reduced
RESET voltage to ReRAM cells. Additionally, by exploiting the bank-
idle times, PreSET [38] preemptively initializes bits prior to the
writing of a dirty cache line to the PCM memory. Several previous
studies have investigated the use of adaptive address remapping of
write-intensive pages to locations that have lower RESET latency
requirement [48, 51, 62]. LADDER can potentially incorporate these
techniques to further improve its performance and efficacy.

9 CONCLUSION

ReRAM memories are subject to variable write latency due to the
varying impact of IR drop to RESET operations. In this paper, we
propose LADDER, a processor-side mechanism in the memory con-
troller that improves the overall performance of ReRAM based
system by enabling content and location-aware writes. LADDER in-
tegrates an LRS-metadata based design that keeps track of per-row
data patterns completely within the memory controller. We demon-
strate a basic LADDER design and propose several optimizations
to further improve the performance while reducing the run-time
overhead. We implement LADDER on a cycle-level simulator and
evaluate its performance using 16 workloads from SPEC2006 and
PARSEC. Evaluation results show that LADDER is able to achieve
on average 46% performance gain compared to a baseline and 13.2%
over a state-of-the-art technique. Finally, LADDER achieves 28.8%
dynamic memory energy savings compared to existing architectural
schemes and has less than 3% impact on device lifetime.

ACKNOWLEDGMENTS

This work is supported in part by the U.S. National Science Foun-
dation under award numbers CNS-2008339 and CNS-1908471.

LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories

REFERENCES

(1]

[9

=

[10

(11

[12]

(13

[14

[15]

[16

[17]
[18

[19]
[20]

[21]

[22

[23

[24]

[25

[26

[27]

2010. Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80 GT/s Intel®
QPI) Product Specifications. https://ark.intel.com/content/www/us/en/ark/
products/41447/intel-core-i7-930-processor-8m-cache- 2-80- ghz-4-80-gt-s-
intel-qpihtml

2014. Annex K: Serial Presence Detect (SPD) for DDR3 SDRAM Modules. https:
//www.jedec.org/sites/default/files/docs/4_01_02_11R24.pdf

2017. JEDEC Standard: DDR4 SDRAM JESD79-4B. https://www.jedec.org/
standards-documents/docs/jesd79-4a

2019. The Machine: A new kind of computer. https://www.hplLhp.com/
research/systems-research/themachine/ https://www.labs.hpe.com/memory-
driven-computing.

Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory
(ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010), 2237-2251.

Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration in
innovative off-chip memories. ACM TACO 14, 2 (2017), 1-25.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
IEEE PACT. 72-81.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM CAN 39, 2 (2011), 1-7.

Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. 2017. Emerging
NVM: A survey on architectural integration and research challenges. ACM
TODAES 23, 2 (2017), 1-32.

Meng-Fan Chang, Albert Lee, Pin-Cheng Chen, Chrong Jung Lin, Ya-Chin King,
Shyh-Shyuan Sheu, and Tzu-Kun Ku. 2015. Challenges and circuit techniques
for energy-efficient on-chip nonvolatile memory using memristive devices. IEEE
JETCAS 5, 2 (2015), 183-193.

Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A simple deterministic
technique to improve PRAM write performance, energy and endurance. In IEEE
MICRO. 347-357.

Md Hafizul Islam Chowdhuryy, Rickard Ewetz, Amro Awad, and Fan Yao. 2021.
Seeds of SEED:R-SAW: New Side Channels Exploiting Read Asymmetry in MLC
Phase Change Memories. In IEEE SEED.

Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao. 2020. BranchSpec: Infor-
mation Leakage Attacks Exploiting Speculative Branch Instruction Executions.
In IEEE ICCD.

Md Hafizul Islam Chowdhuryy and Fan Yao. 2021. Leaking Secrets through Mod-
ern Branch Predictor in the Speculative World. arXiv preprint arXiv:2107.09833
(2021).

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices 53, 2 (2018), 693-707.

Richard F Freitas and Winfried W Wilcke. 2008. Storage-class memory: The next
storage system technology. IBM Journal of Research and Development 52, 4.5
(2008), 439-447.

Darryl Gove. 2007. CPU2006 working set size. ACM CAN 35, 1 (2007), 90-96.
B Govoreanu, G Kar, Y Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu, L Goux,
S Clima, R Degraeve, et al. 2011. 10x10nm2 Hf/HfOx Cross-point Resistive RAM
with Excellent Performance, Reliability and Low-Energy Operation. In IEEE IEDM.
31-6.

John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM CAN 34, 4
(2006), 1-17.

Chung-Wen Ho, A. Ruehli, and P. Brennan. 1975. The modified nodal approach
to network analysis. IEEE TCAS 22, 6 (June 1975), 504-509.

Intel. 2021. eADR: New Opportunities for Persistent Memory Applica-
tions. https://software.intel.com/content/www/us/en/develop/articles/eadr-
new-opportunities-for-persistent-memory-applications.html/

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S $ A: A shared cache
attack that works across cores and defies VM sandboxing-and its application to
AES. In IEEE S&P. 591-604.

JEDEC. 2014. JEDEC Standard No. 21C: Low Power Double Data Rate (LPDDR)
Non-Volatile Memory (NVM). https://www.jedec.org/sites/default/files/docs/3_
06_03R18A.pdf

Lei Jiang, Youtao Zhang, Bruce R Childers, and Jun Yang. 2012. FPB: Fine-grained
power budgeting to improve write throughput of multi-level cell phase change
memory. In IEEE MICRO. 1-12.

Akifumi Kawahara, Ryotaro Azuma, Yuuichirou Ikeda, Ken Kawai, Yoshikazu
Katoh, Yukio Hayakawa, Kiyotaka Tsuji, Shinichi Yoneda, Atsushi Himeno,
Kazuhiko Shimakawa, et al. 2012. An 8 Mb multi-layered cross-point ReRAM
macro with 443 MB/s write throughput. IEEE JSSC 48, 1 (2012), 178-185.
Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In IEEE ISCA. 2-13.
Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. 2010. Phase-change technology and the future of main

129

[28

[29

[30

[31

@
&,

[33

(34

(35]

[36

[37

"
&,

[39

[40

[41

[42

S
)

[51

(52]

o
=

(54

[55

MICRO 21, October 18-22, 2021, Virtual Event, Greece

memory. IEEE Micro 30, 1 (2010), 143-143.

Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri,
Kevin Chang, and Onur Mutlu. 2015. Adaptive-latency DRAM: Optimizing DRAM
timing for the common-case. In IEEE HPCA. 489-501.

Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler,
and Tom W Keller. 2003. Energy management for commercial servers. IEEE
Computer 36, 12 (2003), 39-48.

Jianhua Li, Chun Jason Xue, and Yinlong Xu. 2011. STT-RAM based energy-
efficiency hybrid cache for CMPs. In IEEE VLSI-SoC. 31-36.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In IEEE S&P. 605-622.

Rakan Maddah, Seyed Mohammad Seyedzadeh, and Rami Melhem. 2015. CAFO:
Cost aware flip optimization for asymmetric memories. In IEEE HPCA. 320-330.
Anas Mazady and Mehdi Anwar. 2014. Memristor: part II-DC, transient, and RF
analysis. IEEE T-ED 61, 4 (2014), 1062-1070.

Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie.
2012. Design trade-offs for high density cross-point resistive memory. In [EEE
ISLPED. 209-214.

Dimin Niu, Cong Xu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie.
2013. Design of cross-point metal-oxide ReRAM emphasizing reliability and cost.
In IEEE ICCAD. 17-23.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Springer CT-RSA. 1-20.

Matthew Poremba, Tao Zhang, and Yuan Xie. 2015. Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems. IEEE CAL 14, 2
(2015), 140-143.

Moinuddin K Qureshi, Michele M Franceschini, Ashish Jagmohan, and Luis A
Lastras. 2012. PreSET: Improving performance of phase change memories by
exploiting asymmetry in write times. ACM CAN 40, 3 (2012), 380-391.
Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In IEEE MICRO. 14-23.
Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In IEEE MICRO. 423-432.

Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. 2009. Scalable
high performance main memory system using phase-change memory technology.
In IEEE ISCA. 24-33.

Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch, Charles T Rettner, Y-C
Chen, Robert M Shelby, Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung, et al.
2008. Phase-change random access memory: A scalable technology. IBM Journal
of Research and Development 52, 4.5 (2008), 465-479.

Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. 2010. Security Refresh:
Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory
with Dynamically Randomized Address Mapping. In IEEE ISCA. 383-394.

J. E. Stine, L. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Franzon,
M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. 2007. FreePDK: An Open-Source
Variation-Aware Design Kit. In IEEE MSE. 173-174.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
2008. The missing memristor found. nature 453, 7191 (2008), 80-83.

Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic
design within memristive memories using memristor-aided loGIC (MAGIC). IEEE
TNANO 15, 4 (2016), 635-650.

Ronald Tetzlaff. 2013. Memristors and memristive systems. Springer.

Chengning Wang, Dan Feng, Jingning Liu, Wei Tong, Bing Wu, and Yang Zhang.
2017. Daws: Exploiting crossbar characteristics for improving write performance
of high density resistive memory. In IEEE ICCD. 281-288.

Wen Wen, Lei Zhao, Youtao Zhang, and Jun Yang. 2017. Speeding up crossbar
resistive memory by exploiting in-memory data patterns. In IEEE ICCAD. 261—
267.

Wen Wen, Lei Zhao, Youtao Zhang, and Jun Yang. 2019. Exploiting In-memory
Data Patterns for Performance Improvement on Crossbar Resistive Memory. IEEE
TCAD (2019).

Bing Wu, Dan Feng, Wei Tong, Jingning Liu, Shuai Li, Mingshun Yang, Chengning
Wang, and Yang Zhang. 2018. Aliens: A novel hybrid architecture for resistive
random-access memory. In IEEE ICCAD. 1-8.

Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao
Zhang, Shimeng Yu, and Yuan Xie. 2015. Overcoming the challenges of crossbar
resistive memory architectures. In IEEE HPCA. 476-488.

Cong Xu, Dimin Niu, Naveen Muralimanohar, Norman P Jouppi, and Yuan Xie.
2013. Understanding the trade-offs in multi-level cell ReRAM memory design. In
IEEE DAC. 1-6.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In IEEE S&P. 888-904.

Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are coherence
protocol states vulnerable to information leakage?. In IEEE HPCA. 168-179.

MICRO 21, October 18-22, 2021, Virtual Event, Greece

(56

[57

[58

[59

[60

[62

[63

]

]

]

]

Fan Yao, Hongyu Fang, Milo§ Doroslovacki, and Guru Venkataramani. 2019.
Leveraging cache management hardware for practical defense against cache
timing channel attacks. IEEE Micro 39, 4 (2019), 8-16.

Fan Yao, Guru Venkataramani, and Milo$ Doroslovacki. 2017. Covert timing
channels exploiting non-uniform memory access based architectures. In ACM
GLSVLSI. 155-160.

Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A low-cost mechanism
to enable restoration of secure non-volatile memories. In IEEE MICRO. 403-415.
Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. 2015. DEUCE: Write-
Efficient Encryption for Non-Volatile Memories. In ASPLOS. 33-44.

Shimeng Yu and Pai-Yu Chen. 2016. Emerging memory technologies: Recent
trends and prospects. IEEE SSC-M 8, 2 (2016), 43-56.

Shimeng Yu and H-S Philip Wong. 2010. A phenomenological model for the reset
mechanism of metal oxide RRAM. IEEE EDL 31, 12 (2010), 1455-1457.

Hang Zhang, Nong Xiao, Fang Liu, and Zhiguang Chen. 2016. Leader: Acceler-
ating reram-based main memory by leveraging access latency discrepancy in
crossbar arrays. In IEEE DATE. 756-761.

Lunkai Zhang, Brian Neely, Diana Franklin, Dmitri Strukov, Yuan Xie, and Fred-
eric T Chong. 2016. Mellow writes: Extending lifetime in resistive memories
through selective slow write backs. In IEEE ISCA. 519-531.

130

(64

[65

[66

[67

[69

[70

Chowdhuryy, et al.

Sen Zhang, Shibing Long, Weihua Guan, Qi Liu, Qin Wang, and Ming Liu. 2009.
Resistive switching characteristics of MnOx-based ReRAM. Journal of Physics D:
Applied Physics 42, 5 (2009), 055112.

Yang Zhang, Dan Feng, Jingning Liu, Wei Tong, Bing Wu, and Caihua Fang. 2017.
A novel reram-based main memory structure for optimizing access latency and
reliability. In IEEE DAC. 1-6.

Lei Zhao, Lei Jiang, Youtao Zhang, Nong Xiao, and Jun Yang. 2017. Constructing
fast and energy efficient 1tnr based reram crossbar memory. In IEEE ISQED.
58-64.

Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology. In IEEE ISCA.
14-23.

Farzaneh Zokaee and Lei Jiang. 2020. Mitigating Voltage Drop in Resistive
Memories by Dynamic RESET Voltage Regulation and Partition RESET. In IEEE
HPCA. 275-286.

Kazi Abu Zubair and Amro Awad. 2019. Anubis: ultra-low overhead and recovery
time for secure non-volatile memories. In IEEE MICRO. 157-168.

Pengfei Zuo, Yu Hua, Ming Zhao, Wen Zhou, and Yuncheng Guo. 2018. Improving
the performance and endurance of encrypted non-volatile main memory through
deduplicating writes. In IEEE MICRO. 442-454.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 ReRAM Basics
	2.2 Exploiting Content and Location Dependency

	3 LADDER Framework
	3.1 Modeling Data and Location Dependency for Writes
	3.2 Enabling Variant-latency Write
	3.3 Basic LADDER Design

	4 LADDER Optimizations
	4.1 LRS-metadata Estimation
	4.2 Multi-Granularity LADDER Counters

	5 Experimental Setup
	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Performance Evaluation
	6.3 Hardware Overhead Analysis
	6.4 LADDER with Wear Leveling Techniques

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

