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ABSTRACT

With high-quality data from programs like the Hubble Frontier Fields, cluster lensing has reached the point that models are
dominated by systematic rather than statistical uncertainties. We introduce a Bayesian framework to quantify systematic effects
by determining how different lens modelling choices affect the results. Our framework includes a new two-sample test for
quantifying the difference between posterior probability distributions that are sampled by methods like Monte Carlo Markov
chains. We use the framework to examine choices related to the selection and treatment of cluster member galaxies in two of
the Frontier Field clusters: Abell 2744 and MACS J0416.1-2403. When selecting member galaxies, choices about depth and
area affect the models; we find that model results are robust for an /-band magnitude limit of my;,, > 22.5 mag and a radial cut
of rim > 90 arcsec (from the centre of the field), although the radial limit likely depends on the spatial extent of lensed images.
Mass is typically assigned to galaxies using luminosity/mass scaling relations. We find that the slopes of the scaling relations
can have significant effects on lens model parameters but only modest effects on lensing magnifications. Interestingly, scatter in
the scaling relations affects the two fields differently. This analysis illustrates how our framework can be used to analyse lens
modelling choices and guide future cluster lensing programs.

Key words: gravitational lensing: strong —methods: statistical —galaxies: clusters: individual: Abell 2744 — galaxies: clusters:
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1 INTRODUCTION

Gravitational lensing by galaxy clusters has become a powerful tool
to study the origin and evolution of galaxies. A galaxy cluster acting
as a lens can be used as a ‘cosmic telescope’ to magnify galaxies
from the first billion years of cosmic history, at redshifts z ~ 10—
11 (e.g. Zheng et al. 2012; Coe et al. 2013; Bouwens et al. 2014;
Salmon et al. 2018, 2020) and help improve constraints on the high-
redshift luminosity function (e.g. McLeod, McLure & Dunlop 2016;
Bouwens et al. 2017). However, in order to estimate a lensed galaxy’s
intrinsic luminosity, a magnification must be determined in order to
correct the observed luminosity. Since errors in magnification can
thus propagate into other results, it is important to understand them
and how they may be affected by modelling choices.

Cluster lens models are quite complex, as they describe mass
distributions that are themselves very complex (see e.g. Kneib &
Natarajan 2011). Modelling is made more complicated by the fact
that clusters known for their lensing capabilities are often disturbed
systems, because having multiple group- or cluster-sized haloes can
significantly enhance the cross-section for strong lensing (Wong et al.
2012; French etal. 2014). In order to describe these complex systems,
lens mass models often have 20+ parameters, and errors are often
found using Markov chain Monte Carlo (MCMC) sampling of the
parameter space. However, there are also many choices that have to
be made when constructing a model, which do not explicitly appears
as model parameters and thus are hidden from an MCMC analysis.
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This means that uncertainties revealed by an MCMC analysis, which
are statistical in nature, will underestimate the true errors due to other
systematic effects. Since the problem is a systematic one, it will not
necessarily be solved by better data (e.g. Johnson & Sharon 2016;
Meneghetti et al. 2017; Priewe et al. 2017).

The need to understanding model errors has influenced the design
of programs like the Hubble Frontier Fields (HFF; Lotz et al. 2017).
Many teams were invited to create lens models using their own
methodologies, with the idea that the resulting ensemble of models
would sample the range of systematic effects. In Raney et al. (2020b),
we compared the most recent models of the six HFF clusters and
found that systematic differences in magnifications were indeed
larger than the statistical errors. While the HFF lens modelling
program has provided a major advance in exploring systematic
uncertainties, it was not a controlled experiment so it did not clearly
reveal what aspects of lens modelling contribute most to differences
in models.

We have begun a project to build an error budget for cluster lens
modelling that quantifies the effects of different modelling choices.
In this paper, we lay out a new statistical framework that can be used
to more fully estimate model errors (Section 2), and then apply it to
choices related to the treatment of galaxies within the cluster, namely
cluster member selection (Section 3) and the scaling relations used
to assign galaxy masses (Section 4). We discuss our results and place
them in context with previous work in Section 5, and summarize
our conclusions in Section 6. In a companion paper, we use our new
framework to quantify systematic effects associated with the choice

220z 1snbny gz uo Jasn sauelqi Ausiaaiun siebiny Aq 0¥ 1L Z8€9//8SS//80S/3101/SEIUW/ WO dNo-olWwapeoe//:sdny WwoJj papeojumoq



5588

of images used as constraints on lens models (Zimmerman, Keeton
& Raney 2021).

2 METHODOLOGY

2.1 Model components

We use a parametric modelling technique where mass is assigned
using density profiles described by a given set of parameters. We
begin by outlining the different mass components that comprise our
models. Specifically, we do this in terms of the deflection angle &,
which describes how much light is bent as it passes by the component.
For ease in reading, we will more often refer to the reduced deflection
angle o« = (Dys/Ds)&, which is scaled by Djs and Ds, the angular
diameter distances between the lens and a given source, and the
observer and that source, respectively.

The first component includes large-scale haloes that characterize
the dark matter and/or intracluster medium. These haloes are de-
scribed by the parameters ¢q,,,, and contribute a deflection ap,,. We
use softened isothermal elliptical mass distributions for these haloes,
but the framework presented here is general.

The cluster member galaxies are described by a pseudo-Jaffe
model for the mass distribution. These galaxies are not all free to vary,
but are instead assigned mass and radius using scaling relations based
on their luminosity in relation to a reference galaxy. In this work,
we use the brightest cluster galaxy (BCG) as the reference galaxy.
The scaling relations can then be described by ¢.,,. = (n£, n;) such
that the nominal Einstein radius and truncation radius for galaxy i
are given by

_ L ne
bi =bga | — | . ()
el <Lb0g)

Li Nt
a; = Agal (T) s ()
beg

where L; and Ly, refer to the F814W luminosity for galaxy i and the
BCG, respectively. However, given scatter in the scaling relations we
should treat the actual parameters b; and a; as random variables; we
use lognormal distributions with means b; and &; and scatter o), and
o, that are derived from observed scaling relations (e.g. Brimioulle
et al. 2013).

We use gy = (@gal, bgar) to describe the zero-points of the scaling
relations. The parameters used to determine which galaxies are
treated as cluster members, e.g. a magnitude or radial limit, are
described by ¢,,.,- We note that g, and g are usually fixed
when modelling, while g, is either optimized or marginalized,
although there are some exceptions (see e.g. Kawamata et al. 2016).
Because of the scatter in the scaling relations, the deflection due to the
cluster members is a random variable & e, drawn from a probability
distribution given by Pmem(amemlqmem* qgal» qscale)'

The mass along the line of sight (LOS) must be handled slightly
differently. Specifically, we must consider the foreground structure
that lies between the observer and the cluster differently than the total
LOS structure. This is because mass in the foreground will affect
the positions at which deflections in the cluster lens plane must be
calculated. The deflection term for the foreground mass is a sum of
the deflections of all perturbers at a redshift a less than that of the
lens, specified as a < [, scaled by their respective distance scalings:

Dy
=) 8, 3)

a<l 1

where D, and D; refer to the angular diameter distances between the
perturber and lens and between the observer and lens, respectively.
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Similarly, the total LOS deflection is a sum of all perturbers at
redshift b between the observer and the source specified as b < s:

Dy
Qlos = Z Dh op, (4)

S

b<s

where Dy refers to the angular diameter distance between the
perturber and the source. Note that the foreground mass appears in
both &, and e, but with different weightings.

In this work we only consider mass along the LOS in the form
of galaxies, which are described similarly to the cluster member
galaxies; we use ¢, to characterize them. Thus, the deflections are
also random variables, now drawn from the probability distribution
Pros(0tsg, ®10sG 105 9 gar> 9 scare)- This is a joint probability distribution
since foreground perturbers are found in both sums, so o, and
ag, will be correlated. We note that the LOS galaxies can still be
anchored to the BCG as long as we account for the redshift scaling
in the zero-points of the scaling relations.

Our complete set of model parameters is then given as
q= {qhalw 4 mem> qgal7 9 scale qlos}’ and we can use these to draw
Qmem» Clos, and &g, from their probability distributions.

2.2 Statistical framework

In a Bayesian framework, we can write down a likelihood for the
data given a model, which explicitly depends on o¢pem, @105, and egg
through the lens equation. If those random variables are Gaussian, we
can marginalize over them as described in Appendix A. In particular,
equation (A14) gives our final expression for the marginalized
posterior distribution for the parameters given the data. That equation
provides the formal tool we use to evaluate different models.

2.3 Modelling procedure

We begin by determining which constraints to use on the model. Our
sample is the same one we have used previously (see Raney, Keeton
& Brennan 2020a), which primarily consists of spectroscopically
confirmed images. This is a conservative sample, which we feel is
prudent to test our new framework. Future work will examine the
choice of image constraints. We also note that for simplicity here we
use the 2D approximation for LOS galaxies that we employed in that
previous work, so we ignore any a, terms.

We then must determine which observed galaxies to treat as
members of the cluster, i.e. we must specify g, as discussed
above. In this work, we consider two limits to determine cluster
membership: magnitude limit and radial cut. After a cluster member
sample is found, we determine how mass is assigned to the galaxies
via ¢ ., Which is another thing we explore in this work. Again, we
include scatter in the scaling relations through o, and o .

To find the galaxy deflections, we run a large suite of Monte
Carlo simulations. Each galaxy is assigned a mass drawn randomly
from its allowed range. We note that we explicitly run simulations
with different values for the radius parameter zero-point (ag,); we
do not need to do this for the mass parameter zero-point as the
deflection is directly proportional to bg, so rescaling to different
values is trivial. We sum the deflections from all galaxies to calculate
opem. We repeat this for the LOS galaxies to calculate oos. From
this, we can characterize P(0¢yen) and P(ojos). As we will show
in the next section, these distributions appear Gaussian, and thus
can be summarized by mean vectors and covariance matrices, e.g.
dmem7 ‘_llosy and Cmemy Clos»

With this, we can use equation (A14) to calculate our full posterior
probability distribution, Prag(g), for a given set of parameters g and
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Figure 1. HST multiband colour images (produced using Trilogy, Coe et al. 2012) of the two fields we consider in this work. The critical curves for a source
redshift of z = 9 from our fiducial 2D model as presented in Raney et al. (2020a) are shown in yellow. The dashed circles represent the extent of the images
used as constraints and are centred at the image epicentre; they are 45 and 54 arcsec for Abell 2744 and MACS 0416, respectively. For Abell 2744, we show the
galaxies used for the fiducial model with white circles whose size is proportional to luminosity. We also include three images from source 1 (+) and source 18

(x). Each panel is 3.5 arcmin on a side.

use MCMC methods to sample it. The samples obtained from the
MCMC analysis can then be used to generate surface density or
magnification maps, or any other lensing quantities. We can test
different model choices by changing ¢ and rerunning this procedure.

2.4 The galaxy clusters

In this work, we apply our methodology to two clusters: Abell
2744 and MACS J0416.1-2403, shown in Fig. 1. These are both
fields that were observed during the Hubble Frontier Fields program,
which used HST in conjunction with other space- and ground-based
telescopes to create some of the deepest observations of lensing
clusters. Specifically, six clusters were chosen, all based on their
known lensing capabilities, and the goal was to use these fields to
find and study high redshift galaxies. In addition, many teams were
invited and/or funded to model these fields, which allowed the errors
to be better estimated. Abell 2744 and MACS 0416 were the first
two clusters observed by HST for this program.

Abell 2744 (z = 0.308), as indicated by its name, is part of the
South sky Abell galaxy cluster catalogue (Abell, Corwin & Olowin
1989). It is a very large and complex cluster as it includes many
systems that are in the process of merging or have recently merged.
This is evidenced by the fact that there are five possible brightest
cluster galaxies (BCG) in the field (Mann & Ebeling 2012); optical
and X-ray studies also suggest the cluster has had two mergers in
the recent past (Kempner & David 2004; Owers et al. 2011; Merten
et al. 2011). A spectroscopic survey by Mahler et al. (2018) vastly
increased the number of confirmed lensed images in the field. In this
work, we use Niyg = 71 of these images from Ny = 24 sources as
constraints on our models.

MACS 0416 (z = 0.396) is a field from the Massive Cluster
Survey (MACS; Ebeling, Edge & Henry 2001). It too is likely

undergoing a merger; there are two clear BCGs in the field, and
the mass distribution itself is elongated between the two galaxies.
The X-ray map has two peaks as well (Mann & Ebeling 2012). This
field has the most spectroscopically confirmed images of the six
Frontier Fields; we use Ning = 95 images from N, = 35 sources as
constraints. The specific list of images for both fields can be found
in the appendix of Raney et al. (2020a).

For both fields, our models consist of three large-scale haloes, in
addition to the cluster members and LOS galaxies. We fit for the
parameters of the large-scale haloes (mass, position, ellipticity and
position angle, and radius), as well the zero-points for the member
galaxies. We also include shear to account for any asymmetries in
the mass distribution on large scales.

2.5 Distance metric

Since the results of our MCMC modelling have both large volume
and high dimensionality, it is not trivial to compare two posterior
distributions in order to see how similar they are. Thus, we introduce a
distance metric to quantify these differences. Let us consider samples
from two distributions: x; for i = 1,..., ny from distribution X and
y; for i = 1,..., ny from distribution Y. The root-mean-square (rms)
distance between points in X is Dy such that

ny ny

1
Dy = ——— llxi — x;llE (5)
nx(nxfl);; ! !
where || — || denotes the distance between points computed with a

given metric C. For example, Euclidian distance would be calculated
using the identity matrix as C, whereas the Mahalanobis distance
would use the covariance matrix. The rms distance between points
in Y can be written similarly. The rms distance between points in
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Figure 2. An example to illustrate how differences in parameter distributions translate to values of the distance metric A%. Specifically, we show distributions
for the galaxy mass and radius zero-points (bgal, dgar), mass and core radius parameters of the first dark matter halo (b1, 1), the spatial position of that halo as
measured in arcsec from the image epicentre (x, y;), and terms to describe the ellipticity of the halo (given in quasi-Cartesian coordinates e, = ecos 26, and
es = esin 26,). The different shades of blue represent three models of the field Abell 2744, chosen for their low, medium, and high A? values, measured with
respect to the fiducial model shown in grey. The model with the lowest value of A? (dark blue) is most similar to the fiducial model, although differences exist;
the other two models are increasingly different. We note that A? is calculated in the full parameter space.

different samples can be written as

nx ny
1

o Zani -yl (6)

i=1 j=1

20—
Dyy =

We can then define the difference between distributions as
A? = D%, — DxDy. @)

Appendix B shows that this distance metric can be simplified in terms
of the means my, my and covariance matrices Cy, Cy for the two
samples as

A’ = (mx —my) C™'(mx — my)
2
+ {\/tr(C’ICX) - \/tr(c”cy)] , 8)

where C denotes the pooled covariance C = (Cy + Cy)/2. The first
term measures a shift in the means, and is identical to Hotelling’s
£* statistic. The second term measures a shift in the shapes of the
distributions. If two distributions are identical, the metric will return
zero, whereas very different distributions will return a high value.
As a way to build intuition for the distance metric, we demonstrate
how different A” values correspond to changes in parameter and
deflection distributions. Fig. 2 shows distributions for a subset of our
model parameters for four different models of the field Abell 2744.
Our fiducial model is shown in grey, whereas the other three models
were picked to represent a wide range in A” values measured in
relation to the fiducial model. (Note that A? is calculated in the full
parameter space, even though the figure shows 1D histograms for
simplicity.) We see that the model with the smallest A? metric is also
most similar to the fiducial model, as expected, although they are not
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identical. The other two models become increasingly different from
the fiducial model.

We also show the cluster member galaxy deflection distribution
omem for these three models in Fig. 3. Specifically, we show the
deflections for two sets of images in Abell 2744, as indicated in
Fig. 1. We now do not show the fiducial model, but represent the
mean of its deflection distribution with the black x. We see that
the model with the lowest A? statistic and thus the most similar
parameters lies closer to the fiducial mean.

We also use this to illustrate variations in the deflection distribu-
tions. For example, the outer images of source 1, namely images 1.1
and 1.3, are relatively far from any galaxies; image 1.2 is close to a
galaxy, but that galaxy is relatively small. For source 18, we see that
the right image 18.3 is far from the cluster core and thus its distribu-
tions look similar to those of source 1. However, the other two images
are closer to the cluster core and 18.2 specifically is close to three
galaxies. We see that the deflection distributions for 18.1 and 18.2
thus look different, with more overlap between two of the models.

3 GALAXY MEMBER SELECTION

3.1 Magnitude limit

Let us first examine the magnitude limit 71;,,. Our fiducial models
used an F814W magnitude limit of 23.5 when selecting cluster
members, but now we consider changing that limit (while holding
all of the other member selection criteria fixed).

‘We measure the effect of the magnitude limit on model parameters
first by employing the A statistic, as shown in Fig. 4. We see that only
including the very brightest galaxies, i.e. using a low magnitude limit,
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Figure 3. Samples from the distributions of cluster member galaxy deflections emem for two image sets in the field Abell 2744, taken from the models shown in
Fig. 2; the means of the fiducial model are marked with x. These are the same six images labelled in Fig. 1, with images from source 1 labelled as + and images
from source 18 labelled as x. We see that sometimes there are distinct differences between the distributions, while other times there is significant overlap.
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Figure 4. Distance metric A? as a function of magnitude limit used during
cluster member selection for Abell 2744 (blue) and MACS 0416 (orange).
The rms is also shown via the dashed lines with values as indicated by the
right-hand labels.

produces a very different model than the fiducial, thus producing a
large A? statistic. The differences start to decrease past a limit of
20 mag, and by a limit of 22 mag the differences are quite small.
This is an expected result: ignoring more luminous, and thus more
massive, galaxies limits the model’s ability to fit the image positions
on smaller scales. This result is true for both fields, although the
differences are larger in Abell 2744.

As another point of comparison, we also include the rms, which
is the square root of the mean squared distance between predicted
and observed image positions. It is worthwhile to note that some

models have similar rms values, but very different parameters as
indicated by a higher A? value: for example, comparing my, = 19
to My, = 26 in MACS 0416. This is a known limitation of rms and
something that has been seen previously, but the metric can still offer
important insight (see e.g. Johnson & Sharon 2016; Priewe et al.
2017; Remolina Gonzilez, Sharon & Mahler 2018).

We examine the effect of the magnitude limit on magnifications in
terms of both accuracy and precision via a conditional probability dis-
tribution P(u,|irer). Specifically, we can choose a certain reference
model, say myi,, = 17.5, and find all of the pixels that equal a certain
value, say 1 = 2, in the magnification map produced by that model.
‘We then create a distribution P(jt,|1,) from those pixels across all of
the realizations of that model. These realizations are created from pa-
rameters resulting from the MCMC analysis; they also include scatter
in the galaxy mass—luminosity scaling relations. This would then test
the precision, i.e. the scatter in the magnification maps of a given
model. Similarly, we can also explore the accuracy of a given model,
i.e. how well it can predict the magnifications of a different model.
This new distribution P(jt,|/44q) is created by using the fiducial model
as our reference and comparing all models against that one.

The results of this analysis are shown in Fig. 5 for both fields,
where we plot the medians of the distributions previously described
for a variety of magnitude limits as indicated by the colour of the
lines. We plot the results of our fiducial model in black for easy
comparison; the black lines for each field should be similar between
panels since they are both P(j144]464). For both fields, we see that the
curves move away from the one-to-one line and towards lower values
as magnification increases. This shift towards lower values is to be
expected, and results from the non-linear quality of a magnification
map; specifically, areas of high magnification are more rare than
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Figure 5. Left: Medians of the conditional probability distribution P(u,|it,) where x denotes the specific magnitude limit of the model, as indicated by the colour.
Results for Abell 2744 are shown on top, while MACS 0416 are on bottom. Right: Similar to the left-hand panels, but now comparing a model x with a given mag-
nitude limit to the fiducial model with mi, = 23.5. Note: the black curve indicates the fiducial model, and thus has similar values between panels of a specific field.

those of lower magnification, so if model parameters shift, a given
pixel will more likely have a smaller magnification than larger (for
more detail, see appendix A in Raney et al. 2020b).

We see that the outcome is quite different between the two fields.
In Abell 2744, there is a clear gradient in the self comparison panel,
such that models with a brighter magnitude limit, and thus fewer
galaxies, have a higher precision than those with a higher limit. Since
we include scatter in the scaling relations used to assign mass to the
galaxies, this is perhaps not surprising: there would be less scatter
in magnifications if there are fewer galaxies being varied. However,
this cannot be the whole story, as made clear by the self comparison
results of MACS 0416 which are very similar across the different
magnitude limits. This is something we will explore later in Section 5.

The fiducial comparison results are quite different, where a
gradient is seen for both fields, but going in the opposite direction
than in the self comparisons. The brighter magnitude limit models
which had higher precision are seen to have lower accuracy, i.e. they
are poor predictors of the fiducial model. Conversely, models that
have a magnitude limit similar to that of the fiducial model are more
accurate. Although this holds true for both fields, we see that there
is a wider range in accuracies among the models of Abell 2744 than
MACS 0416.

3.2 Radial limit

We also analyse the effect of a radial limit on our model. Specifically,
we only include galaxies in the model if they fall within ryy, of the
centre of the field, as defined by the epicentre of the images we use
as constraints. We consider a range for ry;,, from 10 to 150 arcsec for
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Figure 6. Distance metric A as a function of radial cut used during cluster
member selection for Abell 2744 (blue) and MACS 0416 (orange). The rms
is also shown via the dashed lines with values as indicated by the right-hand
labels. The vertical dot—dashed lines indicate the radial limit of the images
used to constrain the model for each of the fields.

Abell 2744 and to 180 arcsec for MACS 0416; the difference in upper
limit arises due to a disparity in survey coverage for the two fields.
The resulting differences in parameter distributions as measured by
A? is shown in Fig. 6. We also include the radial limits of the image
constraints, denoted by the vertical lines in the figure, which are also
shown as the dashed circles in Fig. 1. As in Fig. 4, we include rms
values for reference.
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Figure 7. Similar to Fig. 5, but varying the radial limit. The legend indicates the radial cut in arcsec.

In Abell 2744, we see a sharp decline in A” values which then
flattens out around ry;,, = 40 arcsec, behaviour that is also seen in
the rms values. This may be due to the fact that images only extend
to 45 arcsec from the epicentre, and thus the majority of galaxies
near the images would be included at 40 arcsec. MACS 0416 also
shows a decrease in A? values, although not one as dramatic as Abell
2744. Indeed, we again see that the highest values are found when
Tim 18 smaller than the radial extent of the image constraints. This
indicates that small-scale structure outside the range of images is not
very important, and the model is able to compensate in other ways
(e.g. through shear). We do note that our image constraint selection
is fairly conservative, and thus the images used here cover a smaller
area than if we included all candidate images.

As in our magnitude limit analysis, we also consider the effect the
radial limit has on the magnification of the models. We first examine
the effects of varying ry;;,, on the accuracy of the models using a self-
comparison, as shown in the left-hand panels of Fig. 7. The results
are somewhat different than what we saw before. Specifically, for
Abell 2744 the gradient we saw before is gone; instead, we see a few
models with small radial cuts that have high precision, and then the
rest of the models all have about the same results. Conversely, all
of the models of MACS 0416 are clustred together, although with
slightly more spread than when the magnitude limit was varied.

The results for the fiducial comparison conditional probability dis-
tribution, which tests a model’s ability to predict the magnifications
of the fiducial model, is shown in the right-hand panels of Fig. 7. As
we saw previously, models of Abell 2744 with high precision, i.e.
those with a smaller radial limit, have less accuracy when predicting
the magnifications of the fiducial model. Similar results are seen in
MACS 0416, including a cluster of models which are able to predict
the fiducial magnifications well.

4 SCALING RELATIONS AND SCATTER

Once the cluster member galaxies are chose, they must be assigned
mass as described in Section 2. Since there is scatter in the mass—
luminosity relation, scatter can also be added. We note that galaxy
kinematics, specifically measured velocity dispersions of cluster
members, can be used to further constrain the galaxy parameters
(see e.g. Monna et al. 2017; Bergamini et al. 2019), but we do not
include such analysis in this work.

We consider two sources of possible systematic error: the slopes
of the scaling relations and the scatter in galaxy mass and radius.
Our fiducial model had scaling relation slopes of ¢ ... = (N, /) =
(0.5, 0.4). Other teams modelling the Hubble Frontier Fields used
different values, such as g, = (0.5,0.5) (Johnson et al. 2014;
Richard et al. 2014), g, = (0.7, 0.5) (Caminha et al. 2017), and
qscae = (0.54,0.66) (Bergamini et al. 2019), the latter of which
used galaxy kinematic information. In addition, our fiducial models
included scatter of 0.1 dex in log;gRg and 0.03 dex in log;or, for
the member galaxies, and scatter of 0.3 dex in log;oRg for the LOS
galaxies.! Our choices were chosen based on observational results
presented in Brimioulle et al. (2013).

4.1 Scaling relation slopes

To explore the systematic effects of changing ¢.,., we considered a
grid of ng, n, values ranging from 0.4 to 0.8 for both variables. These
values were the only things that changed in the modelling process;
the cluster member selection used fiducial values and was not varied.

Tn our models, the LOS galaxies are assumed to be in the field and thus
untruncated. In practice we set their truncation radius to a fixed, large value.
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Figure 8. Distance metric A? for various values of g and 5, for Abell 2744 (left) and MACS 0416 (right). These values are calculated with reference to our
fiducial values ng, n; = (0.5, 0.4), denoted by the white circles.
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Figure 9. Similar to Fig. 5 for varying values of ng, ;. Specifically, panels indicate a fixed value of 7; as indicated, while the colours indicate the value of ng;
colours for a given ng value are the same across panels of each field. Line style and brightness indicates whether the conditional probability distribution for a
given model was calculated with respect to itself (lighter; solid) or with respect to the fiducial model (darker; dashed).

We first ask how this change affects the model parameters. include both the results of comparing a model with itself (lighter,
Specifically, we calculate the distance metric between the new solid curves) and with the fiducial model (darker, dashed curves).
models and our fiducial model, as shown in Fig. 8. We see that, In Abell 2744, there are a few trends that can be seen. Among the
for both fields, A? increases in conjunction with both 1z and n,, self-comparisons, models with a lower 7, have a higher spread in
indicating that the model parameters become more different as a precisions as ng is changed, while models with a higher n, have
function of both variables. However, there seems to be more change smaller variations and higher precision at greater magnification.
as a result of varying ng, as indicated by the fact that the top left Interestingly, both accuracy and precision of the models at lower
corner has a higher value than the bottom right. We also note the magnifications increase as 7, is increased, as evidenced by the
difference in colour bar values for the fields: there is an increased curves shifting towards the one-to-one line. The accuracy at larger
difference among the Abell 2744 models than those of MACS 0416. magnifications does not vary with 7, or ng.

We also looked at the magnification maps for all of the grid models For MACS 0416, there is less variation between the models as
and performed a similar analysis to the conditional probability compared with Abell 2744, as expected given that the A? values
distributions shown previously. The results are shown in Fig. 9. Here, are smaller. Specifically, there is almost no change as ng increases.
we have collapsed our results vertically, such that each panel has a However, we do see that increasing 7, leads to a decrease in model
fixed value of 7,, while the curves indicate varying values of nz. We accuracies across the range of magnifications.
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Figure 10. Similar to Fig. 5, but varying the scatter in (logjoRE, logior;) for cluster member and LOS galaxies (note that values are given in dex). We also

include the 1o error bars for each model.

4.2 Scaling relation scatter

Finally, we ask how including scatter in the mass and radius scaling
relations affects model parameters and magnification. Specifically,
we allow the member and LOS galaxies to have either the fiducial or
zero scatter. We also test the cases where scatter is added to only the
cluster member galaxies while LOS galaxies are held fixed, and vice
versa as a way to test the relative importance of these populations.

For Abell 2744, we find that the differences between the model
with fiducial scatter and no scatter in both cluster member and LOS
galaxy populations are relatively small, as evidenced by a A? value
of 27; for MACS 0416, the difference is even smaller at 13. If
there is scatter in the cluster members but not the LOS galaxies,
the differences decrease with values of A?> = 14 and 7 for Abell
2744 and MACS 0416, respectively. The smallest difference is seen
when the cluster members do not include scatter, but the LOS do: A2
= 4.5 for Abell 2744 and 3.4 for MACS 0416.

We also consider the magnification distributions of these four
models. We perform a similar analysis to the previous sections,
where we consider the self and fiducial comparisons, as shown in
Fig. 10. For the self-comparisons of Abell 2744, we see a clear
difference between the models with scatter in the LOS galaxies (blue

and green) and those without (orange and red), where the medians of
the probability distributions of the former two models are very similar
to one another, as are those of the latter two. The 1o error bars for
the model with no scatter in either galaxy populations is smaller than
those of the model with cluster member scatter. The error bars for
the two models with LOS galaxy scatter are both very similar and
very large. For the fiducial comparison, we see that the two models
without LOS galaxy scatter are relatively unchanged as compared to
the self comparison panel, which is unsurprising. The models with
LOS galaxy scatter have much larger error bars, but medians that are
quite close to the one-to-one line, at least at lower magnifications.

In MACS 0416, the results are quite different. There is a slight
gradient in the medians of the self-comparisons going from no scatter
in either galaxy population, to scatter in only the cluster members
population, to the scatter in only the LOS population, with the fiducial
model having the least precision. However, the differences are much
less than what we saw in Abell 2744. Further, the error bars also show
that there is less scatter within the magnifications themselves, and
again a smaller difference in magnification scatter is seen between the
models. For the fiducial comparison, all models are indistinguishable,
indicating that they all have similar accuracies.

MNRAS 508, 5587-5601 (2021)

220z 1snbny gz uo Jasn sauelqi Ausiaaiun siebiny Aq 0¥ 1L Z8€9//8SS//80S/3101/SEIUW/ WO dNo-olWwapeoe//:sdny WwoJj papeojumoq



5596

=3
9 H
—— Magnitude limit Abell 2744
Radial cut
7.5 Scaling relation
Galaxy scatter
6
=1
c .
]
w® 45 ‘
o |
= | |
SN0 W
= 3 i‘ : T ] ' 1 L
| i i 1 | I ! i
| | 1 i | 1 I 1
15 l
0

C. A. Raney, C. R. Keeton and D. T. Zimmerman

35

30

N
w

Magnification u
N
o

-
wu

Figure 11. We show the full distributions calculated from the various modelling choices discussed in this work. Specifically, for magnitude limit and radial
cut, we use only models that have reasonable limit values, i.e. mji, > 22.5 mag and rjn > 90 arcsec; for galaxy scatter and scaling relation distributions, all

models are used. Unfilled violin bodies represent the statistical scatter in the models and are created using the self-comparisons previously described. Filled
violin bodies compare every model in a given model choice grouping to every other model in that grouping, thus probing systematic error introduced by a given
modelling choice. We do this analysis for a reference magnification of three and 10. Dashed black lines show the 1o error.

5 DISCUSSION

We now seek to draw some general lessons from our examination
of various model choices. While the HFF program and subsequent
surveys provided a wealth of data on these two fields, studies of other
clusters may have (much) less extensive data. Identifying choices that
yield reliable results may therefore be helpful in guiding observing
and modelling programs for cluster lensing.

We find that, for both fields, a magnitude limit of 22.5 mag
and radial cut of 90 arcsec are lower limits past which the lens
models become very similar, both in terms of model parameters and
magnifications. The magnitude limit is a relatively robust result, but
we do note that the radial limit likely depends on the extent of the
lensed images; for Abell 2744, which has images in a smaller area,
a smaller radial cut could be used.

We can draw such conclusions about parameters determining
cluster member population as it is logical to assume that including
all possible galaxies would give the best description of the true
mass distribution. Drawing conclusions about the scaling relation
and scatter parameters is not as straight forward since we do not
know the true mass of each galaxy. However, our results show that
there is a small bias introduced in the magnifications when a model
with low 7, is compared to a model with a larger value.

In order to draw conclusions about the relative importance of
each modelling choice, we consider the conditional probability
distributions for the reasonable set of models. Specifically, we
perform an analysis similar to what was done in Raney et al. (2020b).
In this case, we do not compare models from different terms, but
instead models with differing values for a given modelling choice.

We show the results of this analysis for Abell 2744 in Fig. 11. To
create our distributions, we only include the models with my;y, > 22.5
mag and r;,, = 90 arcsec, corresponding to the values we determined
to be reasonable choices. The violins with unfilled bodies show the
statistical errors, i.e. the results of the self-comparison analysis, while
those with filled bodies compare the results from each model in that
group to all of the other models in that group, and thus correspond
to a systematic error.

MNRAS 508, 5587-5601 (2021)

We see that in the « = 3 panel, the unfilled and filled violins for the
three choices except galaxy scatter are all very similar; this indicates
that there is no systematic error introduced in the magnifications
if two models with varying model choices in a given group are
compared. This trend continues in the ;o = 10 panel for scaling
relation, but the difference between systematic and statistical error
grows for magnitude limit and radial cut, suggesting that systematic
errors may arise at larger magnifications due to these modelling
choices.

The largest difference between statistical and systematic errors is
seen with galaxy scatter. This is unsurprising given the results shown
in Fig. 10, where we saw that statistical error for the models without
LOS galaxy scatter was much smaller than those with the scatter,
although the scatter when compared to the fiducial model was high.
This is a somewhat surprising result given that we only include six
LOS galaxies in our model, yet scatter in the LOS galaxies seems
to be much more important than scatter within the cluster member
galaxies. This is likely due to the placement of the LOS galaxies:
two are in close proximity to more than 10 images, which also
happen to be all of the constraints we use in the northern part of the
field.

The results of this analysis are shown for MACS 0416 in Fig. 12.
We see that the medians of the distributions are closer to the expected
values of three or ten, which is expected given the previous results
showing higher precision and accuracy than what was seen in Abell
2744. We also see that the distributions themselves are smaller, along
with the 1o error bars, which is in line with Fig. 10 where the scatter in
magnifications is smaller even for the fiducial case. While we once
again see that some modelling choices produce higher systematic
error, specifically at u = 10, the differences are quite small and thus
we conclude that none of the modelling choices introduce particularly
important systematic errors into the magnifications.

In this work we do not endeavor to explain the differences in results
between Abell 2744 and MACS 0416, but we will briefly offer our
thoughts. The most obvious explanation as to why the magnifications
errors in MACS 0416 are smaller than those of Abell 2744 would be
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:;: S fairly evenly spread across the field, and thus does not have such a
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-g ’,/ is less impactful on the model. Zimmerman et al. (2021) take a closer
8 10 1 W look at how the choice of image constraints affects lens models.
= P
E /
g
= 5] 6 CONCLUSIONS
In this work, we aimed to analyse some of the possible modelling
choices that could be causing the systematic errors in magnifications
we found in Raney et al. (2020b). In order to do this, we presented a
2 . ' i modelling methodology using a Bayesian framework with which we
2 5 10 30 50 analysed the effects of four different modelling choices: two affecting

Magnification

Figure 13. Medians and 1o scatter of conditional probability distributions
created by comparing realizations of a given model with itself. Here, we
include the fiducial models of Abell 2744 (blue) and MACS 0416 (orange),
along with 20 models of MACS 0416 created by subsetting the image
constraints such that the number of images used is consistent with the number
used to constrain Abell 2744 (green).

that the number of images used as constraints is higher: recall, we
use Niyg = 71 for Abell 2744 and Njy,, = 95 for MACS 0416.

We explore this by using only a subset of the fiducial constraints
such that the number of images in the subset is 71 £+ 1. We then
rerun our analysis and calculate the magnifications. We show the
self-comparisons for 20 different subsets in Fig. 13, along with the
results from our fiducial models of Abell 2744 and MACS 0416. We
see that the bulk of the models do appear to have curves similar to the
fiducial analysis for MACS 0416, with only a few deviating to have
similar values as Abell 2744. However, even models that do have
similar medians at higher magnifications show a higher precisions at
magnifications from p = 6-30.

cluster member selection (magnitude limit and radial cut), and two
affecting how mass is assigned to galaxies (scaling relation slopes
and scatter).

For the cluster member selection, we found that there are clear
differences in model parameters and magnifications if certain values
are chosen. Specifically, we saw that a model with a smaller number
of galaxies, e.g. a bright magnitude limit or very small radial cut, will
produce magnifications that are very precise but cannot accurately
predict magnifications of a model with a higher magnitude or radial
limit. We found that for my;,, > 22.5 mag and ry,, > 90 arcsec, models
had similar parameter and magnification distributions, although we
note the radial limit likely depends on the extent of the images used
as constraints.

For the scaling relation slopes, we found that model parameters
may show significant differences as both 7z and n, increase, but this
results in only a modest change in magnifications. Unlike the other
model choices, we found that the results for the galaxy scatter were
quite different between the two fields. Specifically, scatter in the LOS
galaxies greatly increased the scatter seen in the magnifications of
Abell 2744. In MACS 0416, only a small change in model precision
was seen when galaxy scatter was varied, and model accuracy did
not change at all.
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In general, our results show that MACS 0416 is better constrained
than Abell 2744; this is seen in the smaller A? values and more
accurate and precise magnifications. The differences are not fully
explained by the fact that MACS 0416 has more image constraints
than Abell 2744. It appears that each cluster lens field has some
unique properties based on the configuration of images and the
complexity of the mass distribution. Thus, our new framework for
understanding systematic errors in cluster lens models allows us not
only to understand the relative importance of different modelling
choices, but also to identify the fields that are most robust to
systematic effects.
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APPENDIX A: DERIVATION OF POSTERIOR PROBABILITY DISTRIBUTION

Let us begin with the lens equation relating a source position y with the image positions x and the deflection « at those positions

y=x—- Cepus(X; — afg(xi)) — aes(X;),

(AD)

where o), represents the net deflection from all of the mass in the cluster. We note that the differing treatments of foreground versus total
LOS mass is seen here, where only the foreground mass impacts the positions at which the cluster deflection must be calculated.

Equation (A1) fully describes the lensing along a 3D line of sight towards a source. However, we can simplify this equation by assuming
that the foreground deflection is small when compared to that of the cluster. In doing so, we can make a Taylor series expansion:

aclus(-xi - afg(xi)) ~ “clus(xi) - rclus,i“fg(xi)s

(A2)

where T'¢jys; = 0otciys/0x; is @ 2 x 2 matrix. Using this, as well as expanding ocjys 1IN0 0py)0 and o per, then gives

y=x; - [othalo(¥7) + Cmem (X)) + @os(X;) — rclus.iatg(xi)]~

(A3)

The likelihood function for data given the model can then be written as (see Keeton 2010)

_ 1 _
L= |Cobs| 12 exXp <_ Z[xi - (ahalo + Opem + Qlos — rclus.i“fg) - ys]T’L;FCobls’L;F[xi - (ahalo + Cmem + Xlos — rclus,iafg) - ys]) 5 (A4)

{s.i}

where we include the measurement uncertainty for each image i in Cops. We note the sum uses {s, i} to denote that we keep track of which
images i go with which source s. The magnification tensor u; is used to convert between source and lens planes for a given image i. We also
keep track of determinant factors that are important and thus include |Cyp,|~!/? for the normalization, but omit factors of 27 for simplicity.
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Thus, we see that our likelihood function is Gaussian in our previously discussed random variables, i.€. @mem, @105, and aty, as well as in the
source positions. We can collect these into a block vector as

amem

Uios
v= . AS
o (AS)

y
We also define the helper matrix A such that
A= [I 1 _rclus U} s (A6)

where I is an identity matrix with dimensions 2Ny X 2Nimg and Niy, is the number of images. The matrix U is used to connect which images
go with which sources. For example, if the constraints consisted of two sources, the first with two images and the second with three, U would
take the form

I, 0
I, 0
U=1[0 I,|. (AT)
0 I,
0 I,

Here we use I, to denote the 2 x 2 identity matrix. With these definitions, we can rewrite our likelihood in a more compact form:

L= |C ops |*l/ze*%(x70(halo*AD)T[LTC;bL’L(xfum]O—Au)' 8

Next, we must consider the pertinent priors, specifically for @tpem, @05, fg, and y. We assume that the deflections are Gaussian, although
we note that this would not necessarily hold if an image lies very close to a member galaxy and is thus more heavily influenced by it. We show
examples of deflection distributions for a set of images in Section 3.

If the cluster member deflections are indeed Gaussian, then they can be described by a mean vector @y, and covariance matrix Cyep-
Similarly, a1, and g, can also be described in this manner, although we must allow for cross terms in the covariance matrices. For the source
positions y, we assume Gaussian priors but with a standard deviation o, large enough such that the priors are effectively uninformative. Thus,
the priors can be written as

P = |Cp| 2200 Cpl-0), (A9)
where
Anem C e 0 0 0
= ‘_llos L 0 Clos Clos,fg 0
a —= (_lfg s Cpn - 0 Cljg;s,fg Cfg 0 5 (AIO)
0 0 0 0 oll

and we have once again dropped any factors of 2.
The important takeaway is that the full posterior P o« £ is still Gaussian in our nuisance parameters v:

P o |Cops ™2 ICpril’”Z o~ 2@ —ahio =AW 1T € px—thato—Av)— 3 (0=&)" Cprl (v-a) (Al1)

This is useful because we can then marginalize over the nuisance parameters using standard Gaussian integration. In order to do so, we define

d=x — Ohalo — Aa

=X — Opalo — @&mem — A1os + rhe\lo‘_lfga (A12)
and
Cmarg = ﬂilcobsﬂiT + ACpriAT
= uilCObSILiT + Cmem + Clos - rclusclzs‘fg - Clos,fgrgus + rclusCfngIius + U)?UUT~ (A13)

Then our marginalized posterior distribution Py, = [ £ Pdv is given as
g L e (Al4)

We note that formally we allow o, — o0 so that the priors on the source positions are uniform over an infinite domain. This may seem to
pose a problem in calculating Cpy, specifically in the last term of equation (A13). However, the inverse as needed for equation (A14) is still
well defined. We can use the Woodbury matrix identity to write

C;lzlnrg e = Sett — SetrUU” SereU) ' U Ser, (A15)
where
ng} = ﬂilcobsﬂiT + Cmem + Clos - rclusclf,s,fg - Clos,tgrzlus + rcluscfgrgiu5~ (A]6)
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The determinant |C,re | has asymptotic behaviour when o — oo:
In |szlrg| ~ In |UTScfo| —In Iscff| + 4Nsrc In Oy, (A17)

where the last term is such because the priors have a}? terms for each spatial dimension. Since we either normalize the posterior or consider
relative posteriors (i.e. when comparing models), we can omit the last term.

APPENDIX B: SIMPLIFYING THE DISTANCE METRIC

Formally, the distance metric A” defined in equation (7) involves big double sums, but with some algebra it can be written in terms of moments
of the distributions. To see this, let’s write out the sums in Dy (omitting limits to simplify the notation):

1
D§( R — Z (xl-TC”xi +x_ITC71xj —xl-TC”xj —xfCilx,v)

nx(nx —1) 4=
ZxTC X

2
= inTC"x,
nx—l i

nx(nx nx(ny —1)

ZxTC X, — . (n D ZxTC X; —|—ZxTC X
x(ny —

nx =1 i#]j
_- Tl T
= le,.C x; — nx(nx_l)gx C'x;
=2((x"C7'x) — (x)TC"(x)) (B1)

In the first line, index manipulation shows that the first and second terms are identical, as are the third and fourth terms, leading to the second
line. Then we separate the double sum into terms with i =j and terms with i # j. In the third line, we can combine the sums in the first and second
terms. To further process the last line, let’s write out the first term in component notation, where indices a and b now run over the components:

(x"Cc'x) = <Z(C1)ubxaxh>
a,b
=D (€ ap (xas)
a,b

= (€ ap [atty + (Cx)a]

a,b
=miC'my +tr(C™'Cy) (B2)
where my and Cy are, respectively, the mean vector and covariance matrix for distribution X. Combining equations (B1) and (B2) yields
Dy =2u(C'Cy) (B3)

We can similarly find D? = 2 tr(C~'Cy). These expressions quantify an overall ‘size’ for each distribution, according to the metric C. If we
use Euclidean distances (C = I) then D§( is twice the sum of the variances across all dimensions of X (and likewise for Y).
Now consider Dyy:

ny ny
D%y = . ZZ (x]C7'x; +ij y,—xlCly, — yjrC’lx,-)
i=1 j=I
=T 'x)+ (yTCy)y —myC'my —myC 'my, (B4)

where we use the fact that the two samples are independent in the cross terms. Now, we substitute for the first two terms using equation (B2)
and the corresponding expression for Y, and collect terms to obtain

D%, = (mx —my) C ' (mx — my) + tr(C~'Cx) + tr(C~'Cy). (BS)

Combining the pieces, we can write our test statistic as

A? = D%, — DyDy = (my —my) C ™' (my — my) + to(C™'Cx) + t(C™'Cy) — 2\/tr(c”cx)tr(c”cy). (B6)

We can combine the last three terms to obtain our final expression:

2
A* = (mx —my) C™'(my —my) + {\/n:(c—‘cx) - \/tr(C_]Cy)] : (B7)

The first term is identical to Hotelling’s > statistic, and it measures a shift in the means. The second term measures a difference in the
sizes/shapes of the distributions.
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Note: Baringhaus & Franz (2004) introduced a different multivariate two-sample test. They considered average rather than rms distances

B 1 ny ny
Dy = ——— llx; —x;||  (and likewise for ¥) (BS)
) nx(nx—l)lg;; I
1 ny ny

Dyy = DD =yl (B9)

nxyn
XY oy =1

and defined their test statistic as

- 1 - -
T = Dxy — E(DX + Dy) (B10)

Their definition used the Euclidean distance, but it can be generalized to use a Mahalanobis distance. As far as we can tell, the 7 statistic
cannot be simplified to avoid the double sums. We favour the A? statistic because it gives a nice generalization of Hotelling’s * statistic that
clearly accounts for differences in both the locations and shapes of the distributions, while only requiring first and second moments (which
can be computed more rapidly than double sums).

This paper has been typeset from a TX/IATgX file prepared by the author.

MNRAS 508, 5587-5601 (2021)

220z 1snbny gz uo Jasn sauelqi Ausiaaiun siebiny Aq 0¥ 1L Z8€9//8SS//80S/3101/SEIUW/ WO dNo-olWwapeoe//:sdny WwoJj papeojumoq



