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Abstract— Fused deposition modeling (FDM) using mobile
robots instead of the gantry-based 3D printer enables additive
manufacturing at a larger scale with higher speed. This in-
troduces challenges including accurate localization, control of
the printhead, and design of a stable mobile manipulator with
low vibrations and proper degrees of freedom. We proposed
and developed a low-cost non-holonomic mobile 3D printing
system guided by a projector via learning-based visual servo-
ing. It requires almost no manual calibration of the system
parameters. Using a regular top-down projector without any
expensive external localization device for pose feedback, this
system enabled mobile robots to accurately follow pre-designed
millimeter-level printing trajectories with speed control. We
evaluate the system in terms of its trajectory accuracy and
printing quality compared with original 3D designs. We further
demonstrated the potential of this system using two such mobile
robots to collaboratively print a 3D object with dimensions of
80 cm × 30 cm size, which exceeds the limitation of common
desktop FDM 3D printers.

I. INTRODUCTION

Fused deposition modeling (FDM) is a common type of
additive manufacturing (AM) method. A conventional FDM
3D printer is typically implemented as a gantry system
enabling 3 degrees-of-freedom (DOFs) control of a printhead
to emit fused materials, ceramic, or even concrete precisely
to designed printing positions layer by layer. Such a gantry-
based printer cannot print large-scale objects, with typically
size limitations of 350 × 350 × 300 mm3 for desktop
printers and 900 × 600 × 900 mm3 for industrial ones. A
gantry system also makes it difficult for multiple printers
to collaborate to achieve a faster printing speed. To remove
these limitations, installing the printhead as the end-effector
of a mobile manipulator is an appealing option.

However, a mobile 3D printer brings several challenges
to the software and hardware design of such a robotic
system. First, we can no longer benefit from stepper motors
on the gantry to estimate the printhead position, which is
needed for the computer numerical control of the printer.
For a desktop FDM printer with a millimeter-level nozzle
diameter, the localization and control of the printhead must
achieve a millimeter or even sub-millimeter level to ensure
successful printing. Otherwise, the layer-by-layer mechanism
could easily fail before completing the printing.

Although millimeter-level positioning in a room-scale in-
door environment can be achieved by camera-based precise
localization systems, such as Vicon®, the issues of such a
solution are the system cost and the non-trivial setup and
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Fig. 1. Collaborative printing of two mobile 3D printers in our system.

calibration. To support easy and friendly deployment, is it
possible to develop a cost-efficient localization and control
system for our mobile 3D printer without a complex manual
system calibration process?

In addition to the software challenge, the hardware design
of the robotic system is also non-trivial. Unlike regular mo-
bile manipulators, which are often used for object gripping
tasks, the aforementioned accuracy requirement means that
the mobile platform must have good stability during its
movement to minimize the vibration of the printhead. This
could lead to a trade-off with the convenience of the mobile
platform’s planning and control: should we use a holonomic
or a non-holonomic mobile robot?

To address these challenges, we propose and develop a
low-cost non-holonomic mobile 3D printing system. The
localization and control system is guided by a regular low-
cost top-down projector equipped with learning-based visual
servoing. The mobile platform is a non-holonomic two-wheel
differential drive robot with a camera for visual servoing.

The following are our main contributions:

• We propose a low-cost, projector-guided, non-
holonomic mobile 3D printing system with almost no
manual calibration and easier ground settings.

• We present a learning-based visual servoing method
for differential drive robot control with millimeter-level
trajectory accuracy.

• We conduct both simulated and real-world experiments
to validate our system prototype in terms of trajectory
control accuracy and printing quality.
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• We successfully printed a 3D object with dimensions of
800mm×300mm using two prototype mobile printers.

II. RELATED WORK

Mobile 3D printing. The accuracy of traditional gantry-
based 3D printing relies on counting the steps of a stepper
motor’s output. For mobile 3D printing, the biggest chal-
lenge is how to localize a robot, because the accuracy and
reliability of the wheel encoder and Inertial measurement
unit (IMU) cannot provide satisfactory position feedback.
Therefore, some pioneers have explored different types of
localization methods for mobile 3D printing systems.

Marques et al. [1] proposed an omni-wheel 3D printing
robot and a grid-based 3D printing system. Their mobile
robot scans a grid on the ground through an optical sensor
to perceive its position when printing. In addition, this system
allows multiple robots to perform collaborative printing by
operating on the same grid building plane. To avoid collisions
in collaborative printing, they presented an automatically
generated scheduling approach based on the dependency tree
in [2]. To solve the power supply problem, Currence et al.
[3] invented a floor power module with installed brushes on
the robot that connected to the powered floor surface.

Zhang et al. [4] used a holonomic-based mobile manipu-
lator for mobile 3D concrete printing. They cut the printing
model into several parts and moved the mobile platform
to the target workspace for printing execution. They later
updated their control algorithm [5]. This algorithm could
obtain localized feedback and adjust the motion error from
the AprilTags [6] on the ground. Since concrete needs to
be pumped through a pipe, Zhang and Pham [7] designed
an algorithm that included four different modes to solve the
motion planning problem for multiple tethered planar mobile
robots. Similar to [4], Lv et al. [8] proposed a holonomic
mobile printing method by switching the workspace and used
the contour of the printed object to estimate the pose of the
mobile platform and update the mobile platform control.

Holonomic vs. non-holonomic mobile platform. The
main differences between the above mobile 3D printing
systems and ours are twofold. First, we use a non-holonomic
robot as our printing platform. According to previous printing
results [1], although omni-wheel-based holonomic robots can
be more convenient in terms of control and path planning,
they still cannot avoid shifting between printed layers caused
by a slip on the orthogonal direction of the robot motion.
Our differential drive robot uses standard wheels and does
not suffer from slippage in that direction. This also allows
odometry based on wheel encoders, which is more difficult in
omni-wheel robots. The second difference is the localization
system. Their printing platforms operate in an absolute Carte-
sian coordinate frame. The accuracy of those systems relies
on the grid, which requires manual setup on the ground. Our
system uses projector-based visual servoing control, which
requires no robot pose feedback in a Cartesian frame, nor do
we need any non-trivial manual calibration or setup.

Visual servoing control. Prior work on visual servoing
(VS) control generally fell into three categories: position-

based, image-based, and fusion approaches [9, 10]. These
three types of visual servoing methods control the robot
movement by reducing the error between the observed image
obtains error feedback from different spaces.

Position-based visual servoing (PBVS) [11–14] evaluates
the error feedback from the observed object in the 3D Carte-
sian space. This is called 3D visual servoing. These types of
methods require the camera intrinsic parameters to convert
all the observed object pose to a 3D coordinate system.
Therefore, the accuracy of the camera calibration and the
robot model will directly affect the control output. In image-
based visual servoing (IBVS) [15–17] control, the robot
will minimize the error directly in the image space. This
is also called 2D visual servoing. Because of the estimation
error in image space, these types methods are insensitive
to the calibration errors of the cameras on the robot. The
disadvantages of IBVS are lost feature points during the
rotation of the robot. The singularity of the Jacobian matrix
could also cause control failures. Combining the advantages
of both, Malis et al. [10] proposed a 2.5D visual servoing
using the homography between planar targets. Our method
is related to but different from all these methods. Similar
to Lee et al. [18], we use self-supervised deep learning
to automatically discover the interactive matrix, thereby
removing all manual calibration processes in the system.

III. SYSTEM DESIGN

As shown in Figure 2, our mobile 3D printing system
included a mobile platform, a top-down projector and a
flat printing surface. Our mobile platform was composed
of a TurtleBot and a robot arm with an FDM hotend
kit. The TurtleBot provided continuous movement, and the
robot arm helped the nozzle reach positions on the printing
surfaces. We used an entry-level projector, BenQ MS535A
SVGA, to project dynamic point pattern as the observation
reference on the printing surface. The mobile platform’s on-
board computer computed the printing trajectory and velocity
information from a projected image. The flat surface as a
projection screen provided a borderless build plate for the
entire mobile 3D printing system.

A. Mechanical Design

Our mobile platform was developed on Robotis TurtleBot3
burger. TurtleBot3 burger is a compact size differential drive
mobile robot. It operates two dynamic wheels powered by
Dynamixel XL430-W250. The original design of TurtleBot3
included stacked motors with a battery, driver board, and
single-board computer(SBC) separated by four plastic plates.
As shown in Figure 3, a 360◦ rotating robot arm was installed
on the top layer. We expanded the bottom layer with an
additional four parts parts such that the whole bottom became
a circular shape. It is noteworthy that the bottom plates were
composed of two symmetric semicircular 3D printing parts
in our original design. However, due to the size limitations
of the 3D printer, we finally divide it into four parts to meet
the size limitation requirement. To avoid robot arm motion
in the radial direction, a flexible curtain track was installed



Fig. 2. System settings and operation workflow. Left: projector-guided mobile 3D printing diagram. Right: training pipeline (green blocks) & printing
pipeline (blue blocks).

Fig. 3. Hardware design of mobile 3D printing platform.

on the bottom plate to ensure the whole robotic arm rotated
simultaneously.

The robot arm assembly consisted of two actuated DoFs.
The proximal DoF is a revolute joint whose rotation axis
is perpendicular to the top surface. The distal DoF is a
prismatic joint that is orthogonal to the proximal DoF.
Each joint is driven by a Robotis Dynamixel XM430-W350
smart servo motor. Each servo motor integrated a motor
controller, network communication and wheel encoder. The
robot arm’s main structure has three separate ABS 3D printed
parts, linked by aluminum hole pattern beams at the top
and bottom. An optional circle track cart helps reduce the
horizontal vibration of the robot arm when the arm length
is extended in the radial direction. The repeating 3.5-mm
holes on the aluminum beam provide a flexible arm length
in the radial direction. The structure of the vertical prismatic
joint is designed with one 8-mm lead screw and one 6-mm
round shafting support rail fixed by a pillow block flange

Fig. 4. Adjustable length robotic arm assembly exploded view.

bearing. The printer head holder achieved vertical movement
by connecting with the lead screw nut. A Hotend kit (Lerdge
BP6 with 8-mm nozzle) is installed on the end of the printer
head holder. To reduce sliding friction and better support the
weight of the print head, an additional ball caster wheel is
added to the bottom of the arm block.

B. Mechatronic and Software System

Our control system is modified from TurtleBot3’s mecha-
tronic system architecture. As we previously mentioned, our
main control system consisted of OpenCR (driver board) and
Jetson Nano (SBC), as shown in Figure 3. As a driver board,
OpenCR is connected to four servo motors through serial
communication, two for the wheels and the other two for
the robot arm. OpenCR’s GPIO pins are used to control the
heating tube, cooling fan, and to send the signal output to
the extruder’s stepper motor. Due to the different operating
voltage and current settings of the actuators, we controlled



the heating tube and the cooling fan through additional
MOSFET breakout boards. A Thermistor (100KNTC3950)
provided nozzle temperature feedback by connecting with a
4.7K Ohms pull-up resistor. Due to multiple microstepper
settings, we use the TB6600 as a stepper motor driver. Two
11.1V Li-Po batteries are attached on the bottom layer, one
for control circuits and the other for all actuators.

For the control software, Robot Operating System (ROS)
is used to communicate with and synchronize the nodes
and to handle all low-level device control. We created three
additional nodes and customized messages, which worked
with the original TurtleBot3 libraries. Two of the nodes
are used to maintain the heating temperature of hotend and
publishing the direction and speed topic for extruder control.
The other node calculates the pixel errors between the desired
and the captured pattern positions and sends the errors back
to the main control program. On the right of Figure 2, we
present our training and printing workflow.

IV. VISUAL SERVOING

A. Learning-Based Visual Servoing (LBVS)

To use visual servoing to control the 2D movement of
our mobile base, we need to determine the interaction
matrix Le ∈ R2×2 between the control input vθ = [v, ω]T

(i.e., linear and angular velocities) and the image pixel
measurements u = [ux, uy]

T of a target feature point
such that u̇ = Levθ. To make our mobile robot system
easy to use and automatically deployable, unlike the classic
IBVS or 2.5D-VS methods [9, 10], we want to avoid any
intrinsic/extrinsic/hand-eye calibration of the camera, and
any feature point depth estimation. We achieved this using a
machine-learning-base approach to find a dynamics model,
as described below. Thus, we call our method LBVS.

Utilizing the prior knowledge that a homography exists
between the ground plane and the camera plane, we model
the interactive matrix as a function of the pixel location,
i.e., Le(u) : R2 → R2×2. If this matrix function is given,
the control law of the mobile base is the same as in the
classic IBVS: vθ = −λL+

e e, where L+
e = (LTe Le)

−1LTe ,
e = u−u∗, and u∗ is the desired image location of a feature
point. Note that in a dynamic trajectory following case, e
is the optical flow of the feature point from the current to
the previous frame. Given M tracked feature points, e =
[eT1 , · · · , eTM ]T ∈ R2M×1 is the stacked error vector (i.e.,
the optical flow), and Le = [Le(u1)

T , · · · ,Le(uM )T ]T ∈
R2M×2 is the stacked image Jacobian evaluated at each fea-
ture point, and the resulting control vθ jointly regulates each
feature point’s error vector via the least squares principle.

The interaction matrix function Le(u) can be modeled as
a simple multi-layer perceptron (MLP), e.g., a ReLU MLP
(2-64-64-64-4) with three 64-dimensional hidden layers. The
challenge is determining how to estimate this MLP automati-
cally. Fortunately, we can take advantage of our projector and
the ground plane. During the automatic system calibration
stage, we can project a set of N random colored dots on
the ground such that these points cover enough area on the
image plane. We can control the mobile base with a sequence

of T frames of random velocity commands [v1
θ , · · · ,vTθ ]

while recording the color dots’ image measurements at each
frame as [U0,U1, · · · ,UT ], where U t = [ut1, · · · ,utN ].
Denoting the i-th point’s optical flow vector at frame t as
f ti = ut+1

i − uti, we can train the MLP by minimizing the
L2 loss over this dataset as follows:

min
Le

1

T

∑
t

1

N

∑
i

||Le(uti)vtθ − f ti ||2. (1)

Our LBVS method has a desirable property in that it
is generally applicable to a wide range of camera lenses
(perspective or fisheye) and can be calibrated automatically.

B. Additional Control Constraints

By adding additional control constraints, our mobile plat-
form can drive more smoothly and avoid speed overshoot.
As presented above, the LBVS speed control equation is
vθ = −λL+

e e. We divide λ into two parts based on the
distance to the target point pattern. As the robot approaches
to the pattern, we lower λ to prevent speed overshoots. For
large e, we adopt a larger λ to reduce the error e quickly.
As shown in our experiments, LBVS sometimes can still
lose track of the point pattern during rotation. Thus, we
included an additional mode to optimize the rotation. In this
mode, we can estimate Le as long as we can obtain position
information of any three points from the point pattern. We
also constrain the maximum linear velocity to 0.025 m/s and
maximum angular velocity to 0.05 rad/s.

V. EVALUATION

We design three experiments to verify the feasibility
of our mobile 3D printing system. We first introduce our
experimental environment and hardware setup. In the first
experiment, we test our LBVS control in the simulation
and real-world environment. We use our printing system to
print a hand-sized model, which could also be printed by
a traditional desktop 3D printer. The purpose of the second
experiment is to explore and optimize our printing system by
comparing with basic 3D printing models. We verified the
large-scale collaborative 3D printing in the final experiment.
For each experiment, we discuss all printing deviations and
failure cases that occurred.

A. Experiment Setting

Simulation environment. In the simulation environment,
our mobile platform will drove on a plane object on the
ground. This object was used to simulate the pattern’s projec-
tion by updating the surface image with moving points. We
subscribe odometry topic and joint space topic for recording
the position and speed of the mobile platform. We used
Moveit to plan the trajectory and send the execution data
to the robotic arm.

Real-World Environment. We mounted a projector on
the ceiling and adjusted the keystone correction. To ensure
that the printing surface was the flat and level, we used
three 0.61 m × 1.22 m medium-density fiberboard (MDF)
to form a 1.82 m× 2.44 m flat surface. We laid roller paper



Fig. 5. The trajectory following experiment results: (a) Simulation results; (b) (c) Real-world results of LBVS without control constraints; (d) (e) Real-world
results of LBVS control with control constraints.

Fig. 6. Simulation results of real velocity vs. target velocity.

on the MDF to replace the yellow wood color. The white
background allowed the camera to capture the feature points
more easily. For easy peeling off of the printing model, we
set the Buildtak printing board on the paper surface in single
robot printing experiment.

Data Collection and Network Training. We used the
well-known KLT algorithm [19] to calculate the optical flow
[u̇x, u̇y]

T between image frames. In our real world exper-
iment, we projected 10,000 little triangles on the printing
surface with a uniform distribution. We set a minimum
requirement of 20 feature points that need to be capture. The
real linear and angular velocity [v, ω]T can be read directly
from the joint space ROS topic. As explained in Section IV-
A, we let the robot move straight forward and backward
with no angular velocity while recording v and [u̇x, u̇y]

T for
different image points. We then let the robot spin without
linear velocity while recording ω and [u̇x, u̇y]

T for different
image points. Finally, we combined the two datasets to train
the model prediction Le via equation (1). In the training
process, we used 105 feature points and 3000 frames, as
T in equation (1). The data collection and network training
were completed in 30 minutes with 1e−4 learning rate by
using an Nvidia TitanV graphics card.

B. Trajectory and Control Accuracy

In this experiment, we designed a rectangular motion
trajectory. In Gazebo, the results showed that the LBVS
could control the mobile platform to complete the trajectory
well. In Figure 6, both the linear and angular velocities of
the mobile platform exhibited almost the same shapes as

TABLE I
ATE FOR REAL-WORLD EXPERIMENT

ATE (mm) RMS Median Max

Without Constraints 19.28 10.13 57.67
With Constraints 1.67 3.12 7.30

the pattern’s speed. Meanwhile, as expected, there was a
small delay between them. The reason was that the mobile
platform needed to observe and process the point pattern
before reacting.

For the real-world environment, we first tested the LBVS
without additional control constraints. At the beginning of
the trajectory, the mobile platform presented the same per-
formance as that in simulation. After the pattern rotated, there
were several moments when the robot maintained a constant
angular velocity due to lost points. Therefore, deviations
occurred in the upper right corner, as shown in Figure 5 (b).
Furthermore, we found that the mobile platform moved back
during its rotation process. These two factors could strongly
impact the printing quality and cause printing failure during
the process.

To optimize the LBVS control, we added the control
constraints described in Section IV-B. As shown in Figure 5
(d) and (e), we only achieved a slight adjustment at the top
edge. From Table I, the absolute trajectory error (ATE) [20]
also indicated that the error of the LBVS with constraints was
much smaller than that of the LBVS without constraints.

C. Single Robot Printing

We used a single mobile platform to print a cuboid model.
Based on the previous experiments, we learned that the rect-
angle corners were the most critical positions affecting the
printing results. To better handle four corners, we designed
two different corner printing methods. The first method fixed
the proximal joint position to −π/2 and completely relied
on extruder control. The other method used the robotic arm
to compensate for the rotation of the robot chassis. It kept
the end effector stationary when the mobile platform turned.
Additionally, we propose a new printing method that could
optimize our printing results. In this method, the mobile
platform prints front and back three times on every edge once
before it turns to the next edge. The models shown in Figure
7 were not completed all at once. Based on the previous



Fig. 7. Printing results of single robot printing: (a),(c),(e) fixed-arm printing; (b),(d),(f) rotation compensation printing; (e),(f) comparison of scanned
point cloud and ground truth.

Fig. 8. Large-scale collaborative printing results. Bottom circle images
show the connection points of two trajectories.

printing results, we adjusted the extruder control and replaced
the batteries for every 1-cm height. We measured the printed
wall thickness in Table II in comparison with the designed
thickness as ground truth (GT).

As Figure 7 shows, the model printed by the fixed robot
arm method significantly over-printed at the four corners.
When the mobile platform completed the turn, the end ef-
fector could not always reach the previous printing endpoint.
We found that the model surface printed by the rotation
compensation method was cleaner and smoother due to less
over-stacking at the model’s four corners.

D. Large-Scale Collaborative Printing

The purpose of the final experiment was to test our mobile
3D printing system, which could quickly set up multiple
printing platforms and complete large-scale printing. Here,
we used two mobile platforms to complete this experiment.
We designed an asymmetric contour, a sword, which is
shown in Figure 8. This sword model had a total length
of 0.80 m and a width of 0.30 m, and multiple corners that
need to be turned. Each mobile platform needed to print half
of the entire shape at the same time. The printing model had
stacked layers at the sword’s point and grip, as shown in the
Figure 8 circle. Furthermore, we printed directly on the laid
roller paper instead of the traditional 3D printing surface.

During the experiment, we found that most of the mobile
printing failures also occured with the desktop 3D printer.
The most common failure is model shrinkage. Our model
separated from the printing surface several times. To over-
come this problem, we overprinted at every corner except

TABLE II
WALL THICKNESS FOR REAL-WORLD EXPERIMENT

Wall Thickness (mm) GT Mean Maximum Minimum St.Dev

Without Constraints 2.00 3.72 4.92 2.33 0.40
With Constraints 3.02 4.17 2.74 0.24

the point of the sword. Avoiding collisions and control
interference are two other issues that require concern. In this
experiment, we manually designed the printing trajectory to
avoid the collision. We also change the color of the point
pattern to avoid mutual control interference.

VI. CONCLUSIONS

In this paper, we proposed a projector-guided non-
holonomic mobile 3D printing system. Compared with a
traditional 3D printer, we overcame the 3D printing size
limitation due to the build plate and gantry structure in
conventional 3D printing. Compared with prior works, our
method does not require any manual calibration or any world
coordinate for the mobile robot’s pose feedback. From the
experimental results, our LBVS worked effectively on the
non-holonomic mobile platform.

Limitations and Discussions. Although our mobile 3D
printing system has a great potential for future 3D printing
and robotic construction, our current system prototype is still
far from producing a high quality model with satisfactory
surface smoothness, accurate size dimension and shape diver-
sity. Our deviation analysis showed that the material overfill
and layer shifting occurred on almost every layer. Currently,
we only printed a 3D model’s outer surface. When more
degrees of freedom are added to the robot arm, our system
should be able to print more diverse shapes with even internal
structures. Also our current projector’s illumination level is
a limitation if we want to use this system in an outdoor
environment, where laser projectors would be more helpful.

Future Work. In the future, we will optimize the LBVS
control for more DOFs, update our hardware design, and
print 3D models with competing qualities to those of desktop
3D printers. We believe that our system could also use dif-
ferent materials and operate in different application scenarios
ranging from desktop-scale 3D FDM printing to room-scale
3D construction printing with multiple projectors.
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