2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) | 978-1-6654-2135-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ASP-DAC52403.2022.9712569

9C-3

STREAM: Towards READ-based In-Memory
Computing for Streaming based Data Processing

Muhammad Rashedul Haq Rashed*, Sven Thijssen*, Sumit Kumar Jha®, Fan Yao*, and Rickard Ewetz*
*Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
"Department of Computer Science, University of Texas at San Antonio, San Antonio, USA
{rashed09, sven.thijssen}@knights.ucf.edu, sumitjha@utsa.edu, {fan.yao, rickard.ewetz} @ucf.edu

Abstract—Processing in-memory breaks von-Neumann based
design principles to accelerate data-intensive applications. While
analog in-memory computing is extremely energy-efficient, the
low precision narrows the spectrum of viable applications. In
contrast, digital in-memory computing has deterministic preci-
sion and can therefore be used to accelerate a broad range of high
assurance applications. Unfortunately, the state-of-the-art digital
in-memory computing paradigms rely on repeatedly switching
the non-volatile memory devices using expensive WRITE oper-
ations. In this paper, we propose a framework called STREAM
that performs READ-based in-memory computing for streaming-
based data processing. The framework consists of a synthesis tool
that decomposes high-level programs into in-memory compute
kernels that are executed using non-volatile memory. The paper
presents hardware/software co-design techniques to minimize the
data movement between different nanoscale crossbars within
the platform. The framework is evaluated using circuits from
ISCAS85 benchmark suite and Suite-Sparse applications to
scientific computing. Compared with WRITE-based in-memory
computing, the READ-based in-memory computing improves
latency and power consumption up to 139X and 14X, respectively.

I. INTRODUCTION

The amount of produced digital data is expected to reach
40 trillion gigabytes [1, 2] by 2025. This has powered the
emergence of data-intensive applications such as computer-
vision, digital twin, and system simulation. Unfortunately,
today’s high performance computing systems are ill-equipped
to handle even petabytes of data. Mainly, due to the separation
of computing and memory units within the von-Neumann
architecture [3]. With continuously increasing computational
demands, there is an increasing interest in emerging technolo-
gies and computing paradigms [4-6].

A promising solution strategy is based on performing in-
memory computing using emerging non-volatile memory. The
fabrication of non-volatile resistive devices has been pursued
based on memristor [7, 8], phase change memory (PCM) [9],
and spin-transfer torque magnetic random access memory
(STT-RAM) technology [10]. By integrating the non-volatile
memory into nanoscale crossbar, various in-memory com-
pute kernels can be executed energy-efficiently with high-
speed. In particular, analog matrix-vector multiplication can
be performed using the natural multiply-accumulate feature of

This work was in part supported by NSF awards CNS-1908471, CNS-
2008339, CCF-1822976, CCF-2113307, DARPA cooperative agreement
#HRO00112020002 and ONR grant #N000142112332.

nanoscale crossbar arrays. The challenge of analog in-memory
computing is that the resulting precision is low.

To overcome the precision challenge, digital in-memory
computing has been proposed using logic families such as OR-
plane [4] , MAGIC [5], IMPLY [6], Bit-wise-in-bulk [11], and
FLOW [12]. The different logic styles encode the inputs and
outputs of rudimentary Boolean functions (or gates) using the
state of non-volatile memory devices and/or analog voltage
levels. This results in that the different logic styles have
distinctive performance differences in terms of power, latency,
and area. Nevertheless, the precision of digital in-memory
computing using any of the logic styles is deterministic
because there is adequate noise margin between logic ‘0’
and logic ‘1’. Many recent research efforts have focused
on synthesis tools and platforms for MAGIC, FLOW, and
Bitwise-in-bulk, which facilitate the evaluation of complex
logic in a single crossbar. The drawback of those logic styles
is that they require the non-volatile memory devices to be
repeatedly programmed using WRITE operations, which are
both slow and power-hungry [13]. In contrast, OR-plane logic
is based on READ operations and can be performed with
high speed and high energy-efficiency. However, in-memory
computing based on OR-plane logic remains in the infancy
stages and has mainly been used to implement look-up tables
(LUTs) for FPGAs [14, 15].

In this paper, we propose a framework called STREAM that
performs READ-based in-memory computing for streaming-
based data processing. The framework is based on uti-
lizing OR-plane logic to process high fan-in OR/NOR
gates using READ operations. The challenge of OR-plane
logic is that complex functions require inter-crossbar data
transfer, which may introduce substantial performance and
hardware overheads. The STREAM framework provides a
hardware/software-centered solution to minimize these over-
heads. First, we design processing elements (PEs) that have
multiple crossbars connected in serial using hardwired con-
nections to minimize data transfer costs. Next, a synthesis
tool is proposed to decompose complex Boolean functions into
parts that fit into the PEs while minimizing the costly inter-PE
communication. The STREAM framework is evaluated using
circuits from the ISCAS85 benchmark suite and Suit-Sparse
applications to scientific computing. Compared with WRITE-
based in-memory computing, STREAM improves average
power and latency up to 14X and 139X, respectively.

978-1-6654-2135-5/22/$31.00 ©2022 IEEE 690
Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

In this section, we review two logic styles for evaluating
Boolean functions using digital in-memory computing. Next,
we discuss the limitations of previous works and motivate the
proposed framework.

A. Digital in-memory computing

In this section, we explain how Boolean gates (or rudi-
mentary Boolean functions) can be evaluated using digital in-
memory computing. The representative logic styles of MAGIC
and OR-plane logic are illustrated in Figure 1.

We show how MAGIC can be used to evaluate a NOR gate
in Figure 1(a). MAGIC is an example of a stateful logic style
where both input and output operands are stored using the
state of the memristor devices [5]. True and false are encoded
using low resisitive state (LRS) and high resisitve state (HRS),
respectively. To evaluate the NOR2 function out = a+ b, the
input variables a and b are first programmed to the memristors
along the left-most bitline, which is shown in Figure 1(a). The
output memristor is also programmed to LRS. Next, the NOR2
function is evaluated using a special WRITE operation [5].
The output of the NOR2 function can be decoded from the
state (LRS/HRS) of the output memristor. Using this scheme,
multiple NOR/INV gates can be evaluated in parallel along
adjacent bitlines.

We illustrate the concept of OR-plane logic in Figure 1(b).
OR-plane logic is an example of a non-stateful logic style [4].
The input and output operands are encoded using input and
output voltages, respectively. True (false) is encoded using a
high (low) voltage. We show how an INV, a NOR2, and a
NOR3 gate can be evaluated in parallel using a single READ
operation to the crossbar. The memristors in the crossbar are
first initialized once using WRITE operations based on the
logic gates that are desired to be realized. Next, the Boolean
variables a, b, and ¢ are applied to the wordlines in the
crossbar. The outputs of the INV/NOR2/NOR3 functions are
decoded from the bitlines, respectively. High fan-in OR-gates
are realized by attaching buffers instead of inverters at the end
of the bitlines.

INV a —|>°—E
NOR2 §) eamb
a
c
v'l

=
=

at+b+e

|

[

e s d
d

S) :% \% § =3
Q v N 2
SURNN T R
T Y e e
(a) | ()

Fig. 1: Evaluation of Boolean gates using (a) WRITE-based
MAGIC and (b) READ-based OR-plane logic.

9C-3

B. Limitations of previous work

In this section, we compare different logic styles for digital
in-memory computing. In principle, the paradigms perform
computation using a one-time initialization phase and an eval-
uation phase. The initilization phase is performed with only
the knowledge of the function to be evaluated. The evaluation
phase is performed given specific instances of the Boolean
input variables. The use of READ and WRITE operation in
the respective phases are shown in Table I.

TABLE I: Comparison of READ/WRITE operations in the
initialization and evaluation phase for different logic styles.

Logic style Work in Initialization Evaluation
phase phase
Flow-based computing [12] READ/WRITE | READ/WRITE
Bitwise-In-Bulk [11] READ/WRITE | READ/WRITE
MAGIC [5] READ/WRITE | READ/WRITE
IMPLY [6] READ/WRITE | READ/WRITE
| OR-plane logic | (this work) | READ/WRITE | = READ |

The table shows that state-of-the-art digital in-memory
computing paradigms rely on repeatedly performing expensive
WRITE operations in the evaluation phase. WRITE operations
to non-volatile memory devices are both slow and costly in
energy. In contrast, the STREAM framework is based on OR-
plane logic [4], which only uses READ operations in the
evaluation phase. READ operations can be performed with
high speed and energy-efficiency. For example, the energy and
latency of a READ/WRITE operation is 1.08pJ/3.91nJ, and
29.31ns/50.88ns respectively [13]. An additional advantage
of READ-based in-memory computing is that the platform
will have a longer expected life-time, as the endurance of
non-volatile devices is in the range of 10° to 10° WRITE
operations [16].

A single crossbar for OR-plane logic implements OR/NOR
operations. To evaluate arbitrary Boolean functions, multiple
crossbars will have to be connected together in series, which
we call a staircase structure. The primary inputs will be fed
to the first crossbar and the final outputs are obtained from the
last crossbar. The intermediate crossbars take inputs from the
previous crossbar and provides outputs to the next crossbar.
The challenge of the outlined approach is that data transfer be-
tween crossbars may introduce substantial performance over-
heads when performed using reconfigurable interconnects. On
the other hand, if crossbars are hardwired together it becomes
more difficult to maximize utilization and handle constraints
imposed by the hardware. The trade-off between performance
and ease of utilization is shown in Table II. The STREAM
framework aims to enable streaming based processing by
combining hardware/software co-design. The objective is to
balance the overheads introduced by reconfigurability with the
efficiency of hardwiring.

TABLE II: Hardwired vs. reconfigurable connections.

Performance | Ease of utilization
Hardwired high difficult
Reconfigurable low smooth

691

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

III. THE STREAM FRAMEWORK

In this section, we introduce the STREAM framework.
The framework consists of an in-memory computing platform
and a synthesis tool capable of mapping computation to the
platform, which is shown in Figure 2. The platform consists
processing elements (PEs) connected together using high-
speed interconnects. The PEs mainly consist of a staircase
structure of connected crossbars. The details of the PEs are
provided in Section V-B. The input to the synthesis tool
is a specification of a Boolean function. The synthesis tool
maps the computation into in-memory compute kernels and
binds the kernels to the in-memory platform. Next, streaming-
based processing is performed by providing input data to the
reconfigured platform.

Application :
input data / CYOSZbaI' ‘ivllth
l PE - PE "'/ ata tlow

in
Datorm | | PE 3]
l \"'-.‘ IEI

out

Stream-based processing

Application)

output data Bus
" Synthesis Configuration for
Boolean function e STREAM platform

Fig. 2: Overview of the STREAM framework.

In the STREAM framework, we break the synthesis problem
into two parts, as follows:

o Problem I: The first subproblem consists of mapping an
arbitrary Boolean function to a PE with relaxed hardware
constraints. Here, it is assumed that the crossbars are of
arbitrary dimension and there are an arbitrary number of
crossbars connected in series.

o Problem II: The second subproblem consists of decom-
posing the Boolean function into multiple parts. The
objective is to satisfy the hardware constraints of the PEs
when each part is mapped to a PE using the solution to
Problem I.

A synthesis solution to the first subproblem is provided
in Section IV. A synthesis solution to second subproblem
focused on data-intensive applications based on matrix-vector
multiplication is provided in Section V.

IV. LoGic SYNTHESIS FOR STREAM-BASED PES

In this section, we provide a synthesis solution for mapping
a Boolean function to a staircase structure of crossbars. An
overview of the flow is shown in Figure 3.

The input of the framework is a Boolean function provided
in a hardware descriptive language. The output consists of i) an
assignment of the Boolean input variables to the first crossbar,
ii) the state of all memristors in the platform, iii) an assignment
of the Boolean output variables to the last crossbars.

The synthesis process consists of a technology independent
optimization step, a technology mapping step, and a crossbar
mapping step. In the technology independent optimization

9C-3

in
]
Technology Independent
Optimization
¥ Netlist with low fan-in gates

‘ Technology Mapping
i

Netlist with high fan-in
| in-memory compute kernels

‘ Crossbar Mapping

out
Fig. 3: Flow for the logic synthesis for STREAM-based PEs.

step, the input specification is mapped into a netlist with low
fan-in gates using ABC [17]. This step is not described in
further detail as it is performed directly using ABC and a
library of INV and OR gates. In the technology mapping
phase, the initial netlist is mapped into netlist of high fan-
in OR/NOR in-memory compute kernels. In the crossbar
mapping phase, the in-memory compute kernels are bound to
the crossbar staircase structure. In principle, the in-memory
compute kernels are sorted depth-wise and bound to the
respective crossbar.

A. Technology Mapping

In this step, we convert the netlist with low fan-in gates,
obtained from ABC, into a netlist with high fan-in gates
that can be executed using OR-plane logic. The technology
mapping is needed to take advantage of that OR-plane logic
executes n-input OR/NOR gates using a single bitline. In
contrast, ABC only generates netlists with at most 5 inputs,
as the tool targets CMOS technology [17].

The input to the technology mapping is a netlist with low
fan-in gates that is converted into a directed acyclic graph
(DAG) G = (V,E), where nodes and edges correspond to
gates and wire connections, respectively. The graph is called
a subject graph. Next, technology independent optimization is
performed to cover the subject graph with in-memory compute
kernels. Lastly, a DAG representation with high fan-in gates
is extracted from the cover.

In3 [nd In5

@

In4 Ins (a) (b)

Fig. 4: Technology mapping within STREAM. (a) Initial
netlist with gate encoding, (b) library of in-memory compute
kernels, (c) cover of subject graph, (d) optimized netlist.

The technology mapping is illustrated with an example in
Figure 4. The subject graph and the encoding of the gates is
shown in Figure 4(a). A library with a subset of the in-memory
compute kernels is shown in Figure 4(b). The subject graph
covered with library gates is shown in Figure 4(c). The cover is
obtained by first decomposing the subject graph into multiple
trees by breaking edges. Next, the dynamic programming

692

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

formulation in DAGON is used to determine a cover for each
tree [18]. The resulting netlist is shown in Figure 4(d). It can be
observed that the initial netlist with 10 gates has been reduced
to an in-memory compute kernel netlist with only 6 gates.

B. Crossbar Mapping

In this section, we bind the netlist of in-memory compute
kernels to the crossbars within a PE. Any in-memory compute
kernel can be executed in any crossbar. The challenge is
that kernels that are adjacent in the netlist must be placed
in adjacent crossbars. We solve this connection challenge by
inserting dummy nodes and by utilizing graph algorithms to
map the in-memory kernels to the crossbars.

|

Dummy-Node

Insertion
v

i

Longest
Distance

Measuring

2 h} Crossbar
" Mapping
i

Fig. 5: Flow for binding in-memory kernels to crossbars. (a)
Input netlist in DAG format, (b) longest distance to each node,
(c) dummy node insertion and, (d) crossbar mapping.

The proposed algorithm is illustrated with an example in
Figure 5. A DAG representation of the netlist is shown in
Figure 5(a). Each node represents an in-memory compute
kernel that can be evaluated in a crossbar. Next, we determine
the longest path to each node in the graph, which is shown
in Figure 5(b). The longest path to each node is determined
using a topological sort followed by an in-order traversal.
Let each crossbar in the staircase structure be labeled layer
1 to layer N. The longest path to a node corresponds to the
crossbar that the node will be assigned. The outlined method
ensures that all connections go from crossbars with lower
layers to higher layers. To eliminate connections that skip
layers, dummy nodes realized by buffers are inserted into the
netlist. The insertion of a dummy node between ‘e’ and ‘g’
is shown in Figure 5(c). The height and width of the crossbar
realize layer [is equal to the number of nodes in layer (/) and
(I+1), respectively. Finally, it is straightforward to assign the
kernels to the crossbars in the staircase structure, which is
shown in Figure 5(d).

V. STREAM FRAMEWORK FOR MVM APPLICATIONS

In this section, we leverage the STREAM framework to ac-
celerate data-intensive applications that are dominated by high
precision matrix-vector multiplication (MVM). This requires
the computation to be broken into parts such that each part
is mapped to a PE with specified hardware resources. This is
Problem II outlined in Section III.

The motivation for breaking the computation into parts
is that the hardware requirements would otherwise be unac-
ceptably high. For example, mapping a 128x128 matrix with
32 bit precision to a PE requires a staircase structure with

9C-3

74.5 million crossbars. The crossbar with the largest required
dimension would have 40,500 wordlines and 40,000 bitlines.
In STREAM, we propose to reduce the hardware requirements
using spatial and bit-wise partitioning.

A. Spatial Partitioning

In this section we propose to partition the matrix vector mul-
tiplication using blocks with dynamic size, which is illustrated
in Figure 6.

e

Input Output
Vector Vector :-

Input
Matrix

Fig. 6: (a) Sparse matrix of Trefethen-20 benchmark, (b)
partitioning with fixed block size, and (c) partitioning with
dynamic block size.

Many matrices within scientific computing applications are
sparse, one of which is shown in Figure 6(a). The workload
of a matrix block is largely dependent on the number of
non-zero matrix elements. Therefore, it is easy to understand
that partitioning using a fixed block size, which is shown
in Figure 6(b) results in that some PEs are heavily under-
utilized. Instead, we propose to utilize a dynamic partitioning
scheme that uses blocks of dynamic size, which is shown in
Figure 6(c). In our implementation, we dynamically expand
the block size column-wise and row-wise until a threshold of
non-zero elements have been covered.

B. Bit-wise Partitioning

In this section, we propose to utilize bit-slicing to partition
the computation across multiple time steps.

The concept of bit-slicing for a 32-bit fixed point compu-
tation is shown in Figure 7(a). We aim to decompose the 32-
bit element-wise multiplication into a series of multiplications
with smaller bit-widths, as shown in Figure 7(a)-(i). The key
idea is to bit-slice the input vector with unknown operands,
as shown in Figure 7(a)-(ii). Next, the overall multiplication
is performed in a series of multiplications and shift&add
operations, as demonstrated in Figure 7(a)-(iii). All in all, the
bit-slicing introduces a trade-off between time steps (latency)
and hardware utilization. We show an updated architecture for
the PE to support the proposed bit-slicing in Figure 7(b).

The PE units consists of several element-wise multiplication
blocks (EMBs), an adder tree to accumulate the outputs of
EMBs and a central eDRAM buffer to store the input, the
output and the intermediate operands of the accelerator unit.
Figure 7(b) illustrates the components of each EMB. Each
EMB has 8 multiplication units (one for each of the eight
bit-slices), seven shifters, an input register (IR) unit and an
output register (OR) unit. The results of each multiplication
unit is accumulated using the accelerator adder tree. The tree

693

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

Known Operand & Unknown Operand b
ayay © ¢ ea 4 §3bybye o o b by
(i) Elementwise multiplication of two 32-bit operands
Biqlslicing
a by - .hlﬁ:bls S g
(i) Bit-slicing operand b

[32311;. o o by $310e500 q}:[ag;g by bo]

Shifting

EMB - el wise Y, _

multiplication block®,

IR/OR - Input/output,
A

o i register <
Shift and add .
(D= e sh - shifter

() (b)

Fig. 7: (a) Bit-slicing element-wise multiplication and (b)
architecture design of PEs for bit-slicing support.

contains 3 layers of adders to sum the results from the EMBs.
The components utilize both parallelism and pipelining to
maximize performance.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
STREAM framework. The framework is evaluated on two
benchmarks suites, and is compared with two state-of-the-
art in-memory computing paradigms. In Section VI-A, we
compare the READ-based STREAM framework with the
state-of-the-art WRITE-based in-memory computing paradigm
CONTRA [19] on benchmarks of the ISCAS85 benchmark
suite [20]. In Section VI-B, we evaluate STREAM with data-
intensive MVM operations from a number of applications
from the Suit-Sparse matrix collection of [21]. A comparison
is made with SIMPLER [22], which is the state-of-the-art
MAGIC mapping scheme for applications based on matrix-
vector multiplication.

TABLE III: Area-Power Cost of STREAM Components

Component Parameter Specs Area Power
Crossbar dimension 128 < 128 25 um? 0.3 mW
Controller # unit 1 400 pwm? 0.65 mW

Mult. (Total) # crossbars 12 0.005 mm? 11.4 mW

Shifter # unit 1 60 wm? 0.05 mW
IR size 4 KB 4200 pm? 2.48 mW
OR size 512 B 1500 pm? 0.46 mW
local bus #wires 128 0.03 mm? 2.33 mW
Mult. 8
EMB (Total) # Shifter 7 0.077 mm’ | 96.82 mW
#IR/#OR 1/1
Adder Tree (Total) # crossbars 198 0.084 mm? 188.1 mW
eDRAM Buffer size 128 KB 0.166 mm? 41.4 mW
Bus bandwidth 128-bits 15.7 mm? 13 mW
#EMBs 16
PE (Total) #Adder tree 1 17.18 mm? | 1791.67 mW
#cDRAM Buffer 1

The experiments are executed on a machine with an Intel
Core 19 processor and NVIDIA GeForce RTX 2070S GPU.
A SPICE-level simulation is performed with the fitting char-
acteristics of the VTEAM model [23]. For STREAM, the
crossbar dimensions are 128 x 128, and the resistance Rygs
and Rpygs of the memristors are 10kQ and 10MQ, respectively.
We use a read and write latency of 29.31ns and 50.88ns
respectively, as reported in [13]. In Table III, the remaining
parameters for the different components of the STREAM
platform are provided. For each component, we provide the
specifications, area, and power consumption. The parameters
have been obtained from [23-25].

9C-3

A. Evaluation on ISCAS85 benchmarks

In this section, we evaluate the performance of the READ-
based STREAM framework with the state-of-the-art WRITE-
based in-memory computing paradigm CONTRA [19]. Ten
benchmarks of the ISCAS85 benchmarks suite [20] have been
selected for evaluation. An overview of the function type and
properties (number of inputs and outputs) of the benchmarks
is provided in Table IV. Both frameworks are compared in
terms of area, latency (number of cycles), and the power
consumption. The numbers are provided in Table V.

TABLE IV: Overview of ten ISCAS85 benchmarks.

Benchmark Function Inputs Outputs
c432 Priority Decoder 36 7
c499 ECAT 41 32
c880 ALU and control 60 126
cl1355 ECAT 41 32
c1908 ECAT 33 25
2670 ALU and control 233 140
c3540 ALU and control 50 22
c5315 ALU and selector 178 123
6288 16-bit multiplier 32 32
c7552 ALU and control 207 108

In Table V, we observe that STREAM improves both speed
and power, at an expense of the area usage. The latency for
STREAM is improved by 139X compared with the latency for
CONTRA due to the READ-based paradigm characteristics
of STREAM. Indeed, the write latency is almost double the
read latency and STREAM relies solely on READ operations.
Above this, the number of cycles for STREAM is 80X smaller
compared with the number of cycles for CONTRA. Next,
the power consumption for STREAM is improved by 14X
compared with CONTRA. Based on the same argument, this
is due to the fact that STREAM relies on READ operations
to evaluate in-memory compute kernels instead of WRITE
operations. Whereas CONTRA relies on overwriting old data,
STREAM relies on performing computations by pipelining
the data. The intermediate evaluations are forwarded between
crossbars connected in series. Hence, STREAM is a non-
stateful logic style. However, area usage increases by 56X in
contrast with CONTRA, as STREAM cannot reuse area by
overwriting old data, resulting in the need of larger area and
more crossbars. In conclusion, for READ-based computing,
the area usage is inversely proportional to the latency and
power consumption.

TABLE V: Comparison of area, number of cycles, and power
consumption for CONTRA and STREAM on ten benchmarks
of the ISCAS85 benchmarks suite.

CONTRA [19] STREAM

Benchmark Area Latency Power Area Latency Power

(um?) (ws) W) | (um?) (ws) (W)
c432 601 39.18 2.35 13222 0.64 0.35
c499 601 68.33 4.10 17429 0.73 0.41
c880 601 64.26 3.85 17429 0.85 0.47
c1355 601 68.38 4.10 14424 0.59 0.33
c1908 601 74.74 4.48 16227 0.79 0.43
€2670 601 104.81 6.28 28848 0.88 0.54
¢3540 601 181.89 10.90 28247 1.35 0.74
c5315 601 245.80 14.73 37863 0.97 0.62
c6288 601 401 24.04 | 105175 3.31 2.00
c7552 601 356 2146 59499 1.5 0.96
Norm. avg. | 0.018 1.000 1.000 1.000 0.0072 0.071

694

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Overview of eleven matrices of the SuitSparse
Matrix Collection in terms of application type, matrix dimen-
sions, and number of non-zero elements.

Applications Systems Matrix Di i #N 0S
Trefethen-20 Combinatorial 20 %20 158
mesh3em5 Structural 289 x 289 1377
Trefethen-150 Combinatorial 150 x 150 2040
Trefethen-200b Combinatorial 199 x 199 2873
Trefethen-200 Combinatorial 200 x 200 2890
besstk02 Structural 66 x 66 4356
Trefethen-300 Combinatorial 300 x 300 4678
Chem97ZtZ Statistical/Mathematical 2541 x 2541 7361
Trefethen-500 Combinatorial 500 x 500 8478
Journals Undirected Weighted Graph 124 x 124 12068
Trefethen-700 Combinatorial 700 x 700 12654

B. Evaluation on SuitSparse Matrix Applications

In this section, we evaluate the performance of the
STREAM framework for MVM applications. Eleven sparse
matrices have been selected from the SuitSparse Matrix Col-
lection [21]. An overview of the matrices is provided in
Table VI. We compare STREAM with SIMPLER [22], a state-
of-the-art MAGIC mapping scheme for applications with high
order of parallel computation. SIMPLER can perform each
matrix-row X input-vector operation in parallel using a row-
mapping fashion, which greatly improves the performance of
the accelerator. For the STREAM framework, we use a dy-
namic block-wise partitioning that covers at most 16 element-
wise multiplications. For each element-wise multiplication,
we use a bit-slicing of 4-bit width. Each PE has an area of
17.18mm?* and power of 1791.67mW .

Norm-Area
o000 =
ONBOEEN

lI |
~» 36 -@] @
f& & P ,«‘# P é;,é’ é;s" & &

,

W SIMPLER ® STREAM

Norm-Power
popa M
SNBmmmN

g

Norm-Latency
=E-N-2-1

oNbm-N
——
|
==
-

HSIMPLER ® STREAM

Fig. 8: Comparison of area, power, and latency for SIMPLER
and STREAM on eleven benchmarks of the SuitSparse Matrix
Collection.

In Figure 8, we compare the performance of STREAM
with SIMPLER on the eleven sparse matrices in terms of
area, power consumption, and latency. The experimental result
shows that the STREAM framework requires 2.2X more area

9C-3

usage than SIMPLER. However, STREAM achieves 2.04X
power efficiency, and improves the latency by 2.42X compared
with the latency of SIMPLER. Also here, the area usage
increases, and both latency and power consumption decrease
for STREAM due to the READ-based in-memory computing
style.

VII. SUMMARY AND FUTURE WORK

In this paper, we have introduced a framework, STREAM,
for the synthesis of digital circuits onto nanoscale crossbars.
The framework is tailored for READ-based in-memory com-
puting based on OR-plane logic. The experimental evaluation
illustrates the effectiveness of READ-based computing com-
pared with WRITE-based in-memory computing paradigms.
In the future, we plan to use STREAM to accelerate genome
sequencing applications. We also plan to augment STREAM
with analog in-memory accelerators.

REFERENCES

[1] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025-predictions for the next
ten years,” in IMPACT, pp. 192-195, IEEE, 2015.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east,” IDC iView: IDC Analyze the future,
vol. 2007, no. 2012, pp. 1-16, 2012.

[3] J. Backus, “Can programming be liberated from the von neumann style?: A
functional style and its algebra of programs,” CACM, vol. 21, no. 8, pp. 613-641,
1978.

[4] A. Dehon, “Nanowire-based programmable architectures,” JETC, vol. 1, no. 2,
pp. 109-162, 2005.

[5] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS-II: Express Briefs,
vol. 61, no. 11, pp. 895-899, 2014.

[6] J. Borghetti er al., “‘memristive’ switches enable ‘stateful’ logic operations via
material implication,” Nature, vol. 464, no. 7290, pp. 873-876, 2010.

[7]1 D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, 2008.

[8] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit
theory, vol. 18, no. 5, pp. 507-519, 1971.

[91 G. W. Burr et al., “Phase change memory technology,” JVSTB, vol. 28, no. 2,
pp. 223-262, 2010.

[10] Y. Huai er al., “Spin-transfer torque mram (stt-mram): Challenges and prospects,”
AAPPS bulletin, vol. 18, no. 6, pp. 33—40, 2008.

[11] S. Li et al, “Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories,” in DAC, pp. 1-6, IEEE, 2016.

[12] S. K. Jha, D. E. Rodriguez, J. E. Van Nostrand, and A. Velasquez, “Computation
of boolean formulas using sneak paths in crossbar computing,” 2016. US Patent
9,319,047.

[13] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in HPCA, pp. 541-552, IEEE, 2017.

[14] Y. Zha and J. Li, “Reconfigurable in-memory computing with resistive memory
crossbar,” in ICCAD, pp. 1-8, 2016.

[15] Y. Zha and J. Li, “Rram-based reconfigurable in-memory computing architecture
with hybrid routing,” in ICCAD, pp. 527-532, IEEE, 2017.

[16] H. Wu et al., “Resistive random access memory for future information processing
system,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1770-1789, 2017.

[17] A. Mishchenko et al., “Abc: A system for sequential synthesis and verification.”
http://www.eecs.berkeley.edu/alanmi/abc”.

[18] K. Keutzer, “Dagon: Technology binding and local optimization by dag matching,”
in DAC, pp. 341-347, 1987.

[19] D. Bhattacharjee et al., “Contra: area-constrained technology mapping framework
for memristive memory processing unit,” in JCCAD, pp. 1-9, 2020.

[20] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks:
A case study in reverse engineering,” I[EEE Design & Test of Computers, vol. 16,
no. 3, pp. 72-80, 1999.

[21] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” TOMS,
vol. 38, no. 1, pp. 1-25, 2011.

[22] R. Ben-Hur et al., “Simpler magic: Synthesis and mapping of in-memory logic

executed in a single row to improve throughput,” TCAD, vol. 39, no. 10, pp. 2434—

2447, 2019.

S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general

model for voltage-controlled memristors,” TCAS-II: Express Briefss, vol. 62, no. 8,

pp. 786-790, 2015.

[24] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars,” SIGARCH, vol. 44, no. 3, pp. 14-26, 2016.

[25] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory acceleration of
deep neural network training with high precision,” in ISCA, pp. 802-815, IEEE,
2019.

[23

695

Authorized licensed use limited to: University of Central Florida. Downloaded on August 29,2022 at 15:20:35 UTC from IEEE Xplore. Restrictions apply.

