
Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 103–109

November 10, 2021. ©2021 Association for Computational Linguistics

ISBN 978-1-954085-93-0

103

An Investigation into the Contribution of Locally Aggregated Descriptors
to Figurative Language Identification

Sina Mahdipour Saravani♠ Ritwik Banerjee♣ Indrakshi Ray♠

♠Department of Computer Science, Colorado State University
{sinamps, indrakshi.ray}@colostate.edu

♣Department of Computer Science, Stony Brook University
rbanerjee@cs.stonybrook.edu

Abstract

In natural language understanding, topics that

touch upon figurative language and pragmat-

ics are notably difficult. We probe a novel

use of locally aggregated descriptors – specifi-

cally, an architecture called NeXtVLAD – mo-

tivated by its accomplishments in computer

vision, achieve tremendous success in the

FigLang2020 sarcasm detection task. The re-

ported F1 score of 93.1% is 14% higher than

the next best result. We specifically investi-

gate the extent to which the novel architecture

is responsible for this boost, and find that it

does not provide statistically significant ben-

efits. Deep learning approaches are expen-

sive, and we hope our insights highlighting the

lack of benefits from introducing a resource-

intensive component will aid future research

to distill the effective elements from long and

complex pipelines, thereby providing a boost

to the wider research community.

1 Introduction

Natural language understanding often goes beyond

the syntactic and semantic layers, and perhaps

nowhere is this more palpable than in the use of

figurative language. A better understanding of fig-

urative language use, such as metaphors, irony, or

sarcasm, can not only lead to advances in compu-

tational creativity (Veale, 2011; Kuznetsova et al.,

2013), but also in understanding social media con-

tent, where users often employ such pragmatic

tools as irony or sarcasm (Reyes et al., 2013; Riloff

et al., 2013). This type of figurative language is

difficult to identify, however, at least partly due to

what the influential literary poet and critic William

Empson called “ambiguities” (Empson, 1947) in

the language. In particular, figurative language use

with sarcasm or irony completely decouples – and

even contrasts – the communicator’s intent from the

communicated content (Camp, 2012), rendering

shallow syntactic or semantic features unsuitable.

The poor fit of such features is further exacerbated

in social media posts due to the ubiquity of gram-

matical errors, hashtags, emojis, etc.

The deeper, context-dependent inferential nature

of figurative language, together with the poor fit

of shallow syntactic and semantic features, makes

deep neural networks a natural candidate for down-

stream NLP tasks like sarcasm detection (Ghosh

and Veale, 2016). Unfortunately, with increas-

ing popularity of deep learning, the reliability of

findings in publications that extensively employ

deep learning can be expected, in general, to de-

crease (Pfeiffer and Hoffmann, 2009). In light of

this seminal empirical observation and the general

difficulty of accurately identifying figurative lan-

guage, it is reasonable to not expect outright suc-

cess on a benchmark corpus simply based on the

use of a deep network.

The concerns about reliability, and thus, about

reproducibility, are particularly acute in deep learn-

ing. For instance, Reimers and Gurevych (2017)

demonstrated that the hyperparameter settings have

a significant impact on the final results obtained by

a model. Crane (2018) further showed that other

confounding factors such as variation of GPUs, the

exact version of a framework, the randomness of

a seed value provided to a learning algorithm, and

the interaction between multiple such factors, can

all impact the obtained results.

Beyond reproducibility, however, lies another

pertinent factor: the use of increasingly complex

pipelines where multiple sophisticated components

are glued together for an important downstream

NLP task. In such scenarios, it is not always clear

which components within the complex system may

be responsible for improved outcomes. A sim-

ple change in data preprocessing may lead to a

significant difference in the final result, for exam-

ple (Etaiwi and Naymat, 2017; Camacho-Collados

and Pilehvar, 2018). In publications that introduce

complex NLP pipelines, however, such details have

sometimes been omitted.

104

Turn Tweet Label

Context-1 The [govt] just confiscated a
$180 million boat shipment of
cocaine from drug traffickers.

Sarcastic
Context-2 People think 5 tonnes is not a

load of cocaine.

Response Man! I’ve seen more than that
on a Friday night.

Table 1: A Tweet thread in the FigLang corpus. Sar-

casm being context-dependent, the entire thread serves

as a single sample. The label is based on the final re-

sponse in the thread.

2 Exemplar task and data

Within the limited scope of this paper, our goal is to

specifically investigate the state-of-the-art sarcasm

detection system presented by Lee et al. (2020) –

which reported an F1 score of 93.1%, 14% higher

than the next best result reported to the FigLang

2020 workshop (Ghosh et al., 2020) for the Twitter

track – and to distill a novel deep learning compo-

nent used in their pipeline in order to investigate

its contribution to the final result. Through a com-

prehensive series of experiments, we find that this

novel architecture (discussed in Sections 3 and 4)

does not lead to any significant improvement. The

improvement may thus be attributed to components

other than deep learning, such as augmenting the

corpus by using additional data. Investigating the

other components, however, is not in the scope of

the work being presented here.

The task is to determine if the final response in

a thread (i.e., a sequence of Tweets where each

post is in response to its previous post) is sarcastic.

One such thread is shown in Table 1. All our ex-

periments are conducted on the Twitter corpus of

the FigLang 2020 sarcasm detection task (Ghosh

et al., 2020), which comprises 5, 000 threads in the

training set and 1, 800 in the test set. Additional

properties of this corpus are shown in Table 2.

3 Background

The architecture we investigate has recently been

used in downstream NLP tasks, motivated by its

success in computer vision. Its origins, however,

can be traced back to NLP research, when Sivic

and Zisserman (2003) borrowed from the bag-of-

words approach used in text retrieval. Since then, a

significant body of work in computer vision has de-

veloped this approach further. The core idea being

Variable Dataset Mean Median Std

Tweet length
(num. tokens)

Train 140.00 128.00 51.57
Validation 137.00 125.00 51.17
Test 143.00 138.00 48.56

Thread length
(num. tweets)

Train 4.85 4.00 3.20
Validation 4.93 4.00 3.29
Test 4.16 3.00 1.95

Table 2: Overview of the FigLang corpus, showing the

overall statistics for the size of individual Tweets (using

the BERT tokenizer) and the size of Tweet threads.

the treatment of an image as a document, and low-

dimensional features1 extracted from them forming

the visual vocabulary, thus enabling a vector rep-

resentation of each image, subsequently used in

classification or ranking tasks.

A key advancement came in the form of Vector

of Locally Aggregated Descriptors (VLAD), intro-

duced by Jégou et al. (2010). In this work, too,

low-dimensional features were extracted from im-

ages, but K clusters of the features were created,

and only the difference of each feature from the

cluster center was recorded. Instead of a single

N -dimensional feature vector, each image would

thus be represented by a K ×N matrix.

The non-differentiable hard cluster assignment,

however, renders it unsuitable for training a neural

network. NetVLAD (Arandjelovic et al., 2016) re-

solves this by using the softmax function, whose

parameters can be learned during training. Since

the cluster assignments of a feature are not known

prior to training, their approach requires K N -

dimensional difference vectors to encode each fea-

ture. This increase in the number of parameters

impedes model optimization, and may lead to over-

fitting – drawbacks discussed and subsequently ad-

dressed by NeXtVLAD (Lin et al., 2018) by intro-

ducing a step prior to the soft cluster assignments.

In this step, the input is expanded to λN size by a

fully-connected layer, and then decomposed into

G groups of lower-dimensional vectors. Further,

a sigmoid function with range [0, 1] is used to as-

sign attention scores to the groups for each vector.

The process effectively provides a G
λ

reduction in

the number of parameters, by aggregating lower-

dimensional vectors. From a linear algebra perspec-

tive, this can be interpreted as representing the data

using subspace projections of the original vector.

1The literature on image processing often uses the term
“descriptor”, but to stay in tune with the terminology in NLP
research, we continue to use the term “feature”.

105

G x K x 1

...

C
on

te
xt

 1

E M
E 3

E 2
E 1

. .
 .

T M
T 3

T 2
T 1

. .
 .

Tr

Tr

Tr

Tr

Tr

Tr

Tr

Tr

LSTM

LSTM

LSTM

LSTM

. .
 .

LSTM

LSTM

LSTM

LSTM

. .
 .

H
M

H
3

H
2

H
1

. .
 .

Cluster Centroids

Fully Connected
for Assignment

...

VLAD Vectors

. .
 .

. .
 .

...

Th
re

ad
 R

ep
re

se
nt

at
io

n

Fully
Connected

BERT BiLSTM NeXtVLAD ClassifierInput

M
 x

 N

M
 x

 N

G
 x

 K
 x

 λ
N

/G

K x λN/G

G x 1 x λN/G G x K x λN/G

K
x

λN
/G

1
x

Kλ
N

/G

1
x

Kλ
N

/G

Reshape and
Expansion (Fully

Connected)

Fully Connected
for Attention

G x 1

C
on

te
xt

 2
R

es
po

ns
e

SEP

SEP

. .
 .

1 x N

Figure 1: The architecture for sarcasm detection, where M is the number of tokens from the input text, N is the

dimension of the BERT representation, and G is the number of groups into which the input is split after expansion.

4 Architecture for sarcasm detection

For an analogous use of NeXtVLAD in NLP, the to-

ken representation vectors take the place of the fea-

ture vectors used in computer vision literature. In

particular, for sarcasm detection using the FigLang

corpus, one entire thread needs to be represented by

a K×N matrix. To achieve this, the context and re-

sponse Tweets (as shown in Table 1) from a single

thread are concatenated, with a special [SEP] token

separating them. This token is known to BERT,

and used in its next sentence prediction task. Here,

the token is used to separate different posts within

a thread. After concatenation, the pretrained BERT

model is used to obtain a vector representation of

each token. Then, it is passed through a BiLSTM

layer before being fed to the NeXtVLAD compo-

nent. At this point, NeXtVLAD, as a parametric in-

telligent pooling and aggregation layer, represents

the whole Tweet thread as a K×N matrix, which is

finally flattened and fed to two dense layers with a

softmax function to assign the predicted label. This

architecture, based on the explanation provided by

Lee et al. (2020), is presented in Figure 1.

Consider M input tokens, each represented by a

vector of size N produced by the language model

and further tuned by the BiLSTM layer (e.g., N =
1024 for BERTLarge). We denote these tokens by

xt, t ∈ {1, ...,M}. Each xt is expanded to ẋt
with shape (1, λN) and reshaped to x̃t with shape

(G, 1, λN
G
). Then, the (1) soft assignment of x̃

g
t to

the cluster k, and (2) the attention over groups, are

computed as

αgk(ẋt) =
e
wT

gk
ẋt+bgk

∑K
s=1

e
wT

gk
ẋt+bgk

(1)

and αg(ẋt) = σ(wT
g ẋt + bg). (2)

The locally aggregated feature vectors (i.e., the

VLAD vectors) are generated by computing the

product of the attention, assignment, and the differ-

ence from the cluster center

v
g
tki = αg(ẋt)αgk(ẋt)(x̃

g
ti − cki).

Finally, the entire thread is represented by

rki =
∑

t,g

v
g
tki.

In the above equations, t, g, k, and i iterate over

tokens, groups, clusters, and vector elements re-

spectively, while w and b denote the weight and

bias parameters of the linear transformations in the

fully-connected layers.

5 Experiments and Results

We delve into several modifications of the model,

as well as various hyperparameter settings, in or-

der to investigate how much effect the NeXtVLAD

component has on the sarcasm detection task. Our

experiments initially use the same training configu-

ration as Lee et al. (2020), before exploring further.

Since Lee et al. (2020) employ additional un-

published data, an exact reproduction of the experi-

ments is not possible. Moreover, the partition of the

corpus into training and validation set is left unspec-

ified. Thus, their results reported on the validation

set are not truly comparable. Some hyperparame-

ter settings, like the number of epochs for training,

are also omitted from their report. However, the

primary aim of this work is not to focus on repro-

duction of the results, but to determine what role

the NeXtVLAD component played in the excellent

final F1 score of 93.1%.

106

Validation set results Test set results

Model Precision Recall F-1 Accuracy Precision Recall F-1 Accuracy

BERTLarge-Cased 0.75 0.84 0.80 0.79 0.71 0.78 0.74 0.73
BERTLarge-Cased + BiLSTM + NeXtVLAD 0.74 0.84 0.79 0.78 0.71 0.77 0.74 0.72

BERTLarge-Cased + NeXtVLAD 0.71 0.82 0.76 0.74 0.69 0.77 0.73 0.71
BERTLarge-Cased + BiLSTM 0.76 0.82 0.79 0.79 0.71 0.74 0.72 0.72
BERTLarge-Cased + KimCNN + NeXtVLAD 0.74 0.84 0.79 0.78 0.72 0.82 0.77 0.75
BERTLarge-Cased + OurCNN + NeXtVLAD 0.77 0.71 0.74 0.76 0.69 0.79 0.74 0.72

CTBERTv2 0.76 0.83 0.80 0.79 0.72 0.76 0.74 0.73
CTBERTv2 + BiLSTM + NeXtVLAD 0.72 0.85 0.78 0.77 0.71 0.79 0.75 0.73

BERTLarge-Cased (DE) 0.81 0.85 0.83 0.82 0.72 0.73 0.73 0.72
BERTLarge-Cased + BiLSTM + NeXtVLAD (DE) 0.79 0.84 0.82 0.81 0.73 0.74 0.74 0.73

BERTLarge-Uncased (DE) 0.79 0.83 0.81 0.81 0.73 0.73 0.73 0.73
BERTLarge-Uncased + BiLSTM + NeXtVLAD (DE) 0.79 0.87 0.82 0.82 0.73 0.79 0.76 0.75

CTBERTv2 (DE) 0.78 0.83 0.80 0.80 0.75 0.77 0.76 0.75
CTBERTv2 + BiLSTM + NeXtVLAD (DE) 0.81 0.83 0.82 0.82 0.77 0.77 0.77 0.77

BERTLarge-Cased (DE, LA) 0.79 0.84 0.81 0.87 0.73 0.75 0.74 0.82
BERTLarge-Cased + BiLSTM + NeXtVLAD (DE, LA) 0.67 0.60 0.63 0.77 0.63 0.52 0.57 0.74

Ensemble of 3 [CTBERTv2 + BiLSTM + NeXtVLAD] (DE) 0.62 0.61 0.61 0.62 0.60 0.54 0.57 0.59

Table 3: Sarcasm detection results. Precision, recall, and F1 are shown for “sarcasm”, while the accuracy is aver-

aged over both classes. Experiments with dataset expansion (DE) and label augmentation (LA) are also included.

The model identical to Lee et al. (2020) (minus data augmentation and modification) is shown in bold italics.

The performance of different configurations are

shown in Table 3. Our results are shown for the

original FigLang test set as well as the one-fifth

validation set we separated from training2. All the

models have been trained for 8 epochs with a batch

size of 4. We train the models for different number

of epochs ranging from 3 to 30. Lee et al. (2020)

mention the use of early stopping for their number

of training epochs, which aims to prevent overfit-

ting by monitoring the model performance on a

held-out set at the end of each epoch, and stopping

the training when performance starts to degrade.

Their work, however, leaves out two hyperparame-

ter values required for replication: patience, which

controls the number of consecutive times it is ac-

ceptable for a model to not improve, and delta, the

minimum threshold for differential improvement.

Without these, we follow Fomin et al. (2020)

and apply early stopping with patience and delta

set to 2 and 0, respectively. With early stopping, the

number of optimal epochs varied, but even while

setting the random states manually to make the con-

figuration as deterministic as possible, repeated ex-

periments showed optimal training to always vary

between 5 to 12 epochs (a subset of the more com-

prehensive experiments we conducted, checking

from 3 to 30 epochs). In our experiments, the

BERTlarge-cased + BiLSTM + NeXtVLAD model

is identical to Lee et al. (2020) (without their data

augmentation and modification). The hyperparam-

2Our code and the choice of validation set are available at
github.com/sinamps/nextvlad-for-nlp

eters for this model are provided in Table 4. Since

this model achieves the best F1 score on the valida-

tion set with 8 training epochs, we fix the number

of training epochs to be 8 for the other models as

well.

In order to replicate the ensemble model dis-

cussed by Lee et al. (2020), threads with more than

one context are used to create extra samples by

removing the furthest context, one at a time, until

only one context remains. In the experiments us-

ing this data expansion (DE), the thread in Table

1, for instance, gives rise to one additional sam-

ple, with only context 2 and the response. Then, a

separate model is trained for each context length,

and majority voting assigns the final label. We also

conduct a series of experiments where the response

Tweet is removed from each thread, and the remain-

ing thread is considered non-sarcastic. These are

indicated in Table 3 by LA (label augmentation).

To explore further, we record the performance

for all training epochs on the validation set. Table 5

shows the accuracy for epochs 2 to 8, for the model

proposed by Lee et al. (2020) (the first configura-

tion in Table 3). We compute the accuracy and

F1 score for up to 30 training epochs. A compari-

son of the best scores from the models that employ

NeXtVLAD with the ones that do not, we find no

statistically significant improvement.

We also include additional experiments that re-

place BiLSTM with convolution layers. We use

KimCNN (Kim, 2014) as well as a custom CNN

(simply called OurCNN in Table 3) with filters

107

Hyperparameter Value

K 128
G 8
λ (expansion) 4
M 512
N 1024
Context Gating’s dropout rate 0.5
BiLSTM’s dropout rate 0.25
of epochs 8
Batch size 4

Initial learning rate 10
−6

Table 4: The general hyperparameters for our

implementation of BERTLarge-Cased + BiLSTM +

NeXtVLAD.

that always cover one response token with various

number of context tokens. Appendix A provides a

discussion of our custom CNN. These variations,

too, however, do not outperform the baseline results

obtained through BERT alone.

5.1 Discussion

In image/video processing, a large number of low-

dimensional descriptors extracted from the original

high-dimensional image (such as SIFT vectors of

size 128) are fed to NeXtVLAD. In NLP appli-

cations, however, the token vectors have a much

higher dimension. It is possible that this is why

the subspace representation does not provide any

advantage over the original vector representation.

Another possibility is that unlike images or videos,

sub-vector representations of tokens do not form

meaningful units in natural language tasks, and

thus, the low-dimensional split actually hurts the

learner. Our experiments also show that the use

of domain-specific models like CTBERT (Müller

et al., 2020) offer comparable performance, but

reach their best results in fewer epochs of training.

We feel that it is important to distinguish the

components of a complex NLP pipeline that con-

tribute to improvements in downstream tasks, from

other components in the pipeline. While stopping

short of providing explainability to a deep learning

system, this type of investigation can, at the very

least, provide attribution to specific components

of NLP pipelines. In other words, it can help us

identify which parts of a pipeline are primarily re-

sponsible for improvements in a downstream task.

Such attributions can help us build compara-

ble systems that are significantly less resource-

intensive. In our experiments, we were able to

train models based on the BERTLarge architecture

with a 2-layer fully-connected classification head

Accuracy for each epoch

Model 2 3 4 5 6 7 8

w/o NeXtVLAD 0.73 0.77 0.78 0.78 0.78 0.78 0.79

w NeXtVLAD 0.51 0.49 0.49 0.76 0.77 0.77 0.78

Table 5: The validation set accuracy for training epochs

2 to 8 of the first model configuration from Table 3 (the

first and second rows from Table 3).

with a batch size of 2 and sequence length of 512

on a single 12 GB GPU (NVidia GeForce GTX

Titan X). But, with the addition of BiLSTM and

NeXtVLAD, the same configuration was only able

to fit a batch size of 1. For all the model configu-

rations discussed in this paper, BERTLarge-Cased +

BiLSTM + NeXtVLAD required two 24 GB GPUs

(Nvidia RTX 3090) to fit a batch size of 4.

6 Conclusion

We investigate the extent to which NeXtVLAD

contributes to improved results in a recent sar-

casm detection task, and find that it offers little

in terms of additional benefits. Our conjecture

at this point is, thus, that the 14% improvement

achieved by Lee et al. (2020) must entirely be due

to the natural language augmentation techniques

used. Our work also indicates that local aggregators

like NeXtVLAD are unlikely to offer significant

benefits to tasks related to figurative language iden-

tification, but more empirical work is needed to

confirm this hypothesis.

We hope that our insights can help future re-

search in this direction by making it easier to chan-

nel their efforts into aspects of a pipeline that have

tangible and attributable benefits to the final down-

stream NLP task.

Acknowledgements

This work was supported in part by funds from U.S.

National Science Foundation (NSF) under award

number CNS 2027750, CNS 1822118, and SES

1834597, and from NIST, Statnett, Cyber Risk Re-

search, AMI, and ARL.

References

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas
Pajdla, and Josef Sivic. 2016. NetVLAD: CNN ar-
chitecture for weakly supervised place recognition.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5297–
5307. Institute of Electrical and Electronics Engi-
neers.

108

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. On the Role of Text Preprocessing in
Neural Network Architectures: An Evaluation Study
on Text Categorization and Sentiment Analysis. In
Proceedings of the Workshop BlackboxNLP: Ana-
lyzing and Interpreting Neural Networks for NLP,
pages 40–46. Association for Computational Lin-
guistics.

Elisabeth Camp. 2012. Sarcasm, Pretense, and The Se-
mantics/Pragmatics Distinction. Noûs, 46(4):587–
634.

Matt Crane. 2018. Questionable Answers in Question
Answering Research: Reproducibility and Variabil-
ity of Published Results. Transactions of the Associ-
ation for Computational Linguistics, 6:241–252.

William Empson. 1947. Seven Types of Ambiguity, 2nd
edition. Chatto and Windus, London.

Wael Etaiwi and Ghazi Naymat. 2017. The Impact
of applying Different Preprocessing Steps on Re-
view Spam Detection. Procedia Computer Science,
113:273–279.

V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Te-
jani. 2020. High-level library to help with training
neural networks in PyTorch. https://github.

com/pytorch/ignite.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
Sarcasm using Neural Network. In Proceedings
of the Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169. Association for Computational Lin-
guistics.

Debanjan Ghosh, Avijit Vajpayee, and Smaranda Mure-
san. 2020. A Report on the 2020 Sarcasm Detection
Shared Task. In Proceedings of the Workshop on
Figurative Language Processing, pages 1–11. Asso-
ciation for Computational Linguistics.

Hervé Jégou, Matthijs Douze, Cordelia Schmid, and
Patrick Pérez. 2010. Aggregating Local Descrip-
tors into a Compact Image Representation. In Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
3304–3311. Institute of Electrical and Electronics
Engineers.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746–1751. Association for Com-
putational Linguistics.

Polina Kuznetsova, Jianfu Chen, and Yejin Choi. 2013.
Understanding and Quantifying Creativity in Lexi-
cal Composition. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1246–1258. Association for Compu-
tational Linguistics.

Hankyol Lee, Youngjae Yu, and Gunhee Kim. 2020.
Augmenting Data for Sarcasm Detection with Un-
labeled Conversation Context. In Proceedings of
the Workshop on Figurative Language Processing,
pages 12–17. Association for Computational Lin-
guistics.

Rongcheng Lin, Jing Xiao, and Jianping Fan. 2018.
NeXtVLAD: An Efficient Neural Network to Ag-
gregate Frame-level Features for Large-scale Video
Classification. In Proceedings of the European Con-
ference on Computer Vision Workshops, pages 206–
218. Springer.

Martin Müller, Marcel Salathé, and Per E Kummervold.
2020. COVID-Twitter-BERT: A Natural Language
Processing Model to Analyse COVID-19 Content on
Twitter. arXiv preprint arXiv:2005.07503.

Thomas Pfeiffer and Robert Hoffmann. 2009. Large-
Scale Assessment of the Effect of Popularity on the
Reliability of Research. PLoS One, 4(6):e5996.

Nils Reimers and Iryna Gurevych. 2017. Opti-
mal Hyperparameters for Deep LSTM-Networks
for Sequence Labeling Tasks. arXiv preprint
arXiv:1707.06799.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony in
Twitter. In Language Resources and Evaluation,
volume 47, pages 239–268. Springer Nature.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as Contrast between a Positive Sentiment
and Negative Situation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 704–714. Association for Compu-
tational Linguistics.

Josef Sivic and Andrew Zisserman. 2003. Video
Google: A Text Retrieval Approach to Object
Matching in Videos. In Proceedings of the IEEE
International Conference on Computer Vision, vol-
ume 2, pages 1470–1477. Institute of Electrical and
Electronics Engineers.

Tony Veale. 2011. Creative Language Retrieval: A Ro-
bust Hybrid of Information Retrieval and Linguistic
Creativity. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 278–287. Asso-
ciation for Computational Linguistics.

A Appendix

To reduce the differences in the shape (i.e., dimen-

sions) and quantity of features fed to NeXtVLAD

in Computer Vision and NLP, we designed a cus-

tom Convolutional Neural Network (CNN) to trans-

form features into probably a more suitable space.

In this section, we present the details of this custom

109

Context Token 1

Context Token 2

Context Token 3

Context Token M

dim = N (1024)

Response Token 1

Response Token 2

Response Token M'

dim = N (1024)

a 3 x N kernel

M'

M (w/ input padding)

. .
 .

. .
 .

Figure 2: The custom CNN architecture for sarcasm detection in Twitter. M is the number of context tokens. M’ is

the number of response tokens. N is the token representation dimension.

CNN for extracting features for the NeXtVLAD

layer. Figure 2 depicts the architecture of our CNN.

First, we concatenate all the context Tweets and

pass them to BERT to get the token representations

and store them in a M ×N matrix. The response

Tweet also goes through the same process and is

represented in a M ′ ×N matrix. N is the dimen-

sion of the token representation vectors and M and

M ′ denote the number of tokens in the contexts

and response respectively. Each row in these matri-

ces contains the vector representation of one token.

Similar to KimCNN (Kim, 2014), we set the width

of the kernel to the dimension of the token repre-

sentation vector (N). But, distinct from KimCNN,

our kernels are always applied to local areas from

two distinct input matrices.

In our architecture, kernels only slide vertically

to move over different tokens. To demonstrate, con-

sider the kernel of size 3 in Figure 2. The first two

rows of this kernel cover the first two tokens of

the context matrix and the last row covers the first

token in the response matrix. The inner product is

computed and yields the first element in the first

output vector. Then, the blue portion of the kernel

slides downward and the computation repeats to

yield the second element of the first output vector.

When this sliding window reaches the end of the

context matrix, the first output vector is complete.

Now, the gray portion of the kernel slides down-

ward on the response matrix and all previous steps

repeat to generate the next output vector. This set of

operations with F different kernels and by applying

appropriate zero padding to the input, yields an out-

put of shape (F,M ′,M) which is (64, 100, 512) in

our implementation. This output is rearranged and

reshaped to shape (M ′ × M,F), which is much

more similar to image/video features in shape and

quantity. This is fed to NeXtVLAD in our sarcasm

detection architecture. We use 64 kernels in our

experiments with size 2, 3, 4, and 5 (16 kernels

of each size; size only refers to the height of the

kernel, since the width is fixed). In our implemen-

tation, the values are set as F = 64, M = 512, and

M ′ = 100.

