
STREAM: Towards READ-based In-Memory

Computing for Streaming based Data Processing

Muhammad Rashedul Haq Rashed∗, Sven Thijssen∗, Sumit Kumar Jha†, Fan Yao∗, and Rickard Ewetz∗

∗Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
†Department of Computer Science, University of Texas at San Antonio, San Antonio, USA

{rashed09, sven.thijssen}@knights.ucf.edu, sumit.jha@utsa.edu, {fan.yao, rickard.ewetz}@ucf.edu

Abstract—Processing in-memory breaks von-Neumann based
design principles to accelerate data-intensive applications. While
analog in-memory computing is extremely energy-efficient, the
low precision narrows the spectrum of viable applications. In
contrast, digital in-memory computing has deterministic preci-
sion and can therefore be used to accelerate a broad range of high
assurance applications. Unfortunately, the state-of-the-art digital
in-memory computing paradigms rely on repeatedly switching
the non-volatile memory devices using expensive WRITE oper-
ations. In this paper, we propose a framework called STREAM
that performs READ-based in-memory computing for streaming-
based data processing. The framework consists of a synthesis tool
that decomposes high-level programs into in-memory compute
kernels that are executed using non-volatile memory. The paper
presents hardware/software co-design techniques to minimize the
data movement between different nanoscale crossbars within
the platform. The framework is evaluated using circuits from
ISCAS85 benchmark suite and Suite-Sparse applications to
scientific computing. Compared with WRITE-based in-memory
computing, the READ-based in-memory computing improves
latency and power consumption up to 139X and 14X , respectively.

I. INTRODUCTION

The amount of produced digital data is expected to reach

40 trillion gigabytes [1, 2] by 2025. This has powered the

emergence of data-intensive applications such as computer-

vision, digital twin, and system simulation. Unfortunately,

today’s high performance computing systems are ill-equipped

to handle even petabytes of data. Mainly, due to the separation

of computing and memory units within the von-Neumann

architecture [3]. With continuously increasing computational

demands, there is an increasing interest in emerging technolo-

gies and computing paradigms [4–6].

A promising solution strategy is based on performing in-

memory computing using emerging non-volatile memory. The

fabrication of non-volatile resistive devices has been pursued

based on memristor [7, 8], phase change memory (PCM) [9],

and spin-transfer torque magnetic random access memory

(STT-RAM) technology [10]. By integrating the non-volatile

memory into nanoscale crossbar, various in-memory com-

pute kernels can be executed energy-efficiently with high-

speed. In particular, analog matrix-vector multiplication can

be performed using the natural multiply-accumulate feature of

This work was in part supported by NSF awards CNS-1908471, CNS-
2008339, CCF-1822976, CCF-2113307, DARPA cooperative agreement
#HR00112020002 and ONR grant #N000142112332.

nanoscale crossbar arrays. The challenge of analog in-memory

computing is that the resulting precision is low.

To overcome the precision challenge, digital in-memory

computing has been proposed using logic families such as OR-

plane [4] , MAGIC [5], IMPLY [6], Bit-wise-in-bulk [11], and

FLOW [12]. The different logic styles encode the inputs and

outputs of rudimentary Boolean functions (or gates) using the

state of non-volatile memory devices and/or analog voltage

levels. This results in that the different logic styles have

distinctive performance differences in terms of power, latency,

and area. Nevertheless, the precision of digital in-memory

computing using any of the logic styles is deterministic

because there is adequate noise margin between logic ‘0’

and logic ‘1’. Many recent research efforts have focused

on synthesis tools and platforms for MAGIC, FLOW, and

Bitwise-in-bulk, which facilitate the evaluation of complex

logic in a single crossbar. The drawback of those logic styles

is that they require the non-volatile memory devices to be

repeatedly programmed using WRITE operations, which are

both slow and power-hungry [13]. In contrast, OR-plane logic

is based on READ operations and can be performed with

high speed and high energy-efficiency. However, in-memory

computing based on OR-plane logic remains in the infancy

stages and has mainly been used to implement look-up tables

(LUTs) for FPGAs [14, 15].

In this paper, we propose a framework called STREAM that

performs READ-based in-memory computing for streaming-

based data processing. The framework is based on uti-

lizing OR-plane logic to process high fan-in OR/NOR

gates using READ operations. The challenge of OR-plane

logic is that complex functions require inter-crossbar data

transfer, which may introduce substantial performance and

hardware overheads. The STREAM framework provides a

hardware/software-centered solution to minimize these over-

heads. First, we design processing elements (PEs) that have

multiple crossbars connected in serial using hardwired con-

nections to minimize data transfer costs. Next, a synthesis

tool is proposed to decompose complex Boolean functions into

parts that fit into the PEs while minimizing the costly inter-PE

communication. The STREAM framework is evaluated using

circuits from the ISCAS85 benchmark suite and Suit-Sparse

applications to scientific computing. Compared with WRITE-

based in-memory computing, STREAM improves average

power and latency up to 14X and 139X , respectively.

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

9C-3

690

20
22

 2
7t

h
As

ia
 a

nd
 S

ou
th

 P
ac

ifi
c D

es
ig

n
Au

to
m

at
io

n
Co

nf
er

en
ce

 (A
SP

-D
AC

) |
 9

78
-1

-6
65

4-
21

35
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/A

SP
-D

AC
52

40
3.

20
22

.9
71

25
69

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

In this section, we review two logic styles for evaluating

Boolean functions using digital in-memory computing. Next,

we discuss the limitations of previous works and motivate the

proposed framework.

A. Digital in-memory computing

In this section, we explain how Boolean gates (or rudi-

mentary Boolean functions) can be evaluated using digital in-

memory computing. The representative logic styles of MAGIC

and OR-plane logic are illustrated in Figure 1.

We show how MAGIC can be used to evaluate a NOR gate

in Figure 1(a). MAGIC is an example of a stateful logic style

where both input and output operands are stored using the

state of the memristor devices [5]. True and false are encoded

using low resisitive state (LRS) and high resisitve state (HRS),

respectively. To evaluate the NOR2 function out = a+b, the

input variables a and b are first programmed to the memristors

along the left-most bitline, which is shown in Figure 1(a). The

output memristor is also programmed to LRS. Next, the NOR2

function is evaluated using a special WRITE operation [5].

The output of the NOR2 function can be decoded from the

state (LRS/HRS) of the output memristor. Using this scheme,

multiple NOR/INV gates can be evaluated in parallel along

adjacent bitlines.

We illustrate the concept of OR-plane logic in Figure 1(b).

OR-plane logic is an example of a non-stateful logic style [4].

The input and output operands are encoded using input and

output voltages, respectively. True (false) is encoded using a

high (low) voltage. We show how an INV, a NOR2, and a

NOR3 gate can be evaluated in parallel using a single READ

operation to the crossbar. The memristors in the crossbar are

first initialized once using WRITE operations based on the

logic gates that are desired to be realized. Next, the Boolean

variables a, b, and c are applied to the wordlines in the

crossbar. The outputs of the INV/NOR2/NOR3 functions are

decoded from the bitlines, respectively. High fan-in OR-gates

are realized by attaching buffers instead of inverters at the end

of the bitlines.

Fig. 1: Evaluation of Boolean gates using (a) WRITE-based

MAGIC and (b) READ-based OR-plane logic.

B. Limitations of previous work

In this section, we compare different logic styles for digital

in-memory computing. In principle, the paradigms perform

computation using a one-time initialization phase and an eval-

uation phase. The initilization phase is performed with only

the knowledge of the function to be evaluated. The evaluation

phase is performed given specific instances of the Boolean

input variables. The use of READ and WRITE operation in

the respective phases are shown in Table I.

TABLE I: Comparison of READ/WRITE operations in the

initialization and evaluation phase for different logic styles.

Logic style Work in Initialization Evaluation
phase phase

Flow-based computing [12] READ/WRITE READ/WRITE
Bitwise-In-Bulk [11] READ/WRITE READ/WRITE
MAGIC [5] READ/WRITE READ/WRITE
IMPLY [6] READ/WRITE READ/WRITE

OR-plane logic (this work) READ/WRITE READ

The table shows that state-of-the-art digital in-memory

computing paradigms rely on repeatedly performing expensive

WRITE operations in the evaluation phase. WRITE operations

to non-volatile memory devices are both slow and costly in

energy. In contrast, the STREAM framework is based on OR-

plane logic [4], which only uses READ operations in the

evaluation phase. READ operations can be performed with

high speed and energy-efficiency. For example, the energy and

latency of a READ/WRITE operation is 1.08pJ/3.91nJ, and

29.31ns/50.88ns respectively [13]. An additional advantage

of READ-based in-memory computing is that the platform

will have a longer expected life-time, as the endurance of

non-volatile devices is in the range of 103 to 109 WRITE

operations [16].

A single crossbar for OR-plane logic implements OR/NOR

operations. To evaluate arbitrary Boolean functions, multiple

crossbars will have to be connected together in series, which

we call a staircase structure. The primary inputs will be fed

to the first crossbar and the final outputs are obtained from the

last crossbar. The intermediate crossbars take inputs from the

previous crossbar and provides outputs to the next crossbar.

The challenge of the outlined approach is that data transfer be-

tween crossbars may introduce substantial performance over-

heads when performed using reconfigurable interconnects. On

the other hand, if crossbars are hardwired together it becomes

more difficult to maximize utilization and handle constraints

imposed by the hardware. The trade-off between performance

and ease of utilization is shown in Table II. The STREAM

framework aims to enable streaming based processing by

combining hardware/software co-design. The objective is to

balance the overheads introduced by reconfigurability with the

efficiency of hardwiring.

TABLE II: Hardwired vs. reconfigurable connections.

Performance Ease of utilization

Hardwired high difficult

Reconfigurable low smooth

9C-3

691
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

III. THE STREAM FRAMEWORK

In this section, we introduce the STREAM framework.

The framework consists of an in-memory computing platform

and a synthesis tool capable of mapping computation to the

platform, which is shown in Figure 2. The platform consists

processing elements (PEs) connected together using high-

speed interconnects. The PEs mainly consist of a staircase

structure of connected crossbars. The details of the PEs are

provided in Section V-B. The input to the synthesis tool

is a specification of a Boolean function. The synthesis tool

maps the computation into in-memory compute kernels and

binds the kernels to the in-memory platform. Next, streaming-

based processing is performed by providing input data to the

reconfigured platform.

Fig. 2: Overview of the STREAM framework.

In the STREAM framework, we break the synthesis problem

into two parts, as follows:

• Problem I: The first subproblem consists of mapping an

arbitrary Boolean function to a PE with relaxed hardware

constraints. Here, it is assumed that the crossbars are of

arbitrary dimension and there are an arbitrary number of

crossbars connected in series.

• Problem II: The second subproblem consists of decom-

posing the Boolean function into multiple parts. The

objective is to satisfy the hardware constraints of the PEs

when each part is mapped to a PE using the solution to

Problem I.

A synthesis solution to the first subproblem is provided

in Section IV. A synthesis solution to second subproblem

focused on data-intensive applications based on matrix-vector

multiplication is provided in Section V.

IV. LOGIC SYNTHESIS FOR STREAM-BASED PES

In this section, we provide a synthesis solution for mapping

a Boolean function to a staircase structure of crossbars. An

overview of the flow is shown in Figure 3.

The input of the framework is a Boolean function provided

in a hardware descriptive language. The output consists of i) an

assignment of the Boolean input variables to the first crossbar,

ii) the state of all memristors in the platform, iii) an assignment

of the Boolean output variables to the last crossbars.

The synthesis process consists of a technology independent

optimization step, a technology mapping step, and a crossbar

mapping step. In the technology independent optimization

Fig. 3: Flow for the logic synthesis for STREAM-based PEs.

step, the input specification is mapped into a netlist with low

fan-in gates using ABC [17]. This step is not described in

further detail as it is performed directly using ABC and a

library of INV and OR gates. In the technology mapping

phase, the initial netlist is mapped into netlist of high fan-

in OR/NOR in-memory compute kernels. In the crossbar

mapping phase, the in-memory compute kernels are bound to

the crossbar staircase structure. In principle, the in-memory

compute kernels are sorted depth-wise and bound to the

respective crossbar.

A. Technology Mapping

In this step, we convert the netlist with low fan-in gates,

obtained from ABC, into a netlist with high fan-in gates

that can be executed using OR-plane logic. The technology

mapping is needed to take advantage of that OR-plane logic

executes n-input OR/NOR gates using a single bitline. In

contrast, ABC only generates netlists with at most 5 inputs,

as the tool targets CMOS technology [17].

The input to the technology mapping is a netlist with low

fan-in gates that is converted into a directed acyclic graph

(DAG) G = (V,E), where nodes and edges correspond to

gates and wire connections, respectively. The graph is called

a subject graph. Next, technology independent optimization is

performed to cover the subject graph with in-memory compute

kernels. Lastly, a DAG representation with high fan-in gates

is extracted from the cover.

Fig. 4: Technology mapping within STREAM. (a) Initial

netlist with gate encoding, (b) library of in-memory compute

kernels, (c) cover of subject graph, (d) optimized netlist.

The technology mapping is illustrated with an example in

Figure 4. The subject graph and the encoding of the gates is

shown in Figure 4(a). A library with a subset of the in-memory

compute kernels is shown in Figure 4(b). The subject graph

covered with library gates is shown in Figure 4(c). The cover is

obtained by first decomposing the subject graph into multiple

trees by breaking edges. Next, the dynamic programming

9C-3

692
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

formulation in DAGON is used to determine a cover for each

tree [18]. The resulting netlist is shown in Figure 4(d). It can be

observed that the initial netlist with 10 gates has been reduced

to an in-memory compute kernel netlist with only 6 gates.

B. Crossbar Mapping

In this section, we bind the netlist of in-memory compute

kernels to the crossbars within a PE. Any in-memory compute

kernel can be executed in any crossbar. The challenge is

that kernels that are adjacent in the netlist must be placed

in adjacent crossbars. We solve this connection challenge by

inserting dummy nodes and by utilizing graph algorithms to

map the in-memory kernels to the crossbars.

Fig. 5: Flow for binding in-memory kernels to crossbars. (a)

Input netlist in DAG format, (b) longest distance to each node,

(c) dummy node insertion and, (d) crossbar mapping.

The proposed algorithm is illustrated with an example in

Figure 5. A DAG representation of the netlist is shown in

Figure 5(a). Each node represents an in-memory compute

kernel that can be evaluated in a crossbar. Next, we determine

the longest path to each node in the graph, which is shown

in Figure 5(b). The longest path to each node is determined

using a topological sort followed by an in-order traversal.

Let each crossbar in the staircase structure be labeled layer

1 to layer N. The longest path to a node corresponds to the

crossbar that the node will be assigned. The outlined method

ensures that all connections go from crossbars with lower

layers to higher layers. To eliminate connections that skip

layers, dummy nodes realized by buffers are inserted into the

netlist. The insertion of a dummy node between ‘e’ and ‘g’

is shown in Figure 5(c). The height and width of the crossbar

realize layer l is equal to the number of nodes in layer (l) and

(l+1), respectively. Finally, it is straightforward to assign the

kernels to the crossbars in the staircase structure, which is

shown in Figure 5(d).

V. STREAM FRAMEWORK FOR MVM APPLICATIONS

In this section, we leverage the STREAM framework to ac-

celerate data-intensive applications that are dominated by high

precision matrix-vector multiplication (MVM). This requires

the computation to be broken into parts such that each part

is mapped to a PE with specified hardware resources. This is

Problem II outlined in Section III.

The motivation for breaking the computation into parts

is that the hardware requirements would otherwise be unac-

ceptably high. For example, mapping a 128x128 matrix with

32 bit precision to a PE requires a staircase structure with

74.5 million crossbars. The crossbar with the largest required

dimension would have 40,500 wordlines and 40,000 bitlines.

In STREAM, we propose to reduce the hardware requirements

using spatial and bit-wise partitioning.

A. Spatial Partitioning

In this section we propose to partition the matrix vector mul-

tiplication using blocks with dynamic size, which is illustrated

in Figure 6.

Fig. 6: (a) Sparse matrix of Trefethen-20 benchmark, (b)

partitioning with fixed block size, and (c) partitioning with

dynamic block size.

Many matrices within scientific computing applications are

sparse, one of which is shown in Figure 6(a). The workload

of a matrix block is largely dependent on the number of

non-zero matrix elements. Therefore, it is easy to understand

that partitioning using a fixed block size, which is shown

in Figure 6(b) results in that some PEs are heavily under-

utilized. Instead, we propose to utilize a dynamic partitioning

scheme that uses blocks of dynamic size, which is shown in

Figure 6(c). In our implementation, we dynamically expand

the block size column-wise and row-wise until a threshold of

non-zero elements have been covered.

B. Bit-wise Partitioning

In this section, we propose to utilize bit-slicing to partition

the computation across multiple time steps.

The concept of bit-slicing for a 32-bit fixed point compu-

tation is shown in Figure 7(a). We aim to decompose the 32-

bit element-wise multiplication into a series of multiplications

with smaller bit-widths, as shown in Figure 7(a)-(i). The key

idea is to bit-slice the input vector with unknown operands,

as shown in Figure 7(a)-(ii). Next, the overall multiplication

is performed in a series of multiplications and shift&add

operations, as demonstrated in Figure 7(a)-(iii). All in all, the

bit-slicing introduces a trade-off between time steps (latency)

and hardware utilization. We show an updated architecture for

the PE to support the proposed bit-slicing in Figure 7(b).

The PE units consists of several element-wise multiplication

blocks (EMBs), an adder tree to accumulate the outputs of

EMBs and a central eDRAM buffer to store the input, the

output and the intermediate operands of the accelerator unit.

Figure 7(b) illustrates the components of each EMB. Each

EMB has 8 multiplication units (one for each of the eight

bit-slices), seven shifters, an input register (IR) unit and an

output register (OR) unit. The results of each multiplication

unit is accumulated using the accelerator adder tree. The tree

9C-3

693
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: (a) Bit-slicing element-wise multiplication and (b)

architecture design of PEs for bit-slicing support.

contains 3 layers of adders to sum the results from the EMBs.

The components utilize both parallelism and pipelining to

maximize performance.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the

STREAM framework. The framework is evaluated on two

benchmarks suites, and is compared with two state-of-the-

art in-memory computing paradigms. In Section VI-A, we

compare the READ-based STREAM framework with the

state-of-the-art WRITE-based in-memory computing paradigm

CONTRA [19] on benchmarks of the ISCAS85 benchmark

suite [20]. In Section VI-B, we evaluate STREAM with data-

intensive MVM operations from a number of applications

from the Suit-Sparse matrix collection of [21]. A comparison

is made with SIMPLER [22], which is the state-of-the-art

MAGIC mapping scheme for applications based on matrix-

vector multiplication.

TABLE III: Area-Power Cost of STREAM Components

Component Parameter Specs Area Power

Crossbar dimension 128×128 25 µm2 0.3 mW

Controller # unit 1 400 µm2 0.65 mW

Mult. (Total) # crossbars 12 0.005 mm2 11.4 mW

Shifter # unit 1 60 µm2 0.05 mW

IR size 4 KB 4200 µm2 2.48 mW

OR size 512 B 1500 µm2 0.46 mW

local bus #wires 128 0.03 mm2 2.33 mW

Mult. 8

EMB (Total) # Shifter 7 0.077 mm2 96.82 mW
#IR/#OR 1/1

Adder Tree (Total) # crossbars 198 0.084 mm2 188.1 mW

eDRAM Buffer size 128 KB 0.166 mm2 41.4 mW

Bus bandwidth 128-bits 15.7 mm2 13 mW

#EMBs 16

PE (Total) #Adder tree 1 17.18 mm2 1791.67 mW
#eDRAM Buffer 1

The experiments are executed on a machine with an Intel

Core i9 processor and NVIDIA GeForce RTX 2070S GPU.

A SPICE-level simulation is performed with the fitting char-

acteristics of the VTEAM model [23]. For STREAM, the

crossbar dimensions are 128× 128, and the resistance RLRS

and RHRS of the memristors are 10kΩ and 10MΩ, respectively.

We use a read and write latency of 29.31ns and 50.88ns

respectively, as reported in [13]. In Table III, the remaining

parameters for the different components of the STREAM

platform are provided. For each component, we provide the

specifications, area, and power consumption. The parameters

have been obtained from [23–25].

A. Evaluation on ISCAS85 benchmarks

In this section, we evaluate the performance of the READ-

based STREAM framework with the state-of-the-art WRITE-

based in-memory computing paradigm CONTRA [19]. Ten

benchmarks of the ISCAS85 benchmarks suite [20] have been

selected for evaluation. An overview of the function type and

properties (number of inputs and outputs) of the benchmarks

is provided in Table IV. Both frameworks are compared in

terms of area, latency (number of cycles), and the power

consumption. The numbers are provided in Table V.

TABLE IV: Overview of ten ISCAS85 benchmarks.

Benchmark Function Inputs Outputs

c432 Priority Decoder 36 7
c499 ECAT 41 32
c880 ALU and control 60 126
c1355 ECAT 41 32
c1908 ECAT 33 25
c2670 ALU and control 233 140
c3540 ALU and control 50 22
c5315 ALU and selector 178 123
c6288 16-bit multiplier 32 32
c7552 ALU and control 207 108

In Table V, we observe that STREAM improves both speed

and power, at an expense of the area usage. The latency for

STREAM is improved by 139X compared with the latency for

CONTRA due to the READ-based paradigm characteristics

of STREAM. Indeed, the write latency is almost double the

read latency and STREAM relies solely on READ operations.

Above this, the number of cycles for STREAM is 80X smaller

compared with the number of cycles for CONTRA. Next,

the power consumption for STREAM is improved by 14X

compared with CONTRA. Based on the same argument, this

is due to the fact that STREAM relies on READ operations

to evaluate in-memory compute kernels instead of WRITE

operations. Whereas CONTRA relies on overwriting old data,

STREAM relies on performing computations by pipelining

the data. The intermediate evaluations are forwarded between

crossbars connected in series. Hence, STREAM is a non-

stateful logic style. However, area usage increases by 56X in

contrast with CONTRA, as STREAM cannot reuse area by

overwriting old data, resulting in the need of larger area and

more crossbars. In conclusion, for READ-based computing,

the area usage is inversely proportional to the latency and

power consumption.

TABLE V: Comparison of area, number of cycles, and power

consumption for CONTRA and STREAM on ten benchmarks

of the ISCAS85 benchmarks suite.

CONTRA [19] STREAM

Benchmark Area Latency Power Area Latency Power

(µm2) (µs) (W) (µm2) (µs) (W)

c432 601 39.18 2.35 13222 0.64 0.35
c499 601 68.33 4.10 17429 0.73 0.41
c880 601 64.26 3.85 17429 0.85 0.47
c1355 601 68.38 4.10 14424 0.59 0.33
c1908 601 74.74 4.48 16227 0.79 0.43
c2670 601 104.81 6.28 28848 0.88 0.54
c3540 601 181.89 10.90 28247 1.35 0.74
c5315 601 245.80 14.73 37863 0.97 0.62
c6288 601 401 24.04 105175 3.31 2.00
c7552 601 356 21.46 59499 1.5 0.96

Norm. avg. 0.018 1.000 1.000 1.000 0.0072 0.071

9C-3

694
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Overview of eleven matrices of the SuitSparse

Matrix Collection in terms of application type, matrix dimen-

sions, and number of non-zero elements.

Applications Systems Matrix Dimensions #Non-zeros

Trefethen-20 Combinatorial 20×20 158
mesh3em5 Structural 289×289 1377

Trefethen-150 Combinatorial 150×150 2040
Trefethen-200b Combinatorial 199×199 2873
Trefethen-200 Combinatorial 200×200 2890

bcsstk02 Structural 66×66 4356
Trefethen-300 Combinatorial 300×300 4678
Chem97ZtZ Statistical/Mathematical 2541×2541 7361

Trefethen-500 Combinatorial 500×500 8478
Journals Undirected Weighted Graph 124×124 12068

Trefethen-700 Combinatorial 700×700 12654

B. Evaluation on SuitSparse Matrix Applications

In this section, we evaluate the performance of the

STREAM framework for MVM applications. Eleven sparse

matrices have been selected from the SuitSparse Matrix Col-

lection [21]. An overview of the matrices is provided in

Table VI. We compare STREAM with SIMPLER [22], a state-

of-the-art MAGIC mapping scheme for applications with high

order of parallel computation. SIMPLER can perform each

matrix-row×input-vector operation in parallel using a row-

mapping fashion, which greatly improves the performance of

the accelerator. For the STREAM framework, we use a dy-

namic block-wise partitioning that covers at most 16 element-

wise multiplications. For each element-wise multiplication,

we use a bit-slicing of 4-bit width. Each PE has an area of

17.18mm2 and power of 1791.67mW .

Fig. 8: Comparison of area, power, and latency for SIMPLER

and STREAM on eleven benchmarks of the SuitSparse Matrix

Collection.

In Figure 8, we compare the performance of STREAM

with SIMPLER on the eleven sparse matrices in terms of

area, power consumption, and latency. The experimental result

shows that the STREAM framework requires 2.2X more area

usage than SIMPLER. However, STREAM achieves 2.04X

power efficiency, and improves the latency by 2.42X compared

with the latency of SIMPLER. Also here, the area usage

increases, and both latency and power consumption decrease

for STREAM due to the READ-based in-memory computing

style.

VII. SUMMARY AND FUTURE WORK

In this paper, we have introduced a framework, STREAM,

for the synthesis of digital circuits onto nanoscale crossbars.

The framework is tailored for READ-based in-memory com-

puting based on OR-plane logic. The experimental evaluation

illustrates the effectiveness of READ-based computing com-

pared with WRITE-based in-memory computing paradigms.

In the future, we plan to use STREAM to accelerate genome

sequencing applications. We also plan to augment STREAM

with analog in-memory accelerators.

REFERENCES

[1] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025-predictions for the next

ten years,” in IMPACT, pp. 192–195, IEEE, 2015.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east,” IDC iView: IDC Analyze the future,

vol. 2007, no. 2012, pp. 1–16, 2012.

[3] J. Backus, “Can programming be liberated from the von neumann style?: A

functional style and its algebra of programs,” CACM, vol. 21, no. 8, pp. 613–641,

1978.

[4] A. Dehon, “Nanowire-based programmable architectures,” JETC, vol. 1, no. 2,

pp. 109–162, 2005.

[5] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS-II: Express Briefs,

vol. 61, no. 11, pp. 895–899, 2014.

[6] J. Borghetti et al., “‘memristive’ switches enable ‘stateful’ logic operations via

material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[7] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing

memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[8] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit

theory, vol. 18, no. 5, pp. 507–519, 1971.

[9] G. W. Burr et al., “Phase change memory technology,” JVSTB, vol. 28, no. 2,

pp. 223–262, 2010.

[10] Y. Huai et al., “Spin-transfer torque mram (stt-mram): Challenges and prospects,”

AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[11] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories,” in DAC, pp. 1–6, IEEE, 2016.

[12] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Computation

of boolean formulas using sneak paths in crossbar computing,” 2016. US Patent

9,319,047.

[13] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based

accelerator for deep learning,” in HPCA, pp. 541–552, IEEE, 2017.

[14] Y. Zha and J. Li, “Reconfigurable in-memory computing with resistive memory

crossbar,” in ICCAD, pp. 1–8, 2016.

[15] Y. Zha and J. Li, “Rram-based reconfigurable in-memory computing architecture

with hybrid routing,” in ICCAD, pp. 527–532, IEEE, 2017.

[16] H. Wu et al., “Resistive random access memory for future information processing

system,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1770–1789, 2017.

[17] A. Mishchenko et al., “Abc: A system for sequential synthesis and verification.”

”http://www.eecs.berkeley.edu/alanmi/abc”.

[18] K. Keutzer, “Dagon: Technology binding and local optimization by dag matching,”

in DAC, pp. 341–347, 1987.

[19] D. Bhattacharjee et al., “Contra: area-constrained technology mapping framework

for memristive memory processing unit,” in ICCAD, pp. 1–9, 2020.

[20] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks:

A case study in reverse engineering,” IEEE Design & Test of Computers, vol. 16,

no. 3, pp. 72–80, 1999.

[21] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” TOMS,

vol. 38, no. 1, pp. 1–25, 2011.

[22] R. Ben-Hur et al., “Simpler magic: Synthesis and mapping of in-memory logic

executed in a single row to improve throughput,” TCAD, vol. 39, no. 10, pp. 2434–

2447, 2019.

[23] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general

model for voltage-controlled memristors,” TCAS-II: Express Briefss, vol. 62, no. 8,

pp. 786–790, 2015.

[24] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” SIGARCH, vol. 44, no. 3, pp. 14–26, 2016.

[25] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration of

deep neural network training with high precision,” in ISCA, pp. 802–815, IEEE,

2019.

9C-3

695
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

