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Abstract

Plan recognition is a key component of player modeling.
Player plan recognition focuses on modeling how and when
players select goals and formulate action sequences to
achieve their goals during gameplay. By occasionally asking
players to describe their plans, it is possible to devise robust
plan recognition models that jointly reason about player goals
and action sequences in coordination with player input. In
this work, we present a player plan recognition framework
that leverages data from player interactions with a planning
support tool embedded in an educational game for middle
school science education, CRYSTAL ISLAND. Players are
prompted to use the planning tool to describe their goals and
planned actions in CRYSTAL ISLAND. We use this data to de-
vise data-driven player plan recognition models using multi-
label multi-task learning. Specifically, we compare single-
task and multi-task learning approaches for both goal predic-
tion and action sequence prediction. Results indicate that
multi-task learning yields significant benefits for action se-
quence prediction. Additionally, we find that incorporating
automated detectors of plan completion in plan recognition
models improves predictive performance in both tasks.

Introduction

Recent years have seen growing interest in player modeling
in games. Data-driven approaches to player modeling pro-
vide an unobtrusive way to adapt games to individual
player’s needs and intentions (Hooshyar, Yousefi and Lim
2018). An important player modeling task is player plan
recognition, which is the process of inferring players’ goals
and plans through observations of player interactions with a
game (Albrecht, Zukerman and Nicholson 1997). Goal set-
ting and planning are critical to how players approach digital
games. Players will often develop plans about how to ap-
proach challenging tasks or puzzles. In educational games,
setting goals and building plans is central to becoming a
self-regulated learner (Dever et al. 2022). Devising
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computational models of player plan recognition enables the
creation of player-adaptive games that can assess and sup-
port goal setting and planning processes to improve players’
gameplay experiences and engagement. For example, if a
player plan recognition model can accurately predict what a
player is planning, the game can provide feedback or hints
or tailor components of the game scenario based upon the
player’s plans.

Player plan recognition focuses on utilizing lower-level
observations of individual players’ strategies to infer high-
level goals and plans for achieving them. Goal recognition
falls under the umbrella of plan recognition, where only
high-level goals are predicted (Blaylock and Allen 2003).
While there has been considerable work on player goal
recognition for player modeling purposes, very few applica-
tions of plan recognition have been explored in open-world
game environments. Additionally, little work has been done
to understand how to best externalize and leverage players’
goal setting and planning processes for player plan recogni-
tion modeling.

This paper presents a player plan recognition framework
that uses long-short term memory (LSTM) networks to pre-
dict players’ goals and the action sequences players identify
as helping to achieve their goals. The testbed for the frame-
work is gameplay data from an open-world game designed
to teach middle school microbiology, CRYSTAL ISLAND. In
this game, players are prompted to construct plans with an
embedded planning support tool. Plans in this case consist
of high-level goals and sets of low-level in-game actions the
player can enact in the game. Using these plans, we formal-
ize the two prediction tasks as multi-label multi-task learn-
ing problems. We compare the performance of this frame-
work to a single-task LSTM classifier. Additionally, we in-
corporate automated detectors for goal and action sequence
completion and compare results to both single and multi-



task performance. Our aim is to investigate the effectiveness
of using multi-task techniques and plan completion detec-
tors to enhance player plan recognition.

Related Work

The ability to recognize player goals and plans in digital
games provides insight into how to adapt games to player
behaviors, performance, and interests (Duarte et al. 2020;
Sukthankar et al. 2014). Recent work has investigated using
theory of mind (ToM) to inform plan recognition models for
plan intervention (Weerawardhana, Whitley, and Roberts
2021), multi-agent cooperation (Boeda 2021), and intention
supporting planners (Ware and Siler 2021). ToM is the abil-
ity to understand and predict intent, mental models and other
cognitive characteristics, which is important when applied
to player modeling (Shergadwala, Teng, and El-Nasr 2021).
There has been a wide variety of methodologies for con-
structing such recognition problems that use ToM for plan
and goal recognition tasks, such as recursive neural net-
works (Bisson, Larochelle, and Kabanza 2015), combina-
tory categorial grammars (Rabkina et al. 2022), and hierar-
chical task networks (Rabkina et al. 2021). While these
methods have been shown to work well in digital games
with pre-defined states, little work has been done on the po-
tential of machine learning-based plan recognition in open-
world digital games.

Player action sequences are highly idiosyncratic and ex-
ploratory in open-world games. LSTMs are broadly effec-
tive at handling noisy, probabilistic data. Prior work on
player goal recognition in open-world games has found that
LSTMs outperform several non-LSTM baselines (e.g., non-
recurrent deep neural networks, conditional random fields,
Markov logic networks, n-grams) across a range of evalua-
tion metrics (Min et al. 2016, Min et al. 2017). We extend
this work by formalizing player plan recognition in terms of
two complimentary prediction tasks: (1) goal recognition of
high-level player goals and (2) action sequence recognition
of low-level actions players enact in the game environment.
Another contribution of this work is the use of a planning
support tool to construct labels for player plan recognition.
Leveraging these labels, we translate players’ gameplay into
action sequences to sequentially model student plans with
LSTMs.

Recent research has investigated techniques to improve
plan recognition models in finite-state environments that
have predetermined goals and states. Massardi, Gavel, and
Beaudry (2019) examine the use of a particle filter to reduce
noise in the low-level observations provided as input to the
prediction model and subsequently reduce error in the key-
hole plan recognition task. This approach is shown to be ef-
ficient but requires a plan library specific to the environ-
ment. Another approach utilizes parsing techniques to verify

and predict plans constructed in a hierarchical task network
(Bartak, Ondrkova and Maillard 2019). Additionally, delet-
ing action sequences from invalid plans has been shown to
aid in correcting hierarchical plans and help with the ex-
plainability verifying plans (Bartak et al. 2021). Although
these examples rely on defined maps of the environment and
appropriate plans, these approaches demonstrate the useful-
ness of preprocessing steps and utilizing in-game action se-
quences to enhance plan recognition models. Our work also
utilizes the concept of plan verification to enhance plan
recognition models’ predictions by detecting when players
complete goals they have externalized with the planning
support tool. We incorporate a form of action deletion in the
label set using this technique, which is an extension of prior
work and a novel contribution of our plan recognition frame-
work.

Plan Recognition Framework

Our plan recognition framework utilizes low-level game
events as inputs for two prediction tasks: player goal predic-
tion and action sequence prediction. Additionally, we lever-
age players’ interactions with a planning support tool to gen-
erate labels for each prediction task.

CRYSTAL ISLAND Testbed

CRYSTAL ISLAND is an open-world game-based learning en-
vironment for middle school science in which students in-
vestigate a mysterious outbreak on a remote island research
station (Figure 1). During the game, players have a first-per-
son view of the island as they converse with non-playable
characters (NPCs), read virtual books and posters, test items
in a virtual laboratory and explore different locations on the
island.

Figure 1. CRYSTAL ISLAND open-world environment.
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Figure 2. Example planning support tool interaction.

Throughout gameplay, players are prompted to build
plans using a drag and drop, block-based visual interface in-
spired by visual programming languages (Figure 2). Each
plan consists of a goal clamp that represents a high-level
goal in the game and a series of nested actions that repre-
sents low-level trace events that can be enacted in the game.
The size of plans is not restricted, and players can access the
tool voluntarily throughout gameplay. All in-game actions,
including planning support tool usage are logged and avail-
able for offline analysis.

The dataset used for this analysis was collected from 144
eighth grade students (60% female, 40% male). Students
played CRYSTAL ISLAND over a two-day span asynchro-
nously during remote science class time due to the COVID-
19 pandemic. Students were not given a time limit to com-
plete the game and averaged 94.7 minutes (SD = 47.7) of
gameplay. They were also given an introductory video de-
scribing the game mechanics and planning support tool and
asked to complete pre- and post-tests.

Framework Input

The trace logs generated from student gameplay represent

sequences of actions taken while interacting with CRYSTAL

ISLAND. We refer to these as in-game event sequences. Each

in-game event contains three types of features: event type,

event argument and location.

* Event type. Event types were derived from the various
activities a player can take in the game. There were 9 total

event types: moving to another location, reading a book
or article, completing questions about a book or article,
filling in items in the diagnosis worksheet, viewing a
poster, having a conversation with a NPC, submitting a
final diagnosis, completing a plot point in the game, and
scanning items for disease.

* Event argument. The event arguments generated are
specific to the event type. For example, if the event is
reading a book, the event argument will be the title of the
book. This feature is used to provide more information
about the event type. 108 unique event arguments were
derived from the gameplay data.

* Location. The location feature represents the area of the
island the event took place. The game environment con-
tains 24 unique locations. If the event type is movement,
the location feature represents where the player moved
to.

CRYSTAL ISLAND’s data logging system produces a single

event sequence for each player that captures key actions they

performed in the game. These complete event sequences
need to be broken up to construct smaller event sequences
that correspond to the goals and plans players had at differ-
ent points during gameplay. To construct these smaller
event sequences, we split the complete event sequences at
each interaction with the planning support tool. Since play-
ers are asked to use the planning support tool to externalize
their goals and plans, we assume that the in-game events that
occur after an interaction with the tool are steps to enact the
externalized goals and plans. When a player interacts with



the planning support tool again, we assume that the updated
contents of the tool represent their current goals and plans.
Thus, an event sequence begins with the event occurring di-
rectly after a player’s planning tool interaction and ends with
the event immediately before the next planning tool interac-
tion. There was a wide range of event sequence lengths
(min=1, max=454), meaning there was a wide variety of
planning support tool interactions for each player. To ac-
count for this, we set the maximum event sequence length
to be the median across players: 30. Sequences of less than
30 events were zero-padded to provide a fixed-length input.
We constructed these event sequences cumulatively for ac-
tion-level prediction. Once event sequences were segmented
by planning support tool use, we created a vector represen-
tation of these sequences using one-hot encoding vectors.
These steps have been shown in prior work to be the most
effective for goal recognition tasks (Goslen, et al. 2022; Min
et al., 2017). There were 385 event sequences after pro-
cessing the data across all players. Once constructed cumu-
latively, we had 11,550 total sequences.

Framework Prediction Tasks

We constructed both goal prediction and action sequence
prediction tasks as multi-label classification problems in
which a trained classifier predicts which selected goals a
player has chosen, as well as the set of planned actions they
indicate they intend to take to achieve that goal.

Explore camp
Go to infirmary

Go to lead scientist's (Bryce's) quarters

Goal Recognition

The planning support tool provides 20 possible goals for
players to select, which fall in five categories. We utilized
these five categories as labels for the goal recognition task:
Collect Data (22%), Communicate Findings (4%), Form Di-
agnosis (13%), Learn Science Content (22%), and Gather
Information (40%). Because Crystal Island is an open-world
game, we cannot assume a player will work towards only
one goal at a time. Thus, we formalized the problem as a
multi-label classification task, where each event sequence is
assigned a binary label vector of length five that corresponds
to the given goal categories.

Action Sequence Recognition

The planning support tool provides 55 possible actions from
which students can construct plans for their goals. Six action
categories were designed to provide broader context to the
planned actions. Because plans often contained more than
one planned action (mean=2.58, SD=1.96) per selected goal,
we used these categories as well as the following steps to
formalize the action sequence recognition task into a multi-
label classification problem. First, we concatenated all
planned actions together for each selected goal. Then, we
applied SpaCy word embeddings to each of these sets of
planned actions (Levy and Goldberg 2014; Srinivasa-
Deskan 2018). Next, we averaged the word embeddings
across each word and applied k-means clustering to find pat-
terns in the player constructed plans. We used the Elbow

Go to living quarters

\

. Goal Prediction Label Vector
Go to laboratory 1. Pick up bread 00011
2. Go to laboratory [ ]
Go to dining hall 3. Speak with lab .
technician
4. Scan bread for Action Sequence
bacteria Prediction Label Vector
Learn about outbreak / [0110]

Use scanner to test objects

Speak with lab technician

First planning tool interaction Player event sequences Label Generation

Figure 3. Representation of the label assignment process. The label vectors shown above are generated from the player’s first
planning tool interaction. In this case, the model would take in the one-hot encoded vector representation of the player event
sequences and be trained on the given labels.



method to determine 4 to be the appropriate number of clus-
ters for the dataset (Bholowalia and Kumar 2014). Similar
to goal label construction, we used these clusters of class
labels in the form over a binary vector of length 4. The re-
sulting clusters appeared to align with the most used action
category in each plan. “Read Science Content” was primar-
ily found in Cluster 0 (9%). “Explore” was primarily used
in Cluster 1 (30%). Plans mostly contained “Gather and
Scan Items” in Cluster 2 (33%), and plans mostly contained
“Speak with Characters” in Cluster 3 (28%).

Automatic Plan Completion Detection

The original framework this work extends assumes players
frequently update their goals and plans to what they want to
achieve next (Goslen et al. 2022). A large component of this
is marking plans as being completed once the player has en-
acted all appropriate events to achieve a given goal. If a plan
is not marked as being complete, it is left as a label in the
plan recognition framework. This creates a problem when
training the models, as it is being trained on event sequences
that might not be representative of that plan. To alleviate this
issue, we incorporated a preprocessing step to automatically
identify when a plan has been completed and remove it from
the label set.

Because CRYSTAL ISLAND is an open-world game envi-
ronment, there is not one specific way that a player could
achieve a selected goal. For instance, one possible goal a
player can select is “Explore Island”. There are 24 locations
in the game, so deciding when a player has explored the is-
land enough to complete the goal is not a simple task. To
solve this problem, we used players’ planned actions to de-
termine if the goal was complete. That is, if a player com-
pleted the entire set of actions in a plan in their previous
planning instance and that plan was still present in the next
planning instance, both the goal and set of planned action
sequences would be removed from the label set. For exam-
ple, consider the plans and event sequences from Figure 2.
As we can see in the player’s in-game events executed after
the first planning instance, the player enacted all the steps in
the bottom plan, “Learn about outbreak.” If in the next plan-
ning interaction, the player kept the “Learn about outbreak”
plan in their planning tool, this goal and action sequence la-
bel would not be included in the respective label vectors.
The resulting dataset had the following distribution of goals
labels: (1) Collect Data: 22%, (2) Communicate Findings:
5%, (3) Form Diagnosis: 6%, (4) Learn Science Content:
22%, and (5) Gather Information: 46% and the following
distribution of plan labels (0) Read Science Content: 10%,
(1) Explore: 28%, (2) Gather and Scan Items: 34%, (3)
Speak with Characters: 28%.

Evaluation

To evaluate both goal and action sequence recognition tasks,
we investigated three different types of computational mod-
els that all shared the same event sequence representation as
input: (1) single-task multi-label classification, which trains
and predicts goal and action sequence prediction models
separately (Figure 4), (2) multi-task multi-label classifica-
tion, which allows models for each task to be informed by
the other (Figure 5), and (3) enhanced multi-task evaluation,
which incorporates automatic detection of plan completion
into player plan recognition.

Event sequences | - LSTM - Dense - Goal predictions

aTTTDh
Action sequence

Event sequences + LSTM - Dense R
J predictions

Figure 4. Single-task model architecture.

Long short-term memory (LSTM) networks were used
for all three types of models. Both the single-task and multi-
task models were trained on one hidden layer with 100 units.
We used nested 5-fold cross validation, with iterative grid
search applied to the inner fold for hyperparameter tuning
of batch size (64 and 128) and number of training epochs
(50 and 100). We also used a stratified player-level split
within folds to ensure similar label distribution and elimi-
nate data leakage between training and test splits. Since the
hyperparameters were tuned as part of a nested 5-fold cross-
validation procedure, the optimal hyperparameters chosen
for each fold differed.

Goal predictions

Event sequences |~ LSTM = - Dense

.| Action sequence
predictions

Figure 5. Multi-task model architecture.

Macro-average F-measure was used to evaluate the mod-
els’ predictive performance. Macro-average F-measure per-
forms well on imbalanced datasets because it calculates the
average F-measure for each class label individually before
aggregating the averages together (Pereira et al. 2018). Both
plan and goal label distributions are imbalanced, making
macro-average F-measure an appropriate choice for evalua-
tion. Additionally, F-measure works well in multi-label
classification because its calculations utilize false positives
and false negatives, emphasizing incorrectly classified la-
bels (Liu and Chen 2015; Madjarov et al. 2012). Evaluating
performance based on this type of calculation is useful for
designing models for player-adaptive games.



Collect Communicate Form Learn science Gather Overall
data findings diagnosis content information ve
N dist. 21% 3% 3% 24% 49%
Single-task 0.32 0.35 0.47 0.35 0.62 0.42
Multi-task 0.31 0.37 0.47 0.36 0.61 0.42
N dist. 22% 5% 6% 22% 46%
Enhanced Multi-task 0.36 0.48 0.47 0.34 0.60 0.45

Table 1. F-measure goal recognition results for all three experiments. Distribution of labels represents the distribution of the
test set from the 5-fold cross validation.

Read science Gather and Speak with
Explore . Overall
content scan items characters
N dist. 8% 27% 28% 36%
Single-task 0.48 0.47 0.31 0.38 0.40
Multi-task 0.34 0.44 0.49 0.39 0.42
N dist. 10% 28% 34% 28%
Enhanced Multi-task 0.31 0.46 0.53 0.40 0.43

Table 2. F-measure action sequence results for all three experiments. Distribution of labels represents the distribution of the
test set from the 5-fold cross validation.

Results

This section presents the results for both goal and action se-
quence prediction tasks. We compared the performance of a
single-task LSTM to a multi-task multi-label LSTM classi-
fication task, as well as an enhanced multi-task model that
included detection of plan completion.

Goal Recognition Results

Table 1 shows that the overall performance of the trained
goal recognition models was the same for single and multi-
task goal recognition. Individual performance across classes
did not differ significantly either. However, we did see an
improvement in predictive performance when removing
completed goals from the label set. This preprocessing re-
moved 77 total goals from the label set.

Although the distribution of labels did not change much,
a 3% improvement in macro F-measure implies that detect-
ing plan completion reduced noise in the dataset. The en-
hanced multi-task model that incorporated plan completion
performed best for two out of the five goal categories, with

the highest improvement in F-measure being seen in “Com-
municate findings”. These results imply that using the plan
completion logic helped to boost performance.

Action Sequence Recognition Results

Results in Table 2 show an improvement in macro F-meas-
ure for multi-task action sequence recognition compared
with the single-task model’s performance. This implies that
players’ selected goals help to inform the action sequence
prediction models.

Like in the goal recognition task, there is an improvement
in overall F-measure performance after including the auto-
mated plan completion detectors. The plan completion de-
tection preprocessing removed 58 sets of action sequences
from the label set because they were already completed in
gameplay. The enhanced multi-task model performed best
for two out of four of the sets of plans, with “Gather and
scan items” showing the most improvement in F-measure.

Notably, there was a decrease in F-measure performance
for the least represented set of plans, “Read science con-
tent,” in both multi-task models. Based on the multi-task
model architecture, we can infer that the goal categories



used in players’ plans might have caused this performance
drop. Players can access reading material in all locations in
CRYSTAL ISLAND, and reading science content could aid in
achieving almost all goals found in the planning support
tool, meaning that players could use “Read science content”
action sequences in a wide variety of ways. More investiga-
tion into how players used this action sequence category in
relation to goal categories is needed to fully understand this
decrease in performance.

Discussion

In this work, we found that multi-task models of goal and
action sequence prediction boosted overall F-measures rela-
tive to single-task models. Furthermore, we found that in-
cluding a pre-processing step of removing completed goals
and action sequences from the label set improves model per-
formance in both tasks. These findings show promise for
multi-label multi-task player plan recognition models in
game-based learning environments, as does accounting for
player goal and action completion in player plan recognition
models. While these results indicate improvement in player
plan recognition models, there were some limitations with
the framework.

Using players’ goal setting and planning processes pro-
vides a new way to construct plan recognition models, but it
also relies heavily on how players utilize the embedded
planning support tool in CRYSTAL ISLAND. Event sequences
are segmented when players open and close the tool and
there was considerable variance in the number of times play-
ers opened the planning tool. If a player does not open the
planning support tool until the end of the game, the pre-
sented framework could train player plan recognition mod-
els based upon a set of goals and action sequences spanning
an entire gameplay session. More analysis needs to be done
exploring the relationships between game play activity and
planning activity to better understand when and why players
choose to interact with the planning support tool.

Additionally, our framework partially assumes players
will update their plans once they have completed a goal or
changed their strategy. Anecdotally, we have observed that
this is not always the case. In some cases, students may leave
their plans in the planning support tool, and their interac-
tions with the planning support tool may decrease over the
course of gameplay. Our action deletion process attempts to
alleviate part of this problem. Encouragingly, it shows
promise in helping to reduce noise in the dataset. Additional
exploration into how players altered their plans throughout
gameplay is needed to better understand how to address is-
sues of non-updated plans and planning support tool inter-
actions declining over time.

Lastly, there was an imbalance in the dataset’s label dis-
tribution, which might have affected overall performance of

the LSTMs, especially for the goal recognition task. The im-
balanced selection of goal categories could point to a greater
pattern in player strategies to solve the mystery of the game.
Further analysis could be done to understand the relation-
ship between selected goal categories and action sequences
with where they occur in the game. Aligning science prob-
lem solving logic to goal categories and action sequences
might help to inform player plan recognition models in this
context, since the environment is a narrative scenario based
on science problem-solving. This could provide further in-
sight into player strategies.

Conclusion

This work presents a player plan recognition framework that
leverages players’ interactions with a planning support tool
in an open-world learning environment to predict player
goals and planned action sequences for achieving that goal.
The presented framework takes gameplay observations as
input and uses players’ selected goals and action sequences
to construct a multi-label multi-task formalization of player
plan recognition. Specifically, the framework is centered on
two complementary prediction tasks: player goal prediction
and player action sequence prediction. Models for both tasks
were evaluated as single tasks as well as multi-tasks using
LSTMs. These techniques proved to be beneficial for action
sequence prediction, with an overall macro-average F-meas-
ure improvement. Additionally, automatic detection of plan
completion was incorporated into the multi-task LSTM
model for further analysis as an enhancement to the player
plan recognition framework. In both tasks, we saw improve-
ment in macro-average F-measure, indicating that this pre-
processing step is beneficial for the prediction models.

These results highlight the potential of player plan recog-
nition models in player-adaptive digital games. Future work
could be done to explore plan verification techniques in
player-adaptive environments to help inform the plan recog-
nition models, as well as players’ strategies throughout
gameplay. Investigating how to devise models that can iden-
tify goal abandonment throughout gameplay would be ben-
eficial for enhancing goal and action sequence recognition.
Furthermore, incorporating run-time plan recognition mod-
els into player-adaptive games to enhance players’ game-
play experiences has significant promise as a future direc-
tion.
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