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A B S T R A C T   

Perfluorooctanoic acid (PFOA) is abundant in environment due to its historical uses in consumer products and 
industrial applications. Exposure to low doses of PFOA has been associated with various disease risks, including 
neurological disorders. The underlying mechanism, however, remains poorly understood. In this study, we 
examined the effects of low dose PFOA exposure at 0.4 and 4 μg/L on the morphology, epigenome, mitochon
drion, and neuronal markers of dopaminergic (DA)-like SH-SY5Y cells. We observed persistent decreases in 
H3K4me3, H3K27me3 and 5 mC markers in nucleus along with alterations in nuclear size and chromatin 
compaction percentage in DA-like neurons differentiated from SH-SY5Y cells exposed to 0.4 and 4 μg/L PFOA. 
Among the selected epigenetic features, DNA methylation pattern can be used to distinguish between PFOA- 
exposed and naïve populations, suggesting the involvement of epigenetic regulation. Moreover, DA-like neu
rons with pre-differentiation PFOA exposure exhibit altered network connectivity, mitochondrial volume, and 
TH expression, implying impairment in DA neuron functionality. Collectively, our results revealed the prolonged 
effects of developmental PFOA exposure on the fitness of DA-like neurons and identified epigenome and mito
chondrion as potential targets for bearing long-lasting changes contributing to increased risks of neurological 
diseases later in life.   

1. Introduction 

Poly- and per-fluoroalkyl substances (PFASs, CnF2n+1-R) are a family 
of highly fluorinated aliphatic compounds with strong acidic, hydro
phobic, and lipophobic properties due to the perfluoroalkyl moiety 
(CnF2n+1-) (Chain et al., 2018; Wang et al., 2017), and are used in a wide 
range of products such as disposable food packaging, cosmetics, aqueous 
film forming foams, and other consumer products (OECD, 2018). There 
are more than 4000 types of PFAS (Sunderland et al., 2019), among 
which perfluorooctanoic acid (PFOA), an organo-fluorine surfactant 
with a hydrophilic n-octyl head conjugated to a hydrophobic and lip
ophobic fluorinated carbon tail, is one of the most widely-used (H 
Nataraj et al., 2015). 

Due to the extensive applications of PFOA in different industrial 

sectors, PFOA is ubiquitously present in our living environment, 
including air, soil and water (Paustenbach et al., 2006). The primary 
route of human exposure to PFOA is via the consumption of contami
nated water and food (Garnick et al., 2021). Currently, the US Envi
ronmental Protection Agency (EPA) released a health advisory for PFOA 
in drinking water of 0.07 μg/L (EPA, 2016). A recent survey showed that 
PFOA was detected in drinking water from 33 states in the U.S. with 
concentrations ranging from 0.02 to 0.35 μg/L (Hu et al., 2016). Strik
ingly, another study shows that the geometric mean of serum PFOA 
levels for the US population is ~1.42 μg/L (CDC, 2021) due to the high 
stability of PFOA. This number is even higher for people residing at 
contaminated sites, for example the median serum PFOA concentration 
measured in mid-Ohio Valley residents were found to be 23.1 μg/L 
(Gallo et al., 2012). PFOA was also detected in umbilical cord sera at 1.6 
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μg/L (Apelberg et al., 2007), at 0.01–0.05 μg/L in breast milk (Zheng 
et al., 2021), and 8.2 μg/L (Mogensen et al., 2015) in infants raising 
significant concerns about PFOA altering disease risk at a later life 
following exposures of a development origin of health and disease 
(DOHaD) paradigm (Gillman, 2005; Haugen et al., 2014). 

Several recent studies have suggested neurotoxicity of PFOA. Spe
cifically, zebrafish exposed to 2000 μg/L PFOA for 5 days post- 
fertilization (dpf) showed hyperactive locomotor function at 14 dpf 
(Jantzen et al., 2016a; Jantzen et al., 2016b). Zebrafish with an em
bryonic exposure to 1000 μg/L PFOA exhibited aberrant locomotor ac
tivity, and disruption in dopamine homeostasis (Yu et al., 2021). 
Furthermore, exposure to PFOA (414–41400 μg/L) can significantly 
alter neuron activity in a co-culture system of glutamatergic and 
GABAergic neurons derived from human induced pluripotent stem cells 
(hiPSCs) by acting as a non-competitive antagonist of human GABAA 
receptor (Tukker et al., 2020). Altered neuron functions, shown as 
reduced expression of Tyrosine hydroxylase (TH) and dopamine trans
porter (DAT), has also been observed in hiPSC-derived dopaminergic 
(DA) neurons exposed to PFOA of 10 μg/L (Di Nisio et al., 2022). Limited 
insights, however, were provided regarding cellular targets transmitting 
the long-lasting damages arising from developmental exposures to 
PFOA. 

Epigenetic modifications, including DNA methylation, histone post- 
translational modifications and RNA processing, are potential molecu
lar markers that can record past-exposure events and transmit diseases 
to the next generation. The immediate effects of PFOA exposure on 
epigenome via the regulation of epigenetic enzymes have been reported. 
For example, reduction of DNA methylation along with dysregulation of 
TET and DNMT family proteins has been observed in a human liver cell 
line and murine animal models right after PFOA exposure (Wen et al., 
2020a; Wen et al., 2020b). Conversely, N46 (embryonic mouse hypo
thalamus) cells exposed to PFOA exhibit DNA hypermethylation along 
with different expressions in DNMTs and TETs (Kim et al., 2021). 
Epidemiologic studies have shown that prenatal exposure to PFOA 
caused DNA methylation changes in cord blood of infants at birth (Miura 
et al., 2018; Kingsley et al., 2017) and suggest a strong correlation be
tween prenatal PFOA exposure with aberrant DNA methylation of 
children at adolescence (Liu et al., 2022). DNA methylation thus holds 
the promise as a potential “memory” arising from developmental PFOA 
exposure. 

Bioenergetic adaptation is commonly observed in response to envi
ronmental stressors. Mitochondria play a significant role in regulating 
cellular metabolic bioenergetic levels. Metabolic profiling of a neuronal 
cell line, SH-SY5Y, showed reductions in ATP-related metabolites and 
neurotransmitter precursors after exposure to 41400 μg/L PFOA 
(Souders et al., 2021). Increased mitochondrial reactive oxygen species 
(ROS) levels and decreased mitochondrial membrane potentials were 
also observed in the fetus brain of mice after maternal exposure to PFOA 
of 20 mg/kg (Salimi et al., 2019). Upregulation of lipid synthesis was 
also observed in the liver of mice treated with PFOA (Weng et al., 2020). 
Aberrant changes in lipid metabolism induced by PFOA have been 
postulated to dis-regulate mitochondrial biogenesis and cause changes 
in mitochondrial structures (Voelker, 2004). These results thus suggest 
mitochondrial defect as a potential outcome of PFOA exposure. 

High PFOA concentrations (10–414000 μg/L) were used in most of 
past studies, while concentrations relevant to human exposures are 
significantly lower creating a knowledge gap. Few studies have devised 
exposure schemes resembling developmental exposures and assessed 
persistent long-term effects warranting further studies. To address these 
knowledge gaps, we adopted a model cell line, SH-SY5Y, that is a neural 
precursor cell (Pezzini et al., 2017; Constantinescu et al., 2007). 
SH-SY5Y cells can be differentiated into DA-like neurons (Shipley et al., 
2016) and thus used for studying developmental exposure effects of 
various chemicals (Cheung et al., 2009; Lee et al., 2022; Attoff et al., 
2020). We exposed SH-SY5Y cells with PFOA before differentiation and 
examined the effects of PFOA immediately after and till the completion 

of differentiation (14 days) to assess persistency. 

2. Material and methods 

2.1. Culture and differentiation of SH-SY5Y cells 

SH-SY5Y cell lines were obtained from ATCC, seeded into μ-slide 18 
well chambered coverslips (Ibidi) and differentiated using an estab
lished protocol (Xie et al., 2021; Lin et al., 2021). Differentiated 
SH-SY5Y cells become DA-like (Agholme et al., 2010; Borland et al., 
2008) and have a high expression of FOXA2, TH and MAP2, which are 
characteristics of DA-like neurons as shown in Fig. S1 (Supporting In
formation). Only cells with a passage number lower than 10 were used in 
our experiments to ensure cellular competency. 

PFOA (Sigma Aldrich, Cas # 335-67-1) was dissolved in water at a 
concentration of 4 mg/L and were spiked into culture medium as 
described previously (Xie et al., 2021; Lin et al., 2021). SH-SY5Y cells 
were cultured in PFOA-containing (0.4 or 4 μg/L) or free (0 μg/L) me
dium for 4 days. Fresh medium was exchanged every 2 days. Cells were 
washed with 1 × PBS three times to remove any residual PFOA before 
switching to a differentiation medium and cultured for 6 days. Cells 
were then cultured in a maturation medium for another 8 days to obtain 
mature DA-like neurons (see Table S1 (Supporting Information) for 
medium composition). Fresh differentiation and maturation medium 
were exchanged every 2 days for a total duration of 14 days. The 
exposure and differentiation paradigm are illustrated in Fig. 1A. 

2.2. MTT assay 

The MTT assay is a colorimetric assay for assessing cell metabolic 
activity. MTT assay was carried out using a MTT assay kit (Abcam, 
211091) following the manufacturer’s protocol. After 4 days of PFOA 
treatment, PFOA-containing medium was removed from culture wells 
followed by washing in PBS. Cells were then treated with a solution 
containing 50% serum-free medium and 50% MTT reagents at 37 ◦C for 
3 h, followed by incubation with the MTT solvent at room temperature 
for 15 min. Absorbance at 580 nm was then collected using a Spec
traMax microplate reader (Molecular Device) to determine cell viability. 

2.3. Fluorescence immuno-staining 

Cells were fixed at selected timepoints in 4% formaldehyde (Ther
moFisher, USA) at 4 ◦C overnight and stained as we described previously 
(Xie et al., 2021; Lin et al., 2021). The primary antibodies used in this 
study include anti- 5’ methyl-cytosine (Active Motif, 61479), H3K4me3 
(Abcam, ab8580), H3K27me3 (Abcam, ab192985), TOMM20 (Santa 
Cruz Biotechnology, sc-17764), α-synuclein (Invitrogen, 328100), 
FOXA2 (Invitrogen, A29515), TH (Invitrogen, A29515) and MAP2 
(SySy, 188004). Anti-mouse Alexa 568 (Invitrogen, A11004), 
anti-mouse Alexa 488 (Invitrogen, A11001), anti-rabbit Alexa 568 
(Abcam, ab175471) and anti-guinea pig Alexa 647 (Invitrogen, A21450) 
were used as secondary. 

2.4. Microscopy imaging 

Fluorescence microscopy and DIC images were collected using a 
high-content imaging platform (ImageXpress Micro Confocal, Molecular 
Device). DIC images were collected using a Nikon 20 × /0.75 Plan Apo 
Lambda objective. Confocal images of cells stained with epigenetic 
markers and TOMM20 were collected using a Nikon 60 × /0.95 Plan 
Apo objective with a z-step interval of 1 μm. Confocal images were 
projected as maximum projections for quantitative analysis. Images of 
cells stained with TH and MAP2 were collected using a Nikon 20 × /0.75 
Plan Apo Lambda objective. 
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2.5. Image analysis 

Neurite morphology analysis was performed via the neurite 
outgrowth module embedded in MetaXpress Software (Molecular 

Device) using DIC images of cells. Nuclear morphology analysis was 
performed via a customized nuclear segmentation and measurement 
module through MetaXpress analysis software (Molecular Device) using 
DAPI stained cells. Chromatin condensation percentage (chromatin 

Fig. 1. A) Schematic illustration of PFOA exposure, SH-SY5Y differentiation and assessment timepoints. B) Viability of SH-SY5Y cells treated with 0 μg/L, 0.4 μg/L 
and 4 μg/L PFOA for 4 days quantified using MTT assay. n = 3 independent replicates. C) Growth curve of SH-SY5Y exposed to 0 μg/L, 0.4 μg/L and 4 μg/L PFOA for 
3 days. Normalized cell density is calculated using cell area normalized to its corresponding day 0 cell area. n = 3 independent replicates. D) Typical images of SH- 
SY5Y cell nucleus treated with varying concentrations of PFOA. Scale bar = 10 μm. E) Bar plots of nucleus morphology, such as nucleus area (top), nucleus roundness 
(middle) and chromatin condensation percentage (bottom). n > 1000 cells from 3 biological replicates. Data = Mean ± S.D. N.S.: not significant; *: p < 0.05; **: p <
0.01; ***: p < 0.001 (One-Way ANOVA with Tukey post-hoc test). 
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condensation %) was quantified via a Sobel edge detection algorithm 
described in literature (Irianto et al., 2014). Analysis of single-cell based 
intensity and foci feature was performed via a CellProfiler Pipeline 
(Broad Institute) following our established protocol (Xie et al., 2021; Lin 
et al., 2021). The analysis of mitochondrial volume was carried out using 
the MiNA plugin of ImageJ via an otsu’s auto-threshold method (Valente 
et al., 2017). All intensity measurements of wide-field fluorescent im
ages were performed on background-corrected images using a Gaussian 
filter. Intensity of TH on neurites was measured by manually tracing 
neurite with positive MAP2 staining using the freehand line drawing 
tool from ImageJ. Traced neurite lines were then expanded to an area 
with a width of 9 pixels to measure its integrated intensity. 

2.6. Statistical analysis 

We used SH-SY5Y cells from 3 different lineages followed by > 3 
independent differentiations. Results of quantitative analysis were re
ported as mean ± standard deviation (S.D.), unless otherwise stated in 
figure captions. Difference between groups was tested using one-way 
ANOVA followed by Tukey post-hoc test. p value less than 0.05 was 
considered significant. All figures along with statistical analysis were 
prepared using OriginPro (2019). Principal component analysis (PCA) 
and clustering analysis were performed using prcomp and kmeans 
function in R (RStudio, v1.2.1). 

3. Results 

3.1. Morphological changes in SH-SY5Y cells induced by PFOA treatment 

We selected to work with SH-SY5Y cells at a PFOA concentration of 
0.4 and 4 μg/L. These concentrations were selected based on the serum 
levels of PFOA from infants at an age of 0–12 months which were found 
to be 2 μg/L at birth and increased to 8.2 μg/L at 11 months (Mogensen 
et al., 2015). We thus used 4 μg/L as the higher dose in this study due to 
its physiological relevance and included 0.4 μg/L PFOA due to the 
prevalence of such concentrations in environment. 

To start, we evaluated the toxicity of the selected concentrations of 
PFOA on cell viability using a MTT assay, with results shown in Fig. 1B. 
After 96 h of treatment, SH-SY5Y cells did not exhibit significant alter
ations in cell viability, verifying that the selected PFOA concentrations 
do not illicit immediate toxicity on treated cells. We also examined the 
cell growth rate during PFOA exposure as shown in Fig. 1C and observed 
significantly higher growth rates in PFOA treated cells. 

We performed a nuclear morphology analysis on SH-SY5Y cells 
exposed to 0.4 and 4 μg/L PFOA and compared our findings to the 
control. Specifically, we fixed the cells after 96 h of exposure and stained 
cells with DAPI as shown in Fig. 1D and Fig. S2 (Supporting Informa
tion). The population mean of nuclear size increased significantly (p <
0.001) by 6 and 11% in 0.4 and 4 μg/L treated SH-SY5Y cells (see Fig. 1E 
top panel). Changes in nuclear shape were also observed suggesting a 
rounder nuclear morphology after PFOA treatments (see Fig. 1E middle 
panel). Changes in nuclear size and shape is often associated with al
terations in chromatin compaction. Therefore, we performed chromatin 
condensation analysis following an established protocol (Irianto et al., 
2014). We observed a significant decrease (~12%, p < 0.001) of chro
matin condensation percentage in cells treated with 4 μg/L PFOA 
(Fig. 1E bottom panel). No significant changes were found in cells 
exposed to 0.4 μg/L PFOA. 

3.2. Morphological changes in DA-like neurons differentiated from SH- 
SY5Y after a developmental-like PFOA exposure 

To demonstrate the prolonged effect of developmental PFOA expo
sure on neurons, the treated cells were differentiated into DA-like neu
rons following a 14-day differentiation protocol using PFOA-free 
medium as we described previously (Xie et al., 2021; Lin et al., 2021) 

(see also Fig. 1A). The formation of DA-like neurons was verified via 
FOXA2, TH and MAP2 staining as shown in Fig. S1 (Supporting Infor
mation). Specifically, undifferentiated SH-SY5Y has low levels of 
FOXA2. The expression of FOXA2, a transcriptional factor for DA neuron 
maintenance, was significantly elevated in differentiated SH-SY5Y cells 
(Day 14). A similar trend was observed for MAP2 and TH verifying the 
DA-like characteristics in differentiated SH-SY5Y cells. 

Morphological assessments, including nuclear conformation and 
chromatin condensation %, were carried out similarly as described in 
the previous section. Additionally, we analyzed the neuron network by 
focusing on changes in process numbers, neurite length and branch 
numbers. Typical images of DAPI stained neurons are shown in Fig. 2A 
and Fig. S3A (Supporting Information). Among them, significant in
creases in nucleus size were observed in cells treated with 0.4 μg/L 
(~1%, p < 0.001) and 4 μg/L (~3%, p < 0.001) PFOA (see Fig. 2B top 
panel), a trend persistent with what was observed prior to differentia
tion but at a reduced level. No significant change was observed in nu
cleus roundness (Fig. 2B middle panel). Chromatin condensation 
percentage increased significantly (~5%, p < 0.001) in 0.4 μg/L PFOA 
treated cells, while decreased significantly (~4%, p < 0.05) in 4 μg/L 
PFOA treated cells (Fig. 2B bottom panel). 

Analysis of neuron network revealed significant reductions in 
complexity arising from PFOA exposure as shown in Fig. 2C and Fig. S3B 
(Supporting Information). Specifically, the number of neurite branches 
decreased significantly by ~11% and 13% for neurons treated with 0.4 
and 4 μg/L PFOA (see Fig. 2D top panel). No significant changes were 
found in neurite length (see Fig. 2D middle panel). Significant decrease 
in process numbers (axon number from each soma body) was also 
observed in neurons exposed to 4 μg/L PFOA, but not in those exposed to 
0.4 μg/L PFOA (see Fig. 2D bottom panel). 

3.3. Epigenetic changes in SH-SY5Y cells induced by PFOA exposure 

Given the significant changes in nuclear morphology and chromatin 
condensation percentage after PFOA exposure, we further investigated 
changes in the epigenome in response to PFOA treatment. SH-SY5Y cells 
were fixed immediately after 96 h of PFOA exposure and stained for 
H3K4me3, H3K27me3 and 5 mC, as shown in Fig. 3A–C and Fig. S4A- 
S4C (Supporting Information). SH-SY5Y cells exhibited diffusive pat
terns of H3K4me3 inside cell nucleus with mild enrichment as small 
puncta. Global abundance of H3K4me3 decreased modestly in 0.4 μg/L 
(~9%, p < 0.001) and 4 μg/L (~3%, p < 0.01) PFOA treated cells as 
shown in Fig. 3D. Spatial distribution and puncta-like features of 
H3K4me3 were further quantified using CellProfiler following published 
protocols (Xie et al., 2021; Lin et al., 2021). Multi-dimensional data 
extracted from immunostaining pattern was then plotted on a principal 
component (PC) space to identify possible new subpopulations arising 
from PFOA treatment. No distinct separation among varying doses was 
identified from H3K4me3 staining (Fig. 3G). 

H3K27me3 staining shows punctate patterns with one large foci, also 
known as Barr body, in each nucleus (Fig. 3B and Fig. S4B (Supporting 
Information)). Intensity analysis showed ~12% (p < 0.001) decrease of 
H3K27me3 in 0.4 μg/L PFOA treated cells, while ~6% (p < 0.001) 
decrease was observed in 4 μg/L PFOA treated cells (see also Fig. 3E). 
Principal component analysis (PCA) plot (see Fig. 3H) shows no 
distinctive separations between PFOA exposed and untreated cells. 

We also examined changes of DNA methylation in response to PFOA 
exposure using 5 mC staining. 5 mC staining showed a punctate pattern 
inside cell nucleus with significant enrichment on nuclear periphery 
(Fig. 3C and Fig. S4C (Supporting Information)), as expected for het
erochromatin markers. Total intensity analysis (Fig. 3F) showed a dra
matic decrease of 5 mC in PFOA exposed cells. Specifically, 5 mC 
decreased by ~27% (p < 0.001) in 0.4 μg/L PFOA exposed cells and 
~19% (p < 0.001) in 4 μg/L PFOA exposed cells. The PCA plot of 5 mC 
patterns showed a distinctive separation between PFOA treated and 
unexposed cells. To further validate the separations visualized in the 
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PCA plot, k-means clustering analysis was performed to define sub
populations, shown as grey circles in Fig. 3I. The percentage of cells 
from PFOA treatment group in each cluster was also quantified as shown 
in Fig. S5A (Supporting Information). Specifically, cluster 1 was domi
nated by unexposed cells, while cluster 2 was dominated by 0.4 and 4 
μg/L PFOA exposed cells. Cluster 3 was a mixture of all PFOA treatment 
groups. Least absolute shrinkage and selection operator (LASSO) anal
ysis was also performed to distinguish parameters contributing most to 
the separation of subpopulations as shown in Table S2 (Supporting Ta
bles). Our results showed that intensity- and foci-texture-based features 
of 5 mC are major contributors to distinguish between differently treated 
SH-SY5Y cells. 

3.4. Epigenetic changes in differentiated SH-SY5Y cells induced by pre- 
differentiation PFOA treatment 

A similar analysis was performed with differentiated SH-SY5Y cells 
stained for H3K4me3, H3K27me3 and 5 mC as summarized in Fig. 4A–C 
and Fig. S6A-6C (Supporting Information). DA-like neurons differenti
ated from SH-SY5Y with a pre-differentiation exposure to PFOA show 
diffusive patterns of H3K4me3 with enrichment near nucleolus, as 
shown in Fig. 4A and Fig. S6A (Supporting Information). Integrated 
intensity of H3K4me3 decreased by ~6% (p < 0.001) in 0.4 μg/L PFOA 
treated cells. ~ 9% (p < 0.001) decrease of total H3K4me3 was observed 
in 4 μg/L PFOA treated cells (Fig. 4D). H3K4me3 pattern was not 
distinguishable between PFOA treated and untreated group from the 
PCA plot as shown in Fig. 4G. 

H3K27me3 staining of differentiated SH-SY5Y cells showed punctate 
patterns as expected (see Fig.4B and Fig. S6B (Supporting Information)). 
H3K27me3 level decreased by ~17% (p < 0.001) in 0.4 μg/L PFOA 

treated cells and ~10% (p < 0.001) in 4 μg/L PFOA treated cells as 
shown in Fig. 4E. The PCA plot based on H3K27me3 staining does not 
show distinct separations between PFOA treated and untreated cells 
(Fig. 4H). 

Neurons showed small foci-like features for 5 mC inside nucleus with 
a significant enrichment near nuclear periphery as shown in Fig. 4C and 
Fig. S6C (Supporting Information). 5 mC level decreased dramatically in 
the PFOA treated group (see Fig. 4F). Notably, we observed ~37% 
decrease (p < 0.001) in 0.4 μg/L PFOA treated group and ~58% 
decrease (p < 0.001) in 4 μg/L PFOA treated group, respectively. The 
PCA plot based on 5 mC patterns shows distinctive separations. Specif
ically, the PFOA treated group gradually shifted away from the un
treated group with increasing doses as shown in Fig. 4I. Clustering 
analysis showed that 0 μg/L PFOA treated cells formed a cluster with 
minimal overlap with 0.4 μg/L and 4 μg/L PFOA treated cells. 0.4 μg/L 
PFOA treated cells formed a new cluster with some overlap with 4 μg/L 
PFOA treated cells. A subpopulation of 4 μg/L treated cells formed a new 
distinctive cluster. This observation was further validated by quanti
fying the percentage of cells in each cluster (see Fig. S5B (Supplemen
tary Information)). Cluster 1 is dominated by unexposed cells. Cluster 2 
is dominated by 0.4 μg/L PFOA exposed cells. Cluster 3 is shared be
tween 0.4 μg/L and 4 μg/L PFOA exposed cells. Top 2 features ranked 
with LASSO coefficient were texture-based features, as shown in 
Table S3 (Supporting Information). 

3.5. Changes in mitochondrial morphology induced by PFOA exposure 

To elucidate the impact of PFOA exposure on cell bioenergetics, we 
measured mitochondrial volume right after PFOA exposure and after the 
completion of differentiation. SH-SY5Y cells were exposed to 0.4 μg/L 

Fig. 2. A) Representative images of differentiated SH-SY5Y stained with DAPI. Scale bar = 10 μm. B) Bar plots of nucleus morphology, including nucleus area, 
nucleus roundness and chromatin condensation percentage (from top to bottom). n > 1000 cells from 3 biological replicates. C) Representative DIC images of 
differentiated SH-SY5Y cells. Scale bar = 50 μm. D) Bar plots of neuron morphology parameters, including branch number, neurite length and process (from top to 
bottom). n > 16 independent replicates. Data = Mean ± S.D. N.S.: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 (One-Way ANOVA with Tukey post- 
hoc test). 
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and 4 μg/L PFOA for 96 h and stained for TOMM20 as shown in Fig. 5A 
and Fig. S7A (Supporting Information). Mitochondria showed a polar
ized distribution in cytoplasm of unexposed SH-SY5Y cells. Cells treated 
with 0.4 and 4 μg/L PFOA, however, have a more uniform distribution of 
mitochondria around nucleus. Elongated and connected mitochondria 
structure was observed along the polarized axis of the cell in the un
treated control. No such structure was observed in 0.4 and 4 μg/L PFOA 
treated cells, where mitochondria showed more fragmented structures 
as shown in the zoom-in views in Fig. 5A and Fig. S7A (Supporting In
formation). The total volume of mitochondria in each cell was quantified 
via MiNA plugin in ImageJ, normalized to the untreated group and 

summarized in Fig. 5B. We observed no significant changes in mito
chondrial volume right after PFOA exposure. 

We performed a similar analysis of mitochondrial morphology and 
volume using DA-like neurons differentiated from SH-SY5Y cells 
exposed to PFOA. Mitochondria in neurons are highly polarized and are 
enriched near the soma as shown in Fig. 5C and Fig. S7B (Supporting 
Information). Mitochondrial morphology is more condensed in 0.4 and 
4 ppb (μg/L) PFOA treated cells. Mitochondrial volume decreased by 
~35% (p < 0.001) in 0.4 μg/L PFOA treated cells; and by ~38% (p <
0.001) in 4 μg/L PFOA treated cells compared to the untreated cells (see 
Fig. 5D). 

Fig. 3. Pre-differentiation. A-C) Representative images of SH-SY5Ycells exposed to 0 μg/L, 0.4 μg/L and 4 μg/L of PFOA stained for A) H3K4me3, B) H3K27me3 and 
C) 5 mC prior to differentiation. Scale bar = 5 μm. D-F) Normalized integrated intensity from single cells stained with D) H3K4me3, E) H3K27me3 and F) 5 mC n >
1000 cells from 3 different passages. G-I) PCA plots of single cell features extracted from G) H3K4me3, H) H3K27me3 and I) 5 mC staining of SH-SY5Y treated with 
various doses of PFOA. PCA space was constructed using >1000 cells per condition, 600 cells were randomly selected from each group and included in the PCA plots. 
**: p < 0.01; ***: p < 0.001 (One-way ANOVA with Tukey post-hoc test). 
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3.6. Changes in DA-neuron characteristics induced by PFOA exposure 

DA-like neurons are unique in their abilities to form synapses, release 
dopamine and enable synaptic communications. We thus assessed the 
expression levels of TH and SNCA in the DA-like neurons differentiated 
from SH-SY5Y. 

DA-like neurons differentiated from PFOA-exposed and naïve SH- 
SY5Y cells all showed positive TH staining in both soma body and 
neurites as shown in Fig. 6A and Fig. S8A (Supporting Information). The 
total intensity of TH per cell was quantified and normalized to the un
treated control as shown in Fig. 6B. The TH intensity per cell showed 
~29% (p < 0.001) decrease in 0.4 μg/L PFOA treated neurons and 

~32% (p < 0.001) decrease in 4 μg/L PFOA treated neurons. TH is 
normally enriched near synaptic junctions, and we thus quantified TH 
levels in neurites, marked by MAP2, a commonly used neuronal cyto
skeleton marker as shown in Fig. 6C and Fig. S8B (Supporting Infor
mation). We quantified TH intensity along neurite and normalized to the 
untreated control as shown in Fig. 6D. TH intensity on neurites 
decreased by ~14% (p < 0.001) in 0.4 μg/L PFOA treated neurons; and 
~13% (p < 0.001) in 4 μg/L PFOA treated neurons. 

SNCA staining showed enrichments near soma body and neurites as 
shown in Fig. S9A (Supporting Information). The average SNCA 
expression per cell was quantified, normalized to the untreated sample 
and showed mild decreases (~5%, p < 0.05) only in 4 μg/L PFOA treated 

Fig. 4. Post-differentiation. A-C) Representative images of SH-SY5Y cells exposed to 0 μg/L, 0.4 μg/L and 4 μg/L, differentiated and then stained for A) H3K4me3, B) 
H3K27me3 and C) 5 mC Scale bar = 5 μm. D-F) Normalized integrated intensity from single cell stained with D) H3K4me3, E) H3K27me3 and F) 5 mC n > 1000 cells 
from 3 independent differentiation. G-I) PCA plot of single cell features extracted from G) H3K4me3, H) H3K27me3 and I) 5 mC staining of differentiated SH-SY5Y. 
PCA space was constructed using >1000 cells per conditions, 600 cells were randomly selected from each group and included in the PCA plots. ***: p < 0.001 (One- 
way ANOVA with Tukey post-hoc test). 
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cells as shown in Fig. S9B (Supporting Information). 

4. Discussions 

We selected SH-SY5Y cells to assess neurotoxicity mimicking a 
developmental exposure. SH-SY5Y cell is a human cell line derived from 
a neuroblastoma patient and is uniquely capable of differentiating into 
DA like neurons. SH-SY5Y cells are commonly accepted as neuronal 
precursors with the ability to differentiate into DA neurons (Pezzini 
et al., 2017; Constantinescu et al., 2007). Differentiated SH-SY5Y cells 
showed DA neuron like characteristics, which have been validated via 
transcriptional profiling (Korecka et al., 2013), immuno-histology 
analysis (Cheung et al., 2009; Lopes et al., 2012), and dopamine up
take assays (Mastroeni et al., 2009). SH-SY5Y has thus been widely 
adopted as a viable model for neurotoxicity particularly for Parkinson’s 
disease (PD). For example, SH-SY5Y can recapitulate PD related phe
notypes such as synuclein aggregation after exposure to rotenone 
(Borland et al., 2008). Here we used SH-SY5Y cells to mimic neural 
progenitor cells that have already committed to a specific lineage but 
retain the ability to replicate. Neural progenitor cells exist in fetal brains 
during the whole gestational stage (Yin et al., 2013). Therefore, we 
exposed undifferentiated SH-SY5Y cells to PFOA to mimic a develop
mental exposure, removed PFOA, initiated neuron differentiation and 
assessed changes in mature neurons (Day 14) to study long-term per
sisting effects of PFOA on neurons. 

SH-SY5Y cells exhibit significant alterations in nuclear morphology 

immediately after PFOA exposure and the changes partially prevail after 
the cessation of exposure and the completion of differentiation. Many 
factors can contribute to alterations in nuclear morphology, including 
cell cycles (Fidorra et al., 1981; Schooley et al., 2012; Roca-Cusachs 
et al., 2008), chromatin compactness (Stephens et al., 2018; Wang et al., 
2018) and cellular stress (Panagaki et al., 2021; Shah et al., 2021). Prior 
to differentiation, SH-SY5Y cells were still actively proliferating with 
accelerated growth in PFOA-exposed cells. Increased growth rate 
induced by low dose PFOA exposure was previously observed in several 
cell lines and animal models. For example, increased proliferation was 
observed in preadipocytes exposed to 10–100000 μg/L PFOA (Ma et al., 
2018). Human breast epithelial cells (MCF-10A) showed significantly 
higher growth rate after exposure to 20700 μg/L PFOA (Pierozan et al., 
2018). PFOA was shown to upregulate Cyclin D and CDK4 which pro
mote G1/S phase transition and subsequently cellular growth in both 
human breast cancer (Pierozan et al., 2018; Pierozan et al., 2020) and 
granulosa cell line (Clark et al., 2022). A similar mechanism may also 
contribute to the increased growth rate of SH-SY5Y. Cells during S phase 
have expanded nuclear sizes when compared to those at interphases 
(Roca-Cusachs et al., 2008). Our observations, that PFOA exposed cells 
showed larger nuclear size, can thus be partially explained by the 
accelerated proliferations of PFOA-exposed SH-SY5Y cells, which is 
consistent with prior literature suggesting that PFOA can accelerate the 
transition between G1/G0 to S phase and increase cell growth rates 
(Pierozan et al., 2018; Pierozan et al., 2020). Chromatin condensation 
can also contribute to the observed changes in nuclear morphology. The 

Fig. 5. A) Representative images of SH-SY5Y cells after exposed to 0 μg/L, 0.4 μg/L and 4 μg/L PFOA stained for TOMM20. Scale bar = 10 μm for whole-cell images. 
Scale bar = 2 μm for zoom-in images. B) Volume analysis of TOMM20 staining of pre-differentiation SH-SY5Y. C) Representative images of differentiated SH-SY5Y 
cells with pre-differentiation exposure to 0 μg/L, 0.4 μg/L and 4 μg/L PFOA stained with TOMM20. Scale bar = 10 μm for whole-cell images. Scale bar = 2 μm for 
zoom-in images. D) Volume analysis of TOMM20 staining of differentiated SH-SY5Y. n ≥ 20 cells from three independent differentiations. N.S.: not significant; ***: p 
< 0.001(One-way ANOVA with Tukey post-hoc test). 
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chromatin of PFOA exposed cells is less compact which may also 
contribute to the observed increases in nuclear size right after PFOA 
exposure. Changes in nuclear size diminish after the completion of dif
ferentiation but remain significant. These changes potentially arise from 
persistent alterations in chromatin compaction and imply impairments 
in differentiated DA-like neurons. Abnormal nuclear morphology are 
commonly observed in various disease models, including cancers and 
neurodegenerative diseases (Frost, 2016). For example, the nuclear size 
of rostral midbrain neurons were found to be significantly bigger in 
patients with Parkinson’s disease (PD) compared to the healthy control 
(Colpan and Slavin, 2010). Increased nuclear size was also observed in 
mouse DA neurons carrying LRRK2 mutation, a genetic risk factor of PD 
(Tsika et al., 2014). 

Chromatin compactness is regulated by epigenetic modifications, 
encoded by an array of histone modifications. We selected three modi
fications here, including bivalent markers (H3K4me3 and H3K27me3) 
and a suppressive marker (5 mC) due to their critical roles in deter
mining differentiation lineages (Bernstein et al., 2006; Sachs et al., 
2013) and neurological disorders (Jin and Liu, 2018). We observed re
ductions in all three selected markers immediately after PFOA exposure 
and the decreases persist after the completion of neuron differentiation. 

Among them, the decrease in 5 mC further attenuates. Our results also 
suggest that intensity- and foci-texture-based features of 5 mC are major 
contributors to distinguish between differently treated SH-SY5Y cells. 
This trend partially aligns with our observations in chromatin conden
sation % which suggests that PFOA induces the formation of less 
compact chromatin potentially arising from the loss of bivalent and 
repressive epigenetic markers. Similar trends were observed in cancer 
cell lines, including MCF7 and HepG2 which exhibit loss in both DNA 
methylation and histone methylation, for example H3K9me3, after 
exposure to > 40000 μg/L PFOA (Wen et al., 2020a; Liu and Irudayaraj, 
2020). Consistent changes were also observed in various cell and tissues 
following PFOA exposure, including preadipocytes (Ma et al., 2018), 
mouse kidney (Rashid et al., 2020), liver cancer cell line (Wen et al., 
2020a) and human breast cell line (Pierozan et al., 2020). Less, however, 
is known about changes in bivalent markers, such as H3K4me3 and 
H3K27me3, after PFOA exposure. MCF10A cells did not show significant 
changes in H3K4me3 right after exposure but were manifested in 
daughter cells after exposing to 41407 μg/L PFOA (Pierozan et al., 
2020). Mouse oocytes exposed to high doses of PFDA, a chemical 
belonging to the same PFAS family and with a similar structure to PFOA, 
showed decreases in global H3K4me3 levels (Deng et al., 2021). 

Fig. 6. A) Representative images of differentiated SH-SY5Y cells stained for TH and DAPI. Scale bar = 50 μm. B) Total intensity of TH normalized by cell number. n 
> 50 sites from 3 independent differentiations. C) Representative images of differentiated SH-SY5Y cell neurites stained for TH and MAP2. Scale bar = 10 μm. D) 
Intensity of TH per neurite length (intensity/pixel) normalized to the untreated control. n ≥ 30 cells. ***: p < 0.001 (One-way ANOVA with Tukey post-hoc test). 
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Similarly, mouse embryonic stem cells exposed to high doses of PFOS 
(>10000 μg/L) can alter the expression of EZH2, a H3K27me3 meth
yltransferase, and ultimately change the expression of pluripotent genes 
(Xu et al., 2015). 

No studies, however, have assessed the persistency of chromatin and 
epigenetic changes in neurons after the cessation of developmental 
PFOA exposure to the best of our knowledge. Our data has unequivo
cally revealed the establishment of a persistently altered chromatin state 
featuring less repressive epigenetic markers and more permissive chro
matins after PFOA exposure. 

DNA methylation patterns, instead of intensity, can serve as good 
classifiers distinguishing among SH-SY5Y cells exposed to various doses 
of PFOA. The distinction is more obvious for SH-SY5Y cells post- 
differentiation compared to those cells assessed immediately after 
exposure suggesting DNA methylation as a potential regulator governing 
the transition in chromatin states. The PFOA exposure effects, however, 
do not necessarily follow a linear dose dependence. Conversely, changes 
in selected epigenetic markers, including DNA methylation, are seem
ingly more significant for PFOA at 0.4 μg/L compared to 4 μg/L after 
exposure and prior to differentiation. 

After differentiation, neurons exposed to the higher dose of PFOA (4 
μg/L) have larger changes than those exposed to the lower concentration 
(0.4 μg/L). Cells adapt to environmental exposures by altering tran
scriptomic and metabolic profiles. Cellular adaptation mechanism can 
lead to over-compensation (Goyal et al., 2019) and thus plausibly ac
count for the difference in dose-dependence as we observed in this work 
before and after differentiation. It is interesting to note that abnormal 
changes in bivalent epigenetic markers and 5 mC are also common 
features in neurogenerative diseases. For example, the loss of Polycomb 
repressive complex 2 (PRC2), which catalyzes H3K27 trimethylation, 
promotes neuron death and facilitates neurodegeneration (von Schim
melmann et al., 2016). Loss of H3K4me3 was also observed in Hun
tington disease, where reducing the expression of H3K4me3 
demethylase are found to be neuroprotective in a mouse model 
(Vashishtha et al., 2013). Decreased levels of H3K27me3 and H3K4me3 
were observed in SH-SY5Y cells treated with 6-OHDA, a commonly used 
neurotoxin to induce PD phenotype (Mu et al., 2020). DNA hypo
methylation of TNFα was observed in the substantia nigra of PD patients 
(Pieper et al., 2008). Hypomethylation of CpH sites in enhancers was 
also found in the prefrontal cortex neurons from patients with Alz
heimer’s disease (Li et al., 2019). 

The collective results have thus led us to postulate functional alter
ations in DA-like neurons and PFOA as a developmental neurotoxin. The 
differentiated SH-SY5Y cells exhibit characteristic features of DA neu
rons with and without PFOA exposure. The neurite network, however, 
has decreased levels of complexity with smaller process and branch 
numbers. Reductions in SNCA expression, a protein mediating the 
clustering of synaptic vesicles (Diao et al., 2013), were also observed 
suggesting the potential loss of synaptic activities and signal strengths. 
Furthermore, the expression of TH was also decreased in differentiated 
SH-SY5Y cells implying reductions in dopamine productions. The 
maintenance of neuron functions is extremely energy demanding. 
Mitochondrion as a bioenergetic center is thus critically important. 
Although no significant changes were observed in mitochondrial volume 
right after exposure, differentiated SH-SY5Y cells have smaller volume 
of mitochondria. PFOA can bind to peroxisome proliferator activated 
receptors (PPARs), cause developmental defects (Wolf et al., 2008; 
Abbott et al., 2012; Abbott et al., 2007; Almeida et al., 2021), and thus a 
target of PFOA toxicity. PPARs modulate fatty acid oxidation and 
regulate mitochondrial biogenesis (Oka et al., 2011; Miglio et al., 2009; 
Ghosh et al., 2007). Furthermore, PFOA can also alter the synthesis and 
metabolism of lipids (Yu et al., 2016) and was shown to induce abnor
mality in autophagosomes (Weng et al., 2020). Collectively, changes in 
PPAR and lipid contents may contribute to the observed alterations in 
mitochondrial morphology and volume. 

Taken together, the changes in molecular markers, including 

neurites, TH, SNCA and mitochondrion, suggest altered neuron activ
ities after PFOA exposures and share remarkable resemblance to the 
characteristics commonly observed in neurodegenerative disease 
models, particularly PD. For example, overexpression of SNCA mutant, a 
well-known genetic risk of PD, induced decreased neurite outgrowth 
and neurite branching in midbrain neurons of rats (Koch et al., 2015). 
Decreased transcription of SNCA was observed in substantia nigra 
neurons in PD patients showing Lewy body formation (Kingsbury et al., 
2004; Neystat et al., 1999; Su et al., 2017). Loss of TH expression has 
also been widely observed in substantia nigra neurons in PD brains 
(Javoy-Agid et al., 1990) and neurons exposed to exogenous PD risk 
factors, such as MPTP (Alam et al., 2017; Kozina et al., 2014). Mito
chondria dysfunction has long been considered as a hallmark of PD, 
pioneered by a study that associated mitochondria complex I activity 
with PD (Schapira et al., 1990). Mutations on PINK1 and Parkin, two 
genetic risk factors of familiar PD, play a significant role in mitophagy 
and regulates mitochondrial maintenance (Narendra et al., 2010). 
Decrease of mitochondrial volume was also observed in DA neurons of 
mice with Drp1 knockout, which is correlated with midbrain neuro
degeneration (Berthet et al., 2014). 

5. Conclusions 

Low-dose exposure of PFOA during a pre-differentiation window can 
induce persistent changes in nuclear morphology and selected epige
netic markers, including H3K4me3, H3K27me3 and 5 mC, at a neuronal 
lineage. DA-like neurons derived from PFOA-exposed SH-SY5Y cells 
exhibit abnormal SNCA and TH expression, aberrant mitochondrial 
volume, and reduced network complexity aligning with a neurodegen
erative disease phenotype. Collectively, our results suggest that low dose 
exposure to PFOA prior to terminal neuron differentiation can cause 
long-lasting damages in neurons and PFOA as a potential neurotoxin. 
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