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Deep Weakly Supervised Positioning
for Indoor Mobile Robots

Ruoyu Wang'*, Xuchu Xu'*, Li Ding?, Yang Huang?, Chen Feng'f

Abstract—PoseNet can map a photo to the position where
it is taken, which is appealing in robotics. However training
PoseNet requires full supervision, where ground truth positions
are non-trivial to obtain. Can we train PoseNet without knowing
the ground truth positions for each observation? We show that
it is possible to do so via constraint-based weak-supervision,
leading to the proposed framework: DeepGPS. Particularly, using
wheel-encoder-estimated distances traveled by a robot along with
random straight line segments as constraints between PoseNet
outputs, DeepGPS can achieve a relative positioning error of
less than 2% for indoor robot positioning. Moreover, training
DeepGPS can be done as auto-calibration with almost no human
attendance, which is more attractive than its competing methods
that typically require careful and expert-level manual calibra-
tion. We conduct various experiments on simulated and real
datasets to demonstrate the general applicability, effectiveness,
and accuracy of DeepGPS on indoor mobile robots and perform
a comprehensive analysis of its robustness. Our code is avaible
at: https://aidce.github.io/DeepGPS/

Index Terms—Deep Learning for Visual Perception, Localiza-
tion

I. INTRODUCTION

Visual localization/positioning has been a fundamental
problem in robotics and computer vision which draws at-
tention from researchers for a long time. Given a local
observation, the goal of visual localization is to recover the
sensor position in the scene where the local observation is
captured. Depending on the modality of local observations,
visual localization can be based on either image or point
cloud. The ability of localizing the sensor plays a vital role
in a variety of applications including virtual and augmented
reality (VR/AR) [1], 3D reconstruction [2], and robotics [3]. In
robotics particularly, commercial visual localization systems
like Vicon are expensive yet popular options. Conventional
visual localization approaches [4-6] typically rely on find-
ing corresponding feature points/lines/planes [7, 8] between
the local observation and the global scene, which are then
used to determine the sensor position, typically within the
RANSAC [9] framework to handle mismatched features.

Recently, deep learning methods have demonstrated com-
pelling improvements in geometric computer vision problems,
and many efforts have been made for visual localization
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(a) DeepGPS (ours)
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Fig. 1: Visual positioning by the proposed weakly-supervised
DeepGPS (Figure 1a) and the fully-supervised PoseNet [14]
(Figure 1b) on an indoor environment from the Gibson
dataset [16]. Each sphere shows the testing location and the
color-coded error (blue/red means small/large error). Best
viewed in color.

from image [10, 11] and point cloud [12, 13]. Among them,
PoseNet [14] is one of the first that formulates the visual
localization as the absolute pose regression problem where
the global scene is implicitly represented inside a deep neural
network (DNN). Since then, this approach has been studied
extensively. Despite different network architectures or loss
functions, these methods follow the same supervised learn-
ing pipeline where DNNs are first trained on a large set
of observations along with the corresponding ground truth
sensor poses and then directly used to predict sensor poses
for unseen observations. The performance of this approach
strongly relies on the quantity and the quality of available
training data. Benchmarking results [15] have shown that
the performance would significantly drop when training data
is limited. However, large-scale high-quality ground truth
positions for input observations are non-trivial to obtain. The
ground truth data collection requires either external devices
such as the Vicon system or high-end GPS, or complex 3D
reconstruction methods such as Structure-from-Motion (SfM)
or Simultaneous Localization and Mapping (SLAM) that often
calls for expert efforts. While a trained PoseNet can provide
fast and efficient pose estimation, the requirement of ground
truth data makes it less convenient for roboticists.

In this paper, we explore a different approach, DeepGPS,
for visual localization using DNNs that does not require the
ground truth sensor positions for each observation, yet still
achieves comparable performance as PoseNet (see Figure 1).
We notice that a mobile robot can often easily travel along
a random straight line and accurately estimate the traveled
distance using odometry from wheel encoders. This leads to
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the key idea behind the proposed DeepGPS: instead of super-
vised learning on sensor positions for visual localization (such
as PoseNet), we adopt the constraint-based weakly-supervised
learning, where the constraints come from the distances be-
tween two sensor positions where the local observations are
captured. The main advantage of this weakly-supervised ap-
proach is that the large-scale data collection can be performed
fully automatically with almost no human attendance. The
training can be considered as an auto-calibration, which is
more attractive than alternative approaches, especially for
indoor robot positioning, which typically involves expert-level
manual calibration. To summarize, we make the following
contributions:

o« We find that it is feasible to train DNNs for visual po-
sitioning via constraint-based weakly supervised learning
without ground truth positions.

o We propose the DeepGPS framework that uses distances
between sensors, rather than sensor position itself, as the
indirect supervision signals.

« We show by simulated and real-world experiments that
DeepGPS achieves less than 2% relative error with vari-
ous network architectures for different sensing modalities.

o We perform a robustness analysis of DeepGPS to improve
our understanding of its training data requirements.

II. RELATED WORKS

There has been a large body of work on positioning systems

using various sensing modalities. We refer readers to [17, 18]
for comprehensive surveys of non-vision-based methods and
focus our discussion on the vision-based methods.
Visual localization. Prior works on visual localization gener-
ally fall into two groups. The methods in the first category
are based on matching features between the local and the
global scenes. The scene environment can be explicitly rep-
resented as a 3D model, which is reconstructed from images
or directly captured by 3D scanners. The correspondences can
be established by matching hand-crafted [19, 20] or learning-
based [12, 21] features. The downside is that these approaches
require an explicit representation of the 3D model or have to
store all descriptors and camera poses in memory. Addition-
ally, several works use machine learning and deep learning
methods to directly regress 3D coordinates of pixels in the
image [22, 23]. While learning to predict 3D coordinates from
image patches yields accurate sensor poses, these approaches
may fail to handle large-scale scenes [24, 25].

Rather than learning to find corresponding points between
local and global scenes, another type of learning-based ap-
proach, absolute pose regression (APR), uses DNNs to model
the full localization pipeline. In this scenario, the global envi-
ronment is implicitly represented by the weights of DNNs. The
core idea is to build DNN models to directly predict the sensor
positions for the input observations. The first APR-based
approach is PoseNet [14] that uses a modified GoogLeNet [26]
to regress camera poses. The network is trained by minimizing
the Euclidean distance between the predicted poses and the
ground truth poses. Since then, the APR-based approach for
visual localization has been explored extensively. For example,
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Fig. 2: Comparison of training procedures for various position-
ing methods: PoseNet [14] (supervised), the proposed Deep-
GPS (weakly supervised), and DeepMapping [42] (unsuper-
vised). PoseNet requires ground truth (GT) poses. DeepMap-
ping requires point clouds for the free-space consistency
loss. Our DeepGPS only requires line segment traveling and
distance measuring, which is easy for most of the mobile
robots. DeepGPS can also use different observation modalities,
including images and point clouds.

method in [27] incorporate additional loss terms such as
the reprojection error and the weighted position and rotation
loss. In addition to the novel loss function, different network
architectures are proposed for extracting the fine-grained fea-
tures [28] or for handling sequences of inputs [29]. Moreover,
view synthesis techniques [30, 31] are integrated into the APR-
based approach to enlarge the training dataset and to pose
constraints on sensor poses. Methods in [32, 33] exploit other
available supervision signals, including GPS, IMU, and VO, to
improve the accuracy of localization. Despite various network
architectures and loss functions, these methods follow the
supervised pipeline and require a fully labeled training dataset
that contains a massive amount of local observations and the
associated ground truth positions. As noted in Section I, such
ground truth positions are non-trivial to obtain and therefore
pose a challenge for this supervised learning approach to be
effectively deployed.

Learning-based visual odometry. Another related problem to
visual localization is the visual odometry (VO) that incremen-
tally estimates the ego-motion of the sensor using a sequence
of observations. We briefly review the learning-based VO and
refer readers to the survey paper [34] for broader context
on the conventional methods. DeepVO [35] and VidLoc [36]
propose to use a combined CNN and LSTM networks for
monocular VO by taking the advantage that CNN and LSTM
are capable to extract features from the input images and
incorporating temporal information, respectively. In addition
to the monocular cameras, different sensors are incorporated
into the learning-based methods that allow the information
from independent sensors to be fused in a complementary way,
including lidar [37], GPS [38], or IMU [39]. Several works
focus on unsupervised learning for the VO problem by jointly
estimating the depth maps for the input RGB images [40, 41].
Beyond supervised learning. Most deep learning-based meth-
ods for visual localization are fully supervised. As noted,
ground truth data collection is non-trivial. Therefore, a few
alternative learning strategies have been investigated as well.
In Fig. 2, we compare several training procedure for visual lo-
calization. Unsupervised learning, for example, avoids labeled
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data collection. The recent DeepMapping [42] introduces an
unsupervised framework for multiple point clouds registration
and mapping, where the supervision signals are derived from
the free-space consistency among point clouds. The trained
model can perform coarse re-localization for unseen point
clouds that are in close vicinity to the registered point clouds.
The main drawback of this method is that it is only applicable
to point cloud modality.

III. DEEPGPS METHOD

In this section, we first discuss the classic positioning
problem assuming either correct measurement-landmark cor-
respondences or known landmark positions. Then we motivate
and detail our deep weakly supervised solution for positioning
using images or point clouds where that assumption is often
not valid. Finally, we discuss some important implementation
details about our deep network and automatic data collection
strategies for mobile robots.

A. Classical positioning without deep learning

In general, the positioning problem can be formulated as:
given a set of local observations {x;}Y, collected at N
different positions to a set of M fixed landmarks {mj}Z in
the environment, the positions {p;}}¥; corresponding to the
local observations needs to be estimated. An observation is ob-
tained through an observation function of the sensor position,
conditioned on the landmarks: x; = h (pi|{my}L,).

To solve the positioning problem, one usually assumes that
correct measurement-landmark correspondences are known.
For instance, in some RF-based beacon systems, observations
are distances to RF signal transmitters installed in the environ-
ment. With the unique IDs decoded from the RF signals, the
correspondence between observations and landmarks (trans-
mitters) can be established. Under the known-correspondence
assumption, the observation function for the k-th observed
value in x; (corresponding to the k-th landmark) is:

x{® = |lmy. — i, k € Nepr, i € Nen. (1

Besides the correspondence assumption, one also needs to
know the value of landmark positions {mk}é,”:l, otherwise
landmarks have to be calibrated before positioning. Once
landmarks positions are known, the positioning problem can
be solved by the classic least square estimation:

M
p* = arg minZ[x(k) — b (pil{my }3L,))°. @)
P k=1

B. Positioning from constraint-based weak supervision

However, the above two assumptions are not always valid.
Especially, when x; is an image or a point cloud, landmarks
need to be identified and their positions are unknown, and the
correspondences cannot be established without robust feature
matching. Solving these issues automatically is non-trivial and
often error-prone. To enable easier positioning, we develop
DeepGPS, a constraint-based weak supervision approach

that does not require known landmark positions nor
explicit measurement-landmark correspondences.

To explain our approach, we first briefly introduce po-
sitioning from supervised learning. The goal of learning-
based visual positioning is to find a function fy (x), modeled
as a DNN with learnable parameters 6, to estimate sensor
position p without explicitly modeling landmarks nor solving
equation (2). Given a mostly static environment, f is a
bijection if the local observation x is independent with sensor
orientation, and otherwise a surjection. The training dataset
D, = {(xi,pi)}ﬁvzl contains a set of local observations x;
associated with the ground truth positions p;. The network
parameters are obtained by minimizing the loss function:

s (0) = Z | fo (x:) — il 3)

which penalizes the disagreement between network predictions
and the ground truth positions.

Differently, the proposed DeepGPS tackles the visual posi-
tioning problem as constraint-based weakly supervised learn-
ing, by specifying certain constraints over the network out-
put [43]. Our training dataset is a graph D,s = (V,&)
where nodes V = {xi}i]\il are local observations, and edges
& = {c;;} are constraints between sensor positions p; and
p, defined by the constraint function C (-, -). Note that this
graph does not need to be fully connected, i.e., £ does not
necessarily contain constraints between all pairs of p; and p;.
A constraint c;; exists in £ only if it is accessible, i.e., when
measured physically. In general, we minimize the following
loss to penalize constraint violations,

Cuws (0) = D 1C (fo (x:), fo (%)) = cij- 4)
cij €EE

As mentioned, the constraint we adopted is the Euclidean dis-
tance between two (unknown) sensor positions ¢ and j where
local observations are captured, i.e., ¢;; = ||p; — P;||,. and the
constraint function C (-, -) calculates the distance between two
network-predicted positions. Since wheel encoders or IMU is
commonly available for mobile robots, the value of c;; can
be measured with high accuracy if the robot moves along the
straight line between p; and p; without blocked by obstacles.
In practice, we found that the training would converge faster
if we normalized each loss term with the sum of the estimated
and the ground truth distances. Thus we use the following loss

function throughout our experiments:

Lys (0) = Z |1 fo (i) — fo (x;)|| — cij

ci; €E | fo (xi) = fo (%)l +cij

It is worth stressing that in DeepGPS training, only scalar
constraints, e.g, distance, are required. Neither absolute nor
relative ground truth position vectors are needed.

Relationship to classical solution. Note that in the situation
where the measurement-landmark correspondences are known,
and the constraints are provided, the classical solution is also
applicable, by solving the following equations:

(&)

||mk? - pz” = Tki, ke NSIV[7i S NSN

. (6)
lpi — pjll = cij, J € Nen,
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where all m and p are unknowns. Once they are solved, a new
position p’ can be triangulated via m and x’. Such a situation
is turned into our toy example experiment in section IV-A,
which is used as a sanity check for our solution.

Why does it work? The effectiveness of DeepGPS has
a connection with Multi-Dimensional Scaling (MDS) [44], a
well-known technique in data mining and visualization. In
effect, Eq. (4) provides a direct supervision for a function
Cy (x;,x;) that predicts the Euclidean distance between the
positions ¢ and j using the two observations, and this func-
tion has a Siamese structure denoted by fy. After the full
supervision on Cjy, we can use it to compute a Euclidean
Distance Matrix (EDM) for a set of positions inside that
environment. From MDS, the coordinates of those positions
can be computed by eigendecomposition on a centered version
of EDM. If we choose this set of positions to be the densely
sampled grid locations inside the environment, then in effect,
we get a “GPS sensor” for that environment. Interestingly,
DeepGPS is more appealing because we do not need to
actually go through the above MDS process: the “PoseNet”
fo implicitly achieves it more efficiently.

Global transformation ambiguity. Unlike PoseNet which
is supervised directly by global positions, the DeepGPS output
positions could be subject to an unknown global Euclidean
transformation. So before evaluation, we need to align the
DeepGPS output with the ground truth by solving for this
transformation, which is a standard operation when computing
the Absolute Trajectory Error [45] in SLAM.

C. Orientational invariant network architecture

The specific network architecture fy depends on the input
modality x. In our toy example experiment, the x is a distance-
vector to each landmark, and fy is a Multi-layer Perceptron
(MLP). When x is an image, we use ResNet-18 [46] as the
backbone network. In such a situation, fp is usually not a
bijection, since x depends not only on the position but also
the orientation. To achieve orientation-invariant positioning,
we use upward-viewing omnidirectional images as x. Rotating
an image taken at a position with a certain orientation is
equivalent to taking another image at the same location with a
corresponding orientation. Then we warp the observed images
x(u,v) from the Cartesian coordinate system to the polar
coordinate system, i.e., x(r, ¢). In this case, the problem is
converted to ensure the translational invariance along the ¢
dimension.

To improve the network robustness and make the training
easier, We employed the following two techniques to increase
the rotational invariance of the network:

One is circular CNN. According to [47], a convolutional
layer is translation-invariant when the output has the same
height and width as the input via circular padding. Therefore,
we modify the original ResNet-18 [46], by changing the kernel
size of the first convolution layer from 7 to 3 and replacing
all zero paddings with circular paddings.

The other technique is data augmentation. We randomly and
circularly shift the warped image along the ¢-dimension and
feed them into the network during the training to simulate

multiple observations at the same position with different
orientations.

D. Observation and distance constraint collection.

We adopt two strategies to collect the traveling distance as
the weak supervisions to train DeepGPS, i.e., the end-point
strategy and the dense-sampling strategy.

In the end-point strategy, a robot sequentially visits random
positions {p;}2, in the target environment, collect local
observation x; at each position p;, and measure the travelling
distance c;_1; along a straight line in between.

While the end-point strategy allows robot to freely explore
the environment, this data collection strategy is inefficient be-
cause no data is collected between two consecutive points p;_1
and p;. As a result, the total traveling distance is inevitably
large to collect sufficient data. To overcome this issue, we fur-
ther propose a dense-sampling strategy that is a line-segment-
based data collection. Specifically, the trajectory of the robot
contains L random sampled line segments {lx}£_,. When
traveling along each line segment [y, observations {x; )}f\ikl
are collected at a sequence of Nj points {pgk)}ﬁv:kl along
the line segments. The order of pgk) follows the movement
direction of the robot. The starting point on line segment I,
is pgk) and cglf) is recorded by the wheel encoder for all
the sampling locations i traveled by the robot on the k-th
line segment. More generally, cz(-f) = |cz(-’f) — c§]f)| means the
distance between any two sampling location 7 and j on the
k-th line segment. Using the dense-sampling strategy, Eq. (5)
becomes:

- [ fe ) = fa (S| el
bur (0= The S 1 o

(7

The end-point strategy can be viewed as a special case of the
dense-sampling strategy where Ny = 2,Vk € [1, L].

IV. EXPERIMENTS

In this section, we report the performance of our method
on different modalities of observations. The experiments were
performed under 3 types of environments with different lev-
els of reality: numerically simulated environment, virtualized
photo-realistic environment, and real-world environment. We
evaluated our method for observations with correspondences in
the numerically simulated environment as a toy example, and
for observations without correspondences in the virtualized
photo-realistic environment and the real-world environment as
more realistic testings. We use the Absolute Trajectory Error
(ATE) [45] as the evaluation metric. We use PoseNet [14] in all
the environments as a baseline for DeepGPS. The settings of
all baseline methods are the same as DeepGPS. In our project
website, we also show experimental results on the simulated
2D lidar point cloud.

Baseline selection. We choose two baselines: PoseNet[14]
representing learning-based ones, and MASFM [48] for SFM-
/SLAM-based ones. For our real-world experiment, since
ground truth positions with high accuracy are non-trivial to
collect, we use the positions from MASFM as our “ground
truth” positions to compare DeepGPS and PoseNet.
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Fig. 3: Data generation and qualitative results of the toy
example experiment. Figure 3a illustrates the sensor positions
(blue points) on 10 random line segments (blue lines) and
the landmarks (black triangles). Figure 3b demonstrates the
qualitative results. Top: PoseNet [14], Bottom: DeepGPS.
Left: complete observation, Right: incomplete observation.
The arrows indicate the error directions between the predicted
and the ground truth positions, where the error magnitudes are
color-coded.

Since the original PoseNet uses the SFM result as the
ground truth poses, in our photo-realistic simulation experi-
ment, in addition to training the PoseNet using accurate ground
truth positions, we also train the PoseNet with noisy ground
truth positions to simulate the noise introduced by the SFM.
The noise follows A ([0,0]7,01), o = 0.01m.

A. Toy example: numerically simulated environment

Data generation. In this experiment, we use the dense-
sampling strategy to collect data. The left figure in Fig. 3a
illustrates the data collection process. The whole environment
is a 2D space bounded by [—1,1] on both dimensions. We
place 128 landmarks in the environment (black triangles in
Fig. 3a). In the training dataset, a simulated robot starts at
a random position and moves along a straight line segment
(blue line in Fig. 3a). Once the robot hits the boundary, it
will choose another random orientation and move along a
new line segment. The sampling distance is 0.02 between
pf;k) and pgi)l on each line segment [;. At each position, the
robot measures the distance between sensor position and the
landmarks forms a 128-dimensional vector. The entire training
dataset contains 14,413 observations collected on 128 line
segments. For testing, we uniformly sample a 128 x 128 grid
in the environment as testing positions.

Completeness of observations. In practice, the robot may
not be able to observe all landmarks at a certain location.
To simulate such a situation, we set a maximum observing
distance d,,.;. If the distance between the landmark and
the observing position is larger than d,,,., then the distance
observation to that landmark is set to d,,q.. The top-right
and bottom-right figures in Fig. 3a show the complete and
the incomplete observations, respectively. We evaluated our
method with both complete observation (all landmarks can be
observed) and incomplete observation (not all landmarks can
be observed). We set d,,,qo = 0.6 for incomplete observation.

Training details. We use an MLP with 128, 512, 512, 512,
256, 256, 128, 64, 2 neurons in each layer. The total number

TABLE I: Quantitative results for the toy example experiment.

Complete Observation Incomplete Observation

ATE RMS Median Max RMS Median Max
PoseNet[14] 0.006 0.004 0.024 0.007 0.006 0.069
DeepGPS 0.004 0.004 0.021 0.009 0.007 0.111

of training epochs is 1500 with a batch size of 800. We use
the Adam optimizer [49] with a learning rate of 0.001 in the
first 300 epochs and 0.0001 in the remaining epochs.

Results. Table I lists the results of DeepGPS and the base-
line methods. Our method performs better than PoseNet [14]
with complete observations. The results of incomplete obser-
vations, while slightly worse than PoseNet, still demonstrate
the effectiveness of DeepGPS. It is worth noting that DeepGPS
only requires weak supervision, i.e., the distance between two
observations, which are readily available in robot applications.
Figure 3b illustrates the qualitative results. From the figure, we
can see that most of the errors are less than 0.02 (1% relative
to the side length of the environment).

B. Virtualized photo-realistic environment experiments

Data generation. We randomly loaded 30 rooms in the
Gibson [16] dataset into Habitat-Sim [50]. For each room,
we collected about 8,000 images for training using the dense-
sampling strategy and the testing images were collected on
grids with 0.08m intervals in unoccupied areas. On each
testing position, we placed the robot towards 4 different
orientations: +x, —x, +y, —y. The maximum error among the
4 orientations is used as the ATE at that location. Our project
website shows sample original omnidirectional images taken
in the experiment environment and the ones after the linear-
polar warping (section III-C).

Training details. We use a modified ResNetl8 as fy
(section III-C). We train it for 1,500 epochs with a batch size
of 100. We use an Adam optimizer with a learning rate of
le — 4.

Results. Table II and Figure 4 show our quantitative and
qualitative experiment results on selected scenes. Complete
results are reported in our project website. Our method shows
comparable performance with PoseNet. However, the ground
truth is more convenient to collect for our method. The relative
error of our method is about 2% (relative to the shorter side of
the bounding box of the experiment environment). The main
reason that our method has larger errors on some environments
(e.g. the fourth column in Figure 4, Islandton) is that our
random-walk strategy may not be able to cover enough area,
which also influences PoseNet. It is reasonable to expect
better performance by a better sampling strategy. Note that
although the experiments are done in simulated environments,
the results are still valuable since the images of scenes are
photo-realistic.

C. Real-world environment experiments

Data generation. We mounted two cameras on a Turtle-
Bot: a fisheye camera that looks upwards and a perspective
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TABLE II: ATE for experiments in virtualized photo-realistic environment (Gibson/Habitat-Sim).

ATE (m) ‘ Aloha Brevort Cokeville Delton Euharlee Germfask Islandton Montreal  Sodaville Overall
0.061 0.060 0.040 0.060 0.161 0.037 0.338 0.072 0.211 0.090
PoseNet [14] 0.037 0.043 0.032 0.035 0.043 0.029 0.121 0.048 0.173 0.051
0.931 0.434 0.388 0.500 2.135 0.235 2.368 0.582 0.860 0.828
PoseNet [14] 0.133 1.003 1.108 1.096 1.076 0.932 1.176 1.025 1.255 1.054
(noisy GT) 0.093 0.922 1.098 1.005 0.981 0.869 1.131 0.919 1.226 0.998
o1y 0.984 2354 2.447 2,613 2325 2.208 2472 2213 2.376 2.465
0.103 0.048 0.056 0.041 0.217 0.022 0.289 0.044 0.095 0.101
DeepGPS 0.053 0.026 0.036 0.023 0.044 0.016 0.090 0.034 0.070 0.045
0.726 0.393 0.470 0.290 2.599 0.103 2.573 0.440 0.576 0.870

For each method, the top/middle/bottom row shows the root-mean-square/ median/max error. All errors are measured in meter. Note that
the overall result is the average over all 30 scenes (see our project website), not only the scenes in this table.
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Fig. 4: Sample visual results of positioning error in the virtualized photo-realistic environment experiments. Top: PoseNet;
bottom: DeepGPS. We show the localization errors computed from a discrete grid. The arrows indicate the error directions
between the predicted positions and the ground truth, where the error magnitudes are color-coded. The unit is in meter.

TABLE III: ATE for real-world experiments

RMS Median Max
ATE (m) Mean Std. Mean Std. Mean Std.
PoseNet[14] | 0.105 0.053 | 0.032 0.005 | 0.762 0.457
DeepGPS 0.053 0.021 | 0.036 0.004 | 0.175 0.026

The unit is in meter.

camera that looks horizontally. The images from the fisheye
camera are used for providing visual localization input and
the images from the perspective camera are used for obtaining
the ground truth positions only for evaluation. We placed 82
AprilTags [51] in the environment. The 6-D poses of the tags
were reconstructed using MASFM [48]. Then the groud truth
positions were obtained by the perspective camera via solving
the PnP problem. We collected 6 datasets in the environment
using the end-point strategy and the train-test split for each
dataset is 1,570/314. The experiment environment is shown in
figure 5.

Training details. The network architecture and training
setup are the same as we use in section I'V-B.

Results. Table III lists the quantitative result of our method
in the real-world environment. The mean and standard de-
viation of the ATEs are calculated among the 6 experi-
ments. Interestingly, we found that the maximum ATE of
our method is significantly smaller than PoseNet [14], while
the median ATE is very close between the two meth-
ods. Figure 6 is one example of our experiments, which
shows DeepGPS has fewer large errors than PoseNet. We
believe it is because PoseNet suffers more from overfit-
ting the positioning errors in the real-world ground truth.
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Fig. 6: Visual results of positioning error in the real-world
environment experiments. Left: PoseNet [14], Right: Deep-
GPS. Blue dots are predicted positions and orange dots are
ground truth positions. Red lines indicate the error magnitude
between them. The purple box shows the area where PoseNet
has larger error. The unit is in meter.

V. ROBUSTNESS ANALYSIS

We perform a robustness anal-
ysis on our method to obtain
better insights on it. Here, we
study how the level of noise in
the distance measurement and the
number of training samples in-
fluence the positioning accuracy.
We evaluate the influence of these
two factors using both the toy
example environment that has ob-
servations with correspondences
and the virtualized photo-realistic
environment.

Fig. 5: Real-world exper-
iments setup. A turtlebot
(mounted with perspec-
tive and fisheye cameras)
moves inside the environ-
ment with pre-calibrated
AprilTags.

A. Level of noise

We add random noise to each distance measurement be-
tween two consecutive positions. The noise-contaminated dis-
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tance measurement ¢; ;41 between two consecutive positions
p; and p;4+; can be modeled as:

Ciit1 = Ciit1 + Niit1, )

where ¢; ;11 is the noise-free distance measurement, and
n4iv1 is the random Gaussian noise N (0,07, ), where the
standard deviation o; ;41 is proportional to noise-free distance,
controlled by a factor w ie., 0;;41 = wci;+1. In this
experiment, we evaluate under w = 0, 0.02,0.04, 0.08, 0.10.
Figure 7 depicts the results.
Although the max error grows =
faster with the increasing level i /
of noise, the RMS and median
are all less than 0.04 (2% rel-
ative to the side length of the
experiment environment), even I —
if at 10% of the noise level. . S
The results indicate that only Flg' 7: DeepGPS ATE vs.
.. noise level.
few testing instances are sen-
sitive to the noise. In practice, the noise level of a wheel
encoder is less than 0.1%, which is far less than the eval-
vation range (2.0%-10.0%). For example, the resolution of
the wheel encoder of the DYNAMIXEL-X series motor is
4096 pulse/rev', which is equivalent to 0.02% relative error
for distance measurement. Therefore, our method is robust to
the noise in distance measurement.

B. Number of training samples

Figure 8 shows perfor-
mance under the different
number of training sam-
ples. The dimension of
the room is 7m x 4.3m.
Our method can achieve
0.04 m accuracy with small
number of training sam-
ples (1,000 samples, 33.2
samples/m?). We notice
that the ATE has a significant drop between 4,000 to 5,000
training samples, and after that, the ATE almost remains at the
same level. Therefore, for this room, there is an optimal num-
ber of training samples, which is around 5,000. To increase
the efficiency of the data collection, one of our future work is
to make our method training on the fly, i.e., the training and
data collection process happen at the same time, and the data
collection terminates when the optimal number of the training
sample is reached.

—+— RMSE

1k 2k 3k 4k Sk
Number of training samples

6k 7k 8k 9k 10k

Fig. 8: DeepGPS ATE vs. num-
ber of training samples.

VI. CONCLUSION

In this paper, we propose a new weakly-supervised position-
ing system: DeepGPS. This method uses distances between
positions as supervision signals instead of directly using
positions. The proposed method can significantly decrease
the cost and difficulty of ground truth data collection while
still maintaining high accuracy. The proposed method does

Ihttps://emanual.robotis.com/docs/en/dx1/x//#dynamixel-x/

not heavily depend on the modality of sensors, thus can be
generalized to many conditions and environments. Besides, the
proposed method is fully end-to-end, without explicit models
of the sensor and the environment, which saves the setup time
and avoids data association, which is a non-trivial problem in
traditional visual localization. One limitation of this method
is that the performance will drop when the layout of the
environment is highly concave. This problem can be alleviated
by introducing sensors that can measure distances through
obstacles.

In the future, we will extend our method to 3D cases and
apply it to large-scale environment.
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