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Abstract

The inference of positive selection in genomes is a problem of great interest in evolutionary

genomics. By identifying putative regions of the genome that contain adaptive mutations,

we are able to learn about the biology of organisms and their evolutionary history. Here we

introduce a composite likelihood method that identifies recently completed or ongoing posi-

tive selection by searching for extreme distortions in the spatial distribution of the haplotype

frequency spectrum along the genome relative to the genome-wide expectation taken as

neutrality. Furthermore, the method simultaneously infers two parameters of the sweep: the

number of sweeping haplotypes and the “width” of the sweep, which is related to the

strength and timing of selection. We demonstrate that this method outperforms the leading

haplotype-based selection statistics, though strong signals in low-recombination regions

merit extra scrutiny. As a positive control, we apply it to two well-studied human populations

from the 1000 Genomes Project and examine haplotype frequency spectrum patterns at the

LCT and MHC loci. We also apply it to a data set of brown rats sampled in NYC and identify

genes related to olfactory perception. To facilitate use of this method, we have implemented

it in user-friendly open source software.

Author summary

Identifying regions of the genome that contain adaptive variation is of fundamental inter-

est in evolutionary biology, providing insight into an organism’s history and biology.

When positive selection is recent or ongoing, we expect to find genomic patterns such as

high frequency haplotypes and low genetic diversity in the vicinity of the adaptive locus.

Here we develop a statistic to identify these regions based on distortions of the haplotype

frequency spectrum from a background distribution. We evaluate the performance of this

statistic under numerous realistic settings of interest to empiricists and demonstrate its

superior performance relative to other haplotype-based selection statistics. We also apply

this statistic to real population-genetic data. As a positive control, we explore two well-

studied loci, LCT and MHC, in a European and an African human population that show

strong evidence for selection. We also apply this statistic to the genomes of an urban
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brown rat population, where we uncover evidence for adaptation in olfactory perception

genes. We release user-friendly software implementing this statistic.

Introduction

The identification and classification of genomic regions undergoing positive selection in popu-

lations has been of long standing interest for studying organisms across the tree of life. By

investigating regions containing putative adaptive variation, one can begin to shed light on a

population’s evolutionary history and the biological changes well-suited to cope with various

selection pressures.

The genomic footprint of positive selection is generally characterized by long high-fre-

quency haplotypes and low nucleotide diversity in the vicinity of the adaptive locus, the result

of linked genetic material “sweeping” to high frequency faster than mutation and recombina-

tion can introduce novel variation. These selective sweeps are often described by two para-

digms—“hard sweeps” and “soft sweeps”. Whereas a hard sweep is the result of a beneficial

mutation that brings a single haplotype to high frequency [1], soft sweeps are the result of

selection on multiple haplotype backgrounds, often the result of selection on standing varia-

tion or a high adaptive mutation rate. Soft sweeps are thus characterized by multiple sweeping

haplotypes rising to high frequency [2, 3].

Many statistics have been proposed to capture these patterns to make inferences about

recent or ongoing positive selection [4–24], many of which focus on summarizing patterns of

haplotype homozygosity in a local genomic region. A particularly novel approach, the T statis-

tic implemented in LASSI [13], employs a likelihood model based on distortions of the haplo-

type frequency spectrum (HFS). In this framework, [13] model a shift in the HFS toward one

or several high-frequency haplotypes as the result of a hard or soft sweep in a local region of

the genome. In addition to the likelihood test statistic T, for which larger values suggest more

support for a sweep, LASSI also infers the parameter m̂. This parameter estimates the number

of sweeping haplotypes in a genomic region, and m̂ > 1 indicates support for a soft sweep.

A drawback of the original formulation of the T statistic implemented in LASSI is that it

does not account for or make use of the genomic spatial distribution of haplotypic variation

expected from a sweep. Specifically, [13] demonstrated that if the spatial distribution of T was

directly accounted for in the machine learning approach (Trendsetter) of [25], the power for

detecting sweeps was greatly enhanced. Indeed, modern statistical learning machinery to

detect sweeps has been greatly enhanced by incorporating spatial distributions of summary

statistics [25–30]. However, these machine learning methods need extensive simulations

under an accurate and explicit demographic model to train the classifier. An alternative

approach is to directly integrate this spatial distribution into the likelihood model, as has been

performed for site frequency spectrum (SFS) composite likelihood methods to detect sweeps

[16–24]. Here we incorporate the spatial distribution along the genome of HFS variation into

the LASSI framework and introduce the Spatially Aware Likelihood Test for Improving

LASSI, or saltiLASSI. For easy application to genomic datasets, we implement salti-
LASSI in the open source program lassip along with LASSI [13], and other HFS-based

statistics H12, H2/H1, G123, and G2/G1 [8, 10]. lassip is available at https://www.github.

com/szpiech/lassip.

We validate saltiLASSI through simulations and compare it favorably to other popular

haplotype-based selection scans. As this is a composite likelihood statistic, it is likely to be

affected by recombination rate variation, and we therefore explore strategies for estimating the
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statistic’s variance under neutrality in this context. We note that, in general, strong signals

found in low-recombination regions should be treated with extra scrutiny. We next apply

saltiLASSI to whole genome data from two different species. These data include two well-

studied human populations (CEU and YRI) from the 1000 Genomes Project [31] and a popu-

lation of brown rats sampled across the island of Manhattan in New York City (NYC), USA

[32]. Our analysis of the two human populations serves as a positive control in an empirical

dataset with a well-studied demographic history. We reproduce several well-known signals of

selection in the European CEU population and the African YRI population, including the LCT
(CEU), MHC (CEU and YRI), and APOL1 (YRI) loci, demonstrating that this method works

well in real data. Our analysis of the NYC brown rat data serves as an example of applying the

saltiLASSI method to a dataset with haplotype phase unknown and a poorly calibrated

demographic history making neutral simulations contraindicated (see [32] on this point).

Here, we find strong selection signals among clusters of genes related to olfactory perception.

Results

In this section we begin by developing a new likelihood ratio test statistic, termed Λ, that evalu-

ates spatial patterns in the distortion of the HFS as evidence for sweeps. We then demonstrate

that Λ has substantially higher power than competing single-population haplotype-based

approaches, across a number of model parameters related to the underlying demographic and

adaptive processes. Similar to the T statistic implemented in the LASSI framework of [13], we

also show that Λ is capable of approximating the softness of a sweep by estimating the current

number of high-frequency haplotypes m̂. We then apply the Λ statistic to whole-genome

sequencing data from two human populations from the 1000 Genomes Project [31] and a pop-

ulation of brown rats from NYC [32].

Definition of the statistic

Here we extend the LASSI maximum likelihood framework for detecting sweeps based on

haplotype data [13], by incorporating the spatial pattern of haplotype frequency distortion in a

statistical model of a sweep. Recall that [13] defined a genome-wide background K-haplotype

truncated frequency spectrum vector

p ¼ ðp1; p2; . . . ; pKÞ;

which they assume represents the neutral distribution of the K most-frequent haplotypes, with

p1 � p2 � � � � � pK � 0 and normalization such that
PK

k¼1
pk ¼ 1. [13] then define the vector

qðmÞ ¼ ðqðmÞ

1 ; qðmÞ

2 ; . . . ; qðmÞ

K Þ;

with qðmÞ

1 � qðmÞ

2 � � � � � qðmÞ

K and
PK

k¼1
qðmÞ

k ¼ 1. This represents a distorted K-haplotype trun-

cated frequency spectrum vector in a particular genomic region with a distortion consistent

with m sweeping haplotypes. To create the these distorted haplotype spectra, [13] used the

equation

qðmÞ

k ¼

pk þ fk
PK

j¼mþ1
ðpj � qðmÞ

j Þ k ¼ 1; 2; . . . ;m

U �
k � m � 1

K � m � 1
ðU � εÞ k ¼ m þ 1;m þ 2; . . . ;K

8
><

>:

where fk � 0 for k 2 {1, 2, . . ., m} and
Pm

k¼1
fk ¼ 1, defines the way by which mass is distributed

to the m “sweeping” haplotypes from the K −m non-sweeping haplotypes with frequencies
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pm+1, pm+2, . . ., pK. The variables U and ε are associated with the amount of mass from non-

sweeping haplotypes that are converted to the m sweeping haplotypes (see [13]). We choose to

set U = pK, and then vary ε � U during optimization. [13] propose several reasonable choices

of fk, and for all computations here we use fk ¼ e� k=
Pm

j¼1
e� j. The schematic in Fig 1A illus-

trates the LASSI framework of generating the distorted haplotype spectra.

To incorporate the spatial distribution haplotypic variation into the LASSI framework,

consider an index set W ¼ f1; 2; . . . ; Ig of I 2 Zþ contiguous (potentially overlapping) win-

dows such that window i 2 W has position along a chromosome denoted zi. This position

could be in physical units (such as bases), in genetic map units (such as centiMorgans), in

number of polymorphic sites (such as employed by nSL in [7]), or in window number. We

model the relative contribution of a sweep with m sweeping haplotypes at target window with

index i? 2 W by a parameter αi 2 [0, 1] on window i 2 W and the relative contribution of

neutrality by 1 − αi.

Following a similar powerful framework introduced by [33] for modeling balancing selec-

tion, we employ a mixture model to model the K-haplotype truncated frequency spectrum in

Fig 1. Schematic of the saltiLASSI mixture model framework. (A) Generation of distorted haplotype frequency

spectra (HFS) for m = 1 (red), 2 (blue), and 4 (purple) sweeping haplotypes from a genome-wide (gray) neutral HFS

under the LASSI framework of [13]. (B) Generation of spatially-distorted HFS under the saltiLASSI framework

for a window i (white circles) with increasing distance from the sweep location (yellow star). When the window is on

top of the sweep location, the HFS is identical to the distorted LASSI HFS, and αi(A) = 1. When a window is far from

the sweep location, the HFS is identical to the genome-wide (neutral) HFS, and αi? (A) = 0. For windows at

intermediate distances from the sweep location, the HFS is a mixture of the distorted and genome-wide HFS, with the

distorted HFS contributing αi(A) and the genome-wide HFS contributing 1 − αi(A). We show example spectra at

windows a, b, c, and d that are of increasing distances from the sweep location i?, with i? < a< b< c< d.

https://doi.org/10.1371/journal.pgen.1010134.g001
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window i, with a proportion

aiðAÞ ¼ expð� Ajzi � zi? jÞ

deriving from a sweep model and a proportion 1 − αi(A) deriving from the genome-wide back-

ground haplotype spectrum to represent neutrality. Here, A is a parameter that we optimize

over, describing the rate of decay of the effect of the sweep at target window i? on the flanking

windows a certain distance away. Specifically, we model the K-truncated haplotype spectrum

in window i as the vector

gðm;AÞ

i ¼ ðgðm;AÞ

i1 ; gðm;AÞ

i2 ; . . . ; gðm;AÞ

iK Þ;

where

gðm;AÞ

ik ¼ aiðAÞqðmÞ

k þ ½1 � aiðAÞ�pk

for k = 1, 2, . . ., K and i 2 W. Note here that for target window i?, ai?ðAÞ ¼ 1, and hence

gðm;AÞ

i? ¼ qðmÞ

i? —i.e., the target window is on top of the sweep, and so it is entirely determined by

the distorted m-sweeping haplotype spectrum. However given a fixed A value, for windows i
far enough away from the central window i?, we have the αi(A) = 0, and therefore gðm;AÞ

i ¼ p—

i.e., the expectation of a neutral window. Based on these trends, windows far from the puta-

tively selected target window are modeled as neutral, and windows close to the target window

are heavily distorted due to the sweep. Moreover, because αi(A) tends to zero for windows far

enough away for the central window, the model of neutrality is nested within our proposed

sweep model. The schematic in Fig 1B illustrates the saltiLASSI framework of generating

the spatially-distorted haplotype spectra.

Assume that in window i 2 W, there is a K-truncated vector of counts

xi ¼ ðxi1; xi2; . . . ; xiKÞ;

which are the observed counts of the K most-frequent haplotypes, with xi1 � xi2 � � � � � xiK �

0 and normalized such that
PK

k¼1
xik ¼ ni, where ni is the total number of sampled haplotypes

in window i. Following [33] and [13], we then compute the log composite likelihood ratios for

null hypothesis of neutrality at target window i? as

logL0ðp;K; i?; fxigi2WÞ ¼
X

i2W

XK

k¼1

xik logðpkÞ

and for the alternative hypothesis of m sweeping haplotypes at target window i? as

logL1ðp;K; ε;m;A; i?; fxi; zigi2WÞ ¼
X

i2W

XK

k¼1

xik log ðgðm;AÞ

ik Þ:

Using these log likelihoods, we follow [13] and construct a log likelihood ratio test statistic of a

sweep at target window i? as

L ¼ 2½logL1ðp;K; ε̂; m̂; Â; i?; fxi; zigi2WÞ � logL0ðp;K; i?; fxigi2WÞ�;

where

m̂; Â; ε̂
� �

¼
argmax

ðm;A; εÞ
logL1 p;K; ε;m;A; i?; fxi; zigi2W

� �
:
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We note that this approach treats windows as independent in the null and alternative hypothe-

ses, thus making it a composite likelihood method that ignores recombination.

Computing the likelihood

To apply the saltiLASSI method, we compute Λ at each window in the genome, where

each window is considered the target window i? in turn, and the likelihood is maximized inde-

pendently for each target window. That is, all parameters (m, A, and ε) are optimized at each

target window i?, thereby permitting the footprint size A of the sweep to vary across the

genome, adjusting for initial linkage disequilibrium and local recombination rates that could

impact sweep signals. Similar to the way SweepFinder [17], SweepFinder2 [21], and LASSI
[13] approach maximization, we optimize the likelihood via a grid search across m 2 {1, 2, . . .,

K}, ε 2 [1/(100K), U], and A 2 {Amin, . . ., Amax}. Here, Amin = −ln 0.99999/dmin, representing a

value of A with a slow decay with distance; Amax = −ln 0.00001/dmin, representing a value of A
with a fast decay with distance; and dmin is the smallest distance between any two windows

genome-wide. We make 100 equally spaced (in log-space) steps between Amin and Amax. Fur-

thermore, in order to reduce computational burden, we pre-compute qðmÞ

k values across this

grid for all windows.

Power to detect sweeps

The power to detect sweeps will depend on a number of factors, including window size used to

compute a statistic, whether phasing information for genotypes is used, the selection strength

of the beneficial mutation s, the age of the sweep t (i.e., time at which the selected mutation

became beneficial), the number of selected haplotypes ν, and the underlying demographic his-

tory. To explore the power of Λ, we evaluate its power to detect sweeps of varying strengths,

softness, and ages. For sweep settings, we considered only simulations in which the beneficial

mutation established by reaching a frequency of at least 0.1, but we did not condition on fixa-

tion. Under each setting, we interrogated its robustness to demographic history, both through

idealized constant-size histories and histories with recent severe bottlenecks. Moreover we

gauged whether Λ yields false sweep signals under settings of background selection. Further-

more, for each setting described, we investigated the power and robustness of using unphased

multilocus genotypes as input to Λ instead of phased haplotypes. In addition, we evaluated the

effect of sample size n, number of haplotypes K to truncate the HFS, and recombination rate

variation on the power of Λ to detect sweeps. Finally, we compared Λ to competing contempo-

rary methods that use the same type of input data, using the T statistic of [13] for phased and

unphased input data, and also considered the H12 [8], nSL [7], and iHS [5] statistics for phased

data and the G123 statistic [10] for unphased data. The simulation protocol for all settings is

described in the Methods section.

To begin, we compare the performance of Λ to T, H12, nSL, and iHS under a constant-size

demographic history with diploid effective size of N = 104 diploid individuals. The Λ, T, and

H12 statistics were computed for different window sizes, consisting of 51, 101, or 201 SNPs

per window. Fig 2A and S1 Fig show that across sweeps of varying degrees of softness (benefi-

cial mutation on ν 2 {1, 2, 4, 8, 16} distinct haplotypes) and for sweeps of varying per-site per-

generation strengths of s 2 {0.01, 0.1}, the method with highest power regardless of time of

selection (t 2 {500, 100, 1500, 2000, 2500, 3000} generations prior to sampling) is Λ, thereby

outperforming the competing methods. Interestingly, Λ applied to 51 SNP windows has gener-

ally higher power than with 101 and 201 SNP windows. Furthermore, smaller window sizes

enable Λ to achieve high power even for old sweeps—with this elevated power often substan-

tially higher than the closest competing method. This result recapitulates a finding of [13],
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where they observed that if the spatial distribution of the T statistic was used within a machine

learning framework, computing the T statistic in a greater number of small windows yielded

higher power for ancient sweeps than when a smaller number of large windows was used. This

is an intriguing result, because smaller windows have poorer estimates of the distortion of the

HFS, yet it appears that for detecting ancient sweeps what matters is capturing the overall spa-

tial trend of the distortion of the HFS. That is, when using too large of windows, Λ is averaging

the HFS across too large of a region, which has likely been broken up over time due to recom-

bination for ancient sweeps. Instead, smaller windows focus on genomic segments with less

shuffling of haplotype variation due to recombination events, such that distortions in the HFS

are due to the effect of a sweep at a nearby selected site.

S1 Fig also highlights a key distinction among sweeps of different strengths. Specifically,

regardless of method considered, each achieves its highest power when sweeps of strength

s = 0.1 are recent, whereas for sweeps of strength s = 0.01, highest power for each method is

shifted farther in the past toward more ancient sweep. This pattern was also found previously

Fig 2. Performance of detecting and characterizing sweeps. Performance for applications of Λ, T, and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and

iHS under simulations of (A) a constant-size demographic history or (B) the human central European (CEU) demographic history of [34]. Results are based on a sample

of n = 50 diploid individuals and the haplotype frequency spectra for the Λ and T statistics truncated at K = 10 haplotypes. (Top row) Power at a 1% false positive rate as a

function of selection start time. (Middle row) Estimated sweep width illustrated by mean estimated genomic size influenced by the sweep (log
10

Â) as a function of

selection start time. Gray solid, dashed, and dotted horizontal lines are the corresponding mean log
10

Â values for Λ applied to neutral simulations. (Bottom row)

Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes (m̂) as a function of selection start time. Gray solid, dashed, and dotted

horizontal lines are the corresponding mean m̂ values for Λ applied to neutral simulations, and the red solid horizontal lines correspond to the number of sweeping

haplotypes ν 2 {1, 2, 4} assumed in sweep simulations. Sweep scenarios consist of hard (ν = 1) and soft (ν 2 {2, 4}) sweeps with per-generation selection coefficient of

s = 0.1 that started at t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling. Results expanded across wider range of simulation settings can be found in

S1–S3 and S7–S9 Figs as well as results for application to unphased multilocus genotype data in S4–S6 and S10–S12 Figs.

https://doi.org/10.1371/journal.pgen.1010134.g002
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for H12 [10] and T [13]. The likely reason for this result is that sweeps of strength s = 0.01

require more time for the beneficial allele to reach high frequency and leave a conspicuous

genomic footprint, with this greater time to reach high frequency associated with increased

chance that recombination and mutation act to break up high-frequency haplotypes. In con-

trast, sweeps of strength s = 0.1 create an immediate selection signature to appear in the

genome due to the rapid rise in frequency of a beneficial mutation, but traces of this sweep pat-

tern erode over time due to recombination, mutation, and drift. However, regardless, the Λ
statistic paired with a small window size yields uniformly better or comparable sweep detec-

tion ability than the other approaches we examined. We also found that all methods performed

poorly when selection strength was s = 0.001.

During a scan with Λ, the composite likelihood ratio is optimized over the number of high

frequency (sweeping) haplotypes m and the footprint size of the sweep A, leading to respective

estimates m̂ and Â. Therefore, at a genomic location with evidence for a sweep (high Λ value),

we may better understand properties of the putative sweep by evaluating its softness through

m̂ and its strength or age through Â. S2 Fig shows that for sweeps of strength s = 0.01, the esti-

mated number of sweeping haplotypes m̂ is considerably different from the actual number of

initially-selected haplotypes ν, regardless of window size used or age of the sweep. In contrast,

Fig 2A and S2 Fig reveal that for hard sweeps (ν = 1) of strength s = 0.1, the estimate of the

number of sweeping haplotypes when using 51 SNP windows is often consistent with hard

sweeps (m̂ ¼ 1) provided that the sweep is recent enough (within the last 500 generations).

Similarly, under these same settings but with soft sweeps of ν 2 {2, 4, 8, 16} selected haplotypes

(Fig 2A and S2 Fig), the estimated number of sweeping haplotypes tends to be underestimated

(m̂ < n) but is still consistent with a soft sweep (m̂ > 1). Therefore, provided that a sweep is

recent enough, when using 51 SNP windows the value of the estimated number of sweeping

haplotypes can be used to lend evidence of a hard (m̂ ¼ 1) or a soft (m̂ > 1) sweep.

Similarly, the other parameter estimate Â may also help characterize identified sweeps. Spe-

cifically, Fig 2A and S3 Fig show that the footprint size of the sweep (measured as log
10
Â) is

substantially elevated compared to expectation for neutral simulations for sweep times at

which there is high power to detect sweeps (Fig 2A and S1 Fig). Interestingly, the shape of the

curves relating the mean sweep footprint size over time mirror the power of the Λ statistic

with corresponding window size as a function of sweep initiation time (t), sweep softness (ν),

and sweep strength (s). These results suggest that the estimate of the sweep footprint size

(log
10
Â) can be used to learn about the age or strength of a candidate sweep (the signatures of

which appear to be confounded between the two parameters). Coupled with an estimate of the

sweep softness (m̂), our saltiLASSI framework provides a means to not only detect sweeps

with high power, but to also learn the underlying parameters that may have shaped the adap-

tive evolution of candidate sweep regions.

Obtaining phased haplotypes for input to Λ represents an error-prone step that, without

sufficient reference panels or high-enough quality genotypes, may make identification of

sweeps difficult or potentially impossible for a number of diverse study systems. It is therefore

beneficial if the favorable performance of Λ transfers to datasets that have not been phased.

Similar to prior studies (e.g., [10, 13, 29, 32], we sought to evaluate the power of Λ when

applied to unphased multilocus genotype data, and to compare its performance with the T sta-

tistic and G123 (analogue of H12 for use with unphased data) [10], both of which are also

applied to unphased multilocus genotypes. S4 Fig shows that Λ maintains high power to detect

sweeps of differing ages, strengths, and softness. Consistent with the results on haplotype data

(Fig 2A and S1 Fig), Λ generally displays higher power than, or comparable power to, T and

G123, with the best performance deriving from Λ with a small window size of 51 SNPs, and
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with substantially higher power for old sweeps compared to other approaches. An exception is

that for recent (t � 1000 generations) and highly soft (ν = 16) sweeps, using a window size of

101 SNPs for Λ had substantially higher power than using the smaller 51 SNP window. More-

over, for highly soft (ν = 16) and ancient (t � 2000) sweeps with strength s = 0.1, the power of

Λ is much lower with unphased multilocus genotypes compared to phased haplotypes (com-

pare S1 and S4 Figs). Interpretation of m̂ is more difficult for multilocus genotypes compared

to haplotypes. However, consistent with the results for haplotypes (S2 and S5 Figs) shows that

when using 51 SNP windows, Λ tends to estimate a small number of sweeping multilocus

genotypes (smaller m̂) for harder sweeps (smaller ν) than for softer sweeps (larger ν).

While adaptive processes generally affect variation locally in the genome, neutral processes

such as demographic history influence overall levels of genome diversity. Specifically, it is com-

mon to consider that demographic processes impact the mean value of genetic diversity, and

numerous likelihood approaches for detecting sweeps [13, 16–24] and other forms of natural

selection [33, 35, 36] have been created to specifically account for this average effect of demo-

graphic history on genome diversity. However, demographic processes, such as recent severe

bottlenecks, not only alter mean diversity but also influence higher-order moments of diver-

sity, potentially making it insufficient to account solely for the mean effect of diversity [37–39].

Given that Λ does not account for higher moments than the mean effect of demographic his-

tory on the HFS, we sought to evaluate its properties under recent strong bottlenecks—a set-

ting that has proven challenging for other sweep statistics in the past.

The Λ statistic generally exhibits superior power to T, H12, nSL, and iHS when applied to

haplotype data (Fig 2B and S7 Fig) or to T and G123 when applied to unphased multilocus

genotype data (S10 Fig). Moreover, the general trends in method power as a function sweep

strength, softness, and age observed for the constant-size history (Fig 2A, S1 and S4 Figs) hold

for this complex demographic setting (Fig 2B, S7 and S10 Figs), with the caveat that, as

expected, power for all methods is generally lower under the bottleneck compared to the con-

stant-size history. A clear difference between these two demography settings is that, whereas Λ
had exhibited uniformly superior or comparable power with smaller 51 SNP windows com-

pared to larger 101 or 201 SNP windows (Fig 2A and S1 Fig), under the bottleneck model the

best window size depends on age of the sweep (Fig 2B and S7 Fig). In particular, recent sweeps

often had highest power with 201 SNP windows, sweeps of intermediate age with 101 SNPs,

and ancient sweeps with 51 SNPs. Therefore, under complex demographic histories, choice of

window size for Λ is more nuanced than with constant-size histories. This result is consistent

with those of [13] who demonstrated that, when accounting for the spatial distribution of the

T statistic in a machine learning framework (referred to as T-Trendsetter), power to detect

recent sweeps is higher for larger windows and power to detect ancient sweeps is higher for

smaller windows under the bottleneck history considered here.

In addition to demographic history, a pervasive force acting to reduce variation across the

genome is background selection [40–43], which is the loss of genetic diversity at neutral sites

due to negative selection at nearby loci [44–46]. Background selection has been demonstrated

to alter the neutral SFS [44, 47–49], and masquerade as false signals of positive selection [19,

44–47, 50–54]. However, because this process does not generally lead to haplotypic variation

consistent with sweeps [55–57], like prior studies developing haplotype approaches for detect-

ing sweeps [10, 13] we sought to evaluate the robustness of Λ to background selection. We find

that under both simple and complex demographic histories, using either phased haplotype or

unphased multilocus genotype data, all methods considered here demonstrate robustness to

background selection by not falsely attributing genomic regions evolving under background

selection as sweeps (S19 Fig).
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Throughout our experiments, we have considered a per-site per-generation recombination

rate of r = 10−8 for each simulation replicate. However, recombination rate is known to vary

across the genome [58], and it is therefore important to evaluate the performance of Λ com-

pared to other methods when recombination rate varies across genomic regions. To evaluate

the effect of recombination rate variation on method performance, we drew per-site per-gen-

eration recombination rate from an exponential distribution with mean 10−8 (see Methods)

for reach replicate neutral and sweep simulation under the bottleneck demographic history

[34]. S13 and S16 Figs indicate that the Λ statistic generally has greater power than T, H12 (or

G123), nSL, and iHS under phased haplotypes and unphased multilocus genotypes settings.

These results further highlight the robustness of the Λ statistic to realistic genomic characteris-

tics often encountered in empirical studies.

Finally, the number n of sampled individuals as well the number K of haplotypes used to

truncate the HFS should affect the resolution at which we can model the distortion of the HFS

due to a sweep, and thus would likely result in alterations of power of Λ to detect sweeps. As

expected, Fig 3 shows that increasing sample size generally increases power of Λ to detect

sweeps, with highest power typically obtained with the largest n and smallest window size

Fig 3. Performance of detecting and characterizing sweeps. Performance for applications of Λ with windows of size 51, 101, and 201 SNPs under simulations of (A) a

constant-size demographic history or (B) the human central European (CEU) demographic history of [34] and sample size of n 2 {10, 25, 50} diploid individuals. Results

are based on the haplotype frequency spectra for the Λ statistic truncated at K = 10 haplotypes. (Top row) Power at a 1% false positive rate as a function of selection start

time. (Middle row) Estimated sweep width illustrated by mean estimated genomic size influenced by the sweep (log
10

Â) as a function of selection start time. (Bottom

row) Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes (m̂) as a function of selection start time. Sweep scenarios consist of hard (ν
= 1) and soft (ν 2 {2, 4}) sweeps with per-generation selection coefficient of s = 0.1 that started at t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling.

Results expanded across wider range of simulation settings can be found in S20–S22 and S26–S28 Figs as well as results for application to unphased multilocus genotype

data in S23–S25 and S29–S31 Figs.

https://doi.org/10.1371/journal.pgen.1010134.g003
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combination (i.e., n = 50 with 51-SNP windows) and the lowest power with the smallest n and

largest window size combination (i.e., n = 10 with 201-SNP windows). Moreover, as sample

size increases, Λ is better able to detect sweeps of older age, and for extremely small samples (i.
e., n = 10), the estimates m̂ of the number ν of sweeping haplotypes are poor. In contrast to

changing sample size n, changing the number of haplotypes K to truncate the HFS does not

have a substantial effect on the power of Λ to detect sweeps (Fig 4, with the power curves for a

specific window size mostly the same across K 2 {5, 10, 20}. This result mirrors that in S5 Fig

of [13] for the T statistic, whereby changing K had little effect on method power. Instead,

choice of K seems to more strongly influence the estimates m̂ of the number ν of sweeping

haplotypes, with larger values of K permitting a wider range of estimates of m. This result

mimics those observed for the T statistic by [13], in that the choice of K has a larger effect on

the resolution to classify sweeps as hard or soft than it did on the ability to detect sweeps.

Application to empirical data

Humans from the 1000 Genomes Project. The 1000 Genomes Project Phase 3 [31] pub-

lished the whole genomes of 2504 humans across 26 populations around the world. To

Fig 4. Performance of detecting and characterizing sweeps. Performance for applications of Λ with windows of size 51, 101, and 201 SNPs under simulations of (A) a

constant-size demographic history or (B) the human central European (CEU) demographic history of [34] and the haplotype frequency spectra for the Λ statistic

truncated at K 2 {5, 10, 20} haplotypes. Results are based on a sample of n = 50 diploid individuals. (Top row) Power at a 1% false positive rate as a function of selection

start time. (Middle row) Estimated sweep width illustrated by mean estimated genomic size influenced by the sweep (log
10

Â) as a function of selection start time.

(Bottom row) Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes (m̂) as a function of selection start time. Sweep scenarios consist of

hard (ν = 1) and soft (ν 2 {2, 4}) sweeps with per-generation selection coefficient of s = 0.1 that started at t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to

sampling. Results expanded across wider range of simulation settings can be found in S32–S34 and S38–S40 Figs as well as results for application to unphased multilocus

genotype data in S35–S37 and S41–S43 Figs.

https://doi.org/10.1371/journal.pgen.1010134.g004
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illustrate the use of the saltiLASSI framework in a context where the populations of inter-

est have well-studied demographic histories, we calculate Λ in two populations: a European

population (CEU; n = 99) and an African population (n = 108). Furthermore, as patterns of

recent selection have been extensively studied in these populations, the results will allow us to

confirm that the method returns sensible results.

We plot the genome-wide Λ statistics for the CEU population in Fig 5A and the YRI popu-

lation in Fig 5B. We find several conspicuous peaks of notably large Λ values, which indicates

strong support for a highly distorted HFS in these regions compared to the genome-wide

mean HFS. We plot the local maximum Λ observed across simulations as a red line, the over-

all maximum score (horizontal solid blue line), over-all top-0.1% (horizontal dashed blue line),

and over-all top-1% (horizontal dotted blue line); see Methods for details.

As this statistic is a composite likelihood ratio test that ignores recombination, we expected

that Λ values may be negatively correlated with recombination rate. And, indeed, we find that

the max Λ observed in a window across all replicates tends to be larger for low-recombination

regions S46 Fig. With this in mind, we chose a conservative threshold for determining signifi-

cance by only calling regions as under selection when the observed Λ is greater than the over-

all genome-wide maximum observed Λ from neutral simulations. Taking this approach, we

identify several regions in both populations with scores consistently above this threshold,

including five regions in the CEU population (Table 1) and 29 in the YRI population (Table 2).

Among these regions, we find several well-studied genes that are known to have been under

selection in these populations. These include the lactase gene (LCT [9, 59–61]), the major

histocompatibility complex (MHC [9, 61, 62]), and the apolipoprotein L1 (APOL1 [63]). We

next conduct a gene ontology over-representation test for molecular function using PAN-

THER16 [64] for each population separately. We find that each population’s putatively selected

genes are generally representing similar molecular functions (S2 and S3 Tables), including

MHC class II receptor activity, MHC class II protein complex binding, and peptide antigen

binding, further underscoring the evidence for immune system adaptation in human popula-

tions around the world [9, 61, 62, 65].

We next explore two peaks in detail, the LCT and MHC loci (Fig 6), to illustrate the spatial

structure of the HFS in these regions of strong signal in one (LCT) or both (MHC) popula-

tions. The LCT locus has been previously identified as under selection in some northern Euro-

pean populations and eastern African populations [59]. As the CEU population has largely

northern European ancestry and the YRI population is from western Africa, we expect to find

a peak near LCT in CEU but not in YRI. Indeed, this is what we see in Fig 6A, which plots Λ
statistics in the vicinity of the LCT locus on Chromosome 2. Furthermore, we examine the

truncated HFS among eleven windows spanning LCT in both YRI (Fig 6B) and CEU (Fig 6C).

We see in Fig 6B that YRI has haplotype frequencies similar to the genome-wide mean (plotted

and highlighted on the left), whereas Fig 6C shows that the CEU population is dominated

largely by a single haplotype near 80% frequency. Indeed, the saltiLASSI method also

infers a m̂ ¼ 1 in this region (Table 1), indicating a single sweeping haplotype (i.e., a hard

sweep). Furthermore, we can see the HFS in this region trending toward the genome-wide

mean as the windows move farther from the sweep’s focal point, illustrating the pattern that

the saltiLASSI method was designed to capture.

Fig 6D–6F illustrate the Λ statistics and HFS patterns in the vicinity of the MHC locus. This

locus contains a large cluster of immune system genes, and selection at this locus is distin-

guished from LCT in that high diversity is preferred in order for the body to be able to mount

a robust response to unknown pathogen exposure. As expected, both populations have

extreme Λ values (Fig 6D) and a greatly distorted HFS in this region (Fig 6E and 6F). However,

we note that the HFS is clearly distorted in favor of multiple haplotypes, in contrast to LCT,
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which we expect at a locus that favors diversity. Indeed, the saltiLASSI method infers m̂ to

be between seven and nine in the CEU population and between eight and 11 for YRI (variance

due to multiple regions within the MHC being separately identified; Tables 1 and 2).

We repeated our analyses of these two populations and two loci using the unphased multi-

locus-genotype approach (S44 and S45 Figs and S5 and S6 Tables), and we find good concor-

dance with the phased haplotype approach.

Fig 5. Manhattan plot of Λ-statistics. For the (A) CEU and (B) YRI populations from the 1000 Genomes Project. Each point represents a

single 201-SNP window along the genome. Horizontal lines represent the top 1%, top 0.1%, and maximum observed Λ statistic across all

windows in demography-matched neutral simulations. Red line indicates the maximum observed Λ among 100 replicate simulations at

that location in the genome.

https://doi.org/10.1371/journal.pgen.1010134.g005
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Table 1. Regions of extreme Λ values in the CEU population and the genes contained therein. m̂ is the inferred number of sweeping haplotypes, and log
10

ðÂÞ is the esti-

mated sweep width.

Chr Start (bp) Stop (bp) m̂ log
10

ðÂÞ Max Λ Genes

2 135,517,106 136,318,189 1 7.817 1889.370 ACMSD, MIR5590, CCNT2-AS1, CCNT2, MAP3K19, RAB3GAP1, ZRANB3, R3HDM1
2 136,524,766 136,816,336 1 7.817 2250.050 UBXN4, LCT, LOC100507600, MCM6, DARS, DARS-AS1
4 34,296,435 34,400,578 1 8.252 1296.390 –

6 29,782,470 29,996,854 9 7.817 1366.550 HLA-G, HLA-H, HCG4B, HLA-A, HCG9, ZNRD1-AS1, HLA-J, HCG8
6 32,384,933 32,723,916 7 7.817 4565.340 HLA-DRA, HLA-DRB5, HLA-DRB6, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQB1-AS1, HLA-DQA2,

MIR3135B, HLA-DQB2

https://doi.org/10.1371/journal.pgen.1010134.t001

Table 2. Regions of extreme Λ values in the YRI population and the genes contained therein. m̂ is the inferred number of sweeping haplotypes, and log
10

ðÂÞ is the esti-

mated sweep width.

Chr Start (bp) Stop (bp) m̂ log10ðÂÞ Max Λ Genes

2 89,247,854 89,309,423 8 7.817 542.403 –

3 27,184,951 27,213,780 7 8.252 518.153 NEK10
3 46,080,758 46,384,651 6 8.252 839.195 CCR1, CCR3
3 87,273,225 87,328,290 6 8.252 665.802 MIR4795, CHMP2B, POU1F1
3 162,536,420 162,681,511 6 8.252 711.747 –

3 163,811,348 163,832,931 7 8.252 515.029 –

4 46,828,990 46,881,572 8 8.252 521.042 COX7B2
4 74,441,768 74,503,196 7 8.252 520.893 RASSF6
4 86,144,358 86,185,751 9 8.252 517.750 –

6 31,193,373 31,387,666 11 7.817 918.650 HLA-C, HLA-B, MIR6891, MICA
6 32,370,521 32,750,144 8 7.817 5385.050 BTNL2, HLA-DRA, HLA-DRB5, HLA-DRB6, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQB1-AS1,

HLA-DQA2, MIR3135B, HLA-DQB2
6 32,973,878 33,206,733 8 7.817 1196.890 HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DPB2, COL11A2, RXRB, SLC39A7, HSD17B8, MIR219A1,

RING1
7 80,311,522 80,335,123 7 8.252 525.732 –

7 80,335,124 80,390,838 7 8.252 527.827 SEMA3C
8 50,054,576 50,219,674 6 8.252 672.218 –

8 54,726,028 54,770,306 7 8.252 526.734 ATP6V1H, RGS20
9 11,767,302 11,832,748 8 8.252 594.456 –

10 102,156,400 102,295,419 5 8.252 717.760 WNT8B, SEC31B, NDUFB8
12 79,566,706 79,800,343 6 8.252 917.585 SYT1
13 89,191,303 89,233,281 8 8.252 521.733 LINC00433
14 48,798,901 48,833,362 8 7.817 504.040 –

14 48,833,363 48,853,450 7 7.817 515.715 –

14 102,173,879 102,216,165 7 7.817 551.532 LINC00239
15 55,137,170 55,292,403 7 8.252 730.824 –

17 3,515,275 3,672,429 6 8.252 911.490 SHPK, CTNS, TAX1BP3, P2RX5-TAX1BP3, EMC6, P2RX5, ITGAE, GSG2
19 38,859,266 38,939,066 7 8.252 555.198 CATSPERG, PSMD8, GGN, SPRED3, FAM98C, RASGRP4, RYR1
19 39,176,160 39,201,469 7 8.252 504.612 ACTN4
20 37,392,189 37,490,122 5 8.686 613.034 ACTR5, PPP1R16B
22 36,567,890 36,756,255 6 8.252 796.478 APOL4, APOL2, APOL1, MYH9, MIR6819

https://doi.org/10.1371/journal.pgen.1010134.t002
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Fig 6. Detailed illustration of Λ statistics and haplotype frequency spectra in CEU and YRI. (A) Λ plotted in the LCT region, vertical dotted lines indicate zoomed

region shown in (B) and (C). (B) YRI empirical HFS for 11 windows in the LCT region. (C) CEU empirical HFS for 11 windows in the LCT region. (D) Λ plotted in the

MHC region, vertical dotted lines indicate zoomed region shown in (E) and (F). (E) YRI empirical HFS for 11 windows in the MHC region. (F) CEU empirical HFS for

11 windows in the MHC region. In (B), (C), (E), and (F), numbers above HFS are Λ values for the window rounded to the nearest whole number, and the genome-wide

average HFS is highlighted in grey. q20
i is the frequency of the ith most common haplotype truncated to K = 20.

https://doi.org/10.1371/journal.pgen.1010134.g006
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Finally, we re-compute Λ (phased) in these two populations’ empirical data and all repli-

cates of simulated demography-matched whole-genome data using two distance measures

other than physical distance (number of windows and centiMorgans) and find high correla-

tion between Λ values calculated with these alternative distance measures and physical dis-

tance (S4 Table).

Rats from New York City. [32] published a whole-genome dataset of brown rat samples

(n = 29) from across the island of Manhattan, New York City, USA to study adaptation to

urban environment. In this study, they note that haplotype phase is unknown and that the

demographic history for brown rats was not well-calibrated in this population. As such, they

chose to use the G123 [10] and other statistics, which used multilocus genotypes combined

with a gene-based outlier approach to identify putative targets of selection. Here, we re-analyze

this data using the saltiLASSI framework to illustrate its use in the context of unphased

data and a poorly understood demographic history that requires an outlier approach.

We plot the genome-wide Λ statistics for the NYC rats in Fig 7, along with blue horizontal

lines indicating the top 0.1% (solid), top 1% (dashed), and top 5% (dotted) empirically

observed Λ values genome-wide. We identify putatively selected regions as windows with a Λ
greater than the top 1% empirical threshold (see Methods), with consecutive windows satisfy-

ing this condition concatenated together. These regions are then annotated with known genes

(RN5 genome build) and presented in S7 and S8 Tables.

We note that the two strongest signals in the genome are on chromosomes 1 and 2 (S7

Table). The region on chromosome 1 contains a cluster of olfactory receptor genes (Olr23,

Olr24, Olr25, Olr27, Olr29, Olr30, Olr32, and Olr34), and the region on chromosome 2 con-

tains a cluster of calcium-activated chloride channel genes (Clca2, Clca4l, Clca4, Clca1, and

Clca5). Notably, calcium-activated chloride channel genes are expressed in the olfactory nerve

layer of mouse brains [66]. If these calcium-activated chloride channel genes are similarly

expressed in rats, then these two strong selection signals suggest that this urban rat population

may be experiencing selection pressures associated with olfactory perception.

Fig 7. Manhattan plot of Λ-statistics for the New York City rat population. Each point represents a single 201-SNP window along the

genome. Horizontal lines represent the top 5%, top 1%, and top 0.1% observed Λ statistic across all windows in the genome.

https://doi.org/10.1371/journal.pgen.1010134.g007
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Taking the collection of annotated genes present in S7 Table, we conduct a gene ontology

over-representation test based on molecular function category using PANTHER16 [64] with

results presented in Table 3. We find that Intracellular Calcium Activated Chloride Channel

Activity, Peptidase Activity, and Odorant Binding are statistically over-represented molecular

functions among this set of putatively selected genes.

Discussion

In this study, we developed a new likelihood ratio test statistic Λ that examines the spatial dis-

tribution of the HFS for evidence of sweeps. We demonstrated that this statistic has high

power to detect both hard and soft sweeps, with performance substantially better than compet-

ing haplotype-based approaches for the same task. Moreover, while optimizing the model

parameters of Λ we obtain estimates of sweep softness m and footprint size A, which is corre-

lated with age and strength of the sweep. These additional parameters have the potential to fur-

ther characterize well-supported sweep signals from large Λ values.

In addition to lending exceptional performance on simulated data, application of Λ to

whole-genome variant calls from central European and sub-Saharan African individuals reca-

pitulated the well-established signal at the LCT gene in Europeans due to lactase persistence

[67], as well as sweep footprints at the MHC locus in both populations related to immunity,

which have previously been detected with other sweep statistics [13, 68, 69]. Though not novel

findings, the clear (Fig 6) and strong (Fig 5) signals at these two loci serve as positive controls

to highlight the efficacy of Λ. Furthermore, these findings were similarly recapitulated with

unphased multilocus genotype data (S44 and S45 Figs), lending support for the utility of Λ
when applied to study systems for which obtaining phased haplotypes data is challenging.

Though our identification of the MHC locus in both human empirical scans as a sweep is

not novel, it is important to address that the MHC locus comes with a number of technical

challenges when assessing genetic variation. Specifically, the MHC locus is known to harbor

extensive structural variation, which makes it difficult to assemble [70] and may lead to down-

stream errors in variant and genotype calling and in haplotype phasing. Indeed, such difficult

Table 3. Gene ontology enrichment analysis of regions with extreme Λ values in the New York City rat population.

GO molecular function Fold Enrichment Raw P-value FDR

Intracellular calcium activated chloride channel activity >100 5.16 × 10−12 1.23 × 10−8

Intracellular chloride channel activity >100 5.16 × 10−12 2.46 × 10−8

Chloride channel activity 45.49 5.81 × 10−9 6.93 × 10−6

Anion channel activity 39.07 1.37 × 10−8 1.31 × 10−5

Inorganic anion transmembrane transporter activity 24.06 2.14 × 10−7 1.70 × 10−4

Inorganic molecular entity transmembrane transporter activity 6.39 2.96 × 10−5 9.42 × 10−3

Anion transmembrane transporter activity 11.30 1.51 × 10−5 6.53 × 10−3

Ion transmembrane transporter activity 5.47 8.71 × 10−5 2.60 × 10−2

Ion channel activity 9.07 1.10 × 10−5 5.27 × 10−3

Channel activity 8.12 2.23 × 10−5 7.60 × 10−3

Passive transmembrane transporter activity 8.12 2.23 × 10−5 8.19 × 10−3

Ion gated channel activity 69.19 5.57 × 10−10 8.88 × 10−7

Gated channel activity 11.60 2.27 × 10−6 1.21 × 10−3

Metallopeptidase activity 16.86 1.60 × 10−6 9.56 × 10−4

Peptidase activity 6.92 1.68 × 10−5 6.70 × 10−3

Odorant binding 10.06 1.12 × 10−6 7.62 × 10−4

https://doi.org/10.1371/journal.pgen.1010134.t003
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to assemble regions may lead to enrichment in heterozygous sites, where in the extreme the

majority of individuals are heterozygous. Contiguous SNPs in which individuals have hetero-

zygous genotypes may manifest as a single high-frequency unphased multilocous genotype

that stems from two distinct and divergent high-frequency haplotypes. Because Λ only consid-

ers the frequency of haplotypes and multilocus genotypes, it may lend support for sweeps in

regions where genetic variation is difficult to assay. As with any other sweep detection

approach, we recommend that care be taken when pre- and post-processing genomic datasets

to attempt to circumvent these issues whenever possible, such as filtering regions with poor

mappability, as we have done in this study (see Methods).

As the human populations have a well-characterized demographic history, we were able to

perform demography-matched neutral simulations to aid in identifying regions of the genome

likely affected by selection. When analyzing the New York City brown rat dataset, we had to

take an outlier approach as the brown rat demographic history was previously noted to be mis-

calibrated for this population [32]. However, our outlier approach notably identified two

strong signals of selection among clusters of genes related to olfactory perception. As rats

depend heavily on scents for communication and behavior choices [71–73], it is reasonable to

think that a harsh, noisy, urban environment may present selection pressure on this biological

system.

A key parameter that must be chosen when applying Λ is the number of SNPs per window.

Specifically, we found that larger windows had greatest power for more recent sweeps, and

smaller windows for more ancient sweeps (Fig 2, S1 and S7 Figs), mirroring the window size

results observed in S8 and S9 Figs of [13] for the spatial distribution of the T statistic using a

different modeling approach. Therefore, choice of window size may be informed by the time

frame of selective events that is being investigated. As highlighted in Fig 2B and S7 Fig, the Λ
statistic computed within windows of 201 SNPs had highest power of all other tested window

sizes within the past 1500 generations under the central European demographic history.

Because selective events within this time frame are consistent with adaptive events in recent

evolution of modern humans [74–76], we selected this size so that we could recapitulate

expected well-established sweeps—e.g., Figs 5 and 6 highlighting the sweep signal at LCT. In

addition to using simulation results to aid in selecting appropriate window sizes, an alternate

method such as choosing sizes based on the expected decay of linkage disequilibrium in the

genome has been demonstrated to also work well in practice (e.g., [8, 13]).

We note that this approach is a composite likelihood statistic, and as such it treats windows

as independent, ignoring the effects of recombination. This means that Λ values are likely to

be larger in low-recombination regions (S46 Fig), and extreme scores found in such regions

should be treated with extra scrutiny. However, even in such regions, we have shown that one

can employ a simulation based approach to evaluate the uncertainty in the estimated Λ values

(Fig 5 and S44 Fig)—albeit such an approach can be computationally intensive and would

require accurate demographic model and recombination map estimates. An alternative solu-

tion to evaluate the uncertainty in Λ while also accounting for recombination would be to per-

form a block resampling locally in the genome [77]. Such an approach would prove valuable

for study systems without accurate estimates of demographic models and recombination

maps, and would provide an alternative uncertainty metric even for organisms such as humans

for which simulations can be employed to evaluate uncertainty.

The T statistic of [13] presented the first likelihood approach that evaluated distortions in

the HFS to detect selective sweeps, importantly because neutrality and soft sweeps leave similar

signatures in the SFS but different within the HFS [78]. As demonstrated by [13], using the

spatial distribution of the T statistic within a machine learning framework enhanced its detec-

tion ability, specifically for ancient sweeps. However, machine learning frameworks require
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extensive simulations to train (e.g., [25, 27, 28]), and these simulations must be based on a set

of critical assumptions, such as demographic, mutation rate, and recombination rate parame-

ters. Yet, accurate inferences of these parameters is not always possible, or can be highly error

prone, and prior studies have found that these machine learning methods can make highly

incorrect predictions if the distribution of training data is different from that of the test or

empirical data [25, 30]. Furthermore, generation of these training datasets and training the

models on them often requires substantial computational time and resources. Instead, our Λ
statistic is the first likelihood method to model the spatial distribution of the HFS, providing

the power of modeling the spatial distribution of T afforded by current machine learning

frameworks (e.g., compare S1 and S7 Figs with S8 and S9 Figs of [13]). This power comes with-

out having to simulate over a broad range of parameters to train a model, thus saving compu-

tational resources, and with predictions not hinging on accurate estimates of genetic and

evolutionary model parameters to generate training sets. However, this high power of the Λ
statistic to detect candidate sweep regions without simulations is distinct from the requirement

that distributions of the statistic from neutral simulations must be generated to reject neutral-

ity at candidate sweep regions. Any sweep statistic, regardless of it being a summary, likeli-

hood, or machine learning approach will require extensive simulations under realistic genetic

and evolutionary models to reject the null hypothesis of neutrality.

While optimizing the Λ statistic, we also obtain estimates of the number of presently-

sweeping haplotypes m and the footprint size A. For recent sweeps that are strong enough, esti-

mates of m correlate well with the number of initially-selected haplotypes ν. For older and less

strong sweeps, mutation and recombination events accumulate leading to more distinct haplo-

types, thereby inflating m estimates. Moreover, estimates of the footprint size A correlate with

power of Λ, suggesting that the estimated footprint size will be large under scenarios in which

sweeps are highly supported. The relationship between A and power of Λ is related to promi-

nence of the distortions in the HFS, which also erode due mutation and recombination rates,

and this parameter is analogous to the α parameter [79] used by other composite likelihood

methods to mechanistically model the probability that a lineage escapes a sweep [17, 24].

Therefore, though we found that estimates of m were not highly accurate under non-ideal

sweep settings and that the precise relationship of A to the timing and strength of a sweep is

unclear, these quantities may still be useful. Specifically, even if the estimates of m are not

highly accurate proxies for ν, estimates of m could still be valuable by casting the problem as

binary sweep classification with m = 1 for hard and m> 1 for soft sweeps, as was also suggested

for the T statistic by [13]. Table 1 highlights that the LCT region is identified as a hard sweep

(estimated m = 1) in the CEU, with inferred soft sweeps (estimated m> 1) in the MHC region,

which are consistent with the number of prominent high-frequency haplotypes at these

regions (Fig 6). Moreover, though not directly associated with population-genetic parameters

such as ν or the strength s and time t of a sweep, estimated Λ, μ, and A values can be used as

input features to machine learning regression algorithms to predict underlying evolutionary

model parameters of ν, s, and t [80]. Such strategies are typically computationally expensive,

but may be required for accurate characterization of sweep footprints, even though they are

unnecessary for detecting sweeps due to the already high power of Λ.

The Λ statistic developed here represents an important step in advancing methodology for

sweep detection by interrogating the spatial distribution of distortions in the HFS. Prior stud-

ies focused either on spatial distributions of the SFS, which cannot distinguish between hard

and soft sweeps, or only local distortions in the HFS. Specifically, methods that explore the

skews in the SFS typically do so with an explicit analytical population-genetic model [16, 17,

19–21], which are underpowered if the assumed model is incorrect and are underpowered to

detect soft sweeps [78]. In contrast, analytical population-genetic modeling of distortions in
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the HFS is difficult, and alternative statistical models that capture relevant features of sweeps

are often used, focusing either on local distortions in the HFS [13] or haplotype length distri-

butions [5, 7]. Instead, our Λ statistic represents a compromise of these two extremes, permit-

ting simultaneous interrogations of haplotype frequency distributions and correlates of their

length distributions in a computationally efficient framework that leads to expected patterns

that are informed by theoretical results. Our methodological framework therefore provides a

foundation for developing tools that can identify other evolutionary processes that may act

locally in the genome, enhancing future investigations of sweeps and other forces across a vari-

ety of study systems.

Methods

In this section we outline the methods used to assess the power of a diversity of sweep statistics

using simulations. These simulations examine an array of model parameters, including sweep

strength, age, and softness as well as the confounding effects of demographic history, back-

ground selection, haplotype phasing, and recombination rate variation. We also describe pre-

and post-analysis processing for the application of the Λ statistic to our two real-data examples:

CEU and YRI human populations and a rat population from New York City.

Power analysis

To assess the ability of Λ to detect sweeps, we conducted forward-time simulations using

SLiMv3.2 [83] for sweeps of varying strength, age, and softness under a constant-size demo-

graphic history as well as under a realistic non-equilibrium demographic history inspired by

human studies. Specifically, for each simulation scenario, we generated 1000 independent rep-

licates of length 500 kb, so that Λ was able to interrogate the spatial distribution of variation

across a large genomic segment. We employed a mutation rate of μ = 1.29 × 10−8 per site per

generation [84, 85] and a recombination rate of r = 10−8 per site per generation [86]. For the

constant-size demographic history, we considered a population size of N = 104 diploid individ-

uals [87], and to investigate complex non-equilibrium demographic histories, we employed

the model inferred in [34] of central European humans (CEU), which incorporates a recent

bottleneck with a severe population collapse followed by rapid population expansion. In par-

ticular, we used this non-equilibrium model as it was inferred by the contemporary method

SMC++ [34], which attempts to fit model parameters that can both recapitulate haplotype

diversity and allele frequency distributions [88] observed in genomic data from the CEU popu-

lation of the 1000 Genomes Project dataset [31]. We also considered a setting in which recom-

bination rate was permitted to vary across simulation replicates under the CEU demographic

model, with recombination rate for a given simulated replicate drawn from an exponential dis-

tribution with mean r = 10−8 per site per generation (i.e., inspired by [27]).

In addition to these genetic and demographic parameters, for selection simulations, we

modeled sweeps on ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes, where each of these haplo-

types harbored a beneficial allele in the center of the simulated genomic segment with strength

s 2 {0.001, 0.01, 0.1} per generation that immediately appeared and became beneficial at time t
2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling. To ensure that a sweep

signature had the potential to be uncovered (especially under settings with s = 0.001 and 0.01),

we required that the beneficial allele established in the population by reaching a frequency of

0.1 in the population. Simulation replicates for which the beneficial allele did not reach a fre-

quency of 0.1 in the population were repeated until the beneficial allele established in the pop-

ulation. All neutral and selection simulations were run for 11N generations, where the first

10N generations were used as burn-in and n = 50 diploid individuals were sampled from the
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population after 11N generations (i.e., the present). Because forward-time simulations are

computationally intensive, as is commonly-practiced [89, 90] we scaled all constant-size demo-

graphic history simulations by a factor λ = 10 and the European human history by λ = 20, such

that the selection coefficient, mutation rate, and recombination rate were multiplied by λ and

the population size at each generation and the total number of simulated generations were

divided by λ. This scaling leads to a speedup of approximately λ2 in computing time, such that

the constant-size simulations run roughly 100 times faster than without scaling and the CEU

model simulations run approximately 400 times faster, making a large-scale simulation study

feasible.

When analyzing each simulated replicate, we examined the performance of Λ with the like-

lihood T statistic [13] that does not account for the spatial distribution of genomic variation,

the summary statistic H12 [8] that was developed to detect hard and soft sweeps with similar

power, and the standardized iHS [5] and nSL [7] methods that summarize the lengths of haplo-

types centered on core SNPs. When applying one of these sweep detection statistics to a simu-

lated replicate, we scanned the entire simulated region, and the score of the applied statistic for

that simulated replicate was chosen as the maximum value of that statistic, computed across all

test positions within the simulated region. To investigate the effect of window size on the rela-

tive powers of Λ, T, and H12, we considered their applications in central windows of 51, 101,

and 201 SNPs, and analyzed windows every 25 SNPs across a simulated sequence. We chose

SNP-delimited windows rather than windows based on physical length as they should be more

robust to variation in recombination and mutation rate across the genome, as well as random

missing genomic segments due to poor mappability, alignability, or sequence quality. That is,

we expect SNP-delimited to be more conservative than windows based on the physical length

of an analyzed genomic segment. We also examined the application of Λ, T, and G123 (ana-

logue of H12 [10]) to unphased multilocus genotype input data to evaluate the relative powers

of these three approaches when applied on study systems for which obtaining phased haplo-

types is difficult, unreliable, or impossible [91]. We applied the lassip software released

with this article for application of the saltiLASSI Λ statistic, the LASSI T statistic, and

H12 (and G123), and the selscan software [90] to compute standardized iHS and nSL.

Analysis of 1000 Genomes data

We extracted the phased genomes of CEU (99 diploids) and YRI (108 diploids) populations,

separately, from the full 1000 Genomes Project Phase 3 dataset (2504 diploids) [31]. For each

population, we retained only autosomal biallelic SNPs that were polymorphic in the sample. In

order to avoid potentially spurious signals, we also filtered any regions with poor mappability

as indicated by mean CRG100 < 0.9 [19, 93]. This left 12,400,078 SNPs in CEU and 20,417,698

SNPs in YRI.

We compute saltiLASSI Λ statistics for both phased (haplotype-based) and unphased

(multilocus-genotype-based) analyses with lassip. We use physical distance as the distance

measure, and we set --winsize 201, --winstep 100, and --k 20 to use the ranked

HFS for the top K = 20 most frequent haplotypes. By default lassip assumes phased data

and computes haplotype-based statistics, when the --unphased flag is set, all statistics are

computed using multilocus genotypes.

To determine significance thresholds, we simulated neutral whole genomes with a realistic

recombination map and demographic history using stdpopsim [85] and msprime [94].

Using the OutOfAfrica_2T12 demographic history [95] and the HapMapII_GRCh37
genetic map [96] in stdpopsim, we simulate 100 replicates of all 22 autosomes for each pop-

ulation separately, sampling 99 diploid individuals for CEU simulations and 108 diploid
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individuals for YRI simulations. For each replicate, we then compute saltiLASSI Λ statis-

tics for both phased and unphased analyses with lassip, setting --winsize 201,

--winstep 100, and --k 20. As simulated genomes do not simulate variants at the same

sites, the windows within which Λ is calculated will not perfectly align with each other or our

real-data analysis. In order to compare neutral and real Λ values at local regions of the genome,

for each neutral replicate, separately, we align the simulated windows to the windows of our

real-data analysis, and then for each real-data window we calculate a weighted mean of all

overlapping windows to get a neutral-simulation Λ for that window associated with our real-

data. In this way we are able to compute 100 neutral-simulated Λ values for each window in

our real-data analyses. We then compute the max Λ, the top-0.1% Λ, and the top-1% Λ across

all windows in all replicates for each population and each analysis (phased/unphased), which

are given in S1 Table. We consider any window with a Λ greater than the max observed across

all genome analysis windows from all neutral simulations as a putatively selected region, and

we concatenate consecutive windows satisfying this condition into larger regions implicated as

being under selection (phased in Tables 1 and 2 and unphased in S5 and S6 Tables).

Finally, we also compute Λ for all simulated and empirical data using two other distance

measures: number of windows and centiMorgans. For the latter measure we use the HapMa-
pII_GRCh37 genetic map [96] and use the genetic distance between window midpoints.

Midpoints for which a genetic position does not exist in the HapMapII_GRCh37 genetic

map are linearly interpolated based on the nearest surrounding sites. We compare these results

to the results calculated using physical distance using Spearman’s rank correlation (S4 Table).

For simulated data, we compute the mean correlation coefficient across all 100 replicates.

Analysis of New York City rats

We extracted the genetic data of 29 rats sampled in New York City [32], retaining only autoso-

mal biallelic SNPs that were polymorphic in the sample. This left 13,532,711 SNPs. As these

data are unphased, we use lassip to compute saltiLASSI Λ statistic using multilocus-

genotypes (--unphased flag). We set --winsize 201 and --winstep 100, and we

choose --k 20 to use the ranked HFS for the top K = 20 most frequent haplotypes.

[32] noted that the demographic history for brown rats was likely poorly calibrated for

these New York City samples. We therefore take an outlier approach for analyzing the results

of the saltiLASSI method on these data. We compute the top-0.1% Λ, the top-1% Λ, and

the top-5% Λ across all windows genome-wide, getting 389.839, 88.080, and 22.724, respec-

tively. Putatively selected regions were identified by concatenating consecutive windows with

Λ greater than the top-1% Λ observed (S7 and S8 Tables). The 1000 Genomes Project data is

available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/, and the New York

City rat data is available at https://doi.org/10.5061/dryad.08kprr4zn. Analysis scripts and inter-

mediate data files used in this study are available from Data Dryad at doi:10.5061/dryad.

4qrfj6qbm [81, 82].

Dryad DOI

https://doi.org/10.5061/dryad.08kprr4zn.

doi:10.5061/dryad.4qrfj6qbm.

Supporting information

S1 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for appli-

cations of Λ, T, and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS

under simulations of a constant-size demographic history for per-generation selection
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coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability demonstrated for selec-

tion start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2

{1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on a sample of n = 50

diploid individuals and the haplotype frequency spectra for the Λ and T statistics truncated at

K = 10 haplotypes.

(EPS)

S2 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-

size demographic history for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on

the rows. Mean estimated softness demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the corresponding

mean m̂ values for Λ applied to neutral simulations. Results are based on a sample of n = 50

diploid individuals and the haplotype frequency spectrum for the Λ statistic truncated at

K = 10 haplotypes.

(EPS)

S3 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by the

sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a con-

stant-size demographic history for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1}

on the rows. Mean estimated genomic size influenced by sweeps demonstrated for selection

start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1,

2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed, and dotted horizontal

lines are the corresponding mean log
10
Â values for Λ applied to neutral simulations. Results

are based on a sample of n = 50 diploid individuals and the haplotype frequency spectrum for

the Λ statistic truncated at K = 10 haplotypes.

(EPS)

S4 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for appli-

cations of Λ, T, and G123 with windows of size 51, 101, and 201 SNPs to unphased multilocus

genotype input data under simulations of a constant-size demographic history for per-genera-

tion selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability demon-

strated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to

sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on a

sample of n = 50 diploid individuals and the multilocus genotype frequency spectra for the Λ
and T statistics truncated at K = 10 multilocus genotypes.

(EPS)

S5 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of a constant-size demographic history for per-generation selec-

tion coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demonstrated

for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sam-

pling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed, and dot-

ted horizontal lines are the corresponding mean m̂ values for Λ applied to neutral simulations.

Results are based on a sample of n = 50 diploid individuals and the multilocus genotype fre-

quency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)
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S6 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by the

sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilo-

cus input data under simulations of a constant-size demographic history for per-generation

selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated genomic size influ-

enced by sweeps demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500,

3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (col-

umns). Gray solid, dashed, and dotted horizontal lines are the corresponding mean log
10
Â val-

ues for Λ applied to neutral simulations. Results are based on a sample of n = 50 diploid

individuals and the multilocus genotype frequency spectrum for the Λ statistic truncated at

K = 10 multilocus genotypes.

(EPS)

S7 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for appli-

cations of Λ, T, and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS

under simulations of the human central European (CEU) demographic history of [34] for per-

generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability dem-

onstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior

to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on

a sample of n = 50 diploid individuals and the haplotype frequency spectra for the Λ and T sta-

tistics truncated at K = 10 haplotypes.

(EPS)

S8 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] for per-generation selection coefficients

of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demonstrated for selection start

times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4,

8, 16} initially-selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines

are the corresponding mean m̂ values for Λ applied to neutral simulations. Results are based

on a sample of n = 50 diploid individuals and the haplotype frequency spectrum for the Λ sta-

tistic truncated at K = 10 haplotypes.

(EPS)

S9 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by the

sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the

human central European (CEU) demographic history of [34] for per-generation selection coef-

ficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated genomic size influenced by sweeps

demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations

prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid,

dashed, and dotted horizontal lines are the corresponding mean log
10
Â values for Λ applied to

neutral simulations. Results are based on a sample of n = 50 diploid individuals and the haplo-

type frequency spectrum for the Λ statistic truncated at K = 10 haplotypes.

(EPS)

S10 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ, T, and G123 with windows of size 51, 101, and 201 SNPs to unphased multi-

locus genotype input data under simulations of the human central European (CEU) demo-

graphic history of [34] for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the

rows. Classification ability demonstrated for selection start times of t 2 {500, 1000, 1500, 2000,

2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes
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(columns). Results are based on a sample of n = 50 diploid individuals and the multilocus

genotype frequency spectra for the Λ and T statistics truncated at K = 10 multilocus genotypes.

(EPS)

S11 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of the human central European (CEU) demographic history of

[34] for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean esti-

mated softness demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000}

generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray

solid, dashed, and dotted horizontal lines are the corresponding mean m̂ values for Λ applied to

neutral simulations. Results are based on a sample of n = 50 diploid individuals and the multilo-

cus genotype frequency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S12 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of the human central European (CEU) demographic his-

tory of [34] for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean

estimated genomic size influenced by sweeps demonstrated for selection start times of t 2

{500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} ini-

tially-selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the

corresponding mean log
10
Â values for Λ applied to neutral simulations. Results are based on a

sample of n = 50 diploid individuals and the multilocus genotype frequency spectrum for the

Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S13 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ, T, and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS

under simulations of the human central European (CEU) demographic history of [34] with

per-site per-generation recombination rate drawn from an exponential distribution with mean

of 10−8 for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classifica-

tion ability demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000}

generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns).

Results are based on a sample of n = 50 diploid individuals and the haplotype frequency spectra

for the Λ and T statistics truncated at K = 10 haplotypes. Plots displaying patterns in estimated

sweep softness and footprint size can be found in S14 and S15 Figs, respectively.

(EPS)

S14 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] with per-site per-generation recombina-

tion rate drawn from an exponential distribution with mean of 10−8 for per-generation selec-

tion coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demonstrated

for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sam-

pling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed, and dot-

ted horizontal lines are the corresponding mean m̂ values for Λ applied to neutral simulations.

Results are based on a sample of n = 50 diploid individuals and the haplotype frequency spec-

trum for the Λ statistic truncated at K = 10 haplotypes.

(EPS)
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S15 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by the

sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the

human central European (CEU) demographic history of [34] with per-site per-generation

recombination rate drawn from an exponential distribution with mean of 10−8 for per-genera-

tion selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated genomic size

influenced by sweeps demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500,

3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns).

Gray solid, dashed, and dotted horizontal lines are the corresponding mean log
10
Â values for Λ

applied to neutral simulations. Results are based on a sample of n = 50 diploid individuals and

the haplotype frequency spectrum for the Λ statistic truncated at K = 10 haplotypes.

(EPS)

S16 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ, T, and G123 with windows of size 51, 101, and 201 SNPs to unphased multi-

locus genotype input data under simulations of the human central European (CEU) demo-

graphic history of [34] with per-site per-generation recombination rate drawn from an

exponential distribution with mean of 10−8 for per-generation selection coefficients of s 2

{0.001, 0.01, 0.1} on the rows. Classification ability demonstrated for selection start times of t 2

{500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} ini-

tially-selected haplotypes (columns). Results are based on a sample of n = 50 diploid individu-

als and the multilocus genotype frequency spectra for the Λ and T statistics truncated at K = 10

multilocus genotypes. Plots displaying patterns in estimated sweep softness and footprint size

can be found in S17 and S18 Figs, respectively.

(EPS)

S17 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus input

data under simulations of the human central European (CEU) demographic history of [34] with

per-site per-generation recombination rate drawn from an exponential distribution with mean

of 10−8 for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean esti-

mated softness demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000}

generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray

solid, dashed, and dotted horizontal lines are the corresponding mean m̂ values for Λ applied to

neutral simulations. Results are based on a sample of n = 50 diploid individuals and the multilo-

cus genotype frequency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S18 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of the human central European (CEU) demographic his-

tory of [34] with per-site per-generation recombination rate drawn from an exponential

distribution with mean of 10−8 for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1}

on the rows. Mean estimated genomic size influenced by sweeps demonstrated for selection

start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1,

2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed, and dotted horizontal

lines are the corresponding mean log
10
Â values for Λ applied to neutral simulations. Results

are based on a sample of n = 50 diploid individuals and the multilocus genotype frequency

spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

PLOS GENETICS A spatially aware likelihood test to detect sweeps from haplotype distributions

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010134 April 11, 2022 26 / 37

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010134.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010134.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010134.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010134.s018
https://doi.org/10.1371/journal.pgen.1010134


S19 Fig. Proportion of false signals. As a function of false positive rate for applications of Λ,

T, H12, and G123 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS under sim-

ulations of a constant-size demographic history and the human central European (CEU)

demographic history of [34] (bottleneck scenario) under background selection using either

phased haplotype input data (Λ, T, H12, nSL, and iHS) or unphased multilocus genotype input

data (Λ, T, and G123). Proportion of false signals is computed as the fraction of background

selection simulations in which the score computed for Λ, T, H12, G123, nSL, or iHS exceeded

the corresponding score threshold defined by a particular false positive rate. Results are based

on a sample of n = 50 diploid individuals and haplotype and multilocus genotype frequency

spectra for the Λ and T statistics truncated at K = 10 haplotypes or multilocus genotypes.

(EPS)

S20 Fig. Power at a 1% false positive rate (FPR). as a function of selection start time for appli-

cations of Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-size

demographic history and sample size of n 2 {10, 25, 50} diploid individuals for per-generation

selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability demonstrated

for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sam-

pling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on the

haplotype frequency spectra for the Λ statistics truncated at K = 10 haplotypes.

(EPS)

S21 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-

size demographic history and sample size of n 2 {10, 25, 50} diploid individuals for per-genera-

tion selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demon-

strated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to

sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on

the haplotype frequency spectrum for the Λ statistic truncated at K = 10 haplotypes.

(EPS)

S22 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a

constant-size demographic history and sample size of n 2 {10, 25, 50} diploid individuals for

per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated

genomic size influenced by sweeps demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Results are based on the haplotype frequency spectrum for the Λ statis-

tic truncated at K = 10 haplotypes.

(EPS)

S23 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs to unphased multilocus genotype

input data under simulations of a constant-size demographic history and sample size of n 2

{10, 25, 50} diploid individuals for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1}

on the rows. Classification ability demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Results are based on the multilocus genotype frequency spectrum for

the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)
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S24 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of a constant-size demographic history and sample size of n 2

{10, 25, 50} diploid individuals for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1}

on the rows. Mean estimated softness demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Results are based on the multilocus genotype frequency spectrum for

the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S25 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of a constant-size demographic history and sample size of

n 2 {10, 25, 50} diploid individuals for per-generation selection coefficients of s 2 {0.001, 0.01,

0.1} on the rows. Mean estimated genomic size influenced by sweeps demonstrated for selec-

tion start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2

{1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on the multilocus

genotype frequency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S26 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] and sample size of n 2 {10, 25, 50} dip-

loid individuals for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows.

Classification ability demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500,

3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (col-

umns). Results are based on the haplotype frequency spectra for the Λ statistics truncated at

K = 10 haplotypes.

(EPS)

S27 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] and sample size of n 2 {10, 25, 50} dip-

loid individuals for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows.

Mean estimated softness demonstrated for selection start times of t 2 {500, 1000, 1500, 2000,

2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes

(columns). Results are based on the haplotype frequency spectrum for the Λ statistic truncated

at K = 10 haplotypes.

(EPS)

S28 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the

human central European (CEU) demographic history of [34] and sample size of n 2 {10, 25,

50} diploid individuals for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the

rows. Mean estimated genomic size influenced by sweeps demonstrated for selection start

times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4,

8, 16} initially-selected haplotypes (columns). Results are based on the haplotype frequency

spectrum for the Λ statistic truncated at K = 10 haplotypes.

(EPS)
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S29 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs to unphased multilocus genotype

input data under simulations of the human central European (CEU) demographic history of

[34] and sample size of n 2 {10, 25, 50} diploid individuals for per-generation selection coeffi-

cients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability demonstrated for selection

start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1,

2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on the multilocus geno-

type frequency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S30 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of the human central European (CEU) demographic history of

[34] and sample size of n 2 {10, 25, 50} diploid individuals for per-generation selection coeffi-

cients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demonstrated for selection

start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1,

2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on the multilocus geno-

type frequency spectrum for the Λ statistic truncated at K = 10 multilocus genotypes.

(EPS)

S31 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of the human central European (CEU) demographic his-

tory of [34] and sample size of n 2 {10, 25, 50} diploid individuals for per-generation selection

coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated genomic size influenced by

sweeps demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} genera-

tions prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results

are based on the multilocus genotype frequency spectrum for the Λ statistic truncated at

K = 10 multilocus genotypes.

(EPS)

S32 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-

size demographic history and the haplotype frequency spectra for the Λ statistic truncated at K
2 {5, 10, 20} haplotypes for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the

rows. Classification ability demonstrated for selection start times of t 2 {500, 1000, 1500, 2000,

2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes

(columns). Results are based on a sample of n = 50 diploid individuals.

(EPS)

S33 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-

size demographic history and the haplotype frequency spectra for the Λ statistic truncated at K
2 {5, 10, 20} haplotypes for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the

rows. Mean estimated softness demonstrated for selection start times of t 2 {500, 1000, 1500,

2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplo-

types (columns). Results are based on a sample of n = 50 diploid individuals.

(EPS)

S34 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a
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constant-size demographic history and the haplotype frequency spectra for the Λ statistic trun-

cated at K 2 {5, 10, 20} haplotypes for per-generation selection coefficients of s 2 {0.001, 0.01,

0.1} on the rows. Mean estimated genomic size influenced by sweeps demonstrated for selec-

tion start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2

{1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on a sample of n = 50

diploid individuals.

(EPS)

S35 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs to unphased multilocus genotype

input data under simulations of a constant-size demographic history and the multilocus geno-

type frequency spectra for the Λ statistic truncated at K 2 {5, 10, 20} multilocus genotypes for

per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability

demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations

prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are

based on a sample of n = 50 diploid individuals.

(EPS)

S36 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of a constant-size demographic history and the multilocus geno-

type frequency spectra for the Λ statistic truncated at K 2 {5, 10, 20} multilocus genotypes for

per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated soft-

ness demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} genera-

tions prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results

are based on a sample of n = 50 diploid individuals.

(EPS)

S37 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of a constant-size demographic history and the multilocus

genotype frequency spectra for the Λ statistic truncated at K 2 {5, 10, 20} multilocus genotypes

for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated

genomic size influenced by sweeps demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Results are based on a sample of n = 50 diploid individuals.

(EPS)

S38 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] and the haplotype frequency spectra for

the Λ statistic truncated at K 2 {5, 10, 20} haplotypes for per-generation selection coefficients

of s 2 {0.001, 0.01, 0.1} on the rows. Classification ability demonstrated for selection start

times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4,

8, 16} initially-selected haplotypes (columns). Results are based on a sample of n = 50 diploid

individuals.

(EPS)

S39 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human

central European (CEU) demographic history of [34] and the haplotype frequency spectra for
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the Λ statistic truncated at K 2 {5, 10, 20} haplotypes for per-generation selection coefficients

of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated softness demonstrated for selection start

times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4,

8, 16} initially-selected haplotypes (columns). Results are based on a sample of n = 50 diploid

individuals.

(EPS)

S40 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the

human central European (CEU) demographic history of [34] and the haplotype frequency

spectra for the Λ statistic truncated at K 2 {5, 10, 20} haplotypes for per-generation selection

coefficients of s 2 {0.001, 0.01, 0.1} on the rows. Mean estimated genomic size influenced by

sweeps demonstrated for selection start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} genera-

tions prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results

are based on a sample of n = 50 diploid individuals.

(EPS)

S41 Fig. Power at a 1% false positive rate (FPR). As a function of selection start time for

applications of Λ with windows of size 51, 101, and 201 SNPs to unphased multilocus genotype

input data under simulations of the human central European (CEU) demographic history of

[34] and the multilocus genotype frequency spectra for the Λ statistic truncated at K 2 {5, 10,

20} multilocus genotypes for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on

the rows. Classification ability demonstrated for selection start times of t 2 {500, 1000, 1500,

2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected haplo-

types (columns). Results are based on a sample of n = 50 diploid individuals.

(EPS)

S42 Fig. Estimated sweep softness. Illustrated by mean estimated number of sweeping haplo-

types (m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus

input data under simulations of the human central European (CEU) demographic history of

[34] and the multilocus genotype frequency spectra for the Λ statistic truncated at K 2 {5, 10,

20} multilocus genotypes for per-generation selection coefficients of s 2 {0.001, 0.01, 0.1} on

the rows. Mean estimated softness demonstrated for selection start times of t 2 {500, 1000,

1500, 2000, 2500, 3000} generations prior to sampling for ν 2 {1, 2, 4, 8, 16} initially-selected

haplotypes (columns). Results are based on a sample of n = 50 diploid individuals.

(EPS)

S43 Fig. Estimated sweep width. Illustrated by mean estimated genomic size influenced by

the sweep (log
10
Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-

tilocus input data under simulations of the human central European (CEU) demographic his-

tory of [34] and the multilocus genotype frequency spectra for the Λ statistic truncated at K 2

{5, 10, 20} multilocus genotypes for per-generation selection coefficients of s 2 {0.001, 0.01,

0.1} on the rows. Mean estimated genomic size influenced by sweeps demonstrated for selec-

tion start times of t 2 {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν 2

{1, 2, 4, 8, 16} initially-selected haplotypes (columns). Results are based on a sample of n = 50

diploid individuals.

(EPS)

S44 Fig. Manhattan plot of unphased multi-locus genotype Λ-statistics. For the (A) CEU

and (B) YRI populations from the 1000 Genomes Project. Each point represents a single

201-SNP window along the genome. Horizontal lines represent the top 1%, top 0.1%, and
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maximum observed Λ statistic across all windows in demography-matched neutral simula-

tions. Red line indicates the maximum observed Λ among 100 replicate simulations at that

location in the genome.

(EPS)

S45 Fig. Detailed illustration of Λ statistics and multi-locus genotype frequency spectra in

CEU and YRI. (A) Λ plotted in the LCT region, vertical dotted lines indicate zoomed region

shown in (B) and (C). (B) YRI empirical HFS for 11 windows in the LCT region. (C) CEU

empirical HFS for 11 windows in the LCT region. (D) Λ plotted in the MHC region, vertical

dotted lines indicate zoomed region shown in (E) and (F). (E) YRI empirical HFS for 11 win-

dows in the MHC region. (F) CEU empirical HFS for 11 windows in the MHC region. In (B),

(C), (E), and (F), numbers above HFS are Λ values for the window rounded to the nearest

whole number, and the genome-wide average HFS is highlighted in grey. q20
i is the frequency

of the ith most common MLG truncated to K = 20.

(EPS)

S46 Fig. Maximum Λ observed per window across demography-matched neutral simula-

tions versus recombination rate. For the (A) CEU and (B) YRI populations.

(EPS)

S1 Table. Λ statistic thresholds for TGP analyses as calculated from demography-matched

neutral simulations.

(PDF)

S2 Table. Gene ontology enrichment analysis of regions with extreme Λ values in the Euro-

pean (CEU) human population.

(PDF)

S3 Table. Gene ontology enrichment analysis of regions with extreme Λ values in the Afri-

can (YRI) human population.

(PDF)

S4 Table. Spearman correlations of Λ statistics calculated with different distance metrics.

From demography-matched neutral whole genome simulations with variable recombination

rate (mean across 100 replicates) and from empirical data.

(PDF)

S5 Table. Regions of extreme Λ values (unphased analysis) in the CEU population and the

genes contained therein. m̂ is the inferred number of sweeping haplotypes, and log
10

ðÂÞ is

the estimated sweep width.

(PDF)

S6 Table. Regions of extreme Λ values (unphased analysis) in the YRI population and the

genes contained therein. m̂ is the inferred number of sweeping haplotypes, and log
10

ðÂÞ is

the estimated sweep width.

(PDF)

S7 Table. Regions of extreme Λ values in the New York City rat population that contain

annotated genes in genome build RN5. m̂ is the inferred number of sweeping haplotypes,

and log
10

ðÂÞ is the estimated sweep width.

(PDF)
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S8 Table. Regions of extreme Λ values in the New York City rat population that do not

contain annotated genes in genome build RN5. m̂ is the inferred number of sweeping haplo-

types, and log
10

ðÂÞ is the estimated sweep width.

(PDF)
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