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Abstract

Existing model poisoning attacks to federated learning
assume that an attacker has access to a large fraction of
compromised genuine clients. However, such assumption is
not realistic in production federated learning systems that
involve millions of clients. In this work, we propose the
first Model Poisoning Attack based on Fake clients called
MPAF. Specifically, we assume the attacker injects fake
clients to a federated learning system and sends carefully
crafted fake local model updates to the cloud server during
training, such that the learnt global model has low accuracy
for many indiscriminate test inputs. Towards this goal, our
attack drags the global model towards an attacker-chosen
base model that has low accuracy. Specifically, in each
round of federated learning, the fake clients craft fake local
model updates that point to the base model and scale them
up to amplify their impact before sending them to the cloud
server. Our experiments show that MPAF can significantly
decrease the test accuracy of the global model, even if clas-
sical defenses and norm clipping are adopted, highlighting
the need for more advanced defenses.

1. Introduction
Federated learning (FL) is an emerging machine learn-

ing paradigm for multiple clients (e.g., smartphones or IoT

devices) to jointly learn a model with the help of a cloud

server. Instead of sharing their private local training data

with the cloud server, the clients maintain local models to fit

their local training data and iteratively share local model up-
dates with the cloud server, which aggregates the clients’ lo-

cal model updates to obtain global model updates and uses

them to update a global model. FL has attracted growing at-

tention in both academia and industry. For instance, Google

adopts FL in its Gboard application for next-world predic-

tion [2]; a union of world’s leading pharmaceutical compa-

nies uses FL for drug discovery in a project called MEL-

LODDY [3]; and WeBank leverages FL to predict credit

risk of borrowers [5].

However, due to its distributed nature, FL is fundamen-

tally vulnerable to model poisoning attacks [8,9,14,28]. All

existing model poisoning attacks assume that an attacker

has access to compromised genuine clients and rely on their

genuine local training data. Specifically, in all or some

FL rounds, the compromised genuine clients first compute

local model updates based on their genuine local training

data [14] or their poisoned versions [8, 9], and then further

manipulate the local model updates before sending them to

the cloud server. As a result, the learnt global model mis-

classifies many indiscriminate test inputs (known as untar-
geted attacks) [14] or attacker-chosen ones (known as tar-
geted attacks) [8, 9]. In this work, we focus on untargeted

attacks because they are harder to perform as they need to

influence the predictions for many indiscriminate test in-

puts. Existing untargeted model poisoning attacks have

shown their effectiveness to FL, even with the presence of

Byzantine-robust defenses [10, 19, 30], i.e., they can reduce

the test accuracy of the learnt global model by a significant

amount.

However, existing untargeted model poisoning attacks

all require a large fraction of compromised genuine clients

and are less effective when the fraction of compromised

genuine clients is small [14]. A recent work [21] argued that

such requirement of a large fraction of compromised gen-

uine clients is not realistic in production FL that involves

millions of clients. Specifically, the cost for compromis-

ing genuine clients is so high that an attacker cannot afford

to compromise a large fraction of genuine clients in pro-

duction FL. For instance, to compromise genuine clients,

an attacker needs to pay for the access to a large number

of undetected zombie devices. As a result, the fraction of

compromised genuine clients is usually small (e.g., 0.01%)

in production FL. Moreover, only a subset of clients are se-

lected in each round of production FL to participate in the

training. Therefore, it is likely that no compromised gen-

uine client is selected in many rounds of production FL.

Based on these arguments, they came to a conclusion that

production FL with the non-robust FedAvg [18] or classi-

cal defenses (e.g., Trimmed-mean [30]) is robust enough

against untargeted model poisoning attacks. However, as

we will show later, this conclusion does not stand when the
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attacker can inject fake clients into FL systems and perform

model poisoning attacks based on them.

Our work: In this work, we introduce MPAF, the first

model poisoning attack to FL that is based on fake clients.

We note that the cost of injecting fake clients is much lower

than compromising genuine clients in FL. Specifically, the

attacker can emulate many fake clients (e.g., android de-

vices) easily using open-source projects [1] or android em-

ulators [4, 6] on their own machines.

However, a key challenge of model poisoning attacks

based on fake clients is that the fake clients provide no ex-

tra knowledge (e.g., no genuine local training data) about

the FL system, beyond the global models they receive from

the cloud server during training. All existing model poi-

soning attacks [14, 28] rely on the assumption that the at-

tacker has some degree of extra knowledge about the FL

system, e.g., the genuine local training data on the compro-

mised genuine clients. In this work, we consider an extreme

case for the attacker, where no extra knowledge about the

FL system (e.g., genuine local training data, global learn-

ing rate, or even the FL method) is available to the attacker,

beyond the global models that fake clients receive during

training. We note that in FL, the global model is shared

with selected clients in each round, including both genuine

clients and fake ones. Therefore, our threat model considers

the minimum-knowledge scenario for an attacker.

To address the challenge, we propose MPAF, which

crafts fake local model updates based on the global mod-

els only. Specifically, in MPAF, an attacker chooses an ar-

bitrary model (called base model) that shares the same ar-

chitecture as the global model and has low test accuracy.

For instance, an attacker could randomly initialize a model

as the base model. Our intuition is that if we can force the

global model to behave like the base model whose test accu-

racy is low, then the test accuracy of the learnt global model

would likely decrease. Therefore, in each round of FL, the

fake clients generate the direction of fake local model up-

dates via subtracting the current global model from the base

model. The fake clients then scale up the magnitudes of

the fake local model updates to enlarge their impact in the

global model update. Our evaluations on multiple datasets

and multiple FL methods show that MPAF is effective in

reducing the test accuracy of the learnt global model even

if classical defenses and norm clipping are adopted. For

instance, on Purchase dataset, MPAF decreases the test ac-

curacy of the global model learnt using Trimmed-mean by

32% when 10% fake clients are injected.

Our contribution can be summarized as follows:

• We perform the first study on model poisoning attacks

to FL based on fake clients.

• We propose MPAF, a novel untargeted model poison-

ing attack that is based on fake clients and requires no

extra knowledge about the FL system beyond the re-

ceived global models during training.

• We evaluate MPAF on multiple datasets and multiple

FL methods. Our results show that MPAF is effective,

even if classical defenses and norm clipping are lever-

aged as a countermeasure.

2. Related Work
2.1. Federated Learning (FL)

Assume there are n clients in FL, each holding some

local training data. These clients aim to collaboratively

learn a global model with the help of a cloud server. Dur-

ing training, each client maintains a local model based on

its local training data and shares its local model updates

with the cloud server. Specifically, in the t-th round of

FL, the cloud server first sends the current global model

wt to all or a subset of clients. Then, the clients who re-

ceive the global model fine-tune their local models based on

the global model using stochastic gradient descent (SGD)

and their local training data. The clients then send the local

model updates to the cloud server. The cloud server aggre-

gates the local model updates and updates the global model

as follows:

wt+1 ← wt + ηgt, (1)

where η is the global learning rate, and gt is the global
model update in the t-th round obtained as follows:

gt = A(gt
1, g

t
2, · · · , gt

n). (2)

Here, A is the aggregation rule the cloud server uses to ag-

gregate the local model updates, which plays an important

role in FL. Different FL methods essentially use different

aggregation rules. Next, we will discuss three popular ag-

gregation rules, including the non-robust FedAvg [18], and

two Byzantine-robust ones, i.e., Median [30] and Trimmed-

mean [30].

FedAvg: FedAvg [18] is the most popular aggregation rule

in FL. It calculates the average of the local model updates

as the global model update. FedAvg achieves the state-of-

the-art performance in non-adversarial settings.

Median: Median [30] is a coordinate-wise aggregation

rule. The server sorts the values of each parameter in local

model updates and finds the median value as the aggregated

value for the corresponding parameter in the global model

update.

Trimmed-mean: Trimmed-mean [30] is another

coordinate-wise aggregation rule. For each model param-

eter, instead of using its median value, Trimmed-mean re-

moves the largest and smallest k values from its sorted val-

ues, and then computes the average of the remaining val-

ues as the corresponding parameter in the global model up-

date. In Trimmed-mean, k achieves a trade-off between
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the robustness in adversarial settings and test accuracy in

non-adversarial settings. In our experiments, we assume a

strong defender who knows the number of fake clients, i.e.,

k equals to the number of fake clients in each round.

2.2. Existing Model Poisoning Attacks to FL

Various attacks [8, 9, 14, 27, 28] have been proposed to

poison the global model in FL, all of which rely on com-

promised genuine clients. Based on the attacker’s goal,

they can be divided into two categories: untargeted model

poisoning attacks [14, 28] and targeted model poisoning at-

tacks [8, 9, 27]. Untargeted model poisoning attacks aim

to decrease the test accuracy of the global model, while tar-

geted model poisoning attacks aim to force the global model

to output attacker-chosen target labels for attacker-chosen

target inputs. We focus on untargeted model poisoning at-

tacks in this work.

Existing untargeted model poisoning attacks [14, 24, 28]

follow the following two steps in all or multiple rounds of

FL. First, the compromised genuine clients compute the

genuine local model updates based on their genuine local

training data. Then, they perturb their genuine local model

updates such that the poisoned global model updates will

substantially deviate from the genuine ones. These attacks

require many compromised genuine clients to be effective.

However, in production FL, it may not be affordable for an

attacker to obtain access to a large number of compromised

genuine clients [21]. Therefore, we consider a more prac-

tical scenario for model poisoning attacks that an attacker

injects fake clients to the FL system. Unfortunately, exist-

ing attacks are not applicable to such scenario, since they

require extra knowledge about the FL system (e.g., gen-

uine local training data), which is not available on the fake

clients. We notice that several works [15, 17] studied the

free-rider attacks with fake clients, which are orthogonal to

model poisoning attacks.

2.3. Defenses against Model Poisoning Attacks

Many defenses [10, 13, 14, 19, 20, 22, 29, 30] have been

proposed against model poisoning attacks to FL, which

fall into two main categories. The first type of defense

[10, 13, 19, 20, 29, 30] designs Byzantine-robust aggrega-

tion rules. Their idea is to mitigate the impact of statis-

tical outliers among the local model updates. For instance,

Trimmed-mean [30] removes the largest and smallest values

of each coordinate in the local model updates before taking

the average. The other type of defense [12, 26] aims to pro-

vide provable guarantee against poisoning attacks. For in-

stance, Cao et al. [12] leveraged the fundamental robustness

of majority vote to design an ensemble-based provably se-

cure federated learning framework. They proved that when

the number of compromised genuine clients is bounded, the

predictions for test inputs are not affected by any attack.

However, their derived provable security guarantee does not

consider fake clients.

A recent work [21] claims that production FL with the

non-robust FedAvg or classical defenses such as Trimmed-

mean is already robust against untargeted model poisoning

attacks that rely on compromised genuine clients, because

the fraction of compromised genuine clients is small in pro-

duction FL systems. However, this claim does not stand

for fake clients based model poisoning attacks. As we will

show, an attacker can inject many fake clients into FL sys-

tems and perform MPAF to degrade the performance of the

learnt global model.

In fact, the claim on the robustness of FedAvg is not ac-

curate even if the attacker only has access to a small fraction

of compromised genuine clients. [21] claims that FedAvg

is robust because 1) the server selects a small fraction of

clients in each global training round, 2) compromised gen-

uine clients are unlikely to be selected when their fraction is

small, and 3) the compromised genuine clients’ impact on

the global model will be eliminated during training even if

they are selected in certain training rounds. However, ro-

bustness/security is about an FL system’s performance in

the worst-case scenarios. A compromised genuine client

can substantially degrade the global model’s accuracy in

the scenario where it is selected near the end of the train-

ing process. Although such worst-case scenario happens

with a small probability when the fraction of compromised

genuine clients is small, it still invalidates the robustness of

FedAvg.

3. Threat Model
3.1. Attacker’s Goal

The attacker’s goal is to decrease the test accuracy of

the learnt global model. Specifically, a larger difference be-

tween the test accuracy of the global models with and with-

out attack indicates a stronger attack.

3.2. Attacker’s Capability

We assume the attacker can inject many fake clients into

FL systems. The attacker can control these fake clients to

send arbitrary fake local model updates to the cloud server.

Compared to compromising genuine clients, the cost of

injecting fake clients is much more affordable. Specifically,

to compromise genuine clients, an attacker needs to bypass

the anti-malware software on the clients’ devices, which be-

comes more difficult as the anti-malware industry evolves.

The attacker may also choose to pay for the zombie devices

that are already compromised and could be remotely ac-

cessed. However, it would be too costly to buy a large num-

ber of zombie devices. Moreover, performing the attacks

on compromised devices requires the attacker to evade the

anomaly detection on the systems, making it even harder.
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On the contrary, it would be easy and cheap to perform

attacks based on fake clients. First, an attacker can emu-

late fake clients using open-source projects [1], or even the

free softwares, e.g., android emulators on PC [4, 6]. It is

worth noting that modern android emulators support multi-

instance functionality, which means that an attacker can em-

ulate many instances (clients) using a single machine, sig-

nificantly reducing the cost. Another advantage of using

fake client is that the attacker has full control over the de-

vices. For instance, the android emulators can grant the at-

tacker root access to the devices, and the attacker does not

need to deal with any alert that the system may probably

raise during the attack.

3.3. Attacker’s Knowledge

Existing model poisoning attacks that rely on compro-

mised genuine clients assume the attacker knows extra

knowledge about the FL system, e.g., the genuine local

training data on the compromised genuine clients, other

than the received global models during training. However,

such assumption often does not hold when it comes to at-

tacks based on fake clients. Specifically, the fake clients are

created by the attacker and there are usually no genuine lo-

cal training data on them. Therefore, we consider a more

realistic threat model, where the attacker has no knowledge

about the FL system other than the received global models

during training. In particular, the attacker does not know

any local training data or local model updates on any gen-

uine client. Moreover, the attacker does not know the FL

aggregation rule or the global learning rate that the cloud

server uses. Since the global model is broadcast to selected

clients in each round of FL, including both genuine and fake

clients, our threat model considers the scenario with mini-

mum knowledge for the attacker.

4. Our Attack

We will first discuss two baseline attacks and analyze

why they are not effective. Then, we will introduce our

MPAF.

4.1. Baseline Attacks

A naive way of performing model poisoning attacks with

limited knowledge is to use random noise as the fake local

model updates. For instance, the fake clients could sam-

ple a Gaussian random noise for each model parameter.

They can then enlarge the magnitudes of the random lo-

cal model updates using a scaling factor λ. The fake clients

send the scaled random noise to the cloud server as the fake

local model updates. Formally, the i-th fake client sends

gt
i = −λε to the cloud server in the t-th round, where ε

is a random vector sampled from the multivariate Gaussian

distribution N (0, I). We call such attack random attack.

࢝ᇱ

࢝௧ିଵ
࢝௧ ࢝∗

࢝௧ାଵ
fake local model updates

genuine local model updates

Figure 1. Illustration of MPAF. w′ is an attacker-chosen base

model. wt−1,wt, and wt+1 are the global models in round

t − 1, t, and t + 1, respectively. w∗ is the learnt global model

without attack. The fake local model updates from the fake clients

drag the global model towards the base model.

Another intuitive attack based on fake clients is to esti-

mate the benign global model updates using historical in-

formation, and then generate fake local model updates that

have the opposite direction. Specifically, in the t-th round,

given the current global model wt and the previous global

model wt−1, we can compute the global model update gt−1

in the (t − 1)-th round as gt−1 = (wt − wt−1)/η, where

η is the global learning rate. Since the global model up-

dates in consecutive rounds do not differ much, especially

when the global model is near convergence, we can approx-

imate the benign global model update in the t-th round as

ĝt ≈ gt−1 = (wt − wt−1)/η. Under our threat model,

the global learning rate η is unknown to the attacker. How-

ever, an attacker does not need to know the exact magnitude

of the benign global model update. Instead, the attacker

can use a large scaling factor λ to scale up the fake local

model updates such that their magnitudes are no smaller

than the ones from the genuine clients. Formally, a fake

client i sends gt
i = −λ(wt −wt−1) to the cloud server in

the t-th round, where the negative sign means the attacker

aims to deviate the global model to the opposite direction.

We call such attack history attack.

The two baseline attacks are intuitive. However, as we

will show in Section 5, they have limited impact on the ac-

curacy of the learnt global model when classical defenses

(e.g., Trimmed-mean) are applied. We suspect that this is

because the attacks are not consistent in consecutive rounds.

Specifically, the attacks may successfully deviate the global

model to some direction by a small step in each individ-

ual FL round. However, such deviations may have different

directions in different rounds, which means the deviations

may cancel out in multiple rounds.

4.2. MPAF

Figure 1 illustrates our MPAF. The attacker selects a base
model w′ that has low test accuracy. For instance, the at-

tacker can select a randomly initialized model as the base

model, whose test accuracy is near random guessing. In

MPAF, the fake clients craft their local model updates to
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drag the global model towards the base model. Specifically,

in the t-th round of FL, the fake clients generate fake lo-

cal model updates, whose direction is determined via sub-

tracting the current global model parameters from the base

model parameters. Then the fake clients scale up their fake

local model updates by a factor λ to amplify their impact.

The key challenge of attacks based on fake clients is that

the attacker has minimum knowledge about the FL system,

i.e., only the global models received during training. There-

fore, finding an effective way of leveraging such limited in-

formation becomes the critical component of attacks. In

MPAF, our main idea is to force the global model to mimic

the base model w′. Formally, we formulate our attack as

the following optimization problem:

min
gt
i ,i∈[n+1,n+m],t∈[0,T−1]

‖wT −w′‖, (3)

where n is the number of genuine clients, m is the number

of fake clients (n+1, n+2, · · · , n+m are the fake clients),

T is the number of FL rounds during training, wT is the

learnt final global model, and ‖ · ‖ represents the �2 norm.

Note that our problem formulation takes the entire training

process into consideration. Specifically, in any FL round,

the fake clients have the same goal of deviating the final

global model towards a fixed attacker-chosen base model.

We solve the optimization problem via driving the global

model towards the base model in each FL round. Specifi-

cally, in the t-th round of FL, the fake clients compute the

direction of fake local model updates by subtracting the cur-

rent global model from the base model, i.e., d = w′ −wt.

The global model is closer to the base model if it is deviated

to this direction. Then, the fake clients scale up d by a fac-

tor λ to amplify the magnitude. The final fake local model

update for a fake client i in the t-th round is as follows:

gt
i = λ(w′ −wt). (4)

An attacker can choose a large λ to guarantee that the attack

is still effective after the cloud server aggregates the fake

local model updates from the fake clients and the genuine

local model updates from the genuine clients.

5. Evaluation

5.1. Experimental Setup

5.1.1 Datasets and Global Model Architectures

We evaluate our attacks using multiple datasets, i.e.,

MNIST [16], Fashion-MNIST [25], and Purchase [7].

MNIST: MNIST [16] is a benchmark image classification

dataset. There are 60,000 training examples and 10,000

testing examples of 10 classes, where each example is a

hand-written digit image of size 32 × 32. Following [14],

we distributed the training examples to the clients with de-

gree of non-IID q = 0.5 to simulate non-IID training data.

We use the same CNN architecture for the global model as

in [11].

Fashion-MNIST: Like MNIST, Fashion-MNIST [25] is a

10-class image classification dataset with 60,000 training

examples and 10,000 testing examples. Similar to MNIST,

we distribute the training examples to the clients with de-

gree of non-IID q = 0.5. We use the same CNN as the one

for MNIST.

Purchase: Purchase [7] is a 100-class classification

dataset, whose goal is to predict customer’s purchase styles.

There are 197,324 purchase records in Purchase, each of

which has 600 binary features. We split the dataset into

180,000 training records and 17,324 test records. We dis-

tribute the training data evenly to the clients. We use a fully

connected neural network as the global model architecture.

There is one hidden layer in the network, whose number of

neurons is 1,024 and activation function is Tanh.

5.1.2 FL and Attack Settings

For all three datasets, we assume there are n = 1, 000 gen-

uine clients in total. We define the fraction of fake clients as

the number of injected fake clients divided by the number

of genuine clients, i.e., m/n. By default, we assume there

are m = 100 fake clients, i.e., the fraction of injected fake

clients is 10%, unless otherwise mentioned. In each round

of FL, the genuine clients train their local model using SGD

with batch size of 32, 32, and 128 for MNIST, Fashion-

MNIST, and Purchase, respectively. We set the global learn-

ing rate η to 0.01, 0.01, and 0.005 for the three datasets, re-

spectively. We use different settings for different datasets

to achieve high test accuracy in non-adversarial settings. In

each FL round, we assume the cloud server randomly sam-

ples β fraction of clients to participate in training. We set

the default value of β to 1, i.e., the server selects all clients

in each round during training. We will evaluate the impact

of β in our experiments. We further set the number of FL

rounds T to 200
β , 200

β , and 500
β for the three datasets. This

is because a smaller β indicates fewer clients in each FL

round, thus needs more rounds to converge. For our attacks,

we set the default value of the scaling factor λ = 1 × 106

and we will explore its impact. We repeat the attacks in

each experiment for 20 times with different random seeds

and report the average results.

5.1.3 Evaluation Metric

We focus on untargeted model poisoning attacks in this

work, whose goal is to decrease the test accuracy of the

learnt global model. Therefore, we use the test accuracy
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(c) Trimmed-mean

Figure 2. Test accuracy of the global models learnt by different FL methods under the three attacks when the fraction of fake clients varies.

The datasets are MNIST (first row), Fashion-MNIST (second row) and Purchase (third row).

of the learnt global models as our metric. A lower test ac-

curacy indicates a stronger attack.

5.2. Evaluation Results

Impact of the fraction of fake clients: We explore the

impact of the fraction of fake clients on two baseline at-

tacks (i.e., random attack and history attack) and MPAF.

Figure 2 shows the test accuracy of the global models learnt

by different FL methods when the fraction of fake clients

varies on the three datasets. We observe that when Fe-

dAvg is used, both baseline attacks and MPAF can reduce

the test accuracy of the learnt global models to random

guessing with only 1% fake clients. However, when clas-

sical defenses (e.g., Median and Trimmed-mean) are ap-

plied, MPAF can still significantly decrease the test accu-

racy while the baseline attacks cannot. For instance, on Pur-

chase dataset, MPAF reduces the test accuracy of the global

model learnt with Trimmed-mean by 32% when there are

10% fake clients, while the baseline attacks can only de-

crease the test accuracy by at most 4%. Moreover, we also

observe that MPAF is more effective when the fraction of

fake clients is larger. For instance, on Purchase dataset

when Trimmed-mean is used, the test accuracy that MPAF

can reduce increases from 32% to 49% when the fraction of

malicious clients increases from 10% to 25%.

Impact of the sample rate β: We evaluate the effective-

ness of MPAF when the server samples different fractions

of clients in each FL round. Figure 3 shows the test accu-

racy of the global models learnt with Trimmed-mean on all

three datasets. We omit the results of non-robust FedAvg

for simplicity as the test accuracy is consistently close to

random guessing under MPAF. We observe that the sam-

ple rate β does not have much impact on MPAF and that

MPAF can significantly decrease the test accuracy when β
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Figure 3. Impact of the sample rate β on the test accuracy of the global models learnt by Trimmed-mean.

0.1 10 1000 100000
λ

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

no attack
MPAF

(a) MNIST

0.1 10 1000 100000
λ

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

no attack
MPAF

(b) Fashion-MNIST

0.1 10 1000 100000
λ

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

no attack
MPAF

(c) Purchase

Figure 4. Impact of the scaling factor λ on the test accuracy of the global models learnt by Trimmed-mean.

ranges from 0.01 to 1.00. The previous claim that FedAvg

and classical defenses are robust to untargeted model poi-

soning attacks when β is small [21] does not apply to our

attack. This is because their claim is based on the assump-

tion that an attacker can only compromise a small fraction

of genuine clients.

Impact of the scaling factor λ: We explore the impact of

the scaling factor on MPAF. Figure 4 shows the test accu-

racy of the global models learnt by Trimmed-mean on all

three datasets. We observe that the test accuracy first de-

creases as λ increases, and then remains almost unchanged

when λ further increases. Our results show that even though

the attacker does not know the hyperparameters of FL (e.g.,

the global learning rate η), by choosing a reasonably large

value for λ, e.g., λ ≥ 1 in our experiments, MPAF can re-

duce the test accuracy of the global model significantly.

6. Norm Clipping as A Countermeasure
A recent work [23] has proposed norm clipping as a

countermeasure against backdoor attacks in federated learn-

ing. Specifically, the server selects a norm threshold M ,

and clips all local model updates whose �2-norm is larger

than M such that their �2-norm becomes M . The local

model updates whose �2-norms are no larger than M re-

main unchanged. Formally, a local model update g becomes
g

max(1,‖g‖2/M) after norm clipping. The largest �2-norm of

the clipped local model updates is M . Therefore, the im-

pact of the malicious local model updates will be limited.

As a result, the backdoor attacks [8] that rely on scaled lo-

cal model updates will have lower attack success rate when

norm clipping is adopted as a countermeasure.

We note that the idea of using norm clipping as a coun-

termeasure is not limited to backdoor attacks. In fact, it may

also be leveraged as a countermeasure against untargeted at-

tacks that involve scaling. In MPAF, we use a scaling factor

λ to increase the impact of fake local model updates during

aggregation. Therefore, it is intuitive to apply norm clipping

as a countermeasure against MPAF. We empirically evalu-

ate the effectiveness of MPAF when norm clipping is used

as a countermeasure. Specifically, we use our default set-

ting for Fashion-MNIST dataset and Trimmed-mean as the

aggregation rule. Before using Trimmed-mean to aggregate

the local model updates, we clip them with norm threshold

M , where we vary the value of M in our experiments. We

omit the results of FedAvg for simplicity as the test accu-

racy is consistently close to random guessing under MPAF.

Figure 5 shows the test accuracy of the global model

learnt by Trimmed-mean on Fashion-MNIST. We use M →

3402



0.1 1.0 10.0 100.0 1000.0 ∞
M

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

no attack
MPAF

Figure 5. Impact of the norm clipping bound M on the test ac-

curacy of the global model learnt by Trimmed-mean on Fashion-

MNIST.

∞ to represent the case when there is no norm clipping. We

observe that MPAF can still effectively decrease the test ac-

curacy of the global model when norm clipping is deployed.

Specifically, under no attack, the global model achieves the

largest test accuracy of 0.85 when M → ∞. However,

under MPAF, the global model achieves the largest test ac-

curacy of 0.68 when M is around 100, which represents

0.17 accuracy loss. We also observe that the difference be-

tween the test accuracy of the global model under MPAF

and the one under no attack is smaller as M decreases.

This is because more fake local model updates are clipped

as M decreases. However, as M decreases, the test ac-

curacy under no attack also decreases, e.g., M < 100 in

Figure 5 leads to a test accuracy that is much lower than

that when M → ∞. This is because when M decreases,

more benign local model updates are also clipped, which

results in a less accurate global model. Our results indicate

that MPAF is still effective in reducing the test accuracy

of the global model, even if both classical defenses (e.g.,

Trimmed-mean) and norm clipping are adopted.

7. Conclusion and Discussion

In this work, we proposed MPAF, the first model poison-

ing attack to FL that is based on fake clients. We considered

a minimum-knowledge setting for the attacker and showed

that our attack is effective even when classical defenses and

norm clipping are applied, highlighting the need for more

advanced defenses against model poisoning attacks based

on fake clients.

We hope our work can inspire more future studies on

model poisoning attacks and their defenses. First, since it

is unrealistic for an attacker to compromise a large fraction

of genuine clients, it is more interesting to explore attacks

based on fake clients. For instance, an interesting future

work is to improve MPAF with extra knowledge, e.g., train-

ing data/model obtained from a similar learning task.

Second, existing untargeted model poisoning attacks

based on compromised genuine clients (e.g., [14]) formu-

late round-wise optimization problems. Specifically, in

each individual round of FL, the compromised genuine

clients solve an independent problem to obtain the mali-

cious local model updates. The solutions to these indepen-

dent problems may contradict to each other. As a result,

such malicious local model updates in different rounds may

cancel each other out, leading to sub-optimal overall attack

effect. On the contrary, our MPAF leverages a simple yet

effective way of formulating a global optimization problem

that deviates the global model towards a fixed base model.

Third, it is an interesting future work to extend our

MPAF to perform targeted model poisoning attacks. Specif-

ically, an attacker can choose a base model that has an

attacker-desired targeted behavior, e.g., a backdoored base

model. By forcing the learnt global model to be close to a

backdoored base model, the learnt global model may have

the same backdoor behavior as the base model and predict

attacker-chosen target labels for attacker-chosen test inputs.
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