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Abstract

Existing model poisoning attacks to federated learning
assume that an attacker has access to a large fraction of
compromised genuine clients. However, such assumption is
not realistic in production federated learning systems that
involve millions of clients. In this work, we propose the
first Model Poisoning Attack based on Fake clients called
MPAF. Specifically, we assume the attacker injects fake
clients to a federated learning system and sends carefully
crafted fake local model updates to the cloud server during
training, such that the learnt global model has low accuracy
for many indiscriminate test inputs. Towards this goal, our
attack drags the global model towards an attacker-chosen
base model that has low accuracy. Specifically, in each
round of federated learning, the fake clients craft fake local
model updates that point to the base model and scale them
up to amplify their impact before sending them to the cloud
server. Our experiments show that MPAF can significantly
decrease the test accuracy of the global model, even if clas-
sical defenses and norm clipping are adopted, highlighting
the need for more advanced defenses.

1. Introduction

Federated learning (FL) is an emerging machine learn-
ing paradigm for multiple clients (e.g., smartphones or IoT
devices) to jointly learn a model with the help of a cloud
server. Instead of sharing their private local training data
with the cloud server, the clients maintain local models to fit
their local training data and iteratively share local model up-
dates with the cloud server, which aggregates the clients’ lo-
cal model updates to obtain global model updates and uses
them to update a global model. FL has attracted growing at-
tention in both academia and industry. For instance, Google
adopts FL in its Gboard application for next-world predic-
tion [2]; a union of world’s leading pharmaceutical compa-
nies uses FL for drug discovery in a project called MEL-
LODDY [3]; and WeBank leverages FL to predict credit
risk of borrowers [5].

However, due to its distributed nature, FL is fundamen-
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tally vulnerable to model poisoning attacks [8,9,14,28]. All
existing model poisoning attacks assume that an attacker
has access to compromised genuine clients and rely on their
genuine local training data. Specifically, in all or some
FL rounds, the compromised genuine clients first compute
local model updates based on their genuine local training
data [14] or their poisoned versions [8, 9], and then further
manipulate the local model updates before sending them to
the cloud server. As a result, the learnt global model mis-
classifies many indiscriminate test inputs (known as untar-
geted attacks) [14] or attacker-chosen ones (known as rar-
geted attacks) [8,9]. In this work, we focus on untargeted
attacks because they are harder to perform as they need to
influence the predictions for many indiscriminate test in-
puts. Existing untargeted model poisoning attacks have
shown their effectiveness to FL, even with the presence of
Byzantine-robust defenses [10, 19,30], i.e., they can reduce
the test accuracy of the learnt global model by a significant
amount.

However, existing untargeted model poisoning attacks
all require a large fraction of compromised genuine clients
and are less effective when the fraction of compromised
genuine clients is small [14]. A recent work [2 1] argued that
such requirement of a large fraction of compromised gen-
uine clients is not realistic in production FL that involves
millions of clients. Specifically, the cost for compromis-
ing genuine clients is so high that an attacker cannot afford
to compromise a large fraction of genuine clients in pro-
duction FL. For instance, to compromise genuine clients,
an attacker needs to pay for the access to a large number
of undetected zombie devices. As a result, the fraction of
compromised genuine clients is usually small (e.g., 0.01%)
in production FL. Moreover, only a subset of clients are se-
lected in each round of production FL to participate in the
training. Therefore, it is likely that no compromised gen-
uine client is selected in many rounds of production FL.
Based on these arguments, they came to a conclusion that
production FL with the non-robust FedAvg [18] or classi-
cal defenses (e.g., Trimmed-mean [30]) is robust enough
against untargeted model poisoning attacks. However, as
we will show later, this conclusion does not stand when the
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attacker can inject fake clients into FL systems and perform
model poisoning attacks based on them.

Our work: In this work, we introduce MPAF, the first
model poisoning attack to FL that is based on fake clients.
We note that the cost of injecting fake clients is much lower
than compromising genuine clients in FL. Specifically, the
attacker can emulate many fake clients (e.g., android de-
vices) easily using open-source projects [ 1] or android em-
ulators [4, 6] on their own machines.

However, a key challenge of model poisoning attacks
based on fake clients is that the fake clients provide no ex-
tra knowledge (e.g., no genuine local training data) about
the FL system, beyond the global models they receive from
the cloud server during training. All existing model poi-
soning attacks [14, 28] rely on the assumption that the at-
tacker has some degree of extra knowledge about the FL
system, e.g., the genuine local training data on the compro-
mised genuine clients. In this work, we consider an extreme
case for the attacker, where no extra knowledge about the
FL system (e.g., genuine local training data, global learn-
ing rate, or even the FL method) is available to the attacker,
beyond the global models that fake clients receive during
training. We note that in FL, the global model is shared
with selected clients in each round, including both genuine
clients and fake ones. Therefore, our threat model considers
the minimum-knowledge scenario for an attacker.

To address the challenge, we propose MPAF, which
crafts fake local model updates based on the global mod-
els only. Specifically, in MPAF, an attacker chooses an ar-
bitrary model (called base model) that shares the same ar-
chitecture as the global model and has low test accuracy.
For instance, an attacker could randomly initialize a model
as the base model. Our intuition is that if we can force the
global model to behave like the base model whose test accu-
racy is low, then the test accuracy of the learnt global model
would likely decrease. Therefore, in each round of FL, the
fake clients generate the direction of fake local model up-
dates via subtracting the current global model from the base
model. The fake clients then scale up the magnitudes of
the fake local model updates to enlarge their impact in the
global model update. Our evaluations on multiple datasets
and multiple FL. methods show that MPAF is effective in
reducing the test accuracy of the learnt global model even
if classical defenses and norm clipping are adopted. For
instance, on Purchase dataset, MPAF decreases the test ac-
curacy of the global model learnt using Trimmed-mean by
32% when 10% fake clients are injected.

Our contribution can be summarized as follows:

e We perform the first study on model poisoning attacks
to FL based on fake clients.

e We propose MPAF, a novel untargeted model poison-
ing attack that is based on fake clients and requires no

extra knowledge about the FL system beyond the re-
ceived global models during training.

* We evaluate MPAF on multiple datasets and multiple
FL methods. Our results show that MPAF is effective,
even if classical defenses and norm clipping are lever-
aged as a countermeasure.

2. Related Work
2.1. Federated Learning (FL)

Assume there are n clients in FL, each holding some
local training data. These clients aim to collaboratively
learn a global model with the help of a cloud server. Dur-
ing training, each client maintains a local model based on
its local training data and shares its local model updates
with the cloud server. Specifically, in the ¢-th round of
FL, the cloud server first sends the current global model
w? to all or a subset of clients. Then, the clients who re-
ceive the global model fine-tune their local models based on
the global model using stochastic gradient descent (SGD)
and their local training data. The clients then send the local
model updates to the cloud server. The cloud server aggre-
gates the local model updates and updates the global model
as follows:

w'™ w41, (M

where 7 is the global learning rate, and g' is the global
model update in the t-th round obtained as follows:

Here, A is the aggregation rule the cloud server uses to ag-
gregate the local model updates, which plays an important
role in FL. Different FL. methods essentially use different
aggregation rules. Next, we will discuss three popular ag-
gregation rules, including the non-robust FedAvg [18], and
two Byzantine-robust ones, i.e., Median [30] and Trimmed-
mean [30].

FedAvg: FedAvg [18] is the most popular aggregation rule
in FL. It calculates the average of the local model updates
as the global model update. FedAvg achieves the state-of-
the-art performance in non-adversarial settings.

Median: Median [30] is a coordinate-wise aggregation
rule. The server sorts the values of each parameter in local
model updates and finds the median value as the aggregated
value for the corresponding parameter in the global model
update.

Trimmed-mean: Trimmed-mean [30] is another
coordinate-wise aggregation rule. For each model param-
eter, instead of using its median value, Trimmed-mean re-
moves the largest and smallest % values from its sorted val-
ues, and then computes the average of the remaining val-
ues as the corresponding parameter in the global model up-
date. In Trimmed-mean, k£ achieves a trade-off between
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the robustness in adversarial settings and test accuracy in
non-adversarial settings. In our experiments, we assume a
strong defender who knows the number of fake clients, i.e.,
k equals to the number of fake clients in each round.

2.2. Existing Model Poisoning Attacks to FL.

Various attacks [8, 9, 14,27, 28] have been proposed to
poison the global model in FL, all of which rely on com-
promised genuine clients. Based on the attacker’s goal,
they can be divided into two categories: untargeted model
poisoning attacks [14,28] and targeted model poisoning at-
tacks [8,9,27]. Untargeted model poisoning attacks aim
to decrease the test accuracy of the global model, while tar-
geted model poisoning attacks aim to force the global model
to output attacker-chosen target labels for attacker-chosen
target inputs. We focus on untargeted model poisoning at-
tacks in this work.

Existing untargeted model poisoning attacks [ 14,24, 28]
follow the following two steps in all or multiple rounds of
FL. First, the compromised genuine clients compute the
genuine local model updates based on their genuine local
training data. Then, they perturb their genuine local model
updates such that the poisoned global model updates will
substantially deviate from the genuine ones. These attacks
require many compromised genuine clients to be effective.
However, in production FL, it may not be affordable for an
attacker to obtain access to a large number of compromised
genuine clients [21]. Therefore, we consider a more prac-
tical scenario for model poisoning attacks that an attacker
injects fake clients to the FL system. Unfortunately, exist-
ing attacks are not applicable to such scenario, since they
require extra knowledge about the FL system (e.g., gen-
uine local training data), which is not available on the fake
clients. We notice that several works [15, 17] studied the
free-rider attacks with fake clients, which are orthogonal to
model poisoning attacks.

2.3. Defenses against Model Poisoning Attacks

Many defenses [10, 13, 14,19,20,22,29,30] have been
proposed against model poisoning attacks to FL, which
fall into two main categories. The first type of defense
[10, 13, 19,20, 29, 30] designs Byzantine-robust aggrega-
tion rules. Their idea is to mitigate the impact of statis-
tical outliers among the local model updates. For instance,
Trimmed-mean [30] removes the largest and smallest values
of each coordinate in the local model updates before taking
the average. The other type of defense [12,26] aims to pro-
vide provable guarantee against poisoning attacks. For in-
stance, Cao et al. [12] leveraged the fundamental robustness
of majority vote to design an ensemble-based provably se-
cure federated learning framework. They proved that when
the number of compromised genuine clients is bounded, the
predictions for test inputs are not affected by any attack.

However, their derived provable security guarantee does not
consider fake clients.

A recent work [21] claims that production FL with the
non-robust FedAvg or classical defenses such as Trimmed-
mean is already robust against untargeted model poisoning
attacks that rely on compromised genuine clients, because
the fraction of compromised genuine clients is small in pro-
duction FL systems. However, this claim does not stand
for fake clients based model poisoning attacks. As we will
show, an attacker can inject many fake clients into FL sys-
tems and perform MPAF to degrade the performance of the
learnt global model.

In fact, the claim on the robustness of FedAvg is not ac-
curate even if the attacker only has access to a small fraction
of compromised genuine clients. [21] claims that FedAvg
is robust because 1) the server selects a small fraction of
clients in each global training round, 2) compromised gen-
uine clients are unlikely to be selected when their fraction is
small, and 3) the compromised genuine clients’ impact on
the global model will be eliminated during training even if
they are selected in certain training rounds. However, ro-
bustness/security is about an FL system’s performance in
the worst-case scenarios. A compromised genuine client
can substantially degrade the global model’s accuracy in
the scenario where it is selected near the end of the train-
ing process. Although such worst-case scenario happens
with a small probability when the fraction of compromised
genuine clients is small, it still invalidates the robustness of
FedAvg.

3. Threat Model
3.1. Attacker’s Goal

The attacker’s goal is to decrease the test accuracy of
the learnt global model. Specifically, a larger difference be-
tween the test accuracy of the global models with and with-
out attack indicates a stronger attack.

3.2. Attacker’s Capability

We assume the attacker can inject many fake clients into
FL systems. The attacker can control these fake clients to
send arbitrary fake local model updates to the cloud server.

Compared to compromising genuine clients, the cost of
injecting fake clients is much more affordable. Specifically,
to compromise genuine clients, an attacker needs to bypass
the anti-malware software on the clients’ devices, which be-
comes more difficult as the anti-malware industry evolves.
The attacker may also choose to pay for the zombie devices
that are already compromised and could be remotely ac-
cessed. However, it would be too costly to buy a large num-
ber of zombie devices. Moreover, performing the attacks
on compromised devices requires the attacker to evade the
anomaly detection on the systems, making it even harder.
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On the contrary, it would be easy and cheap to perform
attacks based on fake clients. First, an attacker can emu-
late fake clients using open-source projects [ 1], or even the
free softwares, e.g., android emulators on PC [4,6]. It is
worth noting that modern android emulators support multi-
instance functionality, which means that an attacker can em-
ulate many instances (clients) using a single machine, sig-
nificantly reducing the cost. Another advantage of using
fake client is that the attacker has full control over the de-
vices. For instance, the android emulators can grant the at-
tacker root access to the devices, and the attacker does not
need to deal with any alert that the system may probably
raise during the attack.

3.3. Attacker’s Knowledge

Existing model poisoning attacks that rely on compro-
mised genuine clients assume the attacker knows extra
knowledge about the FL system, e.g., the genuine local
training data on the compromised genuine clients, other
than the received global models during training. However,
such assumption often does not hold when it comes to at-
tacks based on fake clients. Specifically, the fake clients are
created by the attacker and there are usually no genuine lo-
cal training data on them. Therefore, we consider a more
realistic threat model, where the attacker has no knowledge
about the FL system other than the received global models
during training. In particular, the attacker does not know
any local training data or local model updates on any gen-
uine client. Moreover, the attacker does not know the FLL
aggregation rule or the global learning rate that the cloud
server uses. Since the global model is broadcast to selected
clients in each round of FL, including both genuine and fake
clients, our threat model considers the scenario with mini-
mum knowledge for the attacker.

4. Our Attack

We will first discuss two baseline attacks and analyze
why they are not effective. Then, we will introduce our
MPAE.

4.1. Baseline Attacks

A naive way of performing model poisoning attacks with
limited knowledge is to use random noise as the fake local
model updates. For instance, the fake clients could sam-
ple a Gaussian random noise for each model parameter.
They can then enlarge the magnitudes of the random lo-
cal model updates using a scaling factor A. The fake clients
send the scaled random noise to the cloud server as the fake
local model updates. Formally, the i-th fake client sends
gf = —)\e to the cloud server in the ¢-th round, where ¢
is a random vector sampled from the multivariate Gaussian
distribution (0, I'). We call such attack random attack.

fake local model updates

4==-—"

[ ]
w'

Figure 1. Illustration of MPAF. w'’ is an attacker-chosen base
model. w'™! w!’, and w'"! are the global models in round
t — 1,t, and ¢ + 1, respectively. w™ is the learnt global model
without attack. The fake local model updates from the fake clients

drag the global model towards the base model.

Another intuitive attack based on fake clients is to esti-
mate the benign global model updates using historical in-
formation, and then generate fake local model updates that
have the opposite direction. Specifically, in the ¢-th round,
given the current global model w! and the previous global
model w'~!, we can compute the global model update g*—!
in the (¢ — 1)-th round as g'~! = (w' — w'~1)/n, where
7 is the global learning rate. Since the global model up-
dates in consecutive rounds do not differ much, especially
when the global model is near convergence, we can approx-
imate the benign global model update in the ¢-th round as
g' ~ g'7! = (w' — w'')/n. Under our threat model,
the global learning rate 7 is unknown to the attacker. How-
ever, an attacker does not need to know the exact magnitude
of the benign global model update. Instead, the attacker
can use a large scaling factor A to scale up the fake local
model updates such that their magnitudes are no smaller
than the ones from the genuine clients. Formally, a fake
client i sends g! = —A\(w® — w'™1) to the cloud server in
the ¢-th round, where the negative sign means the attacker
aims to deviate the global model to the opposite direction.
We call such attack history attack.

The two baseline attacks are intuitive. However, as we
will show in Section 5, they have limited impact on the ac-
curacy of the learnt global model when classical defenses
(e.g., Trimmed-mean) are applied. We suspect that this is
because the attacks are not consistent in consecutive rounds.
Specifically, the attacks may successfully deviate the global
model to some direction by a small step in each individ-
ual FL round. However, such deviations may have different
directions in different rounds, which means the deviations
may cancel out in multiple rounds.

4.2. MPAF

Figure | illustrates our MPAF. The attacker selects a base
model w' that has low test accuracy. For instance, the at-
tacker can select a randomly initialized model as the base
model, whose test accuracy is near random guessing. In
MPAF, the fake clients craft their local model updates to
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drag the global model towards the base model. Specifically,
in the ¢-th round of FL, the fake clients generate fake lo-
cal model updates, whose direction is determined via sub-
tracting the current global model parameters from the base
model parameters. Then the fake clients scale up their fake
local model updates by a factor A to amplify their impact.

The key challenge of attacks based on fake clients is that
the attacker has minimum knowledge about the FL system,
i.e., only the global models received during training. There-
fore, finding an effective way of leveraging such limited in-
formation becomes the critical component of attacks. In
MPAF, our main idea is to force the global model to mimic
the base model w’. Formally, we formulate our attack as
the following optimization problem:

min [w? —w'|, 3)
gl i€[n+1,n+m],te[0,T—-1]

where n is the number of genuine clients, m is the number

of fake clients (n+1,n+2,--- , n+m are the fake clients),
T is the number of FL rounds during training, w” is the
learnt final global model, and || - || represents the ¢5 norm.

Note that our problem formulation takes the entire training
process into consideration. Specifically, in any FL round,
the fake clients have the same goal of deviating the final
global model towards a fixed attacker-chosen base model.
We solve the optimization problem via driving the global
model towards the base model in each FL round. Specifi-
cally, in the ¢-th round of FL, the fake clients compute the
direction of fake local model updates by subtracting the cur-
rent global model from the base model, i.e., d = w’ — w'.
The global model is closer to the base model if it is deviated
to this direction. Then, the fake clients scale up d by a fac-
tor A to amplify the magnitude. The final fake local model
update for a fake client ¢ in the ¢-th round is as follows:

gl = \Mw' —w). 4)

An attacker can choose a large )\ to guarantee that the attack
is still effective after the cloud server aggregates the fake
local model updates from the fake clients and the genuine
local model updates from the genuine clients.

5. Evaluation
5.1. Experimental Setup
5.1.1 Datasets and Global Model Architectures

We evaluate our attacks using multiple datasets, i.e.,
MNIST [16], Fashion-MNIST [25], and Purchase [7].

MNIST: MNIST [16] is a benchmark image classification
dataset. There are 60,000 training examples and 10,000
testing examples of 10 classes, where each example is a
hand-written digit image of size 32 x 32. Following [14],

we distributed the training examples to the clients with de-
gree of non-IID ¢ = 0.5 to simulate non-IID training data.
We use the same CNN architecture for the global model as
in[11].

Fashion-MNIST: Like MNIST, Fashion-MNIST [25] is a
10-class image classification dataset with 60,000 training
examples and 10,000 testing examples. Similar to MNIST,
we distribute the training examples to the clients with de-
gree of non-IID ¢ = 0.5. We use the same CNN as the one
for MNIST.

Purchase: Purchase [7] is a 100-class classification
dataset, whose goal is to predict customer’s purchase styles.
There are 197,324 purchase records in Purchase, each of
which has 600 binary features. We split the dataset into
180,000 training records and 17,324 test records. We dis-
tribute the training data evenly to the clients. We use a fully
connected neural network as the global model architecture.
There is one hidden layer in the network, whose number of
neurons is 1,024 and activation function is Tanh.

5.1.2 FL and Attack Settings

For all three datasets, we assume there are n = 1,000 gen-
uine clients in total. We define the fraction of fake clients as
the number of injected fake clients divided by the number
of genuine clients, i.e., m/n. By default, we assume there
are m = 100 fake clients, i.e., the fraction of injected fake
clients is 10%, unless otherwise mentioned. In each round
of FL, the genuine clients train their local model using SGD
with batch size of 32, 32, and 128 for MNIST, Fashion-
MNIST, and Purchase, respectively. We set the global learn-
ing rate 7 to 0.01, 0.01, and 0.005 for the three datasets, re-
spectively. We use different settings for different datasets
to achieve high test accuracy in non-adversarial settings. In
each FL round, we assume the cloud server randomly sam-
ples [ fraction of clients to participate in training. We set
the default value of 3 to 1, i.e., the server selects all clients
in each round during training. We will evaluate the impact
of 3 in our experiments. We further set the number of FL
rounds 7" to %, Q%, and % for the three datasets. This
is because a smaller 3 indicates fewer clients in each FL
round, thus needs more rounds to converge. For our attacks,
we set the default value of the scaling factor A = 1 x 10°
and we will explore its impact. We repeat the attacks in
each experiment for 20 times with different random seeds
and report the average results.

5.1.3 Evaluation Metric

We focus on untargeted model poisoning attacks in this
work, whose goal is to decrease the test accuracy of the
learnt global model. Therefore, we use the test accuracy
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Figure 2. Test accuracy of the global models learnt by different FL. methods under the three attacks when the fraction of fake clients varies.
The datasets are MNIST (first row), Fashion-MNIST (second row) and Purchase (third row).

of the learnt global models as our metric. A lower test ac-
curacy indicates a stronger attack.

5.2. Evaluation Results

Impact of the fraction of fake clients: We explore the
impact of the fraction of fake clients on two baseline at-
tacks (i.e., random attack and history attack) and MPAF.
Figure 2 shows the test accuracy of the global models learnt
by different FLL methods when the fraction of fake clients
varies on the three datasets. We observe that when Fe-
dAvg is used, both baseline attacks and MPAF can reduce
the test accuracy of the learnt global models to random
guessing with only 1% fake clients. However, when clas-
sical defenses (e.g., Median and Trimmed-mean) are ap-
plied, MPAF can still significantly decrease the test accu-
racy while the baseline attacks cannot. For instance, on Pur-
chase dataset, MPAF reduces the test accuracy of the global

model learnt with Trimmed-mean by 32% when there are
10% fake clients, while the baseline attacks can only de-
crease the test accuracy by at most 4%. Moreover, we also
observe that MPAF is more effective when the fraction of
fake clients is larger. For instance, on Purchase dataset
when Trimmed-mean is used, the test accuracy that MPAF
can reduce increases from 32% to 49% when the fraction of
malicious clients increases from 10% to 25%.

Impact of the sample rate 5: We evaluate the effective-
ness of MPAF when the server samples different fractions
of clients in each FL round. Figure 3 shows the test accu-
racy of the global models learnt with Trimmed-mean on all
three datasets. We omit the results of non-robust FedAvg
for simplicity as the test accuracy is consistently close to
random guessing under MPAF. We observe that the sam-
ple rate S does not have much impact on MPAF and that
MPAF can significantly decrease the test accuracy when [
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Figure 4. Impact of the scaling factor A on the test accuracy of the global models learnt by Trimmed-mean.

ranges from 0.01 to 1.00. The previous claim that FedAvg
and classical defenses are robust to untargeted model poi-
soning attacks when f is small [21] does not apply to our
attack. This is because their claim is based on the assump-
tion that an attacker can only compromise a small fraction
of genuine clients.

Impact of the scaling factor \: We explore the impact of
the scaling factor on MPAF. Figure 4 shows the test accu-
racy of the global models learnt by Trimmed-mean on all
three datasets. We observe that the test accuracy first de-
creases as A increases, and then remains almost unchanged
when A further increases. Our results show that even though
the attacker does not know the hyperparameters of FL (e.g.,
the global learning rate 1), by choosing a reasonably large
value for A, e.g., A > 1 in our experiments, MPAF can re-
duce the test accuracy of the global model significantly.

6. Norm Clipping as A Countermeasure

A recent work [23] has proposed norm clipping as a
countermeasure against backdoor attacks in federated learn-
ing. Specifically, the server selects a norm threshold M,
and clips all local model updates whose ¢-norm is larger
than M such that their /5-norm becomes M. The local
model updates whose ¢5-norms are no larger than M re-

main unchanged. Formally, a local model update g becomes
m after norm clipping. The largest ¢5-norm of
the clipped local model updates is M. Therefore, the im-
pact of the malicious local model updates will be limited.
As a result, the backdoor attacks [8] that rely on scaled lo-
cal model updates will have lower attack success rate when

norm clipping is adopted as a countermeasure.

We note that the idea of using norm clipping as a coun-
termeasure is not limited to backdoor attacks. In fact, it may
also be leveraged as a countermeasure against untargeted at-
tacks that involve scaling. In MPAF, we use a scaling factor
A to increase the impact of fake local model updates during
aggregation. Therefore, it is intuitive to apply norm clipping
as a countermeasure against MPAF. We empirically evalu-
ate the effectiveness of MPAF when norm clipping is used
as a countermeasure. Specifically, we use our default set-
ting for Fashion-MNIST dataset and Trimmed-mean as the
aggregation rule. Before using Trimmed-mean to aggregate
the local model updates, we clip them with norm threshold
M, where we vary the value of M in our experiments. We
omit the results of FedAvg for simplicity as the test accu-
racy is consistently close to random guessing under MPAF.

Figure 5 shows the test accuracy of the global model
learnt by Trimmed-mean on Fashion-MNIST. We use M —
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Figure 5. Impact of the norm clipping bound M on the test ac-
curacy of the global model learnt by Trimmed-mean on Fashion-
MNIST.

oo to represent the case when there is no norm clipping. We
observe that MPAF can still effectively decrease the test ac-
curacy of the global model when norm clipping is deployed.
Specifically, under no attack, the global model achieves the
largest test accuracy of 0.85 when M — oo. However,
under MPAF, the global model achieves the largest test ac-
curacy of 0.68 when M is around 100, which represents
0.17 accuracy loss. We also observe that the difference be-
tween the test accuracy of the global model under MPAF
and the one under no attack is smaller as M decreases.
This is because more fake local model updates are clipped
as M decreases. However, as M decreases, the test ac-
curacy under no attack also decreases, e.g., M < 100 in
Figure 5 leads to a test accuracy that is much lower than
that when M — oo. This is because when M decreases,
more benign local model updates are also clipped, which
results in a less accurate global model. Our results indicate
that MPAF is still effective in reducing the test accuracy
of the global model, even if both classical defenses (e.g.,
Trimmed-mean) and norm clipping are adopted.

7. Conclusion and Discussion

In this work, we proposed MPAF, the first model poison-
ing attack to FL that is based on fake clients. We considered
a minimum-knowledge setting for the attacker and showed
that our attack is effective even when classical defenses and
norm clipping are applied, highlighting the need for more
advanced defenses against model poisoning attacks based
on fake clients.

We hope our work can inspire more future studies on
model poisoning attacks and their defenses. First, since it
is unrealistic for an attacker to compromise a large fraction
of genuine clients, it is more interesting to explore attacks

based on fake clients. For instance, an interesting future
work is to improve MPAF with extra knowledge, e.g., train-
ing data/model obtained from a similar learning task.
Second, existing untargeted model poisoning attacks
based on compromised genuine clients (e.g., [14]) formu-
late round-wise optimization problems. Specifically, in
each individual round of FL, the compromised genuine
clients solve an independent problem to obtain the mali-
cious local model updates. The solutions to these indepen-
dent problems may contradict to each other. As a result,
such malicious local model updates in different rounds may
cancel each other out, leading to sub-optimal overall attack
effect. On the contrary, our MPAF leverages a simple yet
effective way of formulating a global optimization problem
that deviates the global model towards a fixed base model.
Third, it is an interesting future work to extend our
MPAF to perform targeted model poisoning attacks. Specif-
ically, an attacker can choose a base model that has an
attacker-desired targeted behavior, e.g., a backdoored base
model. By forcing the learnt global model to be close to a
backdoored base model, the learnt global model may have
the same backdoor behavior as the base model and predict
attacker-chosen target labels for attacker-chosen test inputs.
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