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ABSTRACT

Computer science undergraduates often struggle in hardware-oriented
courses like Computer Organization and Computer Architecture.
Active learning instruments can improve student performance in
these classes. Regrettably, few tools exist today to support the cre-
ation of active learning teaching material for such courses.

This paper describes YODA, a pedagogical tool for creating active
learning content to help teach systems concepts. At the core, YODA
is a collection of functional simulators embedded into a custom
Jupyter kernel. YODA produces notebooks that allow students to
learn about a system through guided interaction and observation.
We have been using YODA at our home institution for two years and
have seen significant improvement in student learning outcomes.
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1 INTRODUCTION

Computer science students often struggle in hardware-oriented
courses like Computer Organization and Computer Architecture [1,
14, 17]. Students are either not learning as much as the instructors
expected or are generally earning poor grades. The situation is
aggravated when students take these courses in the first two years
of study. Consider for example, the student grades in introductory
hardware and programming courses at our home institution ! On
average students earned a better grade in the programming courses
(+ 0.15). What is more concerning however, is that this disparity is
more prominent by gender and race. The performance gap between
hardware and programming courses is greater for female students
than their male counterparts and for non-white students than white.
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Figure 1: Average student grades in hardware and program-
ming courses during 2019-20 (521 students)

Many factors contribute to this unsatisfactory outcome. CS stu-
dents are often not invested enough in the hardware courses be-
cause they do not perceive them as contributing to their career as
a software engineer or programmer. The proliferation of high-level
programming frameworks and sophisticated IDEs have reduced
the need for a deep understanding of the underlying systems and
as such many recruiters downplay the importance of exposure to
hardware concepts. Another possible reason is that these courses
entail a lot of reading and students learn about systems at an ab-
stract level. Some departments, will offer a course in Digital Logic
in which students get some hands-on experience working with a
micro-controller board. But in general it is infeasible to get students
to work on real hardware to illustrate concepts in processor and
memory design.

Active learning methods have been shown to be effective in
improving student learning outcomes in a variety of CS courses [8].
But its application in hardware and systems courses is somewhat
limited.

Learning by doing: The best way to learn a system is to build
your own. This approach works well for capstone courses like Com-
pilers and Operating Systems. But introducing such a project in
lower-division courses is problematic. First, because the curriculum
is already saturated, there is often not enough time to introduce
such a project without an overhaul of the existing syllabus. Sec-
ond, in many programs students take the Organization course in
their second or third semester when they do not have the requisite
programming background to take on a project of this scale.

Simulators: Active learning content can be created around simula-
tors. But this approach also has limitations. Simulators are typically
designed for research and thus try to be as faithful as possible to the
underlying systems they represent, This creates a usability issue for
lower-division courses. For example, GEMS [9] is the most efficient
and accurate processor simulator out there but is difficult to use
in a classroom because of a steep learning curve. MARS, which
is designed for teaching [19], is used in architecture courses that
follow the MIPS edition of the P&H text [12]. But its focus is solely
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Figure 2: YODA pedagogical workflow. The machine learning component, outlined in dashed gray lines, has not been tested

in a classroom setting and is not the subject of this paper. We include it here to show future direction.

on the processor (i.e., Chapter 4 of [12]) and thus is not suitable for
the other systems covered in that class.

This paper presents YODA, a pedagogical tool for integrating
active learning content in lower-division Organization and Systems
courses. YODA is inspired by Jove, a tool for teaching theory con-
cepts to CS undergraduates [5]. The key idea is to give students
the opportunity to interact with a system via guided inquiry. The
interactions happen in a notebook environment and is structured
as a series of query-response events. The queries and responses are
bi-directional. The student can query the system and get a response,
and vice versa. YODA follows the many small programs principle [2].
Activities are short, focused and repeatable (via variants).

At its core, YODA is a collection of functional simulators with
the following distinguishing features.

e The simulators are designed with teaching in mind. As such,

they distill the core functionality of a system and abstract
out many of the details that would need to be addressed in a
full-blown simulator.

e YODA is integrated with Jupyter and provides a simple, and
familiar, interface for guided inquiry.

e YODA comes with a set of active learning content for each
system. Instructors can select activities from the database,
extend and modify them or create new ones

e A set of learning outcomes is pre-programmed into YODA.
The built-in algorithms in YODA can automatically generate
various types of assessment material corresponding to a spe-
cific set of learning outcomes. YODA also allows instructors to
add new learning outcomes and create their own assessment
material

The rest of the paper is organized as follows. Section 2 describes
the YODA architecture and workflow. In Section 3 we present an
example teaching module designed around YODA. We present eval-
uation results in Section 4. Related work is discussed in Section 5.
Finally, in Section 6, we reflect on our experiences using YODA and
discuss futures plans.

2 YODA WORKFLOW

Fig. 2 gives an overview of the YODA architecture and shows how
it supports the pedagogical workflow. The system simulators are
implemented in a Jupyter kernel. Instructors can use YODA in two
modes. They can simply instantiate a YODA kernel in the Jupyter
environment and create their own teaching and learning materials
in the form of Jupyter notebooks. Alternatively, they can directly
connect to the simulators via a web interface and ask YODA to
generate custom learning materials from its internal database. The
generated material come in the form of editable notebooks and thus
the instructor can further customize them if needed. When creating
learning material via the web interface, the instructor is presented
with a set of options including types of learning material to be cre-
ated and the topics to be covered. The YODA source is available for
free to educators®. Users can add new learning outcomes, teaching
materials and even new simulators using the YODA C++ APL

2.1 Simulators in Jupyter Kernels

To date, we have implemented three simulators in YODA: (i) cache
(if) VM and TLB and (iii) 5-stage pipelined CPU (a la MIPS). Each
kernel mimics the behavior of the corresponding system in the
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Jupyter notebook environment. Each system supports the following
core commands.
e instantiate(configuration,...): create the system with
the specified configuration
e populate(data...): populate system with data and/or in-
structions
e input(x,...): send x into the system; for cache and TLB
input represents a CPU request for data while for the processor
it represents a MIPS instruction.
e output(options...): display system state
The above commands are the minimum required to support the
query-response tutorials. Additional commands are available for
each simulator to simulate more complex behavior.

2.2 Learning Outcomes

YODA includes a set of pre-defined learning outcomes and objec-
tives for each supported system. The learning outcomes are drawn
from ACM2013 [16]. Each learning outcome is broken down into a
set of objectives. The objectives are then mapped to specific system
behavior. The learning material database in YODA is indexed by a
key comprising of an objective-behavior pair. When YODA receives
a request to generate learning material, an algorithm first maps
the objective to the specific system behavior and then retrieves the
material using the objective-behavior key.

2.3 Learning Material

2.3.1 Interactive demo. These notebooks are designed to illustrate
system behavior. They are intended to be used by the instructor as
an in-class demo in which the instructor steps through a sequence of
commands and discusses various aspects of the system. Additional
instructional material (e.g., slides) can be seamlessly interleaved in
the demo.

2.3.2  Self-paced tutorials with guided inquiry. This constitutes the
bulk of the teaching material. Each activity maps to an objective in
the database and has the following structure

o Introduction: text and figures explaining some aspect of system
behavior; hard-coded in YODA.

o [llustration: explanation of concept with examples. Students
are asked to input a value into the system and observe its be-
havior. YODA can create many examples for the same behavior.
Students can also create new examples as they are working
through the tutorial.

e Challenges: a series of query-response exercises in which stu-
dents are asked to determine system output for a given input.
YODA provides feedback when student enters an incorrect
response. The questions are randomly selected at the time
the tutorials are generated. This ensures that two students
working on the same activity, or a student repeating a tutorial
will likely see different variants of the same query.

2.3.3 Assessment. The summative assessment material are extended
versions of the challenges that a student encounters in the tutorials.
They are designed to evaluate one specific learning outcome. In
most instances, students are asked to present the final state of a sys-
tem after it has processed a sequence of inputs. The questions are

Table 1: TLB topics covered in YODA module

Topics / Objectives

1. | memory address space and the need for virtual memory
virtual to physical address translation, page numbers
and offset

modulo-based mapping

the Page Table and the TLB

TLB hit, TLB miss, Page Table Hit, PageFault

data locality and types of TLB misses

Set associativity

LRU replacement policy

N

® NN W

designed in a way such that the students can arrive at the correct
solution only if they understand all aspects of the system behavior.

YODA allows instructors to alter the input fields and system
parameters to generate many variants of the an assessment question
with the same degree of difficulty. We found this to be a useful
feature to curb academic dishonesty. The default format of the
assessment material are Jupyter notebooks that students can submit
via Google Collab [4]. The instructor can also generate PDF or other
formats for a paper-based exam, if desired.

3 YODA MODULE: THE TLB

To date, we have developed and implemented four teaching modules
around YODA.

e Cache organization

e Virtual memory and TLB organization

e Processor datapath

e Pipelining and hazard detection

In addition to the instructional material generated by YODA,
each module includes a slide deck, reference material and peda-
gogical notes. In the interest of space, we only discuss the TLB
module in this section. The TLB is a crucial component of modern
computer architecture. It is included as a core topic in Computer
Architecture courses. Understanding how the TLB works is chal-
lenging for students as it requires them to think in multiple layers
of abstraction.

3.1 Learning outcomes

ACM2013 lists TLB in the Architecture Knowledge Area in the core
Knowledge Unit AR/Memory System Organization and Architec-
ture. However, it is only listed as a topic with no associated learning
outcome. Thus, we use the following: Understand how the TLB works
and the role it plays in paging and memory management. We break
down the above into the set of objectives shown in Table 1.

3.2 Simulation Engine

As discussed previously, in designing the simulators, we attempt to
simplify the behavior as much as possible while retaining the core
functionality. For the TLB, we exclude features like multiple levels
and separation of instruction and data entries. Since the TLB cannot
be explained without the Page Table, the simulation engine includes
a Page Table module. Table 2 shows the control parameters of the
TLB simulator. The instructor can adjust the listed parameters to



Table 2: Parameters to control TLB simulation

System Attribue Control Parameter

number of sets
direct-mapped, 2, 4, 8-way, full
LRU, MRU, random

TLB capacity
TLB associativity
TLB replacement policy

Page Table capacity number of entries
Pages on disk number of PT entries on disk
Address length 4, 8 or 16 bits

VPN to PPN mapping function | VPN + N, N supplied by user

instantiate a TLBs different configurations which can be integrated
into the learning and assessment materials.

3.3 In-class Demo

The in-class demo is a step-through of the TLB simulator which can
be done either in a Jupyter notebook or inside a terminal window.
The demo shows step-by-step how the contents of the TLB and
the Page Table change when processing a sequence CPU requests.
The default configuration for the demo uses a 2-way TLB with
two sets per way and a page table with 16 entries. we found this
configuration to be suitable for an in-class demo that lasts about 30
minutes.

The TLB and the Page Table are populated prior to the start
of the demo. The LRU entries in the TLB are marked and four
entries in the Page Table are left on the disk. YODA selects the
memory references such that the simulation contains at least one
TLB hit, two TLB misses and one page fault. Further, it ensures that
one of the TLB misses is a cold miss while the other is due to the
replacement policy.

During the demo, the instructor inputs the generated CPU re-
quests one-by-one, displays the contents of the TLB and Page Table
after each entry and explains the behavior. The demo can be made
interactive by asking students to guess the behavior. Time permit-
ting, a more complex configuration with an extended sequence of
memory references can be used in which students participate in
the activity in teams.

3.4 Self-paced Tutorials

For this module YODA creates eight baseline interactive tutorials
covering the set of topics listed in Table 1. In addition, we have a
capstone activity that ties in all concepts and does an end-to-end
walk-through of the simulator.

In general, it is best if students work through activities in the
prescribed sequence. However, students can also work on certain
activities independently and out of order. For example, the tutorial
associated with modulo-based mapping can be done at the very
beginning. The instructor may choose to use a subset of activities
or splice together tutorials from other modules. For instance, if
students already have a good understanding of caches then set
associativity and LRU can be skipped and students can directly move
to the capstone activity. On the other hand, the set associativity and
LRU activities are written in a way such that they can be readily
embedded in a module on caches.

3.5 Assessment

In addition to the questions embedded in the tutorials, YODA gen-
erates several forms of assessment for this module. Short answers
/ multiple choice questions can be extracted from each tutorial.
The main learning outcome is assessed using a long-form question.
In this question, the students are given the configuration and the
contents of a TLB and a Page Table, along with a string of CPU
requests. They are then asked to label each CPU reference as TLB
hit, TLB miss or a Page Fault. In addition then need to fill out two
tables showing the final contents of the TLB.

By default, YODA will generate questions that evaluates students
understanding of each objective. However, the instructor can con-
figure the question to test a subset of outcomes. For example, the
TLB can be made direct-mapped such that students are not tested
on their understanding of set associativity and LRU policy.

4 EVALUATION

We have been using YODA at our home institution for four semesters,
starting Fall 2019. Each semester we have attempted to revise and

improve the tool based on student feedback and our own experi-
ence in using it. To get a consistent picture, we have introduced

the YODA teaching materials in only the undergraduate Computer

Architecture course. This is a sophomore level course that students

typically take in their fourth semester. It is a required course for

both the BA and BS degrees in CS and has CS2 as a pre-requisite. The

course uses the MIPS edition of the Patterson and Hennessy text-
book [12]. Multiple sections of the course is offered every semester.
In each semester, YODA was used in only one section, which served

as the intervention group. We selected another section, taught by

the same instructor in the same semester, as the control group.

4.1 Learning Outcome

For each learning outcome associated with each YODA module, we
included one assessment question in the final examEach question
was mandatory and constituted 10% of the final exam grade. The
Cache and TLB modules have been used in all four semesters be-
tween FA19 and SP21, the Processor Datapath in three semesters
between SP20-SP21 and the Pipelining module only in SP21. Figs. 3-
5 show assessment data for the four modules. The figures show the
letter grade the students earned on the assessment question and
the passing rate, which is calculated as the percentage of students
earning C or better. We only count grades for students who actually
show up for the final exam. Therefore, the passing rate for the
assessment question is higher than the overall class average. Data
is shown for both the intervention (YODA) and control sections.
Overall, the higher passing rates in the intervention sections sug-
gest that the guided inquiry materials were effective in improving
student learning outcomes. Next, we discuss our experience and
try to explain some of the observed patterns.

Setbacks in the initial release. The first introduction of the
YODA modules in FA19 did not go smoothly. There were bugs in the
system that caused occasional crashes and prevented the students
from finishing some tutorials in time. We learned from our initial
mistakes. We fixed the bugs in YODA and improved several aspects
including simplifying the language in the guided inquiry activities
and setting up JupyerHub locally on our institution’s server.
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Figure 3: Student grade distribution and passing rates. Cache module. FA19-SP21
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In FA19, the control group actually did better, although marginally
so, than the YODA group. We see the picture change in subsequent
semesters in which a relatively higher percentage of intervention
students earned A’s and B’s and also had an overall higher passing
rate. Furthermore, the first implementation of the Processor Dat-
apath also went much better as indicated by the outcome results
from SP20.

Mandatory assignment Another factor that contributed to the
subpar performance in FA19 was that we made the tutorials optional.
Only about half the students in the class completed them fully. We
made the activities quasi-mandatory starting from SP20. Students
who completed all activities, were allowed to drop their lowest quiz
grade which constituted 0.5% of the cumulative grade. Although
the reward was minimal, we saw a sharp increase in participation
rate, reaching close to 90%.

The COVID effect The improved grades in the assessment ques-
tions cannot be attributed to YODA modules entirely. FA20 and
SP21 classes were conducted online due to COVID. Since the face-
to-face contact hours were reduced, we felt the self-paced tutorials
had higher utility for students in those semesters. The learning out-
come grades may decrease, perhaps to SP20 levels, when instruction
modality rolls back to face-to-face in FA21.

Individual and qualitative analysis In analyzing the scores
at an individual level, we found that YODA can be a boost for the

4.0
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1.0
0.0

mean score

FA19 SP20 FA20 SP21
\ Ml Interest @ Llearning [ Leaning-class @ Support B Support - class \

Figure 6: Student perception of YODA modules

weaker students. On average over 70% of students that had a C or D
average in all other graded material, received an improved score on
the YODA module than their class average. By contrast only about
7% of B students earned a superior score. Our own interactions
with the students corroborate these numbers. In most instances,
the students who told us they found the tutorials helpful were the
ones who were lost at the start of the semester.

4.2 Student Perception

In each class where a YODA module was introduced, we conducted
an end-of-the semester survey to gauge student interest in the mod-
ule topic and assess student perception of the learning experience.



Questions were selected from the Student Assessment of Learning
Gains (SALG) survey. Students were asked to rate the module in
three categories (i) learning support (ii) learning experience and
(iil) confidence and interest gains. Students answered each question
on a scale of 0-4 (e.g., strongly disagree, disagree, neutral, agree
and strongly agree).

Fig. 6 shows the results of the survey for the Cache and TLB
modules from FA19 to SP21. The participation rate on the survey
was 82%. In the regular student evaluation there are two questions
that relate to student learning experience and learning support. For
comparison, we include the scores on these question as well. The
students rated their learning experience and support for learning
quite highly. The scores in both categories improved slightly from
FA19 to SP20 but we do not observe any improvement beyond that.
Comparing the scores in these two categories with the scores in the
overall class evaluation, we see that students rated their learning
experience and support in the modules slightly better than their
experience in the overall class. Although the increase is small, we
consider the numbers to be meaningful. The student confidence
gains numbers were consistently lower than the other scores, which
was disappointing. Although the grades of the student learning
outcomes suggest that most students did not particularly struggle
with the material, this was not reflected in student perceptions.

5 RELATED WORK

Active Learning. There have many efforts at integrating active
learning activities in undergraduate computer science courses. These
include role playing exercises [10], peer instruction [3, 13], pair
programming [11], co-operative learning [3, 7], use of classroom
technology such as tablets [15]. Understandably, a vast of majority
of these efforts focus on introductory programming courses. No-
table efforts in non-programming courses include work by Porter et
al. who implement peer instruction in Computer Architecture and
Theory of Computation courses [13]. Ham and Myers introduce
cooperative guided learning in a Computer Organization course [7].
We believe the YODA is complementary to these prior efforts.

Simulators Simulators have been used in many undergraduate
computer architecture and organization courses [6]. Many of them
use the SPIM or the MARS simulator associated with MIPS archi-
tecture, which is widely used. There have also been attempts to
design simulators specifically for the classroom [18].

6 CONCLUSIONS AND FUTURE WORK

In spite of the disruptions caused by COVID, our experience in
using YODA over the last two years has been quite positive. The
data collected so far shows that incorporating YODA-created active
learning material can improve student learning outcomes in lower-
division hardware-oriented courses.

Thus far, we have only evaluated YODA in the Computer Ar-
chitecture course. Our future plans include creating more teaching
modules around YODA and integrating the materials in a Computer
Organization course at our home institution. We also hope to en-
courage faculty at other institutions to adopt the active learning
materials for their classes.
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