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ABSTRACT

With high-quality data from programs like the Hubble Frontier Fields, cluster lensing has reached the point that models are

dominated by systematic rather than statistical uncertainties. We introduce a Bayesian framework to quantify systematic effects

by determining how different lens modelling choices affect the results. Our framework includes a new two-sample test for

quantifying the difference between posterior probability distributions that are sampled by methods like Monte Carlo Markov

chains. We use the framework to examine choices related to the selection and treatment of cluster member galaxies in two of

the Frontier Field clusters: Abell 2744 and MACS J0416.1–2403. When selecting member galaxies, choices about depth and

area affect the models; we find that model results are robust for an I-band magnitude limit of mlim ≥ 22.5 mag and a radial cut

of rlim ≥ 90 arcsec (from the centre of the field), although the radial limit likely depends on the spatial extent of lensed images.

Mass is typically assigned to galaxies using luminosity/mass scaling relations. We find that the slopes of the scaling relations

can have significant effects on lens model parameters but only modest effects on lensing magnifications. Interestingly, scatter in

the scaling relations affects the two fields differently. This analysis illustrates how our framework can be used to analyse lens

modelling choices and guide future cluster lensing programs.

Key words: gravitational lensing: strong – methods: statistical – galaxies: clusters: individual: Abell 2744 – galaxies: clusters:

individual: MACS J0416.1–2403.

1 IN T RO D U C T I O N

Gravitational lensing by galaxy clusters has become a powerful tool

to study the origin and evolution of galaxies. A galaxy cluster acting

as a lens can be used as a ‘cosmic telescope’ to magnify galaxies

from the first billion years of cosmic history, at redshifts z ∼ 10–

11 (e.g. Zheng et al. 2012; Coe et al. 2013; Bouwens et al. 2014;

Salmon et al. 2018, 2020) and help improve constraints on the high-

redshift luminosity function (e.g. McLeod, McLure & Dunlop 2016;

Bouwens et al. 2017). However, in order to estimate a lensed galaxy’s

intrinsic luminosity, a magnification must be determined in order to

correct the observed luminosity. Since errors in magnification can

thus propagate into other results, it is important to understand them

and how they may be affected by modelling choices.

Cluster lens models are quite complex, as they describe mass

distributions that are themselves very complex (see e.g. Kneib &

Natarajan 2011). Modelling is made more complicated by the fact

that clusters known for their lensing capabilities are often disturbed

systems, because having multiple group- or cluster-sized haloes can

significantly enhance the cross-section for strong lensing (Wong et al.

2012; French et al. 2014). In order to describe these complex systems,

lens mass models often have 20+ parameters, and errors are often

found using Markov chain Monte Carlo (MCMC) sampling of the

parameter space. However, there are also many choices that have to

be made when constructing a model, which do not explicitly appears

as model parameters and thus are hidden from an MCMC analysis.

� E-mail: keeton@physics.rutgers.edu

This means that uncertainties revealed by an MCMC analysis, which

are statistical in nature, will underestimate the true errors due to other

systematic effects. Since the problem is a systematic one, it will not

necessarily be solved by better data (e.g. Johnson & Sharon 2016;

Meneghetti et al. 2017; Priewe et al. 2017).

The need to understanding model errors has influenced the design

of programs like the Hubble Frontier Fields (HFF; Lotz et al. 2017).

Many teams were invited to create lens models using their own

methodologies, with the idea that the resulting ensemble of models

would sample the range of systematic effects. In Raney et al. (2020b),

we compared the most recent models of the six HFF clusters and

found that systematic differences in magnifications were indeed

larger than the statistical errors. While the HFF lens modelling

program has provided a major advance in exploring systematic

uncertainties, it was not a controlled experiment so it did not clearly

reveal what aspects of lens modelling contribute most to differences

in models.

We have begun a project to build an error budget for cluster lens

modelling that quantifies the effects of different modelling choices.

In this paper, we lay out a new statistical framework that can be used

to more fully estimate model errors (Section 2), and then apply it to

choices related to the treatment of galaxies within the cluster, namely

cluster member selection (Section 3) and the scaling relations used

to assign galaxy masses (Section 4). We discuss our results and place

them in context with previous work in Section 5, and summarize

our conclusions in Section 6. In a companion paper, we use our new

framework to quantify systematic effects associated with the choice
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5588 C. A. Raney, C. R. Keeton and D. T. Zimmerman

of images used as constraints on lens models (Zimmerman, Keeton

& Raney 2021).

2 M E T H O D O L O G Y

2.1 Model components

We use a parametric modelling technique where mass is assigned

using density profiles described by a given set of parameters. We

begin by outlining the different mass components that comprise our

models. Specifically, we do this in terms of the deflection angle α̂,

which describes how much light is bent as it passes by the component.

For ease in reading, we will more often refer to the reduced deflection

angle α = (Dls/Ds)α̂, which is scaled by Dls and Ds, the angular

diameter distances between the lens and a given source, and the

observer and that source, respectively.

The first component includes large-scale haloes that characterize

the dark matter and/or intracluster medium. These haloes are de-

scribed by the parameters qhalo and contribute a deflection αhalo. We

use softened isothermal elliptical mass distributions for these haloes,

but the framework presented here is general.

The cluster member galaxies are described by a pseudo-Jaffe

model for the mass distribution. These galaxies are not all free to vary,

but are instead assigned mass and radius using scaling relations based

on their luminosity in relation to a reference galaxy. In this work,

we use the brightest cluster galaxy (BCG) as the reference galaxy.

The scaling relations can then be described by qscale = (ηE, ηt ) such

that the nominal Einstein radius and truncation radius for galaxy i

are given by

b̄i = bgal

(

Li

Lbcg

)ηE

, (1)

āi = agal

(

Li

Lbcg

)ηt

, (2)

where Li and Lbcg refer to the F814W luminosity for galaxy i and the

BCG, respectively. However, given scatter in the scaling relations we

should treat the actual parameters bi and ai as random variables; we

use lognormal distributions with means b̄i and āi and scatter σ b and

σ a that are derived from observed scaling relations (e.g. Brimioulle

et al. 2013).

We use qgal = (agal, bgal) to describe the zero-points of the scaling

relations. The parameters used to determine which galaxies are

treated as cluster members, e.g. a magnitude or radial limit, are

described by qmem. We note that qmem and qscale are usually fixed

when modelling, while qgal is either optimized or marginalized,

although there are some exceptions (see e.g. Kawamata et al. 2016).

Because of the scatter in the scaling relations, the deflection due to the

cluster members is a random variable αmem drawn from a probability

distribution given by Pmem(αmem|qmem, qgal, qscale).

The mass along the line of sight (LOS) must be handled slightly

differently. Specifically, we must consider the foreground structure

that lies between the observer and the cluster differently than the total

LOS structure. This is because mass in the foreground will affect

the positions at which deflections in the cluster lens plane must be

calculated. The deflection term for the foreground mass is a sum of

the deflections of all perturbers at a redshift a less than that of the

lens, specified as a < l, scaled by their respective distance scalings:

αfg =
∑

a<l

Dal

Dl

α̂a, (3)

where Dal and Dl refer to the angular diameter distances between the

perturber and lens and between the observer and lens, respectively.

Similarly, the total LOS deflection is a sum of all perturbers at

redshift b between the observer and the source specified as b < s:

αlos =
∑

b<s

Dbs

Ds

α̂b, (4)

where Dbs refers to the angular diameter distance between the

perturber and the source. Note that the foreground mass appears in

both αfg and αlos, but with different weightings.

In this work we only consider mass along the LOS in the form

of galaxies, which are described similarly to the cluster member

galaxies; we use q los to characterize them. Thus, the deflections are

also random variables, now drawn from the probability distribution

Plos(αfg, αlos|q los, qgal, qscale). This is a joint probability distribution

since foreground perturbers are found in both sums, so αlos and

αfg will be correlated. We note that the LOS galaxies can still be

anchored to the BCG as long as we account for the redshift scaling

in the zero-points of the scaling relations.

Our complete set of model parameters is then given as

q = {qhalo, qmem, qgal, qscale, q los}, and we can use these to draw

αmem, αlos, and αfg from their probability distributions.

2.2 Statistical framework

In a Bayesian framework, we can write down a likelihood for the

data given a model, which explicitly depends on αmem,αlos, and αfg

through the lens equation. If those random variables are Gaussian, we

can marginalize over them as described in Appendix A. In particular,

equation (A14) gives our final expression for the marginalized

posterior distribution for the parameters given the data. That equation

provides the formal tool we use to evaluate different models.

2.3 Modelling procedure

We begin by determining which constraints to use on the model. Our

sample is the same one we have used previously (see Raney, Keeton

& Brennan 2020a), which primarily consists of spectroscopically

confirmed images. This is a conservative sample, which we feel is

prudent to test our new framework. Future work will examine the

choice of image constraints. We also note that for simplicity here we

use the 2D approximation for LOS galaxies that we employed in that

previous work, so we ignore any αfg terms.

We then must determine which observed galaxies to treat as

members of the cluster, i.e. we must specify qmem as discussed

above. In this work, we consider two limits to determine cluster

membership: magnitude limit and radial cut. After a cluster member

sample is found, we determine how mass is assigned to the galaxies

via qscale, which is another thing we explore in this work. Again, we

include scatter in the scaling relations through σ b and σ a.

To find the galaxy deflections, we run a large suite of Monte

Carlo simulations. Each galaxy is assigned a mass drawn randomly

from its allowed range. We note that we explicitly run simulations

with different values for the radius parameter zero-point (agal); we

do not need to do this for the mass parameter zero-point as the

deflection is directly proportional to bgal so rescaling to different

values is trivial. We sum the deflections from all galaxies to calculate

αmem. We repeat this for the LOS galaxies to calculate αlos. From

this, we can characterize P (αmem) and P (αlos). As we will show

in the next section, these distributions appear Gaussian, and thus

can be summarized by mean vectors and covariance matrices, e.g.

āmem, ālos, and Cmem, Clos.

With this, we can use equation (A14) to calculate our full posterior

probability distribution, Pmarg(q), for a given set of parameters q and
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Systematic errors in cluster lens modelling 5589

Figure 1. HST multiband colour images (produced using Trilogy, Coe et al. 2012) of the two fields we consider in this work. The critical curves for a source

redshift of z = 9 from our fiducial 2D model as presented in Raney et al. (2020a) are shown in yellow. The dashed circles represent the extent of the images

used as constraints and are centred at the image epicentre; they are 45 and 54 arcsec for Abell 2744 and MACS 0416, respectively. For Abell 2744, we show the

galaxies used for the fiducial model with white circles whose size is proportional to luminosity. We also include three images from source 1 (+) and source 18

(×). Each panel is 3.5 arcmin on a side.

use MCMC methods to sample it. The samples obtained from the

MCMC analysis can then be used to generate surface density or

magnification maps, or any other lensing quantities. We can test

different model choices by changing q and rerunning this procedure.

2.4 The galaxy clusters

In this work, we apply our methodology to two clusters: Abell

2744 and MACS J0416.1–2403, shown in Fig. 1. These are both

fields that were observed during the Hubble Frontier Fields program,

which used HST in conjunction with other space- and ground-based

telescopes to create some of the deepest observations of lensing

clusters. Specifically, six clusters were chosen, all based on their

known lensing capabilities, and the goal was to use these fields to

find and study high redshift galaxies. In addition, many teams were

invited and/or funded to model these fields, which allowed the errors

to be better estimated. Abell 2744 and MACS 0416 were the first

two clusters observed by HST for this program.

Abell 2744 (z = 0.308), as indicated by its name, is part of the

South sky Abell galaxy cluster catalogue (Abell, Corwin & Olowin

1989). It is a very large and complex cluster as it includes many

systems that are in the process of merging or have recently merged.

This is evidenced by the fact that there are five possible brightest

cluster galaxies (BCG) in the field (Mann & Ebeling 2012); optical

and X-ray studies also suggest the cluster has had two mergers in

the recent past (Kempner & David 2004; Owers et al. 2011; Merten

et al. 2011). A spectroscopic survey by Mahler et al. (2018) vastly

increased the number of confirmed lensed images in the field. In this

work, we use Nimg = 71 of these images from Nsrc = 24 sources as

constraints on our models.

MACS 0416 (z = 0.396) is a field from the Massive Cluster

Survey (MACS; Ebeling, Edge & Henry 2001). It too is likely

undergoing a merger; there are two clear BCGs in the field, and

the mass distribution itself is elongated between the two galaxies.

The X-ray map has two peaks as well (Mann & Ebeling 2012). This

field has the most spectroscopically confirmed images of the six

Frontier Fields; we use Nimg = 95 images from Nsrc = 35 sources as

constraints. The specific list of images for both fields can be found

in the appendix of Raney et al. (2020a).

For both fields, our models consist of three large-scale haloes, in

addition to the cluster members and LOS galaxies. We fit for the

parameters of the large-scale haloes (mass, position, ellipticity and

position angle, and radius), as well the zero-points for the member

galaxies. We also include shear to account for any asymmetries in

the mass distribution on large scales.

2.5 Distance metric

Since the results of our MCMC modelling have both large volume

and high dimensionality, it is not trivial to compare two posterior

distributions in order to see how similar they are. Thus, we introduce a

distance metric to quantify these differences. Let us consider samples

from two distributions: xi for i = 1,..., nX from distribution X and

yi for i = 1,..., nY from distribution Y. The root-mean-square (rms)

distance between points in X is DX such that

D2
X =

1

nX(nX − 1)

nX
∑

i=1

nX
∑

j=1

||xi − xj ||
2
C , (5)

where || − ||C denotes the distance between points computed with a

given metric C. For example, Euclidian distance would be calculated

using the identity matrix as C, whereas the Mahalanobis distance

would use the covariance matrix. The rms distance between points

in Y can be written similarly. The rms distance between points in
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5590 C. A. Raney, C. R. Keeton and D. T. Zimmerman

Figure 2. An example to illustrate how differences in parameter distributions translate to values of the distance metric �2. Specifically, we show distributions

for the galaxy mass and radius zero-points (bgal, agal), mass and core radius parameters of the first dark matter halo (b1, s1), the spatial position of that halo as

measured in arcsec from the image epicentre (x1, y1), and terms to describe the ellipticity of the halo (given in quasi-Cartesian coordinates ec = ecos 2θ e and

es = esin 2θ e). The different shades of blue represent three models of the field Abell 2744, chosen for their low, medium, and high �2 values, measured with

respect to the fiducial model shown in grey. The model with the lowest value of �2 (dark blue) is most similar to the fiducial model, although differences exist;

the other two models are increasingly different. We note that �2 is calculated in the full parameter space.

different samples can be written as

D2
XY =

1

nXnY

nX
∑

i=1

nY
∑

j=1

||xi − yj ||
2
C . (6)

We can then define the difference between distributions as

�2 = D2
XY − DXDY . (7)

Appendix B shows that this distance metric can be simplified in terms

of the means mX, mY and covariance matrices CX, CY for the two

samples as

�2 = (mX − mY )T C−1(mX − mY )

+

[
√

tr(C−1CX) −

√

tr(C−1CY )

]2

, (8)

where C denotes the pooled covariance C = (CX + CY)/2. The first

term measures a shift in the means, and is identical to Hotelling’s

t2 statistic. The second term measures a shift in the shapes of the

distributions. If two distributions are identical, the metric will return

zero, whereas very different distributions will return a high value.

As a way to build intuition for the distance metric, we demonstrate

how different �2 values correspond to changes in parameter and

deflection distributions. Fig. 2 shows distributions for a subset of our

model parameters for four different models of the field Abell 2744.

Our fiducial model is shown in grey, whereas the other three models

were picked to represent a wide range in �2 values measured in

relation to the fiducial model. (Note that �2 is calculated in the full

parameter space, even though the figure shows 1D histograms for

simplicity.) We see that the model with the smallest �2 metric is also

most similar to the fiducial model, as expected, although they are not

identical. The other two models become increasingly different from

the fiducial model.

We also show the cluster member galaxy deflection distribution

αmem for these three models in Fig. 3. Specifically, we show the

deflections for two sets of images in Abell 2744, as indicated in

Fig. 1. We now do not show the fiducial model, but represent the

mean of its deflection distribution with the black ×. We see that

the model with the lowest �2 statistic and thus the most similar

parameters lies closer to the fiducial mean.

We also use this to illustrate variations in the deflection distribu-

tions. For example, the outer images of source 1, namely images 1.1

and 1.3, are relatively far from any galaxies; image 1.2 is close to a

galaxy, but that galaxy is relatively small. For source 18, we see that

the right image 18.3 is far from the cluster core and thus its distribu-

tions look similar to those of source 1. However, the other two images

are closer to the cluster core and 18.2 specifically is close to three

galaxies. We see that the deflection distributions for 18.1 and 18.2

thus look different, with more overlap between two of the models.

3 G ALAXY MEMBER SELECTI ON

3.1 Magnitude limit

Let us first examine the magnitude limit mlim. Our fiducial models

used an F814W magnitude limit of 23.5 when selecting cluster

members, but now we consider changing that limit (while holding

all of the other member selection criteria fixed).

We measure the effect of the magnitude limit on model parameters

first by employing the �2 statistic, as shown in Fig. 4. We see that only

including the very brightest galaxies, i.e. using a low magnitude limit,

MNRAS 508, 5587–5601 (2021)
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Systematic errors in cluster lens modelling 5591

Figure 3. Samples from the distributions of cluster member galaxy deflections αmem for two image sets in the field Abell 2744, taken from the models shown in

Fig. 2; the means of the fiducial model are marked with ×. These are the same six images labelled in Fig. 1, with images from source 1 labelled as + and images

from source 18 labelled as ×. We see that sometimes there are distinct differences between the distributions, while other times there is significant overlap.

Figure 4. Distance metric �2 as a function of magnitude limit used during

cluster member selection for Abell 2744 (blue) and MACS 0416 (orange).

The rms is also shown via the dashed lines with values as indicated by the

right-hand labels.

produces a very different model than the fiducial, thus producing a

large �2 statistic. The differences start to decrease past a limit of

20 mag, and by a limit of 22 mag the differences are quite small.

This is an expected result: ignoring more luminous, and thus more

massive, galaxies limits the model’s ability to fit the image positions

on smaller scales. This result is true for both fields, although the

differences are larger in Abell 2744.

As another point of comparison, we also include the rms, which

is the square root of the mean squared distance between predicted

and observed image positions. It is worthwhile to note that some

models have similar rms values, but very different parameters as

indicated by a higher �2 value: for example, comparing mlim = 19

to mlim = 26 in MACS 0416. This is a known limitation of rms and

something that has been seen previously, but the metric can still offer

important insight (see e.g. Johnson & Sharon 2016; Priewe et al.

2017; Remolina González, Sharon & Mahler 2018).

We examine the effect of the magnitude limit on magnifications in

terms of both accuracy and precision via a conditional probability dis-

tribution P(μx|μref). Specifically, we can choose a certain reference

model, say mlim = 17.5, and find all of the pixels that equal a certain

value, say μ = 2, in the magnification map produced by that model.

We then create a distribution P(μx|μx) from those pixels across all of

the realizations of that model. These realizations are created from pa-

rameters resulting from the MCMC analysis; they also include scatter

in the galaxy mass–luminosity scaling relations. This would then test

the precision, i.e. the scatter in the magnification maps of a given

model. Similarly, we can also explore the accuracy of a given model,

i.e. how well it can predict the magnifications of a different model.

This new distribution P(μx|μfid) is created by using the fiducial model

as our reference and comparing all models against that one.

The results of this analysis are shown in Fig. 5 for both fields,

where we plot the medians of the distributions previously described

for a variety of magnitude limits as indicated by the colour of the

lines. We plot the results of our fiducial model in black for easy

comparison; the black lines for each field should be similar between

panels since they are both P(μfid|μfid). For both fields, we see that the

curves move away from the one-to-one line and towards lower values

as magnification increases. This shift towards lower values is to be

expected, and results from the non-linear quality of a magnification

map; specifically, areas of high magnification are more rare than

MNRAS 508, 5587–5601 (2021)
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5592 C. A. Raney, C. R. Keeton and D. T. Zimmerman

Figure 5. Left: Medians of the conditional probability distribution P(μx|μx) where x denotes the specific magnitude limit of the model, as indicated by the colour.

Results for Abell 2744 are shown on top, while MACS 0416 are on bottom. Right: Similar to the left-hand panels, but now comparing a model x with a given mag-

nitude limit to the fiducial model with mlim = 23.5. Note: the black curve indicates the fiducial model, and thus has similar values between panels of a specific field.

those of lower magnification, so if model parameters shift, a given

pixel will more likely have a smaller magnification than larger (for

more detail, see appendix A in Raney et al. 2020b).

We see that the outcome is quite different between the two fields.

In Abell 2744, there is a clear gradient in the self comparison panel,

such that models with a brighter magnitude limit, and thus fewer

galaxies, have a higher precision than those with a higher limit. Since

we include scatter in the scaling relations used to assign mass to the

galaxies, this is perhaps not surprising: there would be less scatter

in magnifications if there are fewer galaxies being varied. However,

this cannot be the whole story, as made clear by the self comparison

results of MACS 0416 which are very similar across the different

magnitude limits. This is something we will explore later in Section 5.

The fiducial comparison results are quite different, where a

gradient is seen for both fields, but going in the opposite direction

than in the self comparisons. The brighter magnitude limit models

which had higher precision are seen to have lower accuracy, i.e. they

are poor predictors of the fiducial model. Conversely, models that

have a magnitude limit similar to that of the fiducial model are more

accurate. Although this holds true for both fields, we see that there

is a wider range in accuracies among the models of Abell 2744 than

MACS 0416.

3.2 Radial limit

We also analyse the effect of a radial limit on our model. Specifically,

we only include galaxies in the model if they fall within rlim of the

centre of the field, as defined by the epicentre of the images we use

as constraints. We consider a range for rlim from 10 to 150 arcsec for

Figure 6. Distance metric �2 as a function of radial cut used during cluster

member selection for Abell 2744 (blue) and MACS 0416 (orange). The rms

is also shown via the dashed lines with values as indicated by the right-hand

labels. The vertical dot–dashed lines indicate the radial limit of the images

used to constrain the model for each of the fields.

Abell 2744 and to 180 arcsec for MACS 0416; the difference in upper

limit arises due to a disparity in survey coverage for the two fields.

The resulting differences in parameter distributions as measured by

�2 is shown in Fig. 6. We also include the radial limits of the image

constraints, denoted by the vertical lines in the figure, which are also

shown as the dashed circles in Fig. 1. As in Fig. 4, we include rms

values for reference.
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Systematic errors in cluster lens modelling 5593

Figure 7. Similar to Fig. 5, but varying the radial limit. The legend indicates the radial cut in arcsec.

In Abell 2744, we see a sharp decline in �2 values which then

flattens out around rlim = 40 arcsec, behaviour that is also seen in

the rms values. This may be due to the fact that images only extend

to 45 arcsec from the epicentre, and thus the majority of galaxies

near the images would be included at 40 arcsec. MACS 0416 also

shows a decrease in �2 values, although not one as dramatic as Abell

2744. Indeed, we again see that the highest values are found when

rlim is smaller than the radial extent of the image constraints. This

indicates that small-scale structure outside the range of images is not

very important, and the model is able to compensate in other ways

(e.g. through shear). We do note that our image constraint selection

is fairly conservative, and thus the images used here cover a smaller

area than if we included all candidate images.

As in our magnitude limit analysis, we also consider the effect the

radial limit has on the magnification of the models. We first examine

the effects of varying rlim on the accuracy of the models using a self-

comparison, as shown in the left-hand panels of Fig. 7. The results

are somewhat different than what we saw before. Specifically, for

Abell 2744 the gradient we saw before is gone; instead, we see a few

models with small radial cuts that have high precision, and then the

rest of the models all have about the same results. Conversely, all

of the models of MACS 0416 are clustred together, although with

slightly more spread than when the magnitude limit was varied.

The results for the fiducial comparison conditional probability dis-

tribution, which tests a model’s ability to predict the magnifications

of the fiducial model, is shown in the right-hand panels of Fig. 7. As

we saw previously, models of Abell 2744 with high precision, i.e.

those with a smaller radial limit, have less accuracy when predicting

the magnifications of the fiducial model. Similar results are seen in

MACS 0416, including a cluster of models which are able to predict

the fiducial magnifications well.

4 SCALI NG R ELATI ONS AND SCATTER

Once the cluster member galaxies are chose, they must be assigned

mass as described in Section 2. Since there is scatter in the mass–

luminosity relation, scatter can also be added. We note that galaxy

kinematics, specifically measured velocity dispersions of cluster

members, can be used to further constrain the galaxy parameters

(see e.g. Monna et al. 2017; Bergamini et al. 2019), but we do not

include such analysis in this work.

We consider two sources of possible systematic error: the slopes

of the scaling relations and the scatter in galaxy mass and radius.

Our fiducial model had scaling relation slopes of qscale = (ηE, ηt ) =

(0.5, 0.4). Other teams modelling the Hubble Frontier Fields used

different values, such as qscale = (0.5, 0.5) (Johnson et al. 2014;

Richard et al. 2014), qscale = (0.7, 0.5) (Caminha et al. 2017), and

qscale = (0.54, 0.66) (Bergamini et al. 2019), the latter of which

used galaxy kinematic information. In addition, our fiducial models

included scatter of 0.1 dex in log10RE and 0.03 dex in log10rt for

the member galaxies, and scatter of 0.3 dex in log10RE for the LOS

galaxies.1 Our choices were chosen based on observational results

presented in Brimioulle et al. (2013).

4.1 Scaling relation slopes

To explore the systematic effects of changing qscale, we considered a

grid of ηE, ηt values ranging from 0.4 to 0.8 for both variables. These

values were the only things that changed in the modelling process;

the cluster member selection used fiducial values and was not varied.

1In our models, the LOS galaxies are assumed to be in the field and thus

untruncated. In practice we set their truncation radius to a fixed, large value.

MNRAS 508, 5587–5601 (2021)
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5594 C. A. Raney, C. R. Keeton and D. T. Zimmerman

Figure 8. Distance metric �2 for various values of ηE and ηt for Abell 2744 (left) and MACS 0416 (right). These values are calculated with reference to our

fiducial values ηE, ηt = (0.5, 0.4), denoted by the white circles.

Figure 9. Similar to Fig. 5 for varying values of ηE, ηt. Specifically, panels indicate a fixed value of ηt as indicated, while the colours indicate the value of ηE;

colours for a given ηE value are the same across panels of each field. Line style and brightness indicates whether the conditional probability distribution for a

given model was calculated with respect to itself (lighter; solid) or with respect to the fiducial model (darker; dashed).

We first ask how this change affects the model parameters.

Specifically, we calculate the distance metric between the new

models and our fiducial model, as shown in Fig. 8. We see that,

for both fields, �2 increases in conjunction with both ηE and ηt,

indicating that the model parameters become more different as a

function of both variables. However, there seems to be more change

as a result of varying ηE, as indicated by the fact that the top left

corner has a higher value than the bottom right. We also note the

difference in colour bar values for the fields: there is an increased

difference among the Abell 2744 models than those of MACS 0416.

We also looked at the magnification maps for all of the grid models

and performed a similar analysis to the conditional probability

distributions shown previously. The results are shown in Fig. 9. Here,

we have collapsed our results vertically, such that each panel has a

fixed value of ηt, while the curves indicate varying values of ηE. We

include both the results of comparing a model with itself (lighter,

solid curves) and with the fiducial model (darker, dashed curves).

In Abell 2744, there are a few trends that can be seen. Among the

self-comparisons, models with a lower ηt have a higher spread in

precisions as ηE is changed, while models with a higher ηt have

smaller variations and higher precision at greater magnification.

Interestingly, both accuracy and precision of the models at lower

magnifications increase as ηt is increased, as evidenced by the

curves shifting towards the one-to-one line. The accuracy at larger

magnifications does not vary with ηt or ηE.

For MACS 0416, there is less variation between the models as

compared with Abell 2744, as expected given that the �2 values

are smaller. Specifically, there is almost no change as ηE increases.

However, we do see that increasing ηt leads to a decrease in model

accuracies across the range of magnifications.

MNRAS 508, 5587–5601 (2021)
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Systematic errors in cluster lens modelling 5595

Figure 10. Similar to Fig. 5, but varying the scatter in (log10RE, log10rt) for cluster member and LOS galaxies (note that values are given in dex). We also

include the 1σ error bars for each model.

4.2 Scaling relation scatter

Finally, we ask how including scatter in the mass and radius scaling

relations affects model parameters and magnification. Specifically,

we allow the member and LOS galaxies to have either the fiducial or

zero scatter. We also test the cases where scatter is added to only the

cluster member galaxies while LOS galaxies are held fixed, and vice

versa as a way to test the relative importance of these populations.

For Abell 2744, we find that the differences between the model

with fiducial scatter and no scatter in both cluster member and LOS

galaxy populations are relatively small, as evidenced by a �2 value

of 27; for MACS 0416, the difference is even smaller at 13. If

there is scatter in the cluster members but not the LOS galaxies,

the differences decrease with values of �2 = 14 and 7 for Abell

2744 and MACS 0416, respectively. The smallest difference is seen

when the cluster members do not include scatter, but the LOS do: �2

= 4.5 for Abell 2744 and 3.4 for MACS 0416.

We also consider the magnification distributions of these four

models. We perform a similar analysis to the previous sections,

where we consider the self and fiducial comparisons, as shown in

Fig. 10. For the self-comparisons of Abell 2744, we see a clear

difference between the models with scatter in the LOS galaxies (blue

and green) and those without (orange and red), where the medians of

the probability distributions of the former two models are very similar

to one another, as are those of the latter two. The 1σ error bars for

the model with no scatter in either galaxy populations is smaller than

those of the model with cluster member scatter. The error bars for

the two models with LOS galaxy scatter are both very similar and

very large. For the fiducial comparison, we see that the two models

without LOS galaxy scatter are relatively unchanged as compared to

the self comparison panel, which is unsurprising. The models with

LOS galaxy scatter have much larger error bars, but medians that are

quite close to the one-to-one line, at least at lower magnifications.

In MACS 0416, the results are quite different. There is a slight

gradient in the medians of the self-comparisons going from no scatter

in either galaxy population, to scatter in only the cluster members

population, to the scatter in only the LOS population, with the fiducial

model having the least precision. However, the differences are much

less than what we saw in Abell 2744. Further, the error bars also show

that there is less scatter within the magnifications themselves, and

again a smaller difference in magnification scatter is seen between the

models. For the fiducial comparison, all models are indistinguishable,

indicating that they all have similar accuracies.

MNRAS 508, 5587–5601 (2021)
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5596 C. A. Raney, C. R. Keeton and D. T. Zimmerman

Figure 11. We show the full distributions calculated from the various modelling choices discussed in this work. Specifically, for magnitude limit and radial

cut, we use only models that have reasonable limit values, i.e. mlim ≥ 22.5 mag and rlim ≥ 90 arcsec; for galaxy scatter and scaling relation distributions, all

models are used. Unfilled violin bodies represent the statistical scatter in the models and are created using the self-comparisons previously described. Filled

violin bodies compare every model in a given model choice grouping to every other model in that grouping, thus probing systematic error introduced by a given

modelling choice. We do this analysis for a reference magnification of three and 10. Dashed black lines show the 1σ error.

5 D ISCUSSION

We now seek to draw some general lessons from our examination

of various model choices. While the HFF program and subsequent

surveys provided a wealth of data on these two fields, studies of other

clusters may have (much) less extensive data. Identifying choices that

yield reliable results may therefore be helpful in guiding observing

and modelling programs for cluster lensing.

We find that, for both fields, a magnitude limit of 22.5 mag

and radial cut of 90 arcsec are lower limits past which the lens

models become very similar, both in terms of model parameters and

magnifications. The magnitude limit is a relatively robust result, but

we do note that the radial limit likely depends on the extent of the

lensed images; for Abell 2744, which has images in a smaller area,

a smaller radial cut could be used.

We can draw such conclusions about parameters determining

cluster member population as it is logical to assume that including

all possible galaxies would give the best description of the true

mass distribution. Drawing conclusions about the scaling relation

and scatter parameters is not as straight forward since we do not

know the true mass of each galaxy. However, our results show that

there is a small bias introduced in the magnifications when a model

with low ηt is compared to a model with a larger value.

In order to draw conclusions about the relative importance of

each modelling choice, we consider the conditional probability

distributions for the reasonable set of models. Specifically, we

perform an analysis similar to what was done in Raney et al. (2020b).

In this case, we do not compare models from different terms, but

instead models with differing values for a given modelling choice.

We show the results of this analysis for Abell 2744 in Fig. 11. To

create our distributions, we only include the models with mlim ≥ 22.5

mag and rlim = 90 arcsec, corresponding to the values we determined

to be reasonable choices. The violins with unfilled bodies show the

statistical errors, i.e. the results of the self-comparison analysis, while

those with filled bodies compare the results from each model in that

group to all of the other models in that group, and thus correspond

to a systematic error.

We see that in the μ = 3 panel, the unfilled and filled violins for the

three choices except galaxy scatter are all very similar; this indicates

that there is no systematic error introduced in the magnifications

if two models with varying model choices in a given group are

compared. This trend continues in the μ = 10 panel for scaling

relation, but the difference between systematic and statistical error

grows for magnitude limit and radial cut, suggesting that systematic

errors may arise at larger magnifications due to these modelling

choices.

The largest difference between statistical and systematic errors is

seen with galaxy scatter. This is unsurprising given the results shown

in Fig. 10, where we saw that statistical error for the models without

LOS galaxy scatter was much smaller than those with the scatter,

although the scatter when compared to the fiducial model was high.

This is a somewhat surprising result given that we only include six

LOS galaxies in our model, yet scatter in the LOS galaxies seems

to be much more important than scatter within the cluster member

galaxies. This is likely due to the placement of the LOS galaxies:

two are in close proximity to more than 10 images, which also

happen to be all of the constraints we use in the northern part of the

field.

The results of this analysis are shown for MACS 0416 in Fig. 12.

We see that the medians of the distributions are closer to the expected

values of three or ten, which is expected given the previous results

showing higher precision and accuracy than what was seen in Abell

2744. We also see that the distributions themselves are smaller, along

with the 1σ error bars, which is in line with Fig. 10 where the scatter in

magnifications is smaller even for the fiducial case. While we once

again see that some modelling choices produce higher systematic

error, specifically at μ = 10, the differences are quite small and thus

we conclude that none of the modelling choices introduce particularly

important systematic errors into the magnifications.

In this work we do not endeavor to explain the differences in results

between Abell 2744 and MACS 0416, but we will briefly offer our

thoughts. The most obvious explanation as to why the magnifications

errors in MACS 0416 are smaller than those of Abell 2744 would be

MNRAS 508, 5587–5601 (2021)
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Systematic errors in cluster lens modelling 5597

Figure 12. Similar to Fig. 11 for MACS 0416.

Figure 13. Medians and 1σ scatter of conditional probability distributions

created by comparing realizations of a given model with itself. Here, we

include the fiducial models of Abell 2744 (blue) and MACS 0416 (orange),

along with 20 models of MACS 0416 created by subsetting the image

constraints such that the number of images used is consistent with the number

used to constrain Abell 2744 (green).

that the number of images used as constraints is higher: recall, we

use Nimg = 71 for Abell 2744 and Nimg = 95 for MACS 0416.

We explore this by using only a subset of the fiducial constraints

such that the number of images in the subset is 71 ± 1. We then

rerun our analysis and calculate the magnifications. We show the

self-comparisons for 20 different subsets in Fig. 13, along with the

results from our fiducial models of Abell 2744 and MACS 0416. We

see that the bulk of the models do appear to have curves similar to the

fiducial analysis for MACS 0416, with only a few deviating to have

similar values as Abell 2744. However, even models that do have

similar medians at higher magnifications show a higher precisions at

magnifications from μ = 6–30.

Thus, it does not seem likely that the differences between the two

fields are driven simply by the number of image constraints. It is

possible that the arrangement of the images may be a factor. As

we saw previously, Abell 2744 is more sensitive to scatter in the

LOS galaxies likely because all of the image sets in the northern

region have images near LOS galaxies. MACS 0416 has images

fairly evenly spread across the field, and thus does not have such a

configuration, which also may be why getting rid of 25 or so images

is less impactful on the model. Zimmerman et al. (2021) take a closer

look at how the choice of image constraints affects lens models.

6 C O N C L U S I O N S

In this work, we aimed to analyse some of the possible modelling

choices that could be causing the systematic errors in magnifications

we found in Raney et al. (2020b). In order to do this, we presented a

modelling methodology using a Bayesian framework with which we

analysed the effects of four different modelling choices: two affecting

cluster member selection (magnitude limit and radial cut), and two

affecting how mass is assigned to galaxies (scaling relation slopes

and scatter).

For the cluster member selection, we found that there are clear

differences in model parameters and magnifications if certain values

are chosen. Specifically, we saw that a model with a smaller number

of galaxies, e.g. a bright magnitude limit or very small radial cut, will

produce magnifications that are very precise but cannot accurately

predict magnifications of a model with a higher magnitude or radial

limit. We found that for mlim ≥ 22.5 mag and rlim ≥ 90 arcsec, models

had similar parameter and magnification distributions, although we

note the radial limit likely depends on the extent of the images used

as constraints.

For the scaling relation slopes, we found that model parameters

may show significant differences as both ηE and ηt increase, but this

results in only a modest change in magnifications. Unlike the other

model choices, we found that the results for the galaxy scatter were

quite different between the two fields. Specifically, scatter in the LOS

galaxies greatly increased the scatter seen in the magnifications of

Abell 2744. In MACS 0416, only a small change in model precision

was seen when galaxy scatter was varied, and model accuracy did

not change at all.

MNRAS 508, 5587–5601 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
8
/4

/5
5
8
7
/6

3
8
2
1
4
0
 b

y
 R

u
tg

e
rs

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 2

9
 A

u
g
u
s
t 2

0
2
2



5598 C. A. Raney, C. R. Keeton and D. T. Zimmerman

In general, our results show that MACS 0416 is better constrained

than Abell 2744; this is seen in the smaller �2 values and more

accurate and precise magnifications. The differences are not fully

explained by the fact that MACS 0416 has more image constraints

than Abell 2744. It appears that each cluster lens field has some

unique properties based on the configuration of images and the

complexity of the mass distribution. Thus, our new framework for

understanding systematic errors in cluster lens models allows us not

only to understand the relative importance of different modelling

choices, but also to identify the fields that are most robust to

systematic effects.
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APPENDIX A : D ERIVATION O F POSTERIO R PRO BA BI LI TY DI STRI BU TI ON

Let us begin with the lens equation relating a source position y with the image positions x and the deflection α at those positions

y = x − αclus(xi − αfg(xi)) − αlos(xi), (A1)

where αclus represents the net deflection from all of the mass in the cluster. We note that the differing treatments of foreground versus total

LOS mass is seen here, where only the foreground mass impacts the positions at which the cluster deflection must be calculated.

Equation (A1) fully describes the lensing along a 3D line of sight towards a source. However, we can simplify this equation by assuming

that the foreground deflection is small when compared to that of the cluster. In doing so, we can make a Taylor series expansion:

αclus(xi − αfg(xi)) ≈ αclus(xi) − �clus,iαfg(xi), (A2)

where �clus,i = ∂αclus/∂xi is a 2 × 2 matrix. Using this, as well as expanding αclus into αhalo and αmem, then gives

y = xi − [αhalo(xi) + αmem(xi) + αlos(xi) − �clus,iαfg(xi)]. (A3)

The likelihood function for data given the model can then be written as (see Keeton 2010)

L = |Cobs|
−1/2 exp

(

−
1

2

∑

{s,i}

[xi − (αhalo + αmem + αlos − �clus,iαfg) − ys]
TμT

i C−1
obsμ

T
i [xi − (αhalo + αmem + αlos − �clus,iαfg) − ys]

)

, (A4)

where we include the measurement uncertainty for each image i in Cobs. We note the sum uses {s, i} to denote that we keep track of which

images i go with which source s. The magnification tensor μi is used to convert between source and lens planes for a given image i. We also

keep track of determinant factors that are important and thus include |Cobs|
−1/2 for the normalization, but omit factors of 2π for simplicity.

MNRAS 508, 5587–5601 (2021)
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Systematic errors in cluster lens modelling 5599

Thus, we see that our likelihood function is Gaussian in our previously discussed random variables, i.e. αmem,αlos, and αfg, as well as in the

source positions. We can collect these into a block vector as

v =

⎡

⎢

⎢

⎣

αmem

αlos

αfg

y

⎤

⎥

⎥

⎦

. (A5)

We also define the helper matrix A such that

A =
[

I I −�clus U
]

, (A6)

where I is an identity matrix with dimensions 2Nimg × 2Nimg and Nimg is the number of images. The matrix U is used to connect which images

go with which sources. For example, if the constraints consisted of two sources, the first with two images and the second with three, U would

take the form

U =

⎡

⎢

⎢

⎢

⎢

⎣

I2 0

I2 0

0 I2

0 I2

0 I2

⎤

⎥

⎥

⎥

⎥

⎦

. (A7)

Here we use I2 to denote the 2 × 2 identity matrix. With these definitions, we can rewrite our likelihood in a more compact form:

L = |Cobs |
−1/2e− 1

2
(x−αhalo−Av)T μT C−1

obs
μ(x−αhalo−Av). (A8)

Next, we must consider the pertinent priors, specifically for αmem, αlos, αfg, and y. We assume that the deflections are Gaussian, although

we note that this would not necessarily hold if an image lies very close to a member galaxy and is thus more heavily influenced by it. We show

examples of deflection distributions for a set of images in Section 3.

If the cluster member deflections are indeed Gaussian, then they can be described by a mean vector āmem and covariance matrix Cmem.

Similarly, αlos and αfg can also be described in this manner, although we must allow for cross terms in the covariance matrices. For the source

positions y, we assume Gaussian priors but with a standard deviation σ y large enough such that the priors are effectively uninformative. Thus,

the priors can be written as

P = |Cpri|
−1/2e− 1

2
(v−ā)T C−1

pri (v−ā), (A9)

where

ā =

⎡

⎢

⎢

⎣

āmem

ālos

āfg

0

⎤

⎥

⎥

⎦

, Cpri =

⎡

⎢

⎢

⎣

Cmem 0 0 0

0 C los C los,fg 0

0 CT
los,fg C fg 0

0 0 0 σ 2
y I

⎤

⎥

⎥

⎦

, (A10)

and we have once again dropped any factors of 2π .

The important takeaway is that the full posterior P ∝ LP is still Gaussian in our nuisance parameters v:

P ∝ |Cobs|
−1/2 |Cpri|

−1/2e− 1
2

(x−αhalo−Av)T μT C−1
obs

μ(x−αhalo−Av)− 1
2

(v−ā)T C−1
pri (v−ā). (A11)

This is useful because we can then marginalize over the nuisance parameters using standard Gaussian integration. In order to do so, we define

d = x − αhalo − Aā

= x − αhalo − āmem − ālos + �halo āfg, (A12)

and

Cmarg = μ−1Cobsμ
−T + ACpri AT

= μ−1Cobsμ
−T + Cmem + C los − �clusC

T
los,fg − C los,fg�

T
clus + �clusC fg�

T
clus + σ 2

y UUT . (A13)

Then our marginalized posterior distribution Pmarg =
∫

LPdv is given as

Pmarg(q) ∝ |μ|−1|Cmarg|
−1/2e− 1

2
dT C−1

marg d . (A14)

We note that formally we allow σ y → ∞ so that the priors on the source positions are uniform over an infinite domain. This may seem to

pose a problem in calculating Cmarg, specifically in the last term of equation (A13). However, the inverse as needed for equation (A14) is still

well defined. We can use the Woodbury matrix identity to write

C−1
marg

∣

∣

∣

σy→∞
= Seff − SeffU(UT SeffU)−1UT Seff, (A15)

where

S−1
eff = μ−1Cobsμ

−T + Cmem + C los − �clusC
T
los,fg − C los,fg�

T
clus + �clusC fg�

T
clus. (A16)
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The determinant |Cmarg| has asymptotic behaviour when σ → ∞:

ln |Cmarg| ≈ ln |UT SeffU | − ln |Seff | + 4Nsrc ln σy, (A17)

where the last term is such because the priors have σ 2
y terms for each spatial dimension. Since we either normalize the posterior or consider

relative posteriors (i.e. when comparing models), we can omit the last term.

APPENDIX B: SIMPLIFYING THE D ISTANCE METRI C

Formally, the distance metric �2 defined in equation (7) involves big double sums, but with some algebra it can be written in terms of moments

of the distributions. To see this, let’s write out the sums in DX (omitting limits to simplify the notation):

D2
X =

1

nX(nX − 1)

∑

i,j

(

xT
i C−1xi + xT

j C−1xj − xT
i C−1xj − xT

j C−1xi

)

=
2

nX − 1

∑

i

xT
i C−1xi −

2

nX(nX − 1)

∑

i,j

xT
i C−1xj

=
2

nX − 1

∑

i

xT
i C−1xi −

2

nX(nX − 1)

⎛

⎝

∑

i

xT
i C−1xi +

∑

i 	=j

xT
i C−1xj

⎞

⎠

=
2

nX

∑

i

xT
i C−1xi −

2

nX(nX − 1)

∑

i 	=j

xT
i C−1xj

= 2(〈xT C−1x〉 − 〈x〉T C−1〈x〉) (B1)

In the first line, index manipulation shows that the first and second terms are identical, as are the third and fourth terms, leading to the second

line. Then we separate the double sum into terms with i = j and terms with i 	= j. In the third line, we can combine the sums in the first and second

terms. To further process the last line, let’s write out the first term in component notation, where indices a and b now run over the components:

〈

xT C−1x
〉

=

〈

∑

a,b

(C−1)abxaxb

〉

=
∑

a,b

(C−1)ab 〈xaxb〉

=
∑

a,b

(C−1)ab [μaμb + (CX)ab]

= mT
XC−1mX + tr(C−1CX) (B2)

where mX and CX are, respectively, the mean vector and covariance matrix for distribution X. Combining equations (B1) and (B2) yields

D2
X = 2 tr(C−1CX) (B3)

We can similarly find D2
Y = 2 tr(C−1CY ). These expressions quantify an overall ‘size’ for each distribution, according to the metric C. If we

use Euclidean distances (C = I) then D2
X is twice the sum of the variances across all dimensions of X (and likewise for Y).

Now consider DXY:

D2
XY =

1

nXnY

nX
∑

i=1

nY
∑

j=1

(

xT
i C−1xi + yT

j C−1 yj − xT
i C−1 yj − yT

j C−1xi

)

=
〈

xT C−1x
〉

+
〈

yT C−1 y
〉

− mT
XC−1mY − mT

Y C−1mX, (B4)

where we use the fact that the two samples are independent in the cross terms. Now, we substitute for the first two terms using equation (B2)

and the corresponding expression for Y, and collect terms to obtain

D2
XY = (mX − mY )T C−1(mX − mY ) + tr(C−1CX) + tr(C−1CY ). (B5)

Combining the pieces, we can write our test statistic as

�2 = D2
XY − DXDY = (mX − mY )T C−1(mX − mY ) + tr(C−1CX) + tr(C−1CY ) − 2

√

tr(C−1CX) tr(C−1CY ). (B6)

We can combine the last three terms to obtain our final expression:

�2 = (mX − mY )T C−1(mX − mY ) +

[
√

tr(C−1CX) −

√

tr(C−1CY )

]2

. (B7)

The first term is identical to Hotelling’s t2 statistic, and it measures a shift in the means. The second term measures a difference in the

sizes/shapes of the distributions.
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Note: Baringhaus & Franz (2004) introduced a different multivariate two-sample test. They considered average rather than rms distances

D̃X =
1

nX(nX − 1)

nX
∑

i=1

nX
∑

j=1

||xi − xj || (and likewise for Y ) (B8)

D̃XY =
1

nXnY

nX
∑

i=1

nY
∑

j=1

||xi − yj || (B9)

and defined their test statistic as

T = D̃XY −
1

2
(D̃X + D̃Y ) (B10)

Their definition used the Euclidean distance, but it can be generalized to use a Mahalanobis distance. As far as we can tell, the T statistic

cannot be simplified to avoid the double sums. We favour the �2 statistic because it gives a nice generalization of Hotelling’s t2 statistic that

clearly accounts for differences in both the locations and shapes of the distributions, while only requiring first and second moments (which

can be computed more rapidly than double sums).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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