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ABSTRACT

We present the MaNGA PyMorph photometric Value Added Catalogue (MPP-VAC-DR17) and the MaNGA Deep Learning
Morphological VAC (MDLM-VAC-DR17) for the final data release of the MaNGA survey, which is part of the SDSS Data
Release 17 (DR17). The MPP-VAC-DR17 provides photometric parameters from Sérsic and Sérsic+Exponential fits to the
two-dimensional surface brightness profiles of the MaNGA DR17 galaxy sample in the g, r, and i bands (e.g. total fluxes,
half-light radii, bulge-disc fractions, ellipticities, position angles, etc.). The MDLM-VAC-DR17 provides deep-learning-based
morphological classifications for the same galaxies. The MDLM-VAC-DR17 includes a number of morphological properties,
for example, a T-Type, a finer separation between elliptical and SO, as well as the identification of edge-on and barred galaxies.
While the MPP-VAC-DR17 simply extends the MaNGA PyMorph photometric VAC published in the SDSS Data Release 15
(MPP-VAC-DRI15) to now include galaxies that were added to make the final DR17, the MDLM-VAC-DR17 implements some
changes and improvements compared to the previous release (MDLM-VAC-DR15): Namely, the low end of the T-Types is
better recovered in this new version. The catalogue also includes a separation between early or late type, which classifies the
two populations in a complementary way to the T-Type, especially at the intermediate types (—1 < T-Type < 2), where the
T-Type values show a large scatter. In addition, k-fold-based uncertainties on the classifications are also provided. To ensure
robustness and reliability, we have also visually inspected all the images. We describe the content of the catalogues and show
some interesting ways in which they can be combined.

Key words: catalogues —surveys —galaxies: disc —galaxies: elliptical, lenticular, cD — galaxies: photometry — galaxies: struc-
ture.

1 INTRODUCTION

As we enter the age of large galaxy samples for which spatially
resolved spectroscopic information is available thanks to integral
field spectroscopic surveys like ATLAS3P (Cappellari et al. 2011),
CALIFA (Sanchez et al. 2012), or SAMI (Allen et al. 2015), it is
useful to have accompanying analyses of the associated photom-
etry. Fischer, Dominguez Sdnchez & Bernardi (2019) describe a
step in this direction: They provide imaging-based morphological
information, as well as one- and two-component fits to the two-
dimensional (2D) surface brightness distributions of the galaxies in
an early release (SDSS DR15, Aguado et al. 2019) of the MaNGA
(Mapping Nearby Galaxies at Apache Point Observatory; Bundy
et al. 2015) Survey. Now that the survey is complete, the main goal
of this work is to extend that analysis to all the ~10* nearby (z ~
0.03) galaxies in it. This has culminated in the production of two
‘value-added’ catalogues (VACs), which are part of the SDSS-DR17

* E-mail: dominguez@ice.csic.es

release (SDSS Collaboration, in preparation): the MaNGA PyMorph
photometric Value Added Catalogue (hereafter MPP-VAC-DR17)
and the MaNGA Deep Learning Morphology Value Added Catalogue
(hereafter MDLM-VAC-DR17), which summarize the photometric
and deep-learning-based morphological information for the MaNGA
galaxies.

MaNGA is a component of the Sloan Digital Sky Survey IV
(SDSS 1V; Blanton et al. 2017). Wake et al. (2017) describe how the
MaNGA galaxies were selected from the SDSS footprint. Integral
field unit (IFU) technology allows the MaNGA survey to obtain
detailed kinematic and chemical composition maps of these galaxies
(e.g. Gunn et al. 2006; Smee et al. 2013; Drory et al. 2015; Law et al.
2015, 2016; Yan et al. 2016a,b; Greene et al. 2017; Graham et al.
2018)

For reasons discussed in Fischer, Bernardi & Meert (2017), we do
not use the SDSS pipeline photometry of these objects. Rather, we
use the significantly more accurate PyMorph analysis described in
a series of papers (Vikram et al. 2010; Meert, Vikram & Bernardi
2013, 2015, 2016; Bernardi et al. 2014). PyMorph provides one-
and two-component fits to the 2D surface brightness distributions
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of MaNGA galaxies, and was used to produce the MPP-VAC of
the galaxies in DR15 (Fischer et al. 2019). The MPP-VAC-DR17,
which we describe below, extends this to include all the objects in
the completed MaNGA survey.

We also provide the MDLM-VAC-DR17, which includes deep-
learning-based morphological classifications (the methodology is
described in detail by Dominguez Sanchez et al. 2018) for the
same galaxies. In contrast to the photometric MPP-VACs, in which
the main difference between the DR15 and DR17 versions is
sample size, the MDLM-VAC-DR17 includes some improvements in
methodology and content with respect to DR15, which we describe
below.

Note that the MaNGA data were only used for the identification of
the sources included in the two VACs presented in this paper. Both the
2D fits to the surface brightness distributions and the morphological
classifications are based on the SDSS imaging data (DR15 for the
MPP-VAC and DR7 for the MDLM-VAC).

Section 2 describes the minor changes we have made when
reporting the photometric parameters listed in the MPP-VAC: See
Fischer et al. (2019) for a detailed discussion of how these PyMorph-
based parameters were determined, and how they compare with
previous work. Section 3 describes our morphological classification
scheme and the MDLM-VAC-DR17. Section 4 combines our MPP-
and MDLM-VACs to show how the photometric parameters correlate
with morphology. A final section summarizes.

2 MANGA PYMORPH PHOTOMETRIC VALUE
ADDED CATALOGUE (MPP-VAC-DR17)

The MPP-VAC-DR17! is one of the VACs available online of
the completed MaNGA survey, which is part of the SDSS-DR17
release.” It is similar to the MPP-VAC-DR15 (Fischer et al. 2019,
hereafter F19) published as part of the SDSS-DR15 release (Aguado
et al. 2019). The MPP-VAC-DR17 is updated to include all the
galaxies in the final MaNGA release. Some PLATE-IFU entries are
reobservations of the same galaxy so the catalogue also provides three
variables that identify galaxies with multiple MaNGA spectroscopic
observations (see DUPL-GR, DUPL-N, and DUPL-ID). Although
the number of entries is 10293, the actual number of different
galaxies in this catalogue is 10 127. The structural parameters and
morphological classifications included in the VACs are identical for
the duplicate observations.

The MPP-VAC-DR17 also includes one minor technical change
regarding how the position angle (PA) of each image is reported. The
PA (from PyMorph) given in this catalogue is with respect to the
camera columns in the SDSS “fpC’ images (which are not aligned
with the north direction); to convert to the usual convention where
north is up, east is left,> set PAMMaNGA) = (90 — PA) — SPA,
where SPA is the SDSS camera column position angle with respect
to north reported in the primary header of the ‘fpC” SDSS images. PA
(MaNGA) is defined to increase from east towards north. In contrast
to the MPP-VAC-DR15 release, where the SPA angles were provided
in a separate file, the MPP-VAC-DR17 catalogue includes the SPA
angles.

Except for this change, MPP-VAC-DR17 is similar in format to
MPP-VAC-DR15. In particular, table 1 in F19 describes the content
of the catalogue, which is in the FITS file format and includes three

Thttps://www.sdss.org/dr17/data_access/value-added-catalogs/
2www.sdss.org/dr17/data_access/value-added- catalogs/
3Note that the MaNGA data cubes have north up and east right.
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Table 1. Top: fraction of galaxies that do not have PyMorph parameters
from Sérsic (FLAG_FAILED_S = 1), SerExp (FLAG_FAILED_SE = 1), or
both (FLAG_FIT = 3) in the SDSS g, r, and i bands. Bottom: fraction of
galaxies that are better described by one-component Sérsic fits (FLAG_FIT
= 1), two-component SerExp fits (FLAG_FIT = 2), or for which both fits
are equally acceptable (FLAG_FIT = 0).

Band Sérsic fit failed SerExp fit failed Both fits failed
(FLAG_FAILED.S = 1) (FLAG._FAILED.SE =1) (FLAG.FIT = 3)

g 0.069 0.065 0.038
r 0.065 0.058 0.034
i 0.077 0.062 0.037

Galaxies with successful fits (FLAG_FIT # 3) better described by:

Band One component Two components Both
(FLAG_FIT = 0) (FLAG_FIT = 1) (FLAG_FIT = 2)

g 0.103 0.586 0.312

r 0.106 0.567 0.327

i 0.104 0.569 0.327

Header Data Units (HDUs). Each HDU lists the parameters measured
in the g, r, and i bands, respectively. These include the luminosity,
half-light radius, Sérsic index, etc. for single Sérsic (Ser) and two-
component Sérsic+Exponential (SerExp) profiles — from fitting the
2D surface brightness profiles of each galaxy. Although for most
galaxies the Exponential component is a disc, for the most luminous
galaxies, it represents a second component,which is not necessarily
a disc.

None of the algorithms has changed since DR135, so the discussion
in F19 about how photometric parameters were determined remains
appropriate. In particular, we still use the fitting algorithm called
PyMorph (Vikram etal. 2010; Meert et al. 2013,2015,2016; Bernardi
et al. 2014), a PYTHON-based code that uses Source Extractor
(SEXTRACTOR; Bertin & Arnouts 1996) and GALFIT (Peng et al.
2002) to estimate the structural parameters of galaxies. Likewise,
decisions about refitting (section 2.1.1 in F19), when to ‘flip’ the
two components of a SerExp fit (section 2.1.3 in F19), and how to
truncate the profiles (section 2.1.4 in F19) are all the same as before,
as is the (visual-inspection-based) flagging system, which indicates
which fit is to be preferred for scientific analyses (see discussion in
section 2.2 of F19). We urge users to pay attention to the preferences
expressed by FLAG_FIT: FLAG_FIT = 1 means that only the Sérsic
fit is preferred (the SerExp fit may be unreliable), FLAG_FIT = 2
means that only the SerExp fit is preferred (the Sérsic fit may be
unreliable), FLAG_FIT = 0 means that both Sérsic and SerExp fits
are acceptable, and FLAG_FIT = 3 means that none of the fits were
reliable and so no parameters are provided. Table 1 lists the fraction
of objects for each FLAG_FIT type in the SDSS g, r, and i bands.

The flags FLAG_FAILED_S = 1 or FLAG_FAILED SE = 1
indicate failed Sérsic or SerExp fits, respectively. Failures can happen
for several reasons: contamination, peculiarity, bad image, or bad
model fit. The numbers in the top half of Table 1 give the fraction of
objects without photometric measurements for the different bands.
About 7 per cent of the objects do not have parameters from the Sérsic
and SerExp fits, respectively. About 4 per cent of these objects do not
have any PyMorph photometric parameters (i.e. FLAG_FIT = 3).

Figs 1 and 2 show the distributions of the Sérsic index 7 and npyige in
our single- and two-component fits. These are very similar to figs 12
and 14 in F19, illustrating that other than the factor of 2 increase
in sample size (from DR15 to DR17) the trends are unchanged. In
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Figure 1. Distribution of n from only Sérsic fits to the r-band surface
brightness profiles of the objects in our sample (DR17), compared to the
corresponding distribution from Meert et al. (2015, hereafter DR7), Simard
et al. (2011, hereafter S11), and the NASA-Sloan Atlas catalogue (NSA;
nsatlas.org). Our analysis limits n < 8, whereas the S11 analysis allows
0.5 < n <8, and NSA does not allow n > 6. This explains the spike at n =
6, where NSA has 1709 galaxies.
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Figure 2. Same as the previous figure, but for npyige of the two-component
SerExp fits. See F19 for a discussion of the obvious differences with respect
to S11. Similarly to DR15, our DR17 analysis has several more galaxies with
Npulge = 1 but many fewer npyge = 8 compared to the DR7 analysis, as a
result of our eyeball-motivated refitting and flipping. The spike npyge = 1 for
DR17 extends to 735 galaxies.

particular, our reductions do not show a preference for n = 6 (in
contrast to NSA, which does not allow n > 6), or for n = 4 or nyyg.
=4 (in contrast to S11). Similarly to DR15, our DR17 analysis has
several more galaxies with npyee = 1 but many fewer npyee = 8
compared to the DR7 analysis, as a result of our eyeball-motivated
refitting and flipping. Likewise, we have repeated all the other tests
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and comparisons shown in F19, but now for the full DR17 sample,
finding consistent results with our DR15 analysis, so we do not show
them here.

3 MANGA DEEP LEARNING MORPHOLOGY
VALUE ADDED CATALOGUE
(MDLM-VAC-DR17)

The MDLM-VAC-DR17 provides morphological classifications for
the final MaNGA galaxy sample (which is part of the SDSS-
DR17 release) using an automated classification based on supervised
deep learning. It extends the ‘MaNGA Deep Learning Morphology
DR15 VAC’, described in F19, to now include galaxies which were
added to make the final DR17. In addition, as we describe in the
following sections, it incorporates some changes and improvements
with respect to the DR15 version.

The morphological classifications were obtained following the
methodology explained in detail in Dominguez Sanchez et al. (2018,
hereafter DS18). Briefly, for each classification task, we trained a
convolutional neural network (CNN) using as input the RGB cutouts
downloaded from the SDSS-DR7 server* with a variable size that
is proportional to the Petrosian radius of the galaxy (5xRg’).
The cutouts are then resampled to 69 x 69 pixels, which are
the dimensions used to feed the CNN — note that by doing this
the pixel scale varies from one galaxy to another. The counts in
each pixel are normalized by the maximum value in that cutout
for that particular colour band. As this value is different in each
band, this step prevents colour information from playing a role in
the morphological classifications, and potentially biasing studies of
colour—morphology relations. We refer the reader to DS18 for further
details.

3.1 Classification scheme

The classification scheme of the morphological catalogue is pre-
sented in Fig. 3. We provide a T-Type value, which ranges from
—4 to 9, and was obtained by training the CNN in regression mode
based on the T-Types from Nair & Abraham (2010, hereafter N10)
catalogue. N10 presents visual classifications for 14034 galaxies
from SDSS up to m, < 16 mag. We only use galaxies with confident
classifications for training (T-Type flag = 0, i.e. ~ 96 per cent of
the sample). While the N10 T-Type values are integers within the
range [—5, 10], none of their galaxies have T-Type values of —4, —2,
or —1. We reassigned T-Type values by shifting them and filling
the gaps in our training labels, as doing so helps the model to
converge.

In general, T-Type < O corresponds to early-type galaxies (ETGs),
while T-Type > 0 corresponds to late-type galaxies (LTGs). Follow-
ing F19, we sometimes subdivide LTGs into S1 (0 < T-Type < 3)
and S2 (T-Type > 3) —see Section 3.3.2.

The catalogue provides two other binary classifications, which
were trained with N10-based labels:

(1) Prrg, which separates ETGs from LTGs; and
(i1) Psp, which separates pure ellipticals (E) from SOs.

For the Pyt model, we labelled positive examples those with T-
Type > 0 and negative examples those with T-Type < 0 (from N10).
This classification complements the T-Type by providing a cleaner

“http://casjobs.sdss.org/ImgCutoutDR7/
3Rop from the NSA catalogue.
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Figure 3. Schematic representation of the morphological classification presented in the MDLM-VAC. It includes a T-Type ranging from —4 to ~9, where the
transition between early and late types happens around T-Type ~ 0. A complementary binary classification separates ETGs and LTGs (see discussion in the text
for the differences between these two classifications). Three further binary classifications include (a) separating E from SO — this separation is only meaningful
for galaxies with T-Type < 0, (b) identifying edge-on galaxies, and (c) identifying galaxies with bar features. The cutouts show examples of galaxies of different
types, with classification values shown in white and according to their frame colours. The cutouts are proportional to the size of each galaxy (~5 xRqg). The
topmost cutouts show a galaxy classified as ETG by both the T-Type and Pprg models (left-hand side), a galaxy classified as LTG by both the T-Type and Prrg
models (right-hand side), and a galaxy with T-Type > 0 and Pyt < 0.5 — see discussion related to these galaxies in Section 3.3.2.

separation between ETGs and LTGs, especially at intermediate T-
Types, where the scatter of the T-Type model is larger (see discussion
in Section 3.3.1). For the Pgy model, we used as training sample only
galaxies with T-Type < 0 and labelled positive examples those with
—5 < T-Type < 0 and negative examples those with T-Type = —5
(i.e. pure E according to N10).

The catalogue also provides two additional binary classifications:

(i) Pedge-on» Which identifies edge-on galaxies; and
(ii) Pyqr, which identifies barred galaxies.

The value reported in the catalogue is the probability of being
a positive example (edge-on or barred galaxy, respectively). These
are based on the Galaxy Zoo 2 (GZ2; Willett et al. 2013) labels.
GZ2 is a citizen science project with morphological classifications
of 304 122 galaxies drawn from SDSS up to m, < 17. Following
DS18, the training sample was composed of galaxies with robust
classifications, i.e. at least five votes and weighted fraction values
greater than 0.8 (for the ‘yes’ or ‘no’ answers in each classification
task). See DS18 for further details.

3.2 Training methodology

The CNN architecture used for the morphological classifications of
the binary models (i.e. Prrg, Pso, Pedge-on» Prar) 18 identical to that of
DS18 (see fig. 1 therein for a schematic representation). Namely, the
inputs are arrays of dimension (3, 69, 69), and the CNN consists of
four convolutional layers with relu activation, filter sizes of 6 x 6,
5% 5,2 x2,and 3 x 3;32,64, 128, and 128 channels; and dropouts of
0.5, 0.25, 0.25, and 0.25, respectively; followed by a fully connected
layer of 64 neurons with 0.5 dropout, sigmoid activation, and adam
optimizer. The output of the model is one single value, which can be
interpreted as the probability of being a positive example. The total
number of trainable parameters is 2602 849. The CNN was trained
for 50 epochs with binary cross-entropy as the loss function.

Due to the complexity of the T-Type classification, we used a slight
variation of the CNN architecture described in DS18 to train the T-
Type model: The convolutional layers remain as explained above, but
the model includes two fully connected layers of 128 and 64 neurons
each, with 0.5 dropout. The total number of trainable parameters
increases up to 4978 657. The CNN was trained for 100 epochs in
regression mode and mean squared error as the loss function.

MNRAS 509, 40244036 (2022)
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Figure 4. Left-hand panel: comparison of the T-Type derived from the CNN (the average of 15 models trained with k-folding) and the original T-Type (from
N10) for the test sample of 1348 galaxies. To better visualize it, we plot average binned values, where the symbol size is proportional to the number of objects
in each bin. The red dots (joined by a solid line) show the median value at each T-Type, while the error bars show the inter-quartile ranges (i.e. the difference
between 75th and 25th percentiles). The predicted T-Types follow the one-to-one relation (dashed line) very well up to T-Type ~ 5. Right-hand panel: same as
the left-hand panel but comparing the new results (red) with the models presented in F19 (blue) for 852 individual galaxies. There is an improvement in the bias,
especially at T-Type < 0 and 1 < T-Type < 4. (The average values and their error bars have been shifted & 0.1 T-Types for better visualization.)

One of the main improvements with respect to the MDLM-VAC-
DR15 is that the new catalogue includes model uncertainties provided
by the standard deviation obtained with k-folding (with k = 10, except
for the T-Type model where k = 15). This methodology is very
close to deep ensembles — which are formally demonstrated to be a
Bayesian uncertainty quantification (see Lakshminarayanan, Pritzel
& Blundell 2016) — and accounts for variations in the initialization
of the CNN weights as well as variations due to the training sample.
The value reported in the catalogue is the average of the k models
and the uncertainty is their standard deviation. This methodology has
been demonstrated to improve the performance with respect to the
value of the individual models (see Vega-Ferrero et al. 2021). We
reserved a sample that has never gone through the CNN and used
it as test sample from which to measure the performance of the k
models (see Section 3.3).

3.3 Models’ performance

In this section, we show the performance of the models, i.e. how the
predicted morphological classifications compare to the original ones.
For this purpose, we define a ‘test sample’, which is a set of galaxies
that were not used to train in any of the k-folds. The results shown
in this section are obtained by applying the deep-learning models to
these test samples.

3.3.1 T-Type

The T-Type model is a linear regression, and the best way to test
its performance is to make a one-to-one comparison with the ‘true’
value. Fig. 4 shows that there is excellent agreement between the
input and predicted T-Types up to T-Type ~ 5, where the predicted
T-Type underestimates the correct value. We attribute this to the
small number of such objects in the training and test samples (the
symbol sizes are proportional to the number of objects in each T-
Type bin). In addition, there is also a slight flattening at the lowest

MNRAS 509, 40244036 (2022)

T-Type values. This was evident, and more pronounced, in the older
models presented in F19 (as can be seen in the right-hand panel,
where the results of the two models are compared) and is the main
reason why we also provide a classification between pure ellipticals
and lenticulars (Pgp). If we limit the analysis to T-Type < 5, the
average bias values (T-Typey, — T-Typeoy) are b = —0.1 and —0.4
for this work and for the F19 models, respectively. This is smaller
than typical differences between the visual classifications of different
professional astronomers (b ~ 1). The scatter is also smaller for the
new model at intermediate T-Types (—1, —3) but larger otherwise.
In part because the flattening of the F19 model, especially around
T-Type = —2 and 3, reduces the F19 scatter.

To summarize: Our new T-Type model shows a smaller bias
compared to the one presented in F19 (especially at T-Type < 0
and 1 < T-Type < 4) and includes an uncertainty value (determined
from the standard deviation of the T-Type predicted by each of the
15 models trained with k-folding).

3.3.2 Pry6 and Psy models

In addition to the T-Type model, the MDLM-VAC-DR17 provides
two binary classifications trained with the N10 catalogue.

The first one, Prrg, separates ETGs from LTGs.

The model does an excellent job at separating the E and
S2 populations, recovering 98 per cent of the ellipticals (defined
as true negatives, TN; ie. Pirg < 0.5 and labelled negative
in the training sample) and 97 per cent of the S2 (defined as
true positives, TP; i.e. Piyg > 0.5 and labelled positive in the
training sample). The separation for the intermediate populations,
SO and S1, is less clean, as expected. For the SOs, 59 per cent
are classified as ETGs and 41 per cent as LTGs, while for the
Sls, the fractions of galaxies classified as ETGs and LTGs are
27 per cent and 73 per cent, respectively. This classification is very
useful for making a broad separation between ETGs and LTGs,
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Figure 5. Bimodal distribution of the predicted T-Type is well described by
our binary ETG and LTG classifier (recall that LTGs are defined as having
Prrg > 0.5, while ETGs have Prrg < 0.5). The black dashed line at T-
Type = 0 marks the separation between E/SO and S, based on the T-Type
model. Note that there are some galaxies with T-Type > 0 classified as ETGs,
while the opposite is negligible (see discussion in Section 3.3.2).

especially at intermediate T-Types, where the T-Type scatter is
large.

Fig. 5 compares our T-Type and Pirg predictions for the full
MaNGA DRI17. The bimodality distribution of T-Types is very well
traced by the ETG and LTG populations. Only two galaxies with
T-Type < 0 are classified as LTGs (Prrg > 0.5). On the other hand,
1315 galaxies with T-Type > 0 are classified as ETGs (Prrg < 0.5).

Fig. 6 shows the distribution in apparent magnitude, angular size,
and central velocity dispersion,® of the galaxies having inconsistent
T-Type and Ppr¢ classifications. These galaxies (open histograms)
occupy the faint end of the magnitude distribution (top), have small
angular sizes (middle), and low central velocity dispersions (bottom)
(similar to the LTGs). That is, they are probably too faint or small to
clearly show spiral structure. We conclude that these galaxies are the
most difficult to classity: The T-Type classification might be correct,
while the Prrg model is actually separating galaxies with evident
spiral features from galaxies that look smoother. An example of that
kind of galaxies can be seen in the top cutout of Fig. 3.

The second binary classification trained with the N10 catalogue
separates SOs from pure ellipticals (E). This model, Psg, is trained
with galaxies having T-Type < 0 (from N10) and therefore is only
meaningful for galaxies with negative values of the predicted T-
Type. The reason for constructing this model is, again, the large
scatter around intermediate T-Types, where the transition between
Es and SOs occurs. Fig. 7 shows that, in the test sample, the model
classifies as ellipticals 95 per cent of the galaxies from N10 with
T-Type = —5 and as SO 83 per cent of the galaxies classified as
S0/a from N10 (with a T-Type = 0). The predicted Pgsy for the
galaxies with T-Types in between is distributed around intermediate
values, as expected. The performance of this Pgy is not as good
as Prrg, which is reasonable given that what separates Es from
SOs is rather subtle compared to the differences between ETGs and
LTGs.

Defined as the velocity dispersion at 0.25 arcsec derived from the MaNGA
data-analysis pipeline (following the methodology described in Dominguez
Séanchez et al. 2019).
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Figure 6. Galaxies having inconsistent T-Type and Prrg classifications
(open histograms) tend to be faint (top), have small angular sizes (middle),
and small central velocity dispersions (bottom).

Hereafter — as done in F19, we classify the galaxies into three
broad categories (E, SO, and S) by combining the T-Type and Ps; as
follows:

(i) E: T-Type < 0 and Psy < 0.5;

(i1) SO: T-Type < 0 and Pgy > 0.5;

(i) S: T-Type > 0.

In some sections, we further subdivided the S galaxies into two
subsamples:

(i) S1: 0 < T-Type < 3;

(1) S2: T-Type > 3.

MNRAS 509, 4024-4036 (2022)
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Figure 7. Distribution of Pgq separating Es from SOs for different classes
from N10. Each panel also provides the total number of galaxies and the false-
positive and true-negative rates (top) or the true-positive and false-negative
rates (bottom).
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Figure 8. Predicted T-Types for galaxies according to their visual classifica-
tion. The black dashed line shows galaxies with certain visual classifications
(VF = 0). There is an evident drop of certain visual classifications for the
intermediate T-Types (~ 0), where the distinction between E/SO and S is very
subtle.

3.3.3 Visual classification

To have a more robust classification, and since the sample size allows
it, we have also carried out a visual inspection of all the galaxies.
The catalogue includes two columns reporting the results:

(1) Visual class, which corresponds to the visual classification
assigned to each galaxy (VC = 1 for elliptical, VC = 2 for SO,
VC = 3 for S/Irr, and VC = 0 for unclassifiable);

(ii) Visual flag, which reports the level of confidence in our visual
class (VF = 0 for reliable and VF = 1 for uncertain classifications).

The visual classifications were based on the models (i.e. they were
not blind) to spot evident misclassifications. Fig. 8 shows that the
visual classifications correlate very well with the predicted T-Types.
Galaxies with VC = 1 (E) peak around T-Type ~ 2 and barely extend
beyond T-Type > 0, galaxies with VC = 3 (S) peak around T-Type
~ 4 and barely extend below T-Type < 0, while galaxies with VC
= 2 (S0) tend to have intermediate T-Types with a tail that extends
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Table 2. Comparison of automated (by combining the T-Type and Psg
models or according to Prrg) and visual classifications (VC = 1 for
elliptical, VC = 2 for SO, VC = 3 for S/Irr, and VC = 0 for unclassifiable).

TT+Psp VCE VC_S0 vCs VC_unc
(VC=1) (VC=2) (VC=3) (VC=0)
All
E 2632 95 4 1 <1
S0 963 <1 96 4 <1
S 6698 <1 9 90 <1
VF=0
E 2598 95 4 1 <1
S0 922 <1 97 3 <1
S 5320 <1 1 99 <1
PLrg VCE VC_S0 vC_S VC_unc
(VC=1) (VC=2) (VC=3) (VC=0)
All
ETG 4908 52 32 16 <1
LTG 5385 0 <1 99 <1
VF=0
ETG 3700 67 27 5 <1
LTG 5140 0 <1 99 <1

In the leftmost column, we report the number of galaxies of each type, while
the other columns show the percentage of each type with the corresponding
visual classification for all galaxies (top) and for galaxies with reliable visual
classifications (VF = 0, bottom).

to T-Type > 0. Thus, the reader should be aware that selecting a
sample of SO galaxies based on T-Type (i.e. T-Type < 0 and Pgg
> (.5) produces a pure but not complete sample. It also shows that
galaxies with low-confidence visual classifications are mostly those
with intermediate T-Types.

To quantify the comparison, Table 2 shows the number of galaxies
classified as E, SO, or S according to the combination of the T-Type
and Ps( values (as defined in Section 3.3.2) and the visual clas-
sification. Only 5 per cent of galaxies with elliptical morphologies
(according to the models) are visually classified as SO (4 per cent)
or S (1 per cent). Similarly, for the galaxies classified as SO, there is
96 per cent agreement, with most of the discrepancies coming from
galaxies visually classified as S. The more important mismatch is
for the S sample, where 9 per cent of galaxies classified as S by the
models are assigned type SO after visual inspection. Note that, since
the Pg classification is only meaningful for galaxies with T-Type <
0, there is no ‘model’ to distinguish between SO and S for galaxies
with T-Type > 0.

We also note that one third of the galaxies with T-Type > 0 and
VC = 2 (S0) have a large probability of being edge-on (Pegge-on >
0.5, see Section 3.3.4), which explains the discrepancies (it is almost
impossible to distinguish an S from an SO when seen edge-on). In
fact, if we focus on galaxies with reliable visual classifications (VF
= 0), the agreement is significantly improved up to 99 per cent (see
the upper panel with VF = 0 in Table 2).

The bottom part of Table 2 compares the visual classifications
with the separation between ETGs and LTGs according to the Pyrg
model. The LTG sample is very pure: 99 per cent of the galaxies with
Prrc > 0.5 were visually classified as S. On the other hand, the ETG
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population (Prrg < 0.5) is composed of 52 per cent Es, 32 per cent
SOs, and 16 per cent Ss, according to the visual classification.
Considering only galaxies with reliable visual classifications, the
fraction of E increases up to 67 per cent, while the fractions of SO
and S become 27 per cent and 5 per cent, respectively.

Interestingly, the percentage of galaxies classified as ETGs with
reliable visual classifications is only 75 per cent (3700/4908), com-
parable to the same fraction for galaxies classified as S (5320/6698 =
79 per cent). While this may seem contradictory, it is because most
of the galaxies with VF = 1 are those with T-Type > 0 (classified
as S by the T-Type models) and Pirg < 0.5 (classified as ETGs by
the Prrg model), i.e. they are the faint and small galaxies difficult
to classify and for which the T-Type and the Prr¢ classifications
disagree: 86 per centof the galaxies with T-Type > O and Py g < 0.5
have VF = 1 (1134/1315) and 78 per cent of galaxies with VF =1
have T-Type > 0 and Prrg < 0.5 (1134/1453).

To test whether the model uncertainties correlate with the ‘misclas-
sifications’, Fig. 9 shows the standard deviation of the value returned
by k = 10 models separating ETGs from LTGs for galaxies whose
visual classification is different from the classification obtained by
combining T-Type and Pso models. The uncertainties are significantly
larger than those for the overall population. The same is true for
the Pgo uncertainties for Es visually classified as SOs (not shown
here).

On the contrary, the ‘misclassified’ galaxies do not show larger
T-Type uncertainties than the full sample. Although that might seem
unexpected, we must take into account that the T-Type model is
a linear regression and is not aware of our ‘artificial’ separation
between E/SOs and Ss at T-Type = 0 defined in Section 3.3.2. What
happens for these galaxies is that they are close to that limit, with
average values of T-Type = —0.3 and 0.67 for the ‘misclassified’ SO
and S, respectively. To quantify this uncertainty, we have generated
100 classifications based on the average T-Type by bootstrapping
one of the k = 15 models in each realization. The percentage of
galaxies which changes class (i.e. has median T-Type > or < O in a
different realization) more than 10 times is ~ 5 per cent for the overall
population, while this happens for 40 per cent of the ‘misclassified’

FPR

Figure 10. ROC curve — TPR versus FPR — for the edge-on (top) and bar
(bottom) classifications. Grey, green, and red curves show the full test sample,
the subset for which the model uncertainties are below the average, and the
subset for which the uncertainties are larger than 30, with N representing the
size of each subsample. Galaxies with more certain classifications (green)
show better performance.

Table 3. Accuracy, precision, recall, and F1 score for Pegge-on and Ppar, as
well as the number of galaxies in the test sample and the fraction of those
labelled positive (according to GZ2).

Model Neest % Positives Accuracy Precision Recall  Fl
Pedge-on 98561 14 0.98 0.87 098 093
Ppar 2723 50 0.93 0.92 090 093

galaxies, demonstrating that the T-Type scatter is consistent with
these subsamples being more difficult to separate into the broad
E/SO and S classes.

3.3.4 Edge-on and bar classifications

The catalogue includes two binary classifications based on the GZ2
catalogue (Willett et al. 2013): identification of edge-on galaxies
(Pedge-on) and identification of galaxies with bar signatures (Ppy).
The receiver operating characteristic (ROC) curve — the true-positive
rate (TPR) versus false-positive rate (FPR) — is commonly used to
assess the performance of binary classifications. Fig. 10 shows the
ROC:s for Pegge-on and Ppy,. The models perform well, with accuracy
of 98 per cent and 93 per cent, respectively. The precision, recall,
and F1 scores, given in Table 3, are defined as

Precision = TP/(TP+FP);
Recall = TP/(TP+FEN);

F1 score = 2x(Recall x Precision)/(Recall + Precision).

MNRAS 509, 4024-4036 (2022)
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These values reach 100 per cent in all cases when computed for the
subsample of galaxies with certain classifications, defined as those
with standard deviations of the predicted models below the average
(see also green lines in Fig. 10). This is reassuring, not just regarding
the quality of our classifications, but also on the meaning of the
reported model uncertainties.

Combining these classifications with the previous ones, only 9
galaxies classified as E (according to T-Type and Psy) have Pegge-on
> 0.8 (compared to 1551 for the full catalogue), while 53 have
Py, > 0.8 (compared to 1300 for the full catalogue). The number
of ETGs (i.e. Purg < 0.5) with Pegge-on OF Ppye > 0.8 is 224 and
246, respectively (out of 4908 ETGs). These small numbers are
expected, because E galaxies should not have bar features or disc
shapes. We want to highlight that it is very difficult to distinguish
between SO and S galaxies when seen edge-on, and therefore, the
separation between these two families for galaxies with large Pegge-on
is not accurate. In fact, one third of the galaxies with T-Type >
0 and VC = SO have Peggeon > 0.5 (see discussion related to
Table 2).

3.4 The MDLM-VAC-DR17 catalogue

Table 4 shows the format of the MDLM-VAC-DR17 catalogue. The
catalogue is released with the SDSS DR17 and is available online.
It includes the classifications discussed in the previous sections plus
additional information on the galaxies, such as their coordinates,
redshifts, or duplicates.

In contrast to the DR15 version, MDLM-VAC-DR17 does not
include Pyisc Or Phuyge values since the B/T and b/a values from the
MPP-VAC are sufficient for providing such estimates. In addition,
MDLM-VAC-DR17 no longer reports Pperer because it does not
properly identity true (3D) mergers but rather projected neighbours
(also see discussion in DS18).

3.4.1 A note on the selection of SOs

There are several ways to combine the morphological classifications
provided in the MDLM-VAC-DR17 to construct samples of E, SO,
and S galaxies. Depending on the scientific purpose, users can be
more (or less) restrictive in order to obtain more pure (or complete)
samples. The more restrictive selection would be to combine all the
information included in the catalogue as follows:

(1) E: (Prrg < 0.5) and (T-Type < 0) and (Psp < 0.5) and (VC =
1) and (VF =0);

(i1) SO: (Prrg < 0.5) and (T-Type < 0) and (Pso > 0.5) and (VC
=2) and (VF = 0);

(i) S: (Prrg > 0.5) and (T-Type > 0) and (VC = 3) and (VF =
0).

This selection will return 2467, 891, and 5125 galaxies classified
as E, SO, and S, respectively. However, there would be 1810 galaxies
(~18 per cent of the sample) which do not belong to any of the
classes.

If the selection is based on the reliable visual classifications (i.e.
VF = 0), there will be 2474 Es, 1031 SOs, and 5325 Ss. But
again, there is a large fraction of galaxies (~14 per cent) without a
class.

Alternatively, the classification could be based on the combination
of Prpg and Pso (which selects 2774 Es, 2134 SOs, and 5385 Ss)
or on the combination of T-Type and Pgy (which selects 2632
Es, 963 SOs, and 6698 Ss). It is evident that the SO galaxies
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are most affected by the classification criteria. Out of the 1315
galaxies with T-Type > 0 and Pipg < 0.5, 541 (44 per cent) are
visually classified as SOs, but only 33 of these have reliable visual
classifications (VF = 0). As already noted throughout the text
(see Section 3.3.2), SO galaxies are sometimes very difficult to
distinguish from Sa, and it is practically impossible to identify
them when seen edge-on. Therefore, we strongly recommend that
catalogue users test the effects different selection criteria may
have on their scientific conclusions, especially when dealing with
SO0s.

4 COMBINING THE TWO CATALOGUES

In this section, we consider the benefits of combining the MPP-VAC-
DR17 with the MDLM-VAC-DR17. Table 5 shows the frequency of
FLAG _FIT for galaxies separated by morphological classes. E and
S2 galaxies tend to be better described by a one-component fit, while
S0 and S1 show a mixture of one- and two-component fits. This does
not depend on whether we use T-Type or visual classifications to
define the morphological class. On the other hand, more than half
of the galaxies classified as ETGs or LTGs are better described by a
one-component fit (this is due to the ETGs being a mix of E and SO
and LTGs a mix of S1 and S2).

Figs 11-14 show how the distributions of n, B/T, luminosity,
central velocity dispersion, and € = 1 — b/a depend on morphology
and FLAG_FIT. The morphological classes shown in the following
are based on the VC values, with an additional separation between
S1 and S2 at T-Type = 3.

The figures show that Es and S2s tend to be dominated by galaxies
better described by a one-component fit (FLAG_FIT = 1), with a
Sérsic index peaking around ~4—-6 and ~1, respectively. The S2s
with FLAG_FIT = 1 also tend to have larger €.

The SOs and S1s tend to have more similar numbers of galaxies
better described by a one- or two-component fit (FLAG_FIT = 1 or
2), with one-component objects tending to be less luminous and to
have smaller 0. The B/T distributions of galaxies better described
by a two-component fit (FLAG_FIT = 2) also show the expected
trends: As one goes to later types, the peak of the distribution (and its
skewness) shifts towards lower B/T. Since the PyMorph fits played no
role in the morphological classification, the correspondence between
FLAG_FIT and morphology in these figures is remarkable, and this
is why we believe FLAG_FIT should be used in scientific analyses
of our photometric catalogue.

5 COMPARISON WITH GALAXY ZOO

We now compare our MDLM Deep Learning morphologies with
those of the GZ2 provided by Willett et al. (2013), in the same
format as figs 24-26 in F19. We use the ‘weighted fraction’ GZ2
probability Pgnoom, Which is sometimes used as a proxy for ETGs
and LTGs.

*The top panel of Fig. 15 shows that objects with Pirg < 0.5 —
i.e. that are unlikely to be LTGs — tend to have large Pgnoomn > 0.6
(their images are smooth, with no disc features). Although we do not
show it here, objects with Prrg < 0.5 tend to have Py < 0.3 (i.e.
they are unlikely to be discs), as expected. The bottom panel shows
that, although most galaxies with Pgpe0m > 0.6 are dominated by Es
or SOs, there is a significant fraction (~ 30 per cent) of objects that
are Ss.

To check if our S1 and S2 classifications at Py > 0.6 are incor-
rect, Fig. 16 shows the distribution of n for one-component galaxies
(FLAG_FIT = 1) and B/T for two-component galaxies (FLAG_FIT
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Table 4. Content of the Deep Learning Morphological catalogue for the DR17 MaNGA sample. This catalogue is available online.”

MDLM-VAC: The MaNGA Deep Learning Morphological VAC

Column name Data type Description

INTID int Internal identification number

MANGA-ID string MaNGA identification

PLATEIFU string MaNGA PLATE-IFU

OBJID long64 SDSS-DR14 photometric identification number

RA double Object right ascension (degrees)

DEC double Object declination (degrees)

Z double NSA redshift (from SDSS when not available)

DUPL_GR int Group identification number for a galaxy with multiple MaNGA spectroscopic observations

DUPL.N int Number of multiple MaNGA spectroscopic observations associated with DUPL_GR

DUPL_ID int Identification number of the galaxy in the group DUPL_GR

TType double T-Type value trained with the N10 catalogue; the value in the catalogue is the average of 15 k-fold models; T-Type < 0
for ETGs and T-Type > 0 for LTGs

TT_std double Standard deviation of the value returned by the k = 15 T-Type models; can be used as a proxy of the T-Type uncertainty

P_LTG double Probability of being LTG rather than ETG; trained with the N10 catalogue

P_LTG_std double Standard deviation of the value returned by the kK = 10 Prrg models; can be used as a proxy of the P rg uncertainty

P_SO double Probability of being SO rather than pure elliptical, trained with the N10 catalogue; only meaningful for galaxies with
T-Type < 0 and not seen edge-on

P_S0_std double Standard deviation of the value returned by the kK = 10 Pso models; can be used as a proxy of the Pgp uncertainty

P_edge-on double Probability of being edge-on, trained with the GZ2 catalogue

P_edge-on_std double Standard deviation of the value returned by the k = 10 Pegge on models; can be used as a proxy of the Pegge-on
uncertainty

P_bar double Probability of having a bar signature, trained with GZ2 catalogue; edge-on galaxies should be removed to avoid
contamination

P_bar_std double Standard deviation of the value returned by the kK = 10 Py, models; can be used as a proxy of the Py, uncertainty

Visual_Class int Visual classification: VC = 1 for ellipticals, VC = 2 for SO, VC = 3 for S (including irregulars), and VC = 0 for
unclassifiable

Visual_Flag int Visual classification flag: VC = 0 certain visual classification and VC = 1 uncertain visual classification

Table 5. Leftmost columns: fraction of galaxies of a given morphological type, which have PyMorph parameters (from Sérsic and/or SerExp, i.e. FLAG_FIT
# 3) and reliable visual classification (VF = 0). Rightmost columns: fraction of galaxies with FLAG_FIT # 3, VF = 0 and having two components (FLAG_FIT
= 2), one component (FLAG_FIT = 1), or for which both descriptions are equally acceptable (FLAG_FIT = 0).Please, keep the format of the table as close as
possible to the original one. At least separate the two parts of the table with a line, in a similar way as in the original manuscript. The content of the table is less
clear in this new version.

Good fits Good fits Good Sérsic and SerExp fits Good Sérsic fits Good SerExp fits
(Sérsic and/or SerExp) and reliable visual class and reliable visual class and reliable visual class and reliable visual class
(FLAG_FIT # 3) (FLAG_FIT # 3 + VF = 0) (FLAG_FIT = 0 + VF = 0) (FLAG_FIT = 1 + VF = 0) (FLAG_FIT =2 + VF=0)

Class Based on T-Type + Pso

E 0.968 0.956 0.182 0.618 0.200
SO 0.964 0.930 0.123 0.450 0.427
S1 0.966 0.550 0.077 0.390 0.532
S2 0.966 0.920 0.048 0.640 0.312

Based on visual classification

E 0.966 0.946 0.184 0.630 0.186
SO 0.973 0.626 0.125 0.438 0.437
S1 0.966 0.692 0.078 0.392 0.529
S2 0.966 0.921 0.048 0.640 0.312

Based on Pr1g

ETG 0.967 0.729 0.161 0.561 0.277
LTG 0.966 0.925 0.056 0.575 0.369

= 2). The Es clearly have larger n and B/T, and the Ss clearly have treated with caution; (b) selecting Es based on our MDLM T-Type

n ~ 1 and lower B/T (neither n nor B/T played a role in determining classifications is much more robust than selecting on GZ2 Ppooth-
T-Type or Psmoom)- This strongly suggests that our classifications are In their analysis of DR15, F19 showed that selecting objects with
appropriate, so (a) the presence of Ss with Pgpeom > 0.6 implies Pgisc < 0.3 produces almost identical results as Fig. 16. This remains
that conclusions about Es that are based on GZ2 Pgpoom should be true in DR17, so we have not shown it explicitly.
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Figure 11. Distribution of r-band n and npuge for galaxies better described by a one-component fit (FLAG_FIT = 1, left-hand panel) and a two-component
fit (FLAG_FIT = 2, middle panel). For galaxies with FLAG_FIT = 2, the distribution of B/T is also shown (right-hand panel). Galaxies are colour coded by
morphology based on the VC values, with an additional separation between S1 and S2 at T-Type = 3. There is a strong correlation between morphological
classes and photometric parameters. (The peak height of the S2 histogram is 0.153.)
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Figure 12. Distribution of r-band absolute magnitude for galaxies selected
on the basis of their morphology and FLAG_FIT. Es are the brightest, while
Ss peak at fainter absolute magnitudes, especially those with a preferred
one-component fit (FLAG_FIT = | —i.e. without a bulge component).
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Figure 13. Same as the previous figure, but for central velocity dispersion
o¢. Es tend to have large o, whereas for S2s o tends to be very small. S1s
with a preferred one-component fit (FLAG_FIT = 1) have smaller o .
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Figure 14. Same as the previous figure, but for observed € = 1 — b/a. Es
tend to be round, whereas S2s have a wide range of € as expected for inclined
discs. This correlation with morphology is striking because PyMorph b/a
played no role in the classification.

6 SUMMARY AND CONCLUSIONS

We have presented the MPP-VAC-DR17 and MDLM-VAC-DR17
for the final data release of the MaNGA survey (which is part of the
SDSS Data Release 17 — DR17).

The MPP-VAC-DR17 is an extension of the MPP-VAC-DRI15 to
include all the galaxies in the final MaNGA release. It provides
photometric parameters for 2D surface brightness profiles for 10293
observations (of which 10 127 are unique galaxies) in the g, r, and i
bands. The MPP-VAC is identical to the one presented in F19, and
its content is detailed in table 1 of F19. The only difference with the
MPP-VAC-DRI15 is the definition of the PA, given in this catalogue
with respect to the camera columns in the SDSS “fpC’ images. The
2D light profile fittings are derived both for Sérsic and SerExp
models. The catalogue contains a flagging system that indicates
which fit is to be preferred for scientific analyses (FLAG_FIT =
1 for Sérsic, FLAG_FIT = 2 for SerExp, FLAG_FIT = 0 when both
are acceptable). We urge users to pay attention to the preferences
expressed by this flag since some fits may be unreliable.

The MDLM-VAC-DR17 is also an extension of the MDLM-VAC-
DR15 presented in F19 and includes exactly the same entries as MPP-
VAC-DR17. The MDLM-VAC-DR17 implements some changes

https://www.sdss.org/dr17/data_access/value-added- catalogs/
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Figure 15. Distribution of Pgpoomn from GZ2 for DR17 galaxies divided
according to our Prrg (top) and T-Type + Pso (bottom). Most galaxies with
Psmooth = 0.6 have Prrg < 0.5 and tend to be Es or SOs, although there is a
non-negligible fraction of Ss.

compared to the previous release, and its content is detailed in Table 4.
The main improvements of the new release are as follows:

(i) The low end of the T-Types is better recovered, with a smaller
bias b compared to the previous version, thanks to a change in
the CNN architecture (an additional dense layer was added, see
Section 3.2).

(i1) A new binary model Py1g, which separates ETGs from LTGs
in a complementary way to the T-Type, especially at intermediate
T-Types where the scatter is larger.

(iii) All the classifications are trained using k-folding (with k = 15
for the T-Type and k = 10 for the rest of the models), and the value
reported in the catalogue is the average of the k models.

(iv) Wereport the standard deviation of the outputs of the k models,
which can be used as a proxy for their uncertainties (see Figs 9 and
10).

(v) A visual classification (VC = 1 for E, VC = 2 for S0, and VC
= 3 for S/Irr) and a visual flag (VF = O for reliable classification and
VF = 1 for uncertain classifications) are also included.

By combining the different classification models, we find the
following:

(i) Galaxies having inconsistent T-Type and Pyrg classifications
tend to be faint and small galaxies with small central velocity
dispersion, i.e. they are difficult to classify. In general, they share
some properties with LTGs, but they have no obvious spiral features.
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Figure 16. Distribution of r-band Sérsic index n for galaxies better described
by a one-component fit (FLAG_FIT = 1, top) and B/T for galaxies better
described by a two-component fit (FLAG_FIT = 2, bottom), for galaxies
with GZ2 Psmooth > 0.6. Objects with small n or B/T tend to be S, confirming
that our morphological classification is correct. Results for Pgisc < 0.3 from
GZ2 are nearly identical, so we have not shown them here.

(i1) The larger discrepancy between the visual classification and
the one provided by the combination of the T-Type and the Pgg
(as defined in Section 3.3.2) is for galaxies classified as SO by the
former and S by the latter (see Table 2). This fraction is reduced
from 10 per cent to 1 per cent when only galaxies with VF = 0 are
considered.

(iii) The larger discrepancy between the visual classification and
Pr1¢ is for galaxies classified as S by the former and ETG by the
latter (see Table 2). This fraction is reduced from 16 per cent to
5 per cent when only galaxies with VF = 0 are considered.

By combining the two catalogues MPP-VAC-DR17 and MDLM-
VAC-DR17, and despite the changes to the morphological classifi-
cation, we find similar results to those found in F19:

(i) There is a strong correlation between the morphological clas-
sification and the values of n, nyyee, and B/T (see Fig. 11).

(ii) E galaxies tend to be bright (more negative M, values), have
large central velocity dispersion o, and small ellipticity €, while the
trend is the opposite for the S galaxies, especially S2 (see Figs 12—
14).

(iii) Separating galaxies according to the FLAG_FIT, we observe
that Es and S2s tend to be dominated by galaxies better described by
aone-component fit (FLAG_FIT = 1). On the other hand, the SOs and
S1s tend to have more similar numbers of objects described by a one-

MNRAS 509, 4024-4036 (2022)
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or two-component fit (FLAG_FIT = 1 and 2), with one-component
objects tending to be less luminous and having smaller o .

(iv) Since the PyMorph fits played no role in the morphological
classification, the correspondence between FLAG_FIT and morphol-
ogy is remarkable: FLAG_FIT should be used in scientific analyses
of our photometric catalogue.

(v) We find a significant fraction of S galaxies with Pgpoom > 0.6
from GZ2 (Fig. 15). Most of these galaxies have have n ~ 1 and low
B/T (Fig. 16), consistent with being disc galaxies. Therefore, as F19
noted previously, conclusions about Es that are based on GZ2 P01
should be treated with caution.
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