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Abstract—Phase Change Memory (PCM) is a promising
contender for future main memory solutions. While many
architecture-level performance optimizations have been studied
for PCM, the security implications of these designs are not
well understood. This work demonstrates the first investigation
of information leakage threats in PCM-based main memories.
Notably, we find state-of-the-art read techniques leveraging access
latency asymmetry in Multi-level Cell (MLC) PCM introduce new
timing variations. To understand the severity of the vulnerability,
we present R-SAW, a novel side channel attack that aims to
exfiltrate secrets from a victim process via passively observing
execution timings that are correlated with secret-dependent PCM
accesses. We demonstrate the attack on a real-world crypto-
graphic algorithm–AES encryption in OpenSSL. Our evaluation
shows that R-SAW is able to completely recover the encryption
keys. Furthermore, our experiments reveal that R-SAW exhibits
superior noise resilience compared to the widely-studied cache-
based side channels. Our work highlights the importance of
understanding security in systems integrated with emerging
memory technologies and motivates the need to architect secure-
by-design PCM main memories in the future.

I. INTRODUCTION

The rapid advances in high performance and data-intensive

computing have significantly pushed the demand for efficient

and scalable memory systems. Non-volatile memories (NVMs)

that offer high density, superior power efficiency, and persis-

tent storage are increasingly regarded as the major building

blocks for future memory systems. PCM is highly promising

due to its maturity and DRAM-comparable performance [1]–

[3]. Since PCM cells have a wide resistance range, they can

be operated in MLC mode, which offers higher densities by

encoding multiple bits per cell. While demonstrating several

appealing advantages, PCM read latency in MLC mode can be

significantly higher than single-level cell (SLC) mode [4]. In

particular, the bitwise iterative sensing for MLC read opera-

tions leads to asymmetry of read latency among the bits. Since

read operations are in the critical path, techniques optimizing

read performance for PCM cells are widely studied [5]–[8].

Although performance optimization has been the driving

force for motivating new architecture designs, the burgeoning

of hardware and microarchitecture attacks [9]–[15] in recent

years show that performance-enhancing techniques without

careful considerations of security can potentially open new

venues for security breaches. Therefore, understanding secu-

rity properties of emerging hardware in the early design stage

and ensuring secure-by-design architecture is imperative. In

this work, we aim to answer the following question: Are

emerging PCM-based main memory systems vulnerable to

information leakage? We focus on investigating the potential

security vulnerabilities of performance-optimized access tech-

niques for MLC PCM main memories. Our key observation is

that existing widely-recognized PCM read techniques typically

leverage data striping mechanisms that decouple the access

to MLC bits with varying speed grades [5]–[7]. While these

techniques undoubtedly bring performance benefits, they can

potentially allow adversaries to exfiltrate secretive data by

exploiting PCM read latency timings.

This paper demonstrates the first study on side channel

threats in future systems equipped with PCM as main memory.

We perform a systematic characterization of PCM access

timings on the state-of-the-art inter-line striping scheme for

read performance optimization [5]. Our investigation reveals

that the read asymmetry allows highly visible time-varying

program executions (even under the same execution path)

due to distinctions in accessing fast and slow regions in

MLC PCM. Such a characteristic allows the adversary to

compromise a victim process’s secrets if they could be inferred

from PCM main memory accesses. We implement R-SAW, a

novel side channel attack that exfiltrates AES keys in OpenSSL

by correlating PCM memory access patterns with program

execution times. Our evaluation shows that R-SAW can recover

entire keys with 98.5% accuracy at runtime. While prior works

have shown recovery of crypto keys through passive side

channels via caches (i.e., [10], [16]), our results reveal that

R-SAW exhibits considerably higher noise resilience where it

manages to recover 78% of the key bytes under an extremely

noisy environment where the prior cache-based side channel

fails. Our work on PCM-based side channel highlights the new

source of leakage in emerging memory technologies. Findings

in this paper can provide computer architects with new insights

of information security for future memory systems. In sum-

mary, the major contributions of this paper are:

• We make the first investigation of side channel vulnerabil-

ities in MLC PCM originating from the read asymmetry

due to architectural-level performance optimizations.

• We present R-SAW, a novel side channel attack that

can completely exfiltrate AES keys by exploiting timing

variances due to read asymmetry in MLC PCM.

• We perform a quantitative analysis of the impact of

system noises on R-SAW. Our results show that R-SAW

exhibits superior noise-resilience.

• We discuss several potential defensive techniques to mit-

igate PCM-based side channels. Our work highlights the

importance of designing side channel resistant MLC PCM

for future memory systems.
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Fig. 1: Illustration of PCM array and MLC sensing technique.

II. BACKGROUND

Basics of Multi-level Cell PCM. PCM takes advantage of the

phase change property of Chalcogenide Alloy (e.g., GST) that

switches between a high resistance amorphous state and a low

resistance crystalline state. PCM cells are typically organized

as memory arrays that are accessible through word lines and

bit lines (Figure 1a). As the resistance level in the amorphous

state is several orders of magnitude higher than the crystalline

state, the resistance range can be safely divided into several

non-overlapping bands where multiple bits can be encoded

in a single PCM memory cell (i.e., MLC mode) [4], [17].

Figure 1b shows the mapping of resistive states to bit symbols

in 2-bit MLC cells. While MLC mode offers higher capacity, it

inevitably complicates the read sensing operation. Specifically,

reading bits in a PCM cell involves iterative sensing. In each

iteration, the logic compares the resistance with a reference

value to derive one bit at a time (i.e., from MSB to LSB)

as shown in Figure 1b. We assume a 2-bit MLC for main

discussion in this paper. Note that the same principle also

applies to higher-density MLC PCM.

Performance-oriented PCM Read Schemes. Due to the

iterative sensing procedure, reading the LSBs is about 2×
slower than the MSBs. In conventional data mapping scheme

where consecutive bits in a memory line are mapped to

consecutive bits in MLC cells, the read latency is determined

by LSB sensing, which could considerably degrade the overall

performance compared to systems with SLC-based PCM.

To retain a reasonable read performance, it is necessary to

expose the read asymmetry to architecture level and decouple

the fast MSB accesses from the slow LSB accesses. In fact,

state-of-the-art read techniques generally adopt bit striping

schemes that map certain memory data regions (e.g., a memory

line) exclusively to MSBs and others to LSBs in multi-level

cells, effectively accelerating reads for MSB-mapped regions

without deteriorating read latency for LSB-mapped ones. Prior

studies have prototyped such performance-oriented read tech-

niques at various striping granularities including intra-line [7],

inter-line [5] and inter-page striping [6]. Figure 2 illustrates the

representative design where consecutive data lines are mapped

to MSBs and LSBs alternatively such that reading of odd lines

benefits from much shorter latency than even lines [5].

Microarchitecture Timing Channel Attacks. Microarchitec-

ture timing channel attack is a form of information leakage

MSB 

LSB 
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Fig. 2: PCM-optimized bit organization.

attacks where a spy exfiltrates secretive information from a

victim through observing or modulating the hardware access

timings [9], [13], [18], [19]. These attacks are particularly

worrisome as they can evade existing system-level defenses

and do not leave any physical traces after exploitation. The

root cause of microarchitectural timing-based leakage is the

variations of access latencies in underlying hardware that

create measurable slow or fast executions either directly by

the spy [13] or indirectly from the victim [16]. Note that

existing works have unveiled timing channel attacks targeting

many performance-oriented microarchitecture designs built in

processors over the years (e.g., caching and speculation).

III. THREAT MODEL

We focus on side channel attacks on systems equipped with

MLC PCM as main memories. The victim process runs ser-

vices that operate on certain secrets on the targeted machine.

We assume the spy either sits remotely or runs as a non-

privileged process co-located with the victim. Similar to prior

passive side channels on caches [16], [20], [21], we assume

the spy passively monitors externally observable information

non-intrusively and attempts to decipher the victim’s secrets

through correlating the secret values with timing observations.

The attacker can also perform certain profiling on a local

machine with a similar setup to the target machine.

IV. MLC PCM READ: A NEW SOURCE OF LEAKAGE?

In this section, we will investigate whether these read-

enhancement schemes could expose new timing source that

can potentially lead to information leakage.

Hardware Configurations

Processor Quad-core x86 CPU, Out-of-order execution

L1 I/D-Cache Private, 32KB, 2-way, 1-cycle hit

L2 Cache Private, 4MB, 16-way, 10-cycle hit

DRAM Cache Shared, 32MB, 16-way, 50-cycle hit

Mem. Controller 64 RD & WT queue, FR-FCFS scheduling, open-row policy

PCM Memory
8GB, single channel, 2 ranks/channel (Local)

16GB, dual channel, 2 ranks/channel (Target)

PCM Timing 2-bit MLC, MSB read: 28ns, LSB read: 48ns [1], [5]

TABLE I: Architecture configurations.

A. MLC PCM System Modeling

We build a comprehensive architecture model for PCM-

based systems [1] that integrates the state-of-the-art MLC

PCM read mechanism using inter-line striping among bits in

MLC cell [5], [22]. This is a highly efficient technique as it can

effectively harness the read asymmetry for performance gain
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Fig. 3: Program execution time as the percentage of LSB line

reads changes.

with low hardware cost. Under such a scheme, the memory

controller maps consecutive memory blocks to MSBs and

LSBs in an alternating manner (as shown in Figure 2). As

such, odd lines are allocated with MSBs (MSB lines), and

even lines are located in LSBs (or vice versa). The memory

controller’s read service time to odd lines only considers the

timing for one iteration sensing while even lines take two

iterations. We use gem5, a cycle-level simulator, to model

an x86 based system with MLC PCM. Memory parameters

are derived from existing studies [5]. The detailed architecture

configuration is listed in Table I.

B. Impact of PCM Access Patterns on Execution Time

Since MSB and LSB lines have different read latencies, for a

program that issues a certain number of memory read requests,

its execution time may have a strong dependency on the MLC

PCM access pattern–the breakdown of MSB and LSB lines

loaded. Specifically, the program execution time shall increase

as more memory reads fall in the LSB lines. To characterize

the impact of PCM access patterns on program execution, we

develop and run a microbenchmark that reads from arbitrary

memory locations for a pre-determined number of times. We

vary the percentage of LSB (or MSB) lines accessed and

measure the corresponding execution times. Figure 3 shows the

average execution latency for different PCM access patterns.

As we can see, while there are occasional local small spikes

on the execution time samples, the program execution time

exhibits a clear linear relationship with the reads to LSB

lines. Based on this result, we make the key observation that

differentiation in PCM access patterns can induce externally

observable slow and fast executions. We note that such timing

variations do not exist on non-optimized MLC PCM main

memories where memory array access latency is fixed.

C. Side Channel Attacks on MLC PCM

We note that there is potential information leakage if a

victim process’s PCM memory access patterns depend on

secretive values. We present a high-level attack framework

targeting MLC in Figure 4. Specifically, a spy process can

interact with a benign victim process by sending requests

through software interfaces 1 . The victim services the re-

quests based on certain secrets. Depending on the value of the

secrets, the victim may exhibit different PCM access patterns,

such as x1 (MSB) and x2 (LSB) in 2 vs. x3 (LSB) and

x4 (LSB) in 3 . After the victim’s operation is completed,

it sends back the response to the spy 4 . The spy not only

Secret dependent

PCM accesses

req.

(resp., timing)

timing analysis

inferred secrets

Fig. 4: Side Channel Attack Framework on MLC PCM.

Fig. 5: Distribution of AES encryption latency over PCM

access pattern.

receives the victim’s response but also measures the latency of

the victim’s execution. The spy then performs timing analysis

with the attempt to infer secrets of the victim process 5 .

V. AES SIDE CHANNELS THROUGH MLC PCM

In this section, we demonstrate a novel information leakage

attack–R-SAW, that exfiltrates crypto keys via exploiting PCM-

based timing channels in AES encryption.

The AES software implementation typically takes advan-

tage of pre-computed values to replace computation with

table lookups. We target the AES-128 implementation in

OpenSSL [23] that uses 5 T-tables for encrypting 16-byte data

block. AES-128 uses one 128-bit encryption key and performs

10 rounds of transformation. The first 4 tables (e.g., T0, T1, T2,

and T3) are used in the first 9 rounds where the last round only

accesses the 5th table T4. Each round involves 16 memory

accesses (i.e., table lookups) whose indices partially depend

on the prior round keys. We make the same assumption as

prior attacks [10], [21] that the memory blocks containing T-

tables are not cached on chip prior to each encryption run.

Since the total number of table lookup in AES encryption

is fixed, we expect that the overall encryption latency also

exhibits a strong relation with the percentage of LSB lines.

To validate this assumption, we run one million random AES

encryptions and collect the execution times, as well as the

number of LSB/MSB lines read from the T-tables. Figure 5

shows the distributions of encryption latencies for every LSB

line percentage. We can see that despite a narrow range of

LSB line percentage values (0.49 to 0.51), its linearity relation

with the execution time is still observed. As AES table access

addresses are dependent on the round keys, we hypothesize
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(a) Memory-pattern vector for k10
0

= 47 (top) and k
10

0
= 16 (bottom)

(b) Encryption-timing vector with k
10

0
= 16

Fig. 6: Attack vector for (a) M(0, 47) and M(0, 16) respec-

tively and (b) T (0, 16).

that there could be a deterministic PCM access pattern for

a particular value of a key byte when encrypting plaintexts

in AES. In this case, then it is possible for an attacker to

exfiltrate individual key values by performing a correlation

analysis between a guessed key’s PCM access patterns and the

victim’s execution times. R-SAW is designed to target the last

round key, which, if compromised, could lead to exfiltration

of all keys. R-SAW incorporates the following attack steps:

PCM Access Pattern Profiling on AES. In the profiling

phase, the attacker aims to build memory-pattern vectors

(MPVs) that are used later to infer individual key bytes in

the victim. To do so, the attacker first instruments the AES

program to identify MSB/LSB line accesses (i.e., odd/even

blocks) so that the PCM access traces could be generated. The

attacker then performs a sufficient number of AES encryptions

on a local machine. Each encryption uses a randomly gener-

ated plaintext and a user key (that determines all round keys).

For each run, a sample point S = (C,K10, p) is recorded,

where C is the 16-byte ciphertext, K10 is the last round

key (random) and p is the percentage of LSB lines read in

this execution. We then organize the sample points based on

every unique value combination of k10i and Ci for each i.

Specifically, for every possible value of the ith key byte, we

get all the sample points whose K10
i = u and Ci = w (u and

w ∈ [0, 255]) as a group S(i, u, w). S(i, u, w) incorporates

information about the PCM access pattern under specific

values of the ith key byte and the ith ciphertext byte. We

compute the average percentage of LSB lines among all the

sample points in S(i, u, w) as P
w

(i,u) and define the memory-

pattern vector for the ith byte as the following:

M(i, u) = {P
0

(i,u), P
1

(i,u), ..., P
255

(i,u)} (1)

Essentially, for the ith key byte, the memory-pattern vector

contains 256 elements, each representing the average LSB line

read percentage among encryption samples that have a unique

Ci (i.e., the w value). As a result, we will generate 256 MPV s

for each key byte. In total, 4096 vectors are computed for all

Fig. 7: Correlation between memory-pattern vectors and the

victim’s encryption-timing vector for K10
0 .

16 key bytes in the last round. These vectors are regarded as

the PCM access signature for each key instance. Note that the

profiling process only has to be done once as an offline step.

Victim’s Execution Time Monitoring. After the profiling

step, the attacker will start the online monitoring step where it

triggers AES encryptions from the victim process with random

plaintexts and measures the encryption timings. A sample

point in this stage can be denoted as S = (C, l) where C

is the ciphertext and l is the execution latency. The attacker

organizes the sample points similar to the profiling phase.

Particularly, for each of the ith byte in ciphertext, sample

points that share the common Ci (again denoted as w) are

grouped together as S(i,x, w) where x = K10
i is fixed but

unknown yet. Subsequently, the attacker calculates the average

latency among all sample points for each S(i,x, w) as L
w

(i,x).

The encryption-timing vector (ETV) is generated for each byte

of the victim’s last round key as follows:

T (i,x) = {L
0

(i,x), L
1

(i,x), ..., L
255

(i,x)} (2)

Note that T (i,x) captures the statistical timing patterns cor-

responding to an unknown value of the ith key byte.

AES Key Recovery through Correlation Analysis. Now that

both the memory-pattern vectors (M(i, u)) and encryption-

timing vectors (T (i,x)) have been collected, the attacker can

attempt to infer the secret key values based on correlation anal-

ysis. The key motivation is that M(i, u) carries information on

the PCM access pattern for key byte i with value u. Since PCM

access patterns (denoted using the percentage of LSB lines

reads) have a strong correlation with the encryption timings

(shown in Figure 5), if M(i, u) is sufficiently distinct for each

value of u, we expect that there would be an outstandingly

higher correlation between M(i, u) and T (i,x), given x = u.

As a result, the ith key byte can be deciphered using the

following procedure:

K10
i = argmax

u
R(M(i, u), T (i,x)) (3)

R calculates the correlation between M and T . In other

words, the value of ith key byte is equal to u that leads to

the maximum correlation between the corresponding memory-

pattern vector and encryption-timing vector. Once all the final

round key bytes are obtained, the attacker can easily recover

the original user key [10]. It is worth noting that MPVs

are inherently dependent only on the program-level behavior

and implementation. Therefore, MPV traces will be the same

regardless of the configuration of local machines. As a result,

R-SAW does not require the same hardware setup between the

local machine and the remote machine hosting the victim.
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Fig. 8: A complete recovery of the final round key. Each row denotes the correlation value distribution for one key byte.

VI. EVALUATION

A. Key Recovery Results with R-SAW

We evaluate the key recovery effectiveness on AES using

the methods described in Section V. In the profiling phase,

the number of encryptions has to be large enough so that

sufficient sample points are collected for every possible key

byte and ciphertext byte value combination. We empirically

find that running 30 Million AES encryptions with random

plaintext and user key is adequate. On our simulated platform,

this step takes less than 2 hours in total. Note that profiling is

only performed once offline. In the runtime monitoring phase,

the attacker initiates 128K AES encryptions in the victim to

generate the encryption-timing vector. We observe that the

encryptions needed on the victim’s side are significantly less

than the profiling phase as the victim uses only one fixed key.

Our profiling results show that for each key byte, the

memory-pattern vectors (M(i, u)) corresponding to its differ-

ent values are clearly distinguishable. Figure 6a presents the

memory-pattern vectors for K10
0 under two key byte values:

47 and 16 (i.e., M(0, 47) and M(0, 16)). Figure 6b illustrates

the encryption-timing vector collected from the victim AES

program with K10
0 set to 16 (i.e., T (0, 16)). It can be seen

that the M(0, 16) vector indeed closely resembles T(0,16),

indicating a high correlation between these two vectors that

share the same key byte value. In the final key recovery step,

the attacker computes the Pearson correlation between the

encryption-timing vector and the memory-pattern vector under

a guessed key value. Figure 7 shows the correlation coefficient

between the MPV s and the target ETV for the first key byte

(i.e., K10
0 ). We can see that among the 256 MPV s, a point

clearly stands out with the highest correlation at key value

16 (i.e., when M(0, 16) is used). Therefore, the attacker can

correctly guess that K10
0 has value 16. Figure 8 presents the

correlation analysis for each of the victim’s 16 key bytes in

a grey-scale heat map. We observe that for each key byte,

an obvious dark point exists for each row (i.e., outstanding

correlation), indicating the correct key value. R-SAW is able

to completely reveal all the key bytes values for this key

instance. Finally, we have run 4000 iterations of R-SAW attack

where the victim’s AES program uses a different key for each

iteration. Our result shows that R-SAW can recover all keys

with 98.5% accuracy.

B. Characterizations of R-SAW Attack

In this section, we aim to characterize the effectiveness of

R-SAW by performing a comparative study with the state-of-

the-art passive timing channels on AES [10], [16]. Note that

Fig. 9: Success rates with

the change of sample size.
Fig. 10: Success rates with

the change of system noise.

we do not perform evaluations on other active side channels

exploits such as Prime+Probe [24] and Flush+Reload [18]

as these attacks require explicit perturbations to the victim’s

cache accesses, which is different from R-SAW. Particularly,

the work from Liu et al. [16] has revealed that in the last round

encryption, if two table lookups (ith and jth) to T4 map to

the same entry, it will hold true that Ci ⊕ Cj = K10
i ⊕K10

j .

The cache attack works by first assuming a particular XOR

value between two key bytes: K10
i ⊕K10

j , and then compute

the average latency among sample points for which Ci ⊕ Cj

equals to the assumed value. The correct K10
i ⊕K10

j is equal

to the assumed value whose corresponding average latency

is the shortest. We implement the cache-based attack in [16]

and compare its attack effectiveness with R-SAW. To perform

a quantitative analysis, we define the Success Rate (SR)

metric. For N iterations of attack (each with a different AES

key), SR for R-SAW is the average percentage of key bytes

correctly recovered; SR for cache-based attack is the average

percentage of XOR values accurately recovered.

Sensitivity to Sample Size. We first analyze SR by varying

the number of sample points. To do that, we generate 100
random keys and perform both attacks with these keys. We

change the number of samples per key from 25K to 140K.

Figure 9 illustrates the trend of SR as sample size changes.

We can see that for both attacks, SR increases as the sample

sizes increase. However, the gain in SR diminishes as the

sample size reaches 100K. Furthermore, for given sample size,

R-SAW consistently achieves a higher success rate compared

to cache-based attacks (up to 20%). We expect that the higher

attack efficiency in terms of sample size is because the timing

variations due to PCM access pattern is more prominent than

the cache hit patterns.

Resiliency to System Noise. In realistic settings, there might

be noises from background processes. Noises can obfuscate

timing measurements, which potentially undermines the ef-
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fectiveness of timing channels. To understand the impact of

noise, we run a multi-threaded noise injection process on

the target AES system that performs randomized memory

loads. The highest level of noise corresponds to accessing

caches/memories in a non-stop manner. We then scale the

noise levels by slowing down the memory access frequency

accordingly in each thread. Under each noise level, we gener-

ate 100 AES keys, and 128K sample points are collected for

each attack. Figure 10 shows the success rates of R-SAW and

cache-based attacks with different noise levels. We can see

that the cache-based attack is extremely sensitive to system

noise. In particular, a sharp decrease in SR is observed when

the noise level is above 40%. In contrast, R-SAW exhibits

superior resilience: It can still successfully recover 81% of the

key bytes at the highest noise level where the effectiveness of

the cache attack is degraded to random guess. This is because

the cache-based attack relies on cache hits for its statistical

measurement. With the spike in system noises, memory lines

brought to the cache by one access (e.g., ith table lookup)

may be quickly evicted by the background activities. As a

result, the subsequent jth table lookup to the same block may

experience cache miss instead of hit, leading to obfuscated

timing observation. Differently, R-SAW’s exploitation depends

on PCM memory access timing. Even with more main memory

accesses as a result of memory access contention, the memory-

access pattern (i.e., percentage of LSB line) can still be quite

stable as it is dependent on the key value. As a result, R-SAW

represents a new timing source independent of prior exploits.

R-SAW is highly resilient, and thus it may pose an even higher

risk in future systems.

VII. DISCUSSION

A. Applicability of R-SAW on Different MLC PCM Systems

While our main study focuses on inter-line data striping

scheme in MLC PCM, we note that the new side channel

threat can be potentially manifested in other implementations.

Specifically, with intra-line striping [7], read asymmetry is

exposed among sub-blocks of a memory line. This may

enable finer-grained timing observations, making the potential

exploits even more devastating. On the other hand, prior

work has shown certain applications involve secret-dependent

page-level memory activities [12], these applications can be

vulnerable to MLC PCM employed with inter-page striping.

B. Mitigations

We discuss two mitigation methodologies for R-SAW and

the corresponding challenges with these mechanisms.

Randomized PCM Data Mapping. One plausible mitigation

technique is to integrate architectural support in memory

controller that randomizes memory line mapping. Particularly,

instead of mapping odd/even lines to MSBs and LSBs deter-

ministically, two logically consecutive memory lines can be

remapped randomly to either MSB or LSB lines on the same

page using permutation seed generated at runtime. This way,

the memory-access pattern is randomized and its correlation

with the execution timing would be obfuscated. However, such

approach could incur extra storage overhead for permutation

metadata maintenance. Also, the permutation seed might need

to be changed frequently to secure long-lived pages [25].

Software Hardening. Existing techniques have studied soft-

ware rewriting (e.g., removing branches in security sensitive

path) to ensure information security against microarchitecture

attacks [26], [27]. We note that similar software hardening

techniques could be utilized to mitigate R-SAW. Specifically,

security-sensitive software can map memory addresses tainted

with secretive information to the regions with the same

speed grade to avoid secret-dependent PCM access timings.

However, implementing PCM security-aware data mapping in

software can require non-trivial modifications, which could

pose considerable burden on program developers. Another

challenge with this approach is that such secure implemen-

tation is only specific to certain MLC PCM systems, which

may not be generic enough to offer protection on systems

employed with different PCM access techniques.

VIII. RELATED WORK

Recent studies have shown successful exfiltration of crypto-

graphic keys (e.g., AES and RSA) through many microarchi-

tectural components such as caches [10], [13], [16], and branch

predictors [14], [28]. Existing protection mechanisms against

cache timing channel include randomization (e.g., randomized

cache indexing) [25] and resource partitioning [29]–[31]. We

note that our work demonstrates a new side channel threat

and those existing defense schemes do not mitigate R-SAW.

Another generic approach for alleviating side channel is to

obfuscate the precision of timing observation through noise

injections [32]. However, our study in Section VI has shown

that R-SAW exhibits much higher resilience to system-level

noises. Therefore, while this approach may be effective for

caches, the desired noise level to obscure R-SAW could be

too high to be tolerated in systems for regular operations.

Besides architectural-level defenses, existing works have pro-

posed secure crypto algorithms using constant-time imple-

mentation [33]. We note that R-SAW can also potentially be

applied to non-crypto applications in a much broader spectrum.

IX. CONCLUSION

In this paper, we investigate the information leakage vul-

nerabilities in PCM-integrated systems. Our work reveals

that state-of-the-art PCM read techniques that leverage read

asymmetry in Multi-level cell open new side channel attack

vectors. We present R-SAW, a novel side channel that can fully

recover AES encryption keys based on MLC PCM access-

dependent timings. The evaluation result shows that R-SAW

exhibit much higher attack efficiency, as well as superior

noise resilience, compared to cache-based attacks. Our work

motivates the need to architect secure-by-design MLC PCM

main memories for future systems.
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