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Main text

Many biological processes involve the coordination and inte-
gration of signaling networks across different cell, tissue, and
organ types within the plant. Bulk-cell and -tissue omics
profiling, such as transcriptomics, proteomics, and metabo-
lomics, have been used to uncover how gene products dif-
ferentially accumulate across cell and tissue types. However,
these bulk-level measurements only capture the average ex-
pression of a gene product within a cell population or tissue,
masking the inherent heterogeneity of expression within sin-
gle cells. Given that individual cells undergo developmental
processes such as cell elongation and division at different
rates, a single-cell expression profile is the logical next step
toward obtaining a deeper understanding of the spatiotem-
poral response to various biological stimuli. The ability to
quantify proteins from single cells has the potential to pro-
vide an important component of a Plant Cell Atlas (Rhee et
al, 2019). Recent advances in protoplasting and sequencing
technologies have allowed for single-cell transcriptomic stud-
ies in plants, but further developments are needed in the
single-cell proteomics field to reach the same throughput as
single-cell transcriptomic methods. One major issue for
single-cell proteomics is that inherently low sample amounts
(~200 pg of protein per cell) challenge traditional sample
preparation protocols and the sensitivity of current genera-
tion liquid chromatography—mass spectrometry (LC-MS)
systems. Because of the challenges associated with measur-
ing proteins from a single cell, groups have worked at the

intermediate stage by isolating many cells of a single-cell
type using laser capture microdissection or Fluorescent
Activated Cell Sorting (FACS; Dai and Chen, 2012). Here, we
provide an update on the state-of-the-art techniques in the
single-cell proteomics field, discuss limitations for single-cell
proteomics profiling in plant systems, and review potential
applications for single-cell multi-omics profiling toward an-
swering open questions in plant biology.

Recent advances in low-input and single-cell
proteomics

Multiple groups have made major improvements to the
single-cell proteomics sample preparation and analysis
protocols.

Technological improvements facilitate direct
single-cell proteome measurements

Several approaches have been developed for single-cell
proteomics. One approach is to analyze the proteome of a
single cell at a time using label-free quantification. However,
label-free methods are inherently challenging for single-cell
proteomics as the protein amount per cell is ~200 pg for
Hela cells (Kulak et al, 2014) and ~170 pg for Arabidopsis
thaliana root protoplasts (8.40+0.72 pg total protein
extracted from 50,000 protoplasts with 5% sodium dodecyl
sulfate and assayed by the Pierce BCA Protein Assay, n = 3).
Recent developments have trended toward reducing sample
preparation volumes of 30 nL to 2 pL range to reduce
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Advances in single-cell omics profiling

ADVANCES BOX

® Single-cell proteomics methods enabled
quantification of over 3,000 protein groups per
experiment at around 1,000 proteins per single
cell in animal systems.

® Improvements in instrumentation and nanoliter
sample volume processing have greatly
increased the number of proteins detected at
the single-cell level.

® There has been an increase in the number of
single-cell transcriptomic atlases generated in
plants.

® Many computational methods have been
developed for the statistical analysis of single-
cell transcriptomics.

® The combination of single-cell transcriptomics
and proteomics can answer fundamental
questions in plant biology.

sample loss (Li et al, 2018; Zhu et al, 2018b; Kelly, 2020;
Brunner et al, 2021; Liang et al, 2021). It has also been
found that using ultra-low LC flowrates (<100 nL min~")
and optimized gradients results in higher sensitivity (Zhu et
al, 2018b; Kelly, 2020; Brunner et al., 2021; Liang et al, 2021).

On the MS side, gas-phase fractionation using ion mobility
spectrometry (IMS) devices coupled to traditional LC-MS
setups has proven to substantially increase ion selectivity
and sensitivity by filtering out nonpeptide ions prior to MS
analysis (Cong et al,, 2020; Gregus et al,, 2020; Brunner et al,,
2021; Stejskal et al, 2021; Woo et al, 2021a). Using
Nanodroplet Processing in One pot for Trace Sample
(nanoPOTS) (see “Automated processing for small-volume
samples”) sample preparation and optimized settings on a
high field asymmetric IMS interface coupled to an Orbitrap
Eclipse Tribrid MS identified over 1,000 protein groups from
single HeLa and motor neuron cells (Cong et al, 2020).
Likewise, a recent report used a modified trapped IMS
TIMS-qTOF MS and a data-independent acquisition (DIA)
parallel accumulation—serial fragmentation (diaPASEF)
scheme (Meier et al, 2020) to quantify up to 1,400 protein
groups per single cell (Brunner et al., 2021).

Acquiring MS data in DIA mode can reduce stochasticity
in peptide identifications and can be more sensitive than
typical data-dependent acquisition (DDA) for single-cell
analysis (Saha-Shah et al, 2019). Although approaches for
generating in silico spectrum libraries for DIA analyses exist
(Demichev et al,, 2020; Pino et al, 2020; Yang et al., 2020b;
Zhang et al, 2020; Mehta et al, 2021), the development of
cell type-specific DDA spectral libraries for DIA may reduce
false positives and increase the certainty that particular pro-
teins are expressed in specific cells (Rosenberger et al,, 2017;
Ge et al, 2020). These studies represent substantial advance-
ments in single-cell analysis and further technological
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improvements to instrumentation and data analysis pipe-
lines will increase the detection of low-abundance proteins
from a single cell.

Multiplexed single-cell proteomics with isobaric
labeling
Multiple groups have developed single-cell proteomics
methods that rely on sample multiplexing using isobaric la-
beling reagents such as Tandem Mass Tags (TMTs). Sample
multiplexing enables greater throughput and a lower
amount of LC-MS time per cell. While isobaric labeling ena-
bles multiplexing it is currently limited to 16 labels with up
to 18 available in the near future (Li et al, 2021).
Furthermore, multiplexing enables incorporation of an iso-
barically labeled carrier, often shortened to isobaric carrier,
to boost signal in order to enhance peptide detection in MS
scans. This carrier sample often consists of peptides from 25
to 200 cells, which are multiplexed with single-cell samples
and processed in parallel. One of the first methods to imple-
ment an isobaric carrier for single-cell proteomics was
Single-Cell ProtEomics by Mass Spectrometry (SCoPE-MS;
Budnik et al, 2018; Slavov, 2021; Specht and Slavov, 2021;
Specht et al,, 2021). This approach has been used by several
groups to answer different biological questions and serves as
the building block for future isobaric carrier-based designs
(Dou et al, 2019; Tan et al, 2019; Vitrinel et al, 2020; Yang
et al, 2020a; Schoof et al., 2021). One note of caution is that
while carriers enhance peptide identification, high carrier lev-
els can negatively impact quantitative accuracy. This arises
from Orbitraps having a fixed ion capacity. Thus, when high
carrier amounts are used the ions from the single-cell sam-
ples are diluted out and not effectively detected. Indeed,
several groups have worked to characterize optimal carrier
amounts (Dou et al, 2019; Tsai et al, 2020; Cheung et al,
20271; Hartlmayr et al, 2021; Specht and Slavov, 2021). In
particular, increasing the automatic gain control and ion in-
jection time over settings typically used in bulk experiments
improves quantitative accuracy. To aid in selecting optimal
acquisition settings, which is instrument-dependent, several
software packages have been developed including Single-Cell
Proteomics Companion and Data-driven Optimization of
MS (DO-MS; Huffman et al,, 2019; Cheung et al., 2021).
Recently, the group behind SCoPE-MS has made multiple
improvements to increase the number of cells and proteins
sampled while maintaining the affordable cost and the num-
ber of ion measurements for quantitative analysis of MS
scans. In the original SCoPE-MS protocol, single mammalian
cells were manually picked and lysed mechanically using
sonication (Budnik et al, 2018). This new method, SCoPE2,
improves on the reliability and reproducibility of single-cell
collection, by directly depositing the single cells on 96- or
384-well plates after cell sorting, as well as incorporating the
cell lysis method Minimal ProteOmic sample Preparation
(mPOP) method (Specht et al,, 2018, 2021; Figure 1). mPOP
lyses cells using a freeze-heat cycle in water which removes
the need for a cleanup step before MS analysis. Additionally,
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mPOP has the potential to be fully automated. The other
main experimental optimization was introducing a reference
channel across all of the TMT runs that is approximately
five-fold more abundant than the single-cell samples (e.g.
five cells in the reference sample versus one cell in the
single-cell samples). This higher abundance improves the
counting statistics, and therefore quantification, while
remaining similar enough to single-cell profiles to not cause
any major statistical issues (Figure 1).

SCoPE2 also implements some improvements for MS de-
tection and identification. First, changes were made to the
nanoflow-LC (nano-LC) gradient, peptide separation, and
isolation window to measure more cells over time and im-
prove ion isolation and quantification. Second, DO-MS was
implemented to allow parameters to be individually tuned
based on issues in the MS scans (Huffman et al, 2019).
Finally, assignment of peptide sequences to MS spectra was
improved using Data-driven Alignment of Retention Times
for Identification, which uses Bayesian methodology to in-
corporate retention time and improve peptide-spectra
matches (Chen et al,, 2019a).

These improvements in SCoPE2 led to one of the largest,
most comprehensive single-cell proteomics datasets to date
which quantified over 3,000 proteins from almost 1,500 sin-
gle cells in 10 d of instrument time (Specht et al, 2021).
The benefits of multiplexing with isobaric carriers are further
discussed in (Slavov, 2021). In general, TMT multiplexing
with a carrier/booster channel has enabled several groups to
analyze approximately 200 single cells per day with about
1,000 proteins measured per cell (Schoof et al, 2021; Singh,
2021; Specht et al,, 2021).

Automated processing for small-volume samples
One of the key components of SCoPE2, mPOP, allows for
high-throughput processing of samples in volumes as low as
1 pL. Other groups have developed automated systems of
sample preparation that improves on mPOP by using vol-
umes in the nanoliter scale. While this small sample volume
increases concentration and decreases losses due to surface
contact, these methods often require custom-built robotics,
pipettes, and plates. Thus, recent work has sought to im-
prove the accessibility of these automated pipelines while
maintaining the benefits of working in the nanoliter range.
nanoPOTS is one such automated sample processing tech-
nology developed for single-cell proteomics. nanoPOTS uses a
custom-built nanoliter pipetting robot to deposit volumes
<200 nL into a custom built nanochip, where each nanowell
is surrounded by a hydrophobic barrier. Samples can then be
processed using nanoLC-MS (Zhu et al, 2018a; Kelly, 2020).
This technology has resulted in over 200 protein groups iden-
tified from single Hela cells and over 1,500 groups from ~10
Hela cells (Zhu et al, 2018a). Additionally, nanoPOTS has
been coupled with TMT isobaric labeling as in SCoPE-MS to
measure protein expression on a high-throughput scale, quan-
tifying over 1,200 proteins from over 60 single cells (Dou et
al, 2019). While nanoPOTS improve detection of proteins
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Figure 1 An example of single-cell proteomics sample preparation us-
ing multiplexing with an isobaric carrier. Single cells are collected using
technology such as FACS and deposited into a 96- or 384-well plate
for high-throughput sample preparation. During sample preparation,
individual cells are lysed either manually or using automated proto-
cols. Individual cells are then labeled using TMT isobaric labels. A ref-
erence sample of 5-10 cells and a carrier sample of 100-200 cells are
run alongside the single cells to normalize total protein abundance be-
tween runs and increase throughput.

from single cells, the custom hardware and delicate protocol
have limited its adoption by other groups.

To improve the accessibility of nanoPOTS, its developers
created Automated Processing in One pot for Trace
Samples (autoPOTS), which uses a low-cost commercial ro-
bot and a commercial autosampler (Liang et al, 2021). The
sample processing workflow is almost unchanged from
nanoPOTS with the exception that volumes had to be
upscaled to the low-microliter range to accommodate a
commercial setup. Additionally, autoPOTS uses sealed-well
plates to limit loss of sample via evaporation during incuba-
tion steps at elevated temperatures. autoPOTS performed
comparably to nanoPOTS on samples composed of 1-500
Hela cells with an ~25% reduction in peptide coverage for
single cells (Liang et al,, 2021).

While methods like autoPOTS and mPOP allow for low-
cost, automated processing of single-cell samples, they do
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not perform as well as techniques like nanoPOTS, which
take advantage of nanoliter volumes. Improvements con-
tinue to be made to the nanoPOTS method, such as the de-
velopment of a new N2 nanochip, which further reduces
the volume and increases the number of single cells that
can be processed on one chip (Woo et al, 2021b). Other
nanoliter volume sample processing methods have been de-
veloped by other groups and are discussed in (Kelly, 2020).
Finally, a commercial system termed cellenONE that com-
bines single-cell isolation capabilities and picoliter dispensing
has recently been released and holds promise for adoption
by nonspecialized groups to perform low volume manipula-
tion of single-cell samples (Hartlmayr et al, 2021).

Improvements to nano-HPLC columns (LPAC)

After sample preparation, peptides extracted from single
cells are usually processed using the combination of nano-
flow high-performance LC (nano-HPLC) with electro-spray
ionization and tandem MS/MS. A key part of this process is
the chromatographic protein separation, which depends on
the composition of the column. Furthermore, it has been
shown that using nonporous C30 particles in place of typical
C18 particles greatly increases the number of detected pro-
teins from 100 to 1,000 cells (Kawashima and Ohara, 2018).
Additionally, micropillar array-based nano-HPLC cartridges
called PPAC columns have recently been commercialized,
improving the accessibility of these nonporous columns for
the broader scientific community. Compared to conven-
tional C18 columns, LPAC columns yielded almost twice as
many peptide identifications and protein groups on 10 ng
of a Hela cell digest. LPAC columns also had approximately
two-fold higher peptide precursor-ion intensities and previ-
ously unobserved retention-time stability (Stadlmann et al,
2019). Other studies have shown similar performance of
LPAC columns on low-input proteomics samples (Beeck et
al, 2019). A new generation of UPAC columns designed spe-
cifically for low-input samples has recently released which fa-
cilitated the identification of nearly 1,500 protein groups
from just 250 pg of sample (Stejskal et al,, 2021). Thus, these
nonporous chromatographic columns should be strongly
considered for single-cell proteomics.

Remaining challenges of single-cell omics in
plant systems

While the recent improvements to single-cell proteomics
sample preparation and analysis are promising, plant systems
present unique challenges for single-omics experiments.

Obtaining individual cells from plant tissue

One of the most common methods for obtaining single cells
in both animal and plant systems is FACS; Figure 2). During
FACS, single cells are individually sorted into collection tubes
or wells using either autofluorescence, when interested in all
cell types, or a cell-specific or tissue-specific fluorescent
marker when interested in a subset of cell types. Preparing
cells for FACS from plant tissue introduces an additional
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challenge as plant cells contain cell walls. The cell wall must
be removed from the membrane-encapsulated cell, called a
protoplast, before the cells can be sorted using FACS or
other methods (Figure 2). Protoplast extraction methods
coupled with FACS have been developed for numerous
plant organisms such as Arabidopsis (Birnbaum et al., 2005;
Yoo et al, 2007) and maize (Zea mays; Ortiz-Ramirez et al,,
2018), but these methods have not been widely adopted
across different plant species. Additionally, these methods
are time-consuming, as the cell walls must be slowly dis-
solved using enzymes to avoid damaging the protoplasts.
Once isolated, protoplasts are extremely sensitive and must
be processed in a tight time window to avoid environmental
and mechanical stress that could affect downstream meas-
urements. It has been shown that the protoplasting process
can result in approximately 300-400 altered transcripts but
did not majorly impact downstream analysis and biological
conclusions (Birnbaum et al, 2005 Yadav et al, 2009;
Villarino et al, 2016). Furthermore, by comparing samples
that have been protoplasted in the same manner, these
technical effects are controlled for and should not majorly
influence biological conclusion. While current protoplast iso-
lation methods have been sufficient to build single-cell and
single-nuclei RNA-seq atlases in Arabidopsis (Denyer et al,
2019; Zhang et al, 2019; Farmer et al, 2021; Lopez-Anido et
al, 2021), maize (Satterlee et al, 2020; Marand et al,, 2021;
Xu et al, 2021), rice (Oryza sativa; Liu et al, 2021), and to-
mato (Solanum lycopersicum; Tian et al.,, 2020), optimization
is necessary to isolate protoplasts from a range of species
and tissues. Single-cell isolation methods from plants are fur-
ther discussed in (Libault et al, 2017) and (Gurazada et al.,
2021).

Determining and detecting cell type-specific marker
genes

An important component of any single-cell omics analysis is
the ability to assign individual cells to their specific cell type
so that their gene expression may be compared to cells
within the same and between different populations. This is
usually performed using a selection of 1,000-5,000 highly vari-
able genes (HVGs) that are truly informative of the variability
of the data. Only these HVGs are used for the downstream
analysis, including visualization, cluster analysis, and trajectory
inference (Figure 3). Once the cells are grouped based on the
expression of HVGs, the identity of each cluster can be in-
ferred using the expression of known cell type-specific marker
genes. However, there are limitations to this process, espe-
cially regarding plant single-cell omics data. First, the desired
marker genes must be in the set of HVGs that are consis-
tently measured across individual cells. This is not always the
case as single-cell omics data tends to suffer from large drop-
out effects (large numbers of zero values; Brennecke et al,
2013; Qiu, 2020). Second, the marker genes must be consis-
tently expressed in the cell type of interest, which can be dif-
ficult due to the higher amount of noise and stochasticity in
expression measurements versus cell type-specific RNA-seq
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Isolating protoplasts from plant tissue
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autofluorescence.
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Figure 2 Protoplast isolation from plant tissue and FACS to isolate single plant cells. Plant tissue, such as root or leaf, is digested in an enzymatic
solution to remove the cell walls. Protoplasts are then filtered through a cell strainer and collected for downstream analysis. During FACS, cells
can be separated based on different features such as the presence of a fluorophore, cell size, cell shape, and/or charge. These parameters can be
tuned to ensure that only live, individual cells are collected, removing contaminants such as clumps of cells or dead cells.

(Brennecke et al, 2013). Finally, there must be a curated list ~ Additionally, most of the cell type-specific profiling in plants
of marker genes for the specific cell types and organism of in- has been at the transcript level (Libault et al, 2017). There
terest. This is a major issue in plant biology: while some  currently are not as many markers for other levels of single-
organisms and cell types have a breadth of marker genes,  cell omics data, such as proteomics. Thus, as these single-cell
such as the Arabidopsis root, many others do not proteomics methods are developed and used in plant
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systems, they will likely need to be coupled with cell type-spe-
cific profiling to identify the necessary markers for single-cell
classification. Single-cell transcriptomics in plants is further
discussed in (Luecken and Theis, 2019).

Accessibility and availability of single-cell data
analysis methods

A final consideration for single-cell omics is the choice of
methods for downstream statistical analysis. The single-cell
RNA-seq community has developed a plethora of computa-
tional tools for the various steps of the data processing and
analysis process, including read mapping drop-out/missing
value imputation, normalization, and differential expression
testing (Figure 3). As of this writing, the scRNA tools data-
base (https://www.scrna-tools.org/) has documented over
900 different single-cell RNA-seq analysis methods, 51% of
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which have been published in a peer-reviewed journal.
These methods have a wide range of availability (open-ac-
cess versus commercially licensed) and are programmed in a
number of different languages (R and Python are the two
most common; Zappia et al, 2018). Furthermore, different
combinations of the available methods can result in signifi-
cantly different cell classifications and numbers of differen-
tially expressed genes, greatly affecting the biological
interpretation of the results (for more guidance on choice of
single-cell statistical methods, please see Vieth et al, 2019).
Currently, experimentalists must combine all of these indi-
vidual components into one functional workflow, which can
be challenging without a strong bioinformatics background.
Additionally, all of the aforementioned methods have been
developed for single-cell transcriptomics. Other single-cell
omics data, such as proteomics, will not necessarily follow

Single-cell omics analysis
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genome
(peptide mapping to
proteome)

Quality
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D et '
L i o
vVY VYV VY ¥
Genome/Proteome

normalizaion

Feature selection
and cell type
assignment

control and

Applications of single-cell multi-omics data
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Figure 3 Analysis and applications of single-cell omics in plants. Single-cell transcriptomics and proteomics must be mapped to the reference ge-
nome (or proteome) and normalized before downstream analysis. Initial analysis of single-cell omics data includes selection of HVGs and cell-type
assignment. Further applications of single-cell omics data include, but are not limited to, correlation analyses, predictive network inference, and

multiscale mathematical modeling such as ABMs.
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the same statistical distributions and have the same statisti-
cal assumptions as transcriptomics data. Furthermore, gene
expression control tends to result in large fold-changes in
transcript levels but relatively smaller changes in protein
amounts (Vitrinel et al, 2019). As a result, integration of
data types often requires appropriate scaling for joint analy-
ses. Thus, these methods must be carefully validated on
other types of single-cell omics data before they are used for
large-scale, cell-specific, multi-omics analysis in plants.

Applications of single-cell proteomics in
plant biology

The combination of single-cell transcriptomics and proteo-
mics data can be used to answer a breadth of fundamental
questions in plant biology.

Correlation between transcript and protein
abundance at the single-cell level

First, these data will reveal the correlation, or lack of, be-
tween transcript and protein abundance at the single-cell
level (Figure 3). Similar to studies in nonplant systems, there
has been substantial work in plants which shows that tran-
script and protein abundance only moderately correlate
across the different organs and tissues of the plant (Petricka
et al, 2012; Ponnala et al, 2014; Walley et al,, 2016; Seaton
et al, 2018; Mergner et al, 2020; Zander et al,, 2020). One of
the most thorough analyses of transcript and protein abun-
dance was performed in maize, where the transcriptome,
proteome, and phosphoproteome of 23 different tissues
were profiled. It was shown that most tissues have only a
low to moderate correlation (Pearson coefficient of 0.40-
0.60) between transcript and protein abundance. Further, it
was shown that networks inferred using transcript and pro-
tein abundance have greatly different topologies, sharing
only 11% of inferred edges, and that a network integrating
these different omics data had higher precision and recall
than the individual omics networks alone (Walley et al,
2016). Similar results were shown in an integrative omics
profile of jasmonic acid signaling in Arabidopsis, where the
networks inferred using transcriptomic, proteomic, and
phosphoproteomic data had limited shared edges (Zander
et al, 2020). Other groups have examined the relationship
between the transcriptome and proteome and have found
similar magnitudes of the Pearson coefficient in the
Arabidopsis root (0.19-0.36; Petricka et al, 2012), across dif-
ferent Arabidopsis tissues (0.28-0.7; Mergner et al, 2020),
between different photoperiods in Arabidopsis rosettes
(0.47-0.86; Seaton et al,, 2018), developing maize leaf (0.45—
0.65; Ponnala et al, 2014), maize root and embryo (0.35 and
0.43, respectively; Jia et al, 2018), and across a maize diver-
sity panel (0.13; Jiang et al, 2019). Recent analyses of single-
cell transcriptomics and single-cell proteomics in animal sys-
tems show that while some proteins and transcripts corre-
late well, others do not (Specht et al, 2021). In addition,
technical differences in how transcripts and proteins are
measured could contribute to the lack of correlation
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specifically at the single-cell level (Brunner et al, 2021).
Thus, based on these bulk-tissue studies, we are likely miss-
ing a crucial piece of biological signaling and regulation in
plants by measuring only the transcriptome.

In Arabidopsis, there are a number of biological processes
that are controlled through transcription factors (TFs)
whose proteins are cell-to-cell mobile. One of the best
examples of this is SHORTROOT (SHR), a mobile TF that
controls cell patterning and division in the Arabidopsis root
stem cell niche and ground tissue (Gallagher et al, 2004;
Levesque et al, 2006; Clark et al, 2016; Clark et al, 2020a).
Another example is the TFs CAPRICE (CPC) and GLABRA3
(GL3), which control root hair patterning (Kurata et al,
2005; Savage et al.,, 2008). Crucially, these TFs have substan-
tially different transcript and protein distributions. For exam-
ple, SHR transcript is localized only to the vasculature,
whereas its protein can move to all of the surrounding cell
types. By profiling both transcriptomics and proteomics at
the single-cell level, we may identify additional proteins like
SHR, CPC, and GL3, which move between different cell types
to control cell-specific regulatory networks.

Integration of different single-cell omics measure-
ments in predictive networks

As shown by (Walley et al,, 2016), the integration of differ-
ent omics-level measurements is crucial to deepen our un-
derstanding of biological processes within the plant.
However, most of the regulatory networks and mathemati-
cal models that have been constructed to describe biological
processes are built entirely on transcript abundance data.
Thus, recent work has sought to integrate transcriptomics
and proteomics data into one comprehensive regulatory
network (Figure 3). Specifically, we developed a computa-
tional method named Spatiotemporal Clustering and
Inference of Omics Networks (SC-IONs), which allows one
to construct integrative omics networks from bulk-tissue
transcriptome and proteome data (Clark et al, 2020b).
Additionally, integrative Dynamic Regulatory Events Miner
combines static protein—DNA interaction data with time se-
ries expression data including transcriptomics, proteomics,
epigenomics, and/or single-cell RNA-Seq to generate dy-
namic regulatory networks (Ding et al., 2018). Methods such
as these could be adapted for single-cell integrative omics
data and could potentially also incorporate single-cell cis-
regulatory information generated with scATAC-Seq (Marand
et al, 2021; Marand and Schmitz, 2022).

While these integrative omics networks are informative
and allow us to identify causal genes, they are still limited
by the scope of the data, which tend to only contain three
to four biological replicates per treatment group. On the
other hand, single-cell measurements can be treated as indi-
vidual biological replicates, meaning that one can now infer
a network from thousands of individual cells. This increase
in data results in networks with higher precision, recall, and
predictive power. Numerous network inference methods
have been developed for single-cell RNA-seq data, such as
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SCENIC (Aibar et al, 2017) and SCODE (Matsumoto et al,,
2017), which could be modified for multi-omics single-cell
data in a similar fashion as SC-ION. However, important
considerations must be made given that single-cell data are
inherently more stochastic than bulk-cell data. Single-cell
transcriptomics network inference methods are further dis-
cussed in (Chen et al,, 2019b).

Multiscale mathematical modeling at the single-cell

resolution

Many mathematical models have been developed for vari-
ous biological processes in plants at the cell-specific, tissue-
specific, and organ-specific levels. These quantitative models
cover a range of processes including root stem cell division
(Clark et al,, 2016, 2020a), root hair patterning (Savage et al,,
2008), and hormone gradients within the root such as auxin
(Grieneisen et al, 2007; Mironova et al, 2010; Clark et al,
2014) and gibberellin (Rizza et al, 2021). While these models
have been used to make predictions about the cell-specific
nature of these biological processes, they are limited by the
mostly tissue- or cell type-specific, transcript-level data used
to construct and validate the models. The incorporation of
single-cell proteomics data would improve the predictive
power of these mathematical models and lead to a deeper
understanding of how these biological processes vary in a
cell-specific manner.

One type of mathematical model that lends itself particu-
larly well to single-cell omics data is the agent-based model
(ABM). In an ABM, the individual cells of an organism are
treated as the agents, and each cell has a set of equations
(usually Ordinary Differential Equations), which represent
the individual regulatory networks within each cell
(Figure 3). There are also equations connecting different
cells, representing processes like mobile signals and proteins,
and developmental processes such as cell division and
growth can be incorporated into the model. Recently, an
ABM was developed for Arabidopsis root stem cell division
(Van den Broeck et al, 2021). While this ABM uses cell
type-specific transcriptomic data, it illustrates the potential
for modeling at the single-cell, multi-omics level in plant sys-
tems. However, just as with network inference methods,
these models will need to be adapted to deal with the in-
herent stochasticity of single-cell data.

Future developments and recommendations

Based on the current state-of-the-art of single-cell proteo-
mics, we foresee the following future developments and
make recommendations on how single-cell proteomics can
be incorporated into the plant biology field.

Single-cell measurements of post-translational
modifications

While these recent advances in single-cell proteomics are
promising for the plant biology community, they are unable
to capture the effect of post-translational modifications
(PTMs), such as phosphorylation, ubiquitination, and
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acetylation, on plant signaling mechanisms. These PTMs
have been shown to be important for a variety of biological
processes in plants, including plant immunity (Dodds and
Rathjen, 2010; Sato et al, 2010; Tsuda and Katagiri, 2010;
Song and Walley, 2016; Walley et al, 2018) and hormone
signaling (Tal et al,, 2020; Song et al,, 2021). However, single-
cell analysis of PTMs continues to be limited by the large
amount of starting material required for PTM enrichment
relative to total protein (Low et al, 2021). Thus, innovative
sample preparation protocols are needed to detect PTMs
from single cells.

Increased accessibility of nanoliter-scale methods
Single-cell sample preparation at the nanoliter-scale has
been a major contributor to the rise of single-cell proteo-
mics (see above). However, these nanoliter-scale methods re-
quire custom equipment and technology that is not widely
accessible. While there are protocols that use microliter vol-
umes, they do not perform as optimally as nanoliter-scale
methods (Liang et al, 2021). Adapting nanoliter-scale proto-
cols to use more accessible equipment and materials would
help to expedite the adoption of single-cell proteomics in
more labs.

Further development of mass spectrometry imaging
Mass Spectrometry Imaging (MSI) is another approach to
analyze a range of types of molecules including proteins,
peptides, glycans, lipids, etc. with high spatial resolution
(Dilillo et al, 2017; Keller et al, 2018; Taylor et al, 2021).
There are a number of MSI techniques that enable in situ
analysis of molecules of interest using chemical desorption
and/or ionization to introduce analytes into the MS. An ad-
vantage of MSI is that chemical desorption and/or ionization
is carried out on intact tissue or tissue sections, which elimi-
nates the need to enzymatically digest cell walls. While MSI
approaches are being developed for protein measurements
they currently provide limited coverage of only a handful of
proteins. Thus, further refinement of MSI is necessary for
high-throughput measurements of single-cell proteomes.

A unified and integrated single-cell data analysis
platform

One of the major hurdles in single-cell omics data analysis is
the large number of available methods. Although databases
like scRNA-tools exist, it is still assumed that experimental-
ists can assemble a single-cell analysis workflow on their
own. Without a strong bioinformatics and statistics back-
ground, this could result in groups using inappropriate
methods for their specific experimental setup and data dis-
tribution, which could alter the biological conclusions.
Further, experimentalists may not even be able to use their
preferred analysis methods due to lack of accessibility (i.e.
not open access or in an unfamiliar computational lan-
guage). Recent work has standardized the analysis of single-
cell proteomics data collected using the SCoPE2 method
into an R package called scp (Vanderaa and Gatto, 2021).
However, this is only one solution for a specific
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methodology that still relies on the background computa-
tional knowledge of the experimentalist. We propose that
the single-cell omics community creates an integrated
single-cell data analysis platform that is widely accessible to
scientists from all fields. Additionally, future work should
adapt these methods to make them suitable for analysis of
single-cell proteomics data.

Stochastic modeling of single-cell omics expression
One application of single-cell omics data is its incorporation
into network inference and mathematical modeling across
different areas of plant biology. Importantly, single-cell data
differ from bulk-cell data due to their inherent stochasticity.
Most of the network inference methods and models that
have been developed for bulk-cell data assume that the indi-
vidual biological replicates do not suffer from this large
amount of noise. Thus, using these methods directly on
single-cell omics data is likely not statistically sound and
could result in incorrect biological conclusions. We recom-
mend that future work on network inference and modeling
of single-cell omics data incorporates concepts from the sto-
chastic modeling field in order to adequately account for
the high amount of noise in single-cell data. Stochastic
modeling of single-cell data is further discussed in (Hsu and
Moses, 2021).

Concluding remarks

Recent developments in the single-cell proteomics field put
us one step closer toward its implementation in plants.
However, there are still remaining challenges towards adapt-
ing single-cell proteomics methods in both plant and animal
systems. There are also additional technical considerations
given the different composition and sensitivity of plant pro-
toplasts. Finally, the integration of these single-cell multi-
omics data will require techniques from the field of systems
biology, including bioinformatics, statistics, and mathemati-
cal modeling (see Outstanding Questions). Despite these
challenges, single-cell proteomics profiling in plants is an ex-
citing prospect that will allow us to answer many funda-
mental questions on a deeper spatiotemporal scale.

OUTSTANDING QUESTIONS
Our review raises the following questions for the
single-cell omics and plant biology communities.
How can we:

® Make nanoliter-scale sample preparation
methods more accessible?

® Adapt single-cell proteomics methods for plant
material?

® Improve single-cell isolation protocols in plants,
especially in nonmodel plant species?

® |dentify more cell type-specific marker genes in

Clark et al.

plants at both the transcript and protein
abundance level?

® Accommodate the inherent stochasticity of
single-cell omics data in the downstream
statistical analysis?

® Create a unified, easy-to-use data-processing
workflow for single-cell omics analysis?

® Make the needed technical advances to
measure post-translational modifications on the
single-cell level?

® |ncorporate single-cell data into existing
network inference methods and mathematical
models?
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