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ABSTRACT: The identification of vortices in a fluid flow is a dynamically interesting problem that has practical appli-
cations in oceanography due to the outsized role eddies play in water mass, heat, and tracer transport. Here a new Eulerian
scheme is developed to detect both vortices and strongly strained fronts, which are both ubiquitous in the World Ocean. The
new scheme is conceptually linked to the well-known Okubo—Weiss parameter, but is extended to quasigeostrophic flows by
recognizing the strong role played by vertical shear in ocean dynamics. Adapted from the A, criterion for vortex identifi-
cation, the scheme considers the curvature of the pressure field as the differentiator between vortical and strained flow
structures, and it is shown that its underlying geometry also exhibits characteristics of quasigeostrophic flow. The uses and
skill of the scheme are demonstrated using a high-resolution regional ocean simulation, and prospects for its use with

observational products are discussed.
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1. Introduction

The stratification and small aspect ratio of ocean mesoscale
flows often makes them well approximated by two-dimensional
(2D) dynamics. Even with the vast simplifications afforded by
approximating mesoscale motions in this way, the emergent
flow structures often bear excellent qualitative and dynamical
resemblance to real ocean turbulence. Two-dimensional flows
feature analogous cascades of enstrophy and energy as do
quasigeostrophic (QG) flows, and in the presence of a Coriolis
force bear similar flow structures such as vortices, jets, and
filaments (Herring 1980; McWilliams 1984; Hua and Haidvogel
1986; McWilliams 1989). The generation of filaments has been
of particular interest in the context of both two- and three-
dimensional flows (e.g., Ashurst et al. 1987; Melander et al.
1987; Dritschel et al. 1991; Ohkitani and Kishiba 1995; Galanti
et al. 1997; Kevlahan and Farge 1997; Von Hardenberg et al.
2000), and is manifested in the stretching and folding of fluid
elements such that vorticity is accumulated into thin sets with
sharp gradients. The accumulation of vorticity into these
small-scale structures is the embodiment of the downscale
enstrophy cascade (Chen et al. 2003), the study of which
continues to draw interest due to its relevance to atmospheric
and oceanic flows.

The enstrophy cascade itself, being a spectral quantity, is
inherently nonlocal and thus challenging to examine in the
highly heterogeneous flows of the real ocean. An alternative
approach for studying its dynamics instead focuses on the
processes governing the production of vorticity gradients, or
equivalently the gradients of any tracer which obeys the
same evolution equation as vorticity (McWilliams 1984;
Weiss 1991; Ohkitani and Kishiba 1995; Protas et al. 1999;
Straub 2003).

Regions where the production of gradients is particularly
vigorous indicate where the turbulent cascades are especially
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active, and tend to lie outside the coherent structures asso-
ciated with large-scale vortices (Mariotti et al. 1994). Methods
used to identify vortices thus also implicitly indicate where
gradient production is occurring, and by extension where the
enstrophy cascade is strongest. These considerations have
motivated a sizable body of literature dedicated to parti-
tioning flows into regions that are dominated by strain
(gradient-producing) versus those dominated by vorticity.
The so-called “Okubo-Weiss parameter” (hereafter W; Okubo
1970; Weiss 1991) is perhaps the most well-known and easily
applied criterion to partition ocean flows in this way, and has
found many applications due to its facility with both model (e.g.,
Poje et al. 2010; Williams et al. 2011; Petersen et al. 2013) and
altimetric data (e.g., Isern-Fontanet et al. 2003, 2004; Chelton
et al. 2007; Henson and Thomas 2008; Souza et al. 2011, among
others). It, too, was conceptualized for 2D flows, and its use in
physical oceanography is justified largely by the quasi-horizontal
nature of mesoscale motions.

Among oceanographers W is perhaps the most familiar solu-
tion to a more general problem in fluid dynamics, which is to
develop a mathematical criterion with which to identify vortices.
Several Eulerian schemes for vortex identification have been
proposed in previous literature, many of which, like W, are based
on an eigendecomposition of the velocity gradient tensor (e.g.,
Hunt et al. 1988; Chong et al. 1990; Berdahl and Thompson 1993;
Zhou et al. 1999). Essentially all of these schemes are mathe-
matically related to each other (Chakraborty et al. 2005); in fact,
the Q criterion of Hunt et al. (1988) is identified as the three-
dimensional generalization of W. Even more mathematically
rigorous identification schemes have been developed which are
invariant under rotations and translations (“objective”; e.g.,
Haller and Yuan 2000; Haller 2005; Haller et al. 2016), and which
are shown to be superior to eigenvalue-based methods for vortex
identification in unsteady and chaotic flows (e.g., Serra and Haller
2016; Pedergnana et al. 2020). Such methods are superior in their
ability to track the material coherence of eddies, and recent work
has shown that they can differ greatly from Eulerian methods in
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their estimates of ocean eddy transport (e.g., Abernathey and
Haller 2018; Tarshish et al. 2018; Liu et al. 2019).

Nonetheless, among all of the available vortex identifica-
tion schemes, the use of W remains prevalent in physical
oceanography due to its simplicity and practicality. It is most
commonly applied with altimetric data (e.g., Isern-Fontanet
et al. 2003, 2004; Chelton et al. 2007, among others) to study
mesoscale eddy characteristics, such as eddy lifetime, prop-
agation distance, and size (e.g., Chelton et al. 2007,2011). The
prominence of mesoscale eddies and the strong tendency of
their cores to be vorticity-dominated tends to make W-based
detection methods reasonably skillful and quite visually
compelling. The use of W as a diagnostic tool is not without
shortcomings, however, and simple examples can be con-
structed where the criterion fails (e.g., Pierrehumbert and
Yang 1993; Balmforth et al. 2000). In observational ocean-
ography its primary deficiency, as described by Chelton et al.
(2011), is that the geostrophic velocities that are used in its
calculation are inferred from the sea surface height field 4.
The resulting equation for W is a quadratic function of the
second derivatives of 4, making it highly sensitive to noise in
the altimetric data. For the particular application of eddy
detection, W-based methods can also have difficulty dis-
tinguishing eddies from other strongly vortical features such
as jet meanders (e.g., d’Ovidio et al. 2009; Souza et al. 2011;
Williams et al. 2011). For these reasons eddy detection
methods based on W are frequently employed using addi-
tional constraints, such as imposing a user-defined threshold
to filter out regions where |W| is small and the flow structures
are ambiguous (e.g., Isern-Fontanet et al. 2003; Morrow et al.
2004; Chelton et al. 2007).

This manuscript is partially motivated by the recognition
that there are other vorticity-dominated features in the ocean
that would not be properly classified as mesoscale eddies, but
are nonetheless of dynamical interest. An obvious limitation of
W as an ocean diagnostic is that it is purely a function of hor-
izontal velocities and derivatives, whereas the ocean’s vertical
shear and circulations drive some of the processes most fun-
damental to the broader climate system (e.g., Mahadevan and
Tandon 2006; Thomas et al. 2008; Klein and Lapeyre 2009;
Lévy et al. 2012). At large scales the velocity field is in ap-
proximate geostrophic and thermal wind balance, such that the
vertical shears can be related to the horizontal derivatives of
density via the QG approximation. This suggests an opportu-
nity to explore new vortex identification schemes that have the
same practical advantages as W (viz., that they can be diag-
nosed from surface fields via remote sensing) while still taking
the vertical dimension into account. The increasing resolution
of gridded observational products pertaining to % (e.g., Taburet
et al. 2019; Zlotnicki et al. 2019), sea surface temperature (e.g.,
Donlon et al. 2012), and sea surface salinity (e.g., Droghei et al.
2018; Reul et al. 2020) means that observing structures smaller
than mesoscale eddies is within reach (Reul et al. 2014; Umbert
et al. 2015; Isern-Fontanet et al. 2016; Melnichenko et al. 2017;
Vinogradova et al. 2019), and will become even more so with
future remote sensing missions such as the Surface Water and
Ocean Topography (SWOT; Fu et al. 2009), the proposed
Copernicus Imaging Microwave Radiometer (CIMR; Kilic
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et al. 2018), and Soil Moisture and Ocean Salinity—High
Resolution (SMOS-HR; Rodriguez-Fernandez et al. 2019).

Looking beyond the application of vortex identification, the
dynamics also provide motivation to explore new methods for
separating strain- and rotation-dominated parts of the flow.
Partitioning the flow in this way can yield information about
which parts of the ocean favor vigorous turbulent cascades or are
conduits for ocean ventilation (e.g., Klocker 2018; Bachman and
Klocker 2020; Balwada et al. 2021), as well as their unique roles
in the ocean energy cycle (e.g., Ferrari and Wunsch 2009, 2010;
Storch et al. 2012; Chen et al. 2014). Part of the approach here is
to take a critical look at the use of W in this context and to
evaluate how it might fail, and alternatively, to consider whether
any of the other previously mentioned schemes are better suited
for exploring these topics. Last, the inclusion of the vertical di-
mension allows us to consider what geometric properties of
these flow structures can be inferred from just the surface fields.

The purpose of this manuscript is to develop alternative
Eulerian diagnostics to W that retain its appealing mathe-
matical simplicity and applicability with surface diagnostics,
while including dynamics associated with the vertical dimen-
sion. As such, the approach here begins by considering a QG
flow, as opposed to the 2D framework typically used for W.
Like many of the extant schemes mentioned above, the
mathematics will involve an eigenanalysis based on decom-
posing the velocity gradient tensor, so that the results can be
understood both algebraically (via eigenvalues) and geomet-
rically (via eigenvectors).

The remainder of this paper is laid out as follows. Section 2
will review the mathematical concepts behind the Okubo-
Weiss approach and why it becomes a degenerate mathemat-
ical problem in QG. An alternative approach based on the A,
criterion (Jeong and Hussain 1995) will be presented, and will
be analyzed via the eigenvalues and eigenvectors of the asso-
ciated tensor. Section 4 will present diagnoses of the resulting
parameters (both 2D and QG) from realistic numerical simu-
lations. Concluding remarks appear in section 5.

2. The Okubo-Weiss approach for 2D and QG flows
a. The velocity gradient, strain-rate, and vorticity tensors

As this study will examine both two- and three-dimensional
(QG) flows, this introductory discussion will establish the
mathematical underpinnings of the Okubo-Weiss parameter
in the 2D case before examining why this approach becomes
degenerate in QG. Unlike the original derivations by Okubo
(1970) and Weiss (1991), here the dynamics will be considered
in the rotating frame to make the role of the Coriolis force
explicit. For simplicity the motion will be considered on the f
plane (which in the context of W is appropriate since it is en-
tirely based on local velocity gradients) with constant Coriolis
parameter f, though it is possible to generalize these argu-
ments to cases where f varies meridionally as well (Hua
et al. 1998).

The underlying concept of the Okubo-Weiss parameter is to
consider whether a flow is more likely to stretch and strain fluid
elements, or to simply rotate them in the absence of deformation.
The tendency of a flow to perform these actions is reflected in the
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way the velocity field varies in space, which is given mathemat-
ically by the velocity gradient tensor,

Vu=du, ¢9)
where i indicates the row and j indicates the column. The sym-
metric and antisymmetric parts of the velocity gradient tensor are
known as the strain-rate (rate of deformation) tensor S and vor-
ticity (spin) tensor €2, respectively, which are easily calculated via
Vu and its transpose, Vu'. Mathematically they are identified as

Vu=S+Q, )
= %(Vu +vu"), 3)

1
=5(Vu~- vu®). )

The evolution of the strain-rate and vorticity tensors can be
obtained by taking the gradient of the momentum equations,
here written in a general form for both 2D and QG flows as

Du

— 7 — A v 2
Dr ¥ —V¢ +vV-u, 5)

for an incompressible velocity field u = (u, v), Coriolis term.7,
pressure potential ¢, constant viscosity v, and material deriv-
ative D/Dt = 9t + ud, + vd,. The gradient of (5) can then be
split into symmetric and antisymmetric parts to obtain evolu-
tion equations for S and Q,

DS

Y 2 27'57 _ //+ 2
Dr S -0~ 7g—¢" +vV’S, (6)
%: -SQ-QS -7, +1V’Q, (7)

where the subscripts on .7 indicate the decomposition of the
Coriolis term. The nonlinear terms immediately to the right of
the equal signs arise from applying the gradient operator to the
advection terms inside the material derivative. The term ¢” is
known as the pressure Hessian, which has historically played a
central role in studies of vortex identification and gradient for-
mation in incompressible flows (e.g., Jeong and Hussain 1995;
Hua and Klein 1998; Chevillard et al. 2008). Note that conve-
nient simplifications to (7) can be made for 2D flow since in this
special case SQ + QS and.” o = 0. The evolution equation for
Q) thus reduces to the familiar identity that for inviscid flow the
vorticity is conserved along Lagrangian trajectories.

As a final introductory step before deriving the Okubo-
Weiss parameter, note that for two-dimensional flow the ten-
sors S and € can be expressed as

1|lo, o, _l 0 ~w
S_2|:0'S _‘Tn} and Q_Z[w O}’ 8)

using the normal strain, o, = d,u — 9,v, shearing strain, o, =
dv + d,u, and relative vorticity, o = dv — d,u.

b. The 2D tracer gradient problem

The derivation of W in the 2D problem begins by either
considering the evolution of particle trajectories (e.g., Okubo
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1970) or tracer gradients (e.g., Weiss 1991), which are essen-
tially dual approaches that yield the same overall interpreta-
tion (Hua and Klein 1998). Here the analysis will focus on the
tracer gradient problem, and in particular we will consider a
conserved tracer g. The choice to name this tracer g is done
purposefully to evoke that these derivations also apply when
considering the absolute vorticity (2D) or potential vorticity
(QG) on the f plane, both of which are conserved in their re-
spective flow regimes and are often denoted by g in the
oceanographic literature.

The evolution of the gradient of g along a Lagrangian tra-
jectory is given by

DTV;] =—Vu'vg. ©)
This is a set of coupled partial differential equations for the
elements of the vector Vg, where the coupling coefficients are
the elements of Vu" and vary in both time and space. In the
standard derivation of W one assumes that the elements of
VuT evolve slowly in comparison to Vg,! in which case (9) can
be approximated as a linear set of ordinary differential
equations (ODEs) in ¢ with constant coefficients. The general
solution for this problem is a linear combination of the ei-
genvalues and eigenvectors of VuT, with the eigenvalues de-
picting the nature of the velocity field and the eigenvectors
governing the rate of change depending on their alignment
with Vg (more on this below). Both Okubo (1970) and Weiss
(1991) focused on the eigenvalues A, showing that they are
roots of the characteristic equation

1

A2 ZZ(UZ - o), (10)

where 02 = o2 + o2 is the square of the total deformation. The
Okubo-Weiss parameter is given by the expression in (10)
bracketed by parentheses,
W =¢? — 0. (11)
When W is positive, strain dominates over vorticity, the eigen-
values of VuT are real, and the general solution of (9) predicts
exponential growth of Vg in time. When it is negative, the vor-
ticity dominates over the strain, the eigenvalues are purely
complex, and the solution of (9) predicts orbital motion that
neither grows or decays in time. In this sense negative values of
W evoke what one might imagine to be the behavior of a vortex,
where the orientation of the tracer gradient merely gets rotated
by the vortical flow without changing in magnitude.
Another way to analyze this problem is through the gradient
norm equation, which is derived by taking the dot product of
(9) with Vg and can be written

D|VCI|2__ T
Dt 2Vq'SVq.

(12)

'Note that this assumption was shown by Basdevant and
Philipovitch (1994) to generally not hold except in vortex cores.
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A salient property of this equation is that, unlike in (9) where
the full velocity gradient tensor affects the dynamics, the
change in the gradient norm only depends on the strain-rate
tensor S. Note that this equation is derived without making any
assumptions about whether S varies slowly, but the dynamics
are broadly consistent with what the Okubo-Weiss method
predicts. For example, supposing that ;> S;;for alli and j so
that one can replace VuT with Q in (9), one would obtain that
the right hand side of (12) would be zero and the gradient norm
would not change following the motion. Alternatively, one can
make the assumption S; > € for all i and j, the results of
which are most easily shown by rotating the coordinate system
into a frame that is aligned with the eigenvectors of S (the
strain basis). To do so, one can define a rotation matrix .72(0)
that rotates the coordinate axes by an angle

1
6= Etan’1 ((%) .

With this transformation one can define a new vector Y, such
that Vg =.72(6)Y, which gives

(13)

DIV[®_ —2[%2(6)Y]'S2(0)Y, (14)
Dt
= -2Y'%(0)"'S#(0)Y, 15)
=-Y'3Y, (16)
where
3= <g _00) 17)

is a diagonal matrix of the eigenvalues of S (or equivalently, the
strain-rate tensor written in the strain basis). Writing Y = (y1, y»),
(16) can be rewritten as

DIY?
Dt

=—o(yi =), (18)
which shows that the tendency of the gradient norm depends
on both the magnitude of the strain and its orientation. The
latter is an aspect of the tracer gradient dynamics that the
Okubo-Weiss approach ignores. Equation (18) makes it clear
that the change of the gradient norm depends on the alignment
of Y with the axes of the strain basis. The growth of the norm is
maximized if Y = (0, 1), wherein the tracer gradient is aligned
with the eigenvector e, = (0,1) (the compressional axis) for the
negative eigenvalue of S. The norm neither grows or decays if
Y = (1, 1), which would be aligned with the bisector of the
strain-rate eigenvectors (e.g., Lapeyre et al. 1999; Klein et al.
2000). The decay of the norm is maximized if Y = (1, 0),
aligned with the eigenvector e; = (1, 0) (the extensional axis)
of the positive eigenvalue. For a visual depiction of this ge-
ometry the reader is encouraged to consult Fig. 1 of Klein et al.
(2000). Note that if one assumes that the strain rate varies
slowly compared to Y, i.e., the same assumption as used for the
Okubo-Weiss derivation, (18) predicts exponential growth
(decay) of the norm if the tracer gradient is aligned with e, (e;).
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A key point here is that both unique elements of the strain-rate
tensor (o, and o) appear in the growth rate for the gradient
norm. The Okubo-Weiss parameter for 2D flows is thus consis-
tent in the sense that it is completely described by the elements of
S and Q; that is, there are no components of the strain-rate or
vorticity tensors that are not accounted for in the expression for
W. It will next be shown that this is not the case for the QG
problem, requiring deeper consideration of how to measure the
competition between strain and vorticity in QG flows.

c. The degeneracy of the QG tracer gradient problem

In QG the evolution of the gradient of g along a Lagrangian
trajectory is still given by (9), except that the problem now
involves three dimensions so that

u v 0
Vubg=|u, v, 0 (19)
u, v, 0

Note that the third column is zero because in QG the vertical
velocity in the advection operator is asymptotically small.
Following the same procedure as for the 2D case, one assumes
that the elements of Vuls evolve slowly compared to Vg,
yielding a system of coupled linear ODEs whose solution is given
by the eigenvalues and eigenvectors of Vug,s. The eigenvalues of
Vul; are A =0, *(1/2)(0> — )", with the zero eigenvalue
corresponding to the vertical eigenvector, e3 = (0, 0, 1). One
readily notices that the nonzero eigenvalues are the same as for
the 2D problem.

That the 2D and QG velocity gradient tensors have the same
nonzero eigenvalues suggests that W remains a useful metric
for QG flows. However, examination of the gradient norm
problem [introduced for the 2D case in (12)] reveals an im-
portant difference. As was the case for the tracer gradient
problem (9), the QG version of the gradient norm problem also
shares the same mathematical form as in the 2D case, but in-
stead uses the QG strain-rate tensor

1 9y T u,
SQG = E o’x _0'” vz (20)
u, v, 0

It is immediately clear that Sog contains elements related to
the vertical geostrophic shear, u, and v,, which are not ac-
counted for in W. Taking this point further, one can easily
create a pathological example wherein the vertical shear is the
only relevant parameter in the gradient norm problem. For
example, consider a purely zonal flow whose only spatial var-
iations are in the vertical direction, so that u, is the only non-
zero element of Sgg. One can then follow an analogous
procedure as in (13)—(18), where this time a counterclockwise
rotation of 45° about the y axis is sufficient to rotate the co-
ordinate frame into the strain basis and diagonalize Sqg.
Writing Y = (y1, 2, ¥3), the analogous equation to (18) is

DIY| _
Dt

—u,(yi ~y3)- eay
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The zonal vertical shear u, here plays the same role as did o in
(18), modulating the rate of change of the gradient norm in-
dependent of the gradient’s orientation. Crucially, it confirms
that the component of the strain-rate tensor associated with the
vertical shear should be accounted for by any parameter aim-
ing to categorize strain-vorticity dynamics in QG. The 2D
Okubo-Weiss parameter does not satisfy this requirement, as
it measures only the horizontal components of the strain.

That the eigenvalues of Vug lack any information about the
vertical shear is an example of the “degenerate dynamics of
particle stirring” at leading order for QG flows (cf. Hua et al.
1998). This use of the adjective ‘“‘degenerate” refers to mathe-
matical degeneracy, in which the dimensionality of the solution to
(9) is reduced. In this context it means that the QG version of (9)
is a three-dimensional problem, but its solution is effectively only
2D since the third (vertical) eigenvalue is zero. Both Hua et al.
(1998) and Smith and Ferrari (2009) show that the degeneracy
arises because of a peculiarity in the dynamics of the QG tracer
gradient problem, which is that the vertical gradient depends on
the strength of the horizontal gradient but not vice versa. Because
the Okubo-Weiss approach assesses the horizontal and vertical
gradients jointly it is unaware of this degeneracy and only detects
the horizontal dynamics as being important.

The use of Win QG flows (here taken as synonymous with real
ocean mesoscale flows) thus misses the vertical shears that are
crucial in both the QG strain-rate tensor, (20), and vorticity tensor,

0 -0 u
1 K4
QQG =5 ® 0 8 (22)
—u, -v, 0

It is this degeneracy that motivates the effort in this paper, which
is to develop an alternative Eulerian method to W for use in
large-scale oceanography. Many of the candidate vortex iden-
tification parameters mentioned in the Introduction (e.g., Hunt
et al. 1988; Chong et al. 1990; Berdahl and Thompson 1993;
Zhou et al. 1999) are immediately disqualified on the basis that
they are also informed by the eigenvalues of Vug,;. That is, none
of these parameters will overcome the degeneracy that afflicts W
in QG. Others involve a level of mathematical sophistication
that is likely beyond the needs or capabilities of typical ocean-
ographic applications.”> The next section will highlight one
scheme, the A, criterion proposed by Jeong and Hussain (1995),
as a promising way to avoid the degeneracy of the above
schemes despite its mathematical connection with W.

3. The A, criterion for QG flows

Before discussing the merits of the A, criterion, it is useful to list
some desirable properties that a vortex identification scheme
should possess when used for QG flows. Note that this discussion

2 The author notes that the criterion introduced by Haller (2005)
requires no mathematics beyond what will be used in this paper,
and thus would be an intriguing target for future work that is both
sophisticated and accessible.
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will only pertain to Eulerian schemes based on velocity gradients
and their constituent tensors (2)—(4), so approaches using methods
such as streamline computation (e.g., Sadarjoen and Post 2000;
Nencioli et al. 2010) or Lagrangian descriptors (e.g., Madrid and
Mancho 2009; Mancho et al. 2013) will not be considered.

Itis important to recognize that the family of schemes based on
measuring the eigenvalues of Vul; (which includes W) is both
well recognized and highly successful. Though the new scheme
does not necessarily have to follow this exact approach, the ve-
locity gradient tensor (2) does serve as a mathematical common
ground for an even broader array of schemes (Chakraborty et al.
2005). Given the dynamical and mathematical similarities be-
tween 2D and QG flows, it is thus not unreasonable to expect that
the new QG scheme should exhibit some connections with its 2D
counterpart. In particular, we will use W as a sort of “baseline
scheme” in this discussion, such that for the QG scheme the
following properties are desired:

e The scheme should somehow manifest the standard (2D)
definition of W if u, = 0.

e The parameters obtained through the scheme must be real,
i.e., the eigenvalues of a symmetric tensor.

e The small aspect ratio of QG flows means that the relevant
strain and vorticity dynamics are quasi-horizontal. The ten-
sor that yields these new parameters should have eigen-
vectors that reflect this quasi-horizontal geometry.

These criteria essentially insist that this scheme is treated as
an extension of a 2D problem, in that purely 2D dynamics are
recovered in the limit of no vertical shear. This section will
introduce the A, criterion as a scheme that satisfies these cri-
teria. It was previously applied to a QG flow by Petersen et al.
(2006) to identify vortices in an idealized domain, but was not
examined in terms of its geometric properties. These proper-
ties will be one of the focal points here.

The A, criterion was originally derived by Jeong and Hussain
(1995), who insisted that for an object to be considered a vortex it
must have a net circulation and it must be Galilean invariant. They
noted that many extant vortex definitions (pressure minima, closed
streamlines, and surfaces of constant vorticity) fail to meet these
criteria even in relatively well-understood flows. In particular, they
sought to avoid scenarios where pressure minima occurred without
vortical motion and, conversely, where vortical motion occurred
but the pressure minima were destroyed by other effects such as
viscosity. To that end, they proposed ignoring all terms in the strain-
rate equation (6) except for the nonlinear terms §? + Q2 and the
pressure Hessian, so that the topology of the pressure field would be
directly associated with the local strain and vorticity fields. Their
rationale was that, by isolating the effects of the local velocity
gradients on the pressure field, a vortex would unambiguously
correspond to a pressure minimum. This would occur when ¢”
has two negative eigenvalues, or by the above assumption, when
S? + Q2 has two negative eigenvalues, permitting analysis akin to
the Okubo-Weiss approach where the nature of the flow depends
on the local velocity gradients. Note that the moniker “A,” refers to
the critical role the second eigenvalue plays in this framework, as it
is simple to see that if one sorts the eigenvalues of S* + Q7 such that
A1 = Ay = A3, the sign of A; is sufficient to determine whether an
object is a vortex or not.
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It is notable that the A, criterion applies to both 2D and 3D
flows. In fact, in 2D the relationship between the Okubo—Weiss
and A, approaches is quite explicit, since

s e (W0
s+n_4<0 W) 3

. o — o
SéG+Q’%}G:Z 0
ou +ov, —owv
n -z R4 Z
2
w 0 -0
L2
1 2
=4 0 w o 2o, (25)
0
2 2
-0, 0, 0
R

The second, more succinct, equality in (25) employs thermal
wind balance,

fkxau=-V,b, (26)
to introduce the quasigeostrophic Q vector, Q = (01, Q,) =
(—u, - Vyb, —u, - V,,b) (Hoskins et al. 1978), where V, = (9, dy)
and b is the buoyancy. The eigenvalues of SéG + QéG, written

from largest to smallest and labeled such that A; = A, = A3, are
(Petersen et al. 2006):

11 1[N\ |QF
el )L e
A=W, (28)

1/1 1 //1.\* 2
L N (R S

Simple inspection reveals that, as long as |Q| is nonzero, A; is
always positive, A3 is always negative, and the sign of A, is the
same as the sign of W.> Notably, the magnitudes of A; and A3
are asymmetric about zero, with the asymmetry determined
by the sign of W: if W < 0 then |A3| > |A¢|, and vice versa
it W>0.

Before proceeding further it is worth examining the key
features of (25) and whether they satisfy the desired bullet
points at the beginning of this section. First, it is clear that this

*The signs of the eigenvalues retain this property even for
general 3D flows. The “A,’” moniker of the criterion thus alludes to
the fact that the occurrence of a vortex hinges entirely on the sign of
Ay, or in the 2D and QG cases, the sign of W (Petersen et al. 2006).
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is a symmetric tensor with a double eigenvalue, W/4. This
tensor thus has two negative eigenvalues when W < 0, which is
associated with a vortex according to both the A, and Okubo—
Weiss criteria.

The QG version of this tensor is more interesting, and can be
written

0 ou +ov, —wv
n oz sz z
o — ? ou +ou —ocv 24)
sz z n-z
ou ‘tou —ocv 0
sz k4 n-z

tensor is symmetric and its eigenvalues are thus guaranteed to
be real. In the limit where u, = 0 the tensor as a whole reduces
to the 2D version in (23), with zeros in the third row and col-
umn. It is thus perhaps unsurprising that, in similar fashion to
(23), its eigenvalues reflect the influence of W. The final bullet
point requires a derivation of the eigenvectors, and will make
use of the asymmetry of the eigenvalues noted above.

a. The geometry of SéG + QéG

For an arbitrary scalar field the Hessian matrix is a matrix of
second derivatives that describes the curvature, or topology, of the
field. Because the Hessian is symmetric its eigenvectors are or-
thogonal, and so its axes form a coordinate system with which to
naturally describe the geometry of the field. In using the approach
of the A, criterion, setting SéG + Qéo equal to the pressure
Hessian means that the topology of the pressure field is described
by the eigenvectors of g + Q5. When S + Q5 has two
negative eigenvalues the pressure field therefore has a minimum in
the plane spanned by the corresponding eigenvectors, and a vortex
rotating in this plane has its axis aligned with the third eigenvector.

Here the eigenvectors of SéG + Qéo will be denoted e; for
i = {1,2,3}, with the subscript indices matching those of the
corresponding eigenvalues (27)-(29). Using standard linear
algebra techniques, it is straightforward to show that

10, 10,
2 fy 0, 2 fy
€ = ,1% s =10, e= 71% (30)
2 fy 0 2 fy
3 1

A few points are worth noting regarding these eigenvectors.
First, e, is always strictly horizontal and is aligned with Q. By
the orthogonality of the eigenvectors, e; and ej are thus tilted
with respect to the horizontal and their projections onto the
horizontal plane lie perpendicular to Q. The angles formed
between the horizontal plane and e; and e; thus indicate the tilt
of the resulting flow structures: when A, < 0 a pressure mini-
mum occurs in the plane spanned by e, and e;, and the axis of
the resulting vortex is given by n_ = e, X e3 and is parallel with
e;. Conversely, when A, > 0 a pressure maximum occurs in the
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FI1G. 1. Schematic showing the tilt of the principal axes of SéG + QéG for (left) strain and (right) vortex structures. The coordinate axes
are shown by the dashed gray lines. Eigenvector e; is always horizontal. The angle between the horizontal plane and the plane parallel to

the pressure extremum is given by 6.

plane spanned by e, and e;, and the axis of the strain field is
n. = e; X ey and is parallel with es. Since e, is purely horizontal
the tilt of the vortex or strain field is given by the slope of the
accompanying vector, e; or ey, for cases when A, < 0 and A, > 0,
respectively. A schematic depiction of these results appears in
Fig. 1, which are also summarized in Table 1.

The slope of this vector can be calculated as the vector’s
vertical component divided by the Euclidean norm of its hor-
izontal components. Using the identity

1o
AM3:—ZA?ﬂ G
the slope of ey is
A A
S =—"3 =_ __3<0’ 32
' VAN V A G2

and, likewise, it can readily be shown that the slope of e; is

[ A
S,=4/——2L>0.
/\3

Here we return to the earlier point that A; and A5 are asym-
metric about zero, and that the eigenvalue with the larger
magnitude is the one that shares the same sign as W (or A,).
When Ay < 0 the tilt of the resulting vortex is given by S3, and
since in this case |A3| = |A{], by (33) this establishes the bounds
0 < 85 = 1. An analogous effect occurs when strain dominates:
A > 0 implies that the slope of the strain field is given by Sy,
and since |A;| = |A3| a bound emerges that —1 = §; < 0. When
W = 0 we reach the limiting case where §; = 1 and S5 = 1. The
eigenvectors of Sg + Q4 are thus oriented so that the
dominant flow structure (vortex or strain) has a slope that is
bounded in magnitude by one, so that its tilt is more horizontal

(33)
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than vertical. These rules regarding the slope of the eigen-
vectors always remain valid for QG flows except in the singular
limit w, = 0. These results affirm the final bullet point at the
beginning of this section, which is that the flow structures in
QG should exhibit quasi-horizontal geometry.

One final interesting property of these eigenvectors is worth
noting, which is that they can be used to diagnose the relative
importance of the baroclinicity in setting the curvature of the
pressure field. Consider the case of a vortex, so that W < 0 and
the tilt of the vortex is given by S3. Using (31), one may rewrite
(33) in the form

(34)

w w\?
H3ES3|W<0=|f0| + (‘fol )+1,

4/Q| 4|Q|

where the new variable, 115, has been defined to indicate that we
are only considering S3 for vortex-dominated flows. Rewriting
(33) in this way allows us to anticipate the behavior of I1; for
different values of W and |Q|. To begin, note that the first term
on the right side of (34) is negative, the term involving the square
root is positive, and thus 0 < II; = 1. In the limit where
|W| < |Q)/|fo|, when the eigenvalues A1 and A; are dominated by
the baroclinic term involving |Q|, we would expect II3 ~ 1.
Conversely, when |[W| > |Q//|fo|, then A; converges to 0 while A3
does not, and so Il = 0. These limits are also reflected in the
structure of SéG + QéG; when I1; ~ 1 the structure of the tensor
is dominated by the off-diagonal terms, and when II; ~ 0 it

TABLE 1. Summary of the eigendecomposition and geometry for
each flow type.

Type Ay Az A3z Normal vector Slope of plane
Strain + + - n, =e; S1 ==V (=A3A)=—1
Vortex + — — n_=e; S3=+/(—A/A3) =1
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essentially takes on the structure of a 2D diagonal matrix with
zeros in the third row and column.

An analogous expression can also be derived for a strain
field with W > 0, whose tilt is given by S;. In this case we use
(32) to define

_ ALY
=5, >0~ =\ (Gar) *1

(35)

which is bounded such that 1 = I3 < 0. A similar result as
above is obtained: when |W| < |Q|/|fy| we expect I1; ~ —1, and
when |W|> |Q[/|fy| then II; ~ 0. It is thus clear that both
vortices and strain fields are most steeply tilted when the |Q|
term dominates |W|, and are essentially horizontal when |W|
dominates the |Q| term.

b. A geometrically motivated extension of the
Okubo-Weiss parameter

For real oceanic flows the A, criterion possesses some
interesting advantages over the Okubo-Weiss approach,
and by the previous subsections these are intrinsically re-
lated to the geometry of the flow and its pressure field. As
argued earlier, the most important feature of the A, criterion
for QG flows is that it accounts for the vertical shear, whose
effects are missing in the standard Okubo—Weiss parameter.
The cost of these advantages is added complexity—instead of
having a single parameter W to identify vortices and quan-
tify their strength, there are now three eigenvalues of
SéG + QéG that contain information about both strength
and orientation. In this section we explore whether a sen-
sible extension to W can be distilled from these eigenvalues
and cast as a single parameter, so as to combine the sim-
plicity of the Okubo-Weiss approach with the geometric
advantages of the A, criterion.

For the sake of simply identifying vortices the A, criterion
is exactly as straightforward as the Okubo-Weiss parame-
ter, where a structure is a “‘vortex”” purely based on the sign
of A, (or W). However, A, alone is an insufficient descriptor
of the strength of these flow structures since it fails to ac-
count for the Q terms in the other eigenvalues. Put another
way, since the whole point of the A, criterion is to describe
the curvature of the pressure field, omitting the other ei-
genvalues is akin to ignoring the direction with greater
curvature. Ideally, a single parameter would exist that
would retain the simplicity of identifying eddies based
purely on the parameter’s sign, while still accounting for the
contributions of Q. As before, it would be optimal if this
parameter (hereafter labeled W*) reduces to W in the limit
of no vertical shear, or alternatively if it could be expressed
in an analogous way for both S + Q7 in the 2D problem and
S5 + Qg for the QG problem.

Since no obvious choice for such a parameter emerges from
the tensors or their geometry, one must construct the pa-
rameter using a combination of mathematical and physical
insight. One possibility that was considered for W* was to use
the determinant of SéG + QéG, which is the product of its
eigenvalues. At first glance this choice seems both convenient
and logical—simple inspection of (23) reveals that its square
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root returns W for the 2D problem, its cube root retains the
correct sign of A, for the QG problem, its expression in QG is
both uncomplicated and clearly dependent on Q, and also is
appealing from a physics perspective since the determinant
has well-known geometric properties (Peng 2007). However,
the disadvantages of this choice are subtle but critical. The
square root of the determinant in the 2D problem has two
possibilities for its sign, which is a problem that is easily
overcome but still bothersome. More importantly, for the QG
problem in the limit where u, = 0 the determinant is zero.
This means that a purely horizontal vortex cannot be mea-
sured using this definition of W*, and so the QG version of
this parameter does not cleanly reduce to the 2D version. This
potential definition for W* was thus rejected.

With the above considerations in mind, the definition pro-
posed here will instead be

A+ A2
7

W =4sgn(A,) (36)
where sgn(x) = x/|x| is the sign function, the radical sign indi-
cates the principal square root, and A and A, are the first and
second eigenvalues of SéG + onG (or both eigenvalues of S* +
Q7 for the 2D problem). The rationale for defining W* in this
way is as follows. Simple algebra can be used to show that W* =
W when calculated for the 2D case using the eigenvalues of
S? + Q2 so that it is equivalent to the Okubo-Weiss param-
eter. In QG this definition of W* includes terms involving Q
and is equivalent to W in the limit where u, = 0, thereby re-
ducing cleanly to the 2D case. In the QG case the magnitude of
W* remains the same even if A3 were substituted for A; in (36),
so it can be used to measure the strength of both vortex- and
strain-dominated flows without biasing the magnitude one way
or another. Finally, the sign function ensures that W* retains
the same sign as A,, and so retains the convenience of identi-
fying vortices purely by its sign.*

In all, this exploration of the A, criterion has led to several
new parameters that can be used to partition QG flow struc-
tures based on their dynamics, magnitude, and geometry. A
new parameter, W*, has been introduced which reduces to Win
2D flows but improves upon the Okubo-Weiss parameter by
accounting for the effects of baroclinicity. The vertical tilt of
the flow structures diagnosed using W* is indicated by the slope
parameters, S; and S3, which derive from the eigenvectors of
SéG + QéG. The geometry of the eigenvectors has also been
used to develop new parameters, II; and 115, that describe the
tilt of fronts and vortices, respectively. Each of these new

4Note that, by definition, W* has the same sign as the standard
Okubo-Weiss parameter and thus will identify the exact same
vortical structures based on the criterion W* < 0. However, most
applications of the Okubo—Weiss parameter utilize some threshold
value to distinguish eddies from other vortical structures, and
similar thresholding will likely be required for W*. Note that the
optimal threshold for W will likely not be the same as for W*, and
both should be chosen on a case-by-case basis depending on the
amount of noise in and resolution of the data.



OCTOBER 2021

parameters provides a way to describe ocean dynamics beyond
the purely two-dimensional scope of the Okubo-Weiss pa-
rameter, which will be explored in the following section using
high-resolution numerical model output.

4. Simulations

Both ocean observations and numerical simulations are
appropriate for testing the new parameters developed in this
paper. Given that it is standard practice to use the Okubo—
Weiss parameter, a fundamentally 2D quantity, for diagnoses
even in 3D flows, we are not necessarily limited to using
strictly 2D or QG flows for these tests. Here we choose to test
the new parameters using a high-resolution primitive equa-
tion numerical simulation, whose output depicts a highly
turbulent eddy field and contains dense information about
both the velocity and buoyancy fields. The simulation output
thus allows the new parameters to be diagnosed for many
different types of flow structures, just as they would be ap-
plied for real ocean flows.

The simulation examined here is the same as was used in
Bachman and Klocker (2020), whose key features are
summarized below. The MITgecm (Marshall et al. 1997) was
used to perform a 5-yr experiment of the Kerguelen
Plateau region at 1/120° resolution (nominally 650-m grid
spacing in each direction), with a domain extending from
60° to 85°E in the zonal direction and from 50° to 38°S in the
meridional direction. The vertical grid consisted of 150
layers of varying thickness, ranging from 10 m at the surface
to 50 m at depth. Open boundary conditions were used to
force the model at the lateral boundaries, where the ve-
locity, temperature, and salinity fields were forced using
daily output from a larger simulation of the Indian Ocean
sector of the Southern Ocean (Klocker 2018). A 1/2°-wide
sponge layer was used to relax the model to the boundary
conditions, with a one-day relaxation time scale at the inner
edge of the sponge and a 4-h time scale at the outer edge of
the sponge. The wind and buoyancy forcing was derived
from annually and zonally averaged output from the
Southern Ocean State Estimate (Mazloff et al. 2010) and
applied as meridionally varying but constant-in-time forc-
ing over the model domain.

Instantaneous snapshots of the velocities and buoyancy field
were written out every six hours during the final year of sim-
ulated time. Given the very tight horizontal grid spacing, each
snapshot resolved a vigorous and fast-evolving eddy field at
nearly submesoscale-resolving resolution. While larger flow
structures such as mesoscale eddies would be expected to ex-
hibit QG dynamics, the submesoscale structures in the model
feature Rossby numbers that are too large and balanced
Richardson numbers that are too small for QG scaling to be
appropriate (Thomas et al. 2008). The small-scale dynamics in
the simulation are thus admittedly outside both the 2D and QG
regimes that underpin the theory here. However, W and the A,
criterion are intended to be applied to real ocean flows which
do not fit neatly into either of these dynamical boxes either.
The high-resolution simulation thus provides a realistic, rig-
orous, and challenging setting in which to test and compare the
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new parameters. Snapshots from day 100 and day 300 of the
fifth year were arbitrarily chosen to demonstrate the new pa-
rameters developed in this paper. A region of particularly
vigorous mesoscale turbulence stretching from 74° to 84°E and
from 50° to 43°S was selected for visualization of these diag-
nostics, as it was large enough to permit several distinct vor-
tical and frontal structures while being small enough to
clearly view features at <7(1) km scales. While these struc-
tures are clearly visible in both the maps of surface buoyancy
(Fig. 2a) and vorticity (Fig. 2b), neither field clearly delin-
eates what types of dynamics are dominant at a given point in
space, justifying the need for more rigorous identification
methods as are explored here.

The middle and bottom rows of Fig. 2 show visualizations
of the Okubo-Weiss parameter (labeled with a reminder
that it is equal to 4 times the middle eigenvalue of
SéG + QéG; Fig. 2c), the new parameter W* (Fig. 2d), and
the first and third eigenvalues of SéG + Qéo (Figs. 2e,f). As
demonstrated in numerous prior studies, the Okubo—Weiss
parameter clearly singles out vortical structures as blue
(negative) disk-shaped structures of various sizes that are
interspersed throughout the domain. Many of the vortices
are ringed by regions of positive W (red), which tend to
occur in elongated, thin sets that are typical of strained
density fronts. A key property to note is that these fronts, as
visualized by W, tend to appear broken up into shorter
segments reminiscent of dashed lines, rather than elon-
gated, continuous streamers. This behavior is easily con-
trasted with the visualization of W* (Fig. 2d), where the
fronts are readily seen as continuous structures with very
large magnitude. The subpanels above Figs. 2c¢ and 2d
show a magnified view of a region where these character-
istics of W and W* are especially apparent.

Here the reader is reminded that the sign of W* and W are
the same at every point, so the main visual difference between
Figs. 2c and 2d is due to baroclinicity that is accounted for by
the |Q| terms in W*. Likewise, though all vortices in Fig. 2¢
still have negative values in Fig. 2d, the more baroclinic
vortices stand out in Fig. 2d. Many of the vortices in Fig. 2d
also appear as ‘““doughnut” structures rather than disks be-
cause the baroclinicity is weakest at the vortex core. Last,
note that the baroclinicity contributes significantly to the overall
magnitude of the W* diagnostic, and as such the color scale in
Fig. 2d is an order of magnitude larger than that of Fig. 2c.
Figures 2e and 2f also are shown at this enlarged color scale,
and confirm that eigenvalues A; and A3 are positive- and
negative-definite, as stated earlier. Histograms comparing the
magnitudes of W and W* also demonstrate the relative sig-
nificance of the |Q| terms (Fig. 3), such that the shapes of the
respective histograms are very similar (both approximately
lognormal) but the W* histogram is shifted approximately an
order of magnitude toward more extreme values.

The middle row of Fig. 2 suggests that an advantage of the
new parameter W lies in its tendency to identify highly baro-
clinic frontal structures, which are not as clearly shown by W.
This feature of W* can be understood by examining the (in-
viscid) QG evolution equation for the buoyancy gradient
magnitude,
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FIG. 2. Visualizations of (a) surface buoyancy, (b) relative vorticity, (c) W, (d) W*, and the (e) first and (f) third
eigenvalues of S?JG + .QéG, taken on year 5, day 100. Note the different color scale in (c) from (d)—(f).

DIV, b| ) v, b
V.b
F=20. —h_ 38
Q-4 (9)

where Fis the frontogenesis function (Hoskins 1982). By (38) it
is clear that the Q vector and F are closely related, such that
one might expect a relationship |Q| « |F| to generally hold.
Furthermore, by writing the definition of the A; vector in the
form Q = —V,u" - V,b, one might also expect |Q| « |V;b|. The
dependence of W* on the |Q| term in A; would then suggest
that the magnitude of W* would be especially amplified where
fronts are evolving rapidly and the buoyancy gradient is tight.

Figure 4 shows that these proposed relationships are
supported well by the results from the numerical model. The
first column shows intensity (scatter) plots of |W| (top) and
|W*| (bottom) against |F| in logarithmic space. As in Fig. 3,
these plots are produced using all surface points in the
model subdomain, where lighter colors indicate a greater
number of occurrences. The intensity plot for [W| demon-
strates only a weak trend with |F|, as indicated by the wide
bullseye structure of the cloud of points. The Pearson’s
correlation coefficient between these two variables is 0.28.
In contrast, the intensity plot for |W*| shows a strongly linear
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and positive trend with |F|, with a correlation coefficient of
0.88. Note that individual points in the intensity plot are
restricted to lie above the line

1 1
10g10|W*| = ilogmlF‘ - Elog1()4|fo| > (39)
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FIG. 3. Histograms of the base-10 logarithm of W and W*, taken
over all surface points in the model subdomain at year 5, day 100.
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FIG. 4. Intensity plots showing the relationship between the magnitudes of F, V,b, W, and W* in logarithmic space.
Values for these plots are gathered from surface points on year 5, day 100.

which can be straightforwardly derived by using (36) and (38)
to establish an inequality between log;o|W*| and logo|F]|.
Intensity plots for log;o|V,b| (right column) show similar be-
havior; although no useful bounds can be derived in this case,
the logarithm of |W*| exhibits a much clearer trend with
log0|Vsb| (correlation coefficient 0.81) than does the loga-
rithm of |W]| (0.13).

The close relationship between F, |V,b|, and W* is also
clearly visible in spatial maps of these variables (Fig. 5), par-
ticularly with regard to strong frontal structures. Each panel of
this figure shows values measured on year 5, day 100, where the
range of the color axes are chosen to highlight how the tightest
fronts and filaments are easily seen in all three metrics and
match quite well between them. A particularly interesting re-
sult emerges by considering weaker values of these variables as
well, where forming histograms of their magnitudes in loga-
rithmic space reveals that all three have approximately log-
normal distributions (Fig. 6). For the sake of identifying fronts
by employing a threshold value on W*, this implies that a
threshold based on standard deviations of log;o|W*| would be
likely to isolate the same strong features as would emerge by
applying a threshold on the standard deviations of log;o|F| or
lOglo‘Vhb‘.

Figure 7 shows the result of applying such a threshold to each
of these variables. The vast majority of the features shown here
are strain-dominated fronts, since they tend to be associated
with larger values of |Q| than do vortices. In these plots an
overbar represents the mean and o represents the standard
deviation of each variable’s magnitude in logarithmic space.
Each panel shows the structures that are identified by taking
only those points with magnitudes stronger than the mean plus
half a standard deviation (first column), the mean plus one
standard deviation (second column), and the mean plus 1.5
standard deviations (third column). Naturally, each column
represents a progressively stronger filter moving from left to
right across this figure (keeping approximately 31%, 16%, and
7% of points, respectively), which results in detecting fewer
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and thinner segments of these features. As seen previously in
Figs. 6b—d, there is very close agreement between each variable
in terms of which structures are detected, with differences
generally pertaining to the precise size and shape of each
feature. A noteworthy exception is highlighted in the green box
in Fig. 7a, where a strongly vortical eddy (detected by all three
metrics due to a strong temperature contrast between its fringe
and its core) is detected quite clearly by the W* metric but
slightly less so for the other two. For the stronger filters in the
right two columns, more of this eddy is able to pass through the
filter on W*, whereas it is effectively filtered out completely as
measured by Fand V,b. In practical terms these differences are
unlikely to matter, since none of these variables are materially
conserved and do not truly represent the stability of fluid tra-
jectories in any case (e.g., Haller 2005); their similarity is pre-
sented here only to confirm the utility of W* for detecting
strongly baroclinic structures.

To emphasize the superior skill of W* at identifying frontal
structures, the bottom row of Fig. 7 shows the same standard
deviation-based thresholds applied to log;o|W|. In all three
columns it is clear that W identifies an entirely different set of
structures that are more circular in shape, which is indicative of
its facility at identifying eddies in comparison to its identifi-
cation of fronts (see also the discussion of Fig. 2).

Finally, Fig. 8 shows a map of the strain and vortex tilt as
predicted by the new parameters, II; and I3, respectively.
The maps in Figs. 8b and 8d are filtered so that only regions
where W > 0 and W < 0 are shown in color, respectively.
Figures 8a and 8c show the frequency at which each value of I1;
and I1; occurs in the map, where the vertical axis is in logarithmic
scale. The convexity of the PDFs in Figs. 8a and 8c indicate that
the distributions are not quite exponential, but are nonetheless
dominated by values near —1 and 1, respectively. Likewise,
Figs. 8b and 8d are dominated by darker shades, indicating
values near |1, except for some conspicuous regions of or-
ange shading within certain vortices in Fig. 8d. As noted in
section 3a, smaller values indicate where W is dominant over
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FIG. 5. Spatial maps of (a) W*, (b) the frontogenesis function,
and (c) the horizontal buoyancy gradient magnitude, highlighting

their similarities for identifying strong fronts and filaments on year
5, day 100.

the contribution of |Q|/fy, or where the baroclinicity is rel-
atively weak. It is curious, though not necessarily notewor-
thy, that only a very small number of structures seem to bear
this characteristic.

Several other diagnostics were compared to the spatial maps
of I1; and I3 to try to discern whether there exist correlations
with other features of the flow. Among these were mixed layer
depth, ratio of shear production to buoyancy flux (essentially to
determine whether energy conversion in these eddies was more
associated with lateral or vertical shears), and vortex size, but
no firm correlations were found with any of these features. It is
possible that Il; and II; may be relatable to other, more
complicated questions about ocean eddies—how do these pa-
rameters evolve over the lifetime of an eddy, for example, or is
there any connection with the amount or distance of water
mass transport—that are beyond the scope and capability of
this dataset. It is also possible that II; and Il are simply
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FIG. 6. Histograms of the magnitudes of F, V,b, and W* in log-
arithmic space, on year 5, day 100. Note that all three histograms
show approximately lognormal distributions.

mathematical novelties, given that they essentially represent
the degree of structural tilt despite that the 3D QG equations
have no vortex tilting term. Their precise relationship with the
curvature of the pressure field could also be investigated,
though it would require a specially designed QG model to do so
since the steepest slopes of |1] are not resolvable with the as-
pect ratio, Az/Ax = ©(1073), of a typical eddy-resolving ocean
model. For now these questions are posed here to motivate
future investigation into this topic, and the results in Fig. 8 are
shown for completeness and consistency with the theory from
section 3a.

5. Discussion and conclusions

A new Eulerian vortex detection scheme has been devel-
oped that aims to differentiate vorticity-dominated and strain-
dominated regions in realistic ocean flows. Like other, earlier
methods that are popularly used for eddy detection in obser-
vational and computational oceanography, the scheme differ-
entiates these regions based on the velocity gradients of the
flow. The motivation for the new scheme is the ocean’s quasi-
two-dimensional behavior at large scales, which nonetheless
features vertical shear and horizontal density gradients that are
not accounted for by other methods that are based on the eigen-
values of the velocity gradient tensor. This issue stems from the
fact that the nonzero eigenvalues of the 2D and QG velocity
gradient tensors are identical, resulting in a mathematical de-
generacy wherein the vertical shear is ignored. It is shown here,
via pathological example, that the vertical shear can play a
leading-order role in the evolution of tracer gradients in QG
flow, thus necessitating a new scheme that accounts for the
vertical dimension.

Under the QG approximation the vertical and horizontal
dimensions are coupled through thermal wind balance. In
principle this allows a scheme to be developed that is sensitive
to dynamics in the vertical while still only measuring quantities
in a horizontal plane, e.g., at the surface. In fact, since the QG
tracer gradient problem is decoupled between the horizontal
and vertical directions and the vertical shear only affects the
vertical tracer gradient (e.g., Hua et al. 1998; Smith and Ferrari
2009), the information gained by measuring the vertical shear
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FI1G. 7. Baroclinic structures detected by applying a threshold filter to the magnitudes of W*, F, V;,b, and W in logarithmic space. The
lognormal probability distributions for each variable (Fig. 6) suggest that these thresholds can be defined using standard deviations.
Regions in white indicate where the magnitude is greater than the mean plus (left) 0.5, (center) 1.0, and (right) 1.5 standard deviations. The
green box identifies an exceptionally baroclinic eddy. Values for these plots are gathered from surface points on year 5, day 300.

(the horizontal buoyancy gradient) is specific to the tracer
evolution in the vertical. It is thus natural that a scheme that
includes the horizontal buoyancy gradient would be sensitive
those features where vertical dynamics are known to be sig-
nificant, i.e., fronts and filaments.

The scheme developed here is based on the QG version of the
A, criterion (Jeong and Hussain 1995), which decomposes the
flow based on the eigenvalues of a different tensor of velocity
gradients, S* + Q2 and so avoids the mathematical degeneracy
problem. This approach reduces neatly to the Okubo-Weiss
parameter W for purely 2D flow, but in QG its eigenvalues
include a combination of vorticity and straining in the horizontal
plane as well as a baroclinic term involving the Q vector. Being a
geometric object, the 8% + Q7 tensor is also examined in terms of
its eigenvectors, and it is shown that their orientation is restricted
to be predominantly horizontal under the QG approximation.
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Finally, a new parameter W* is derived that is everywhere the
same sign as W, and that smoothly transitions to it the limit of no
vertical shear (i.e., purely 2D flow). It thus identifies the exact
same vortices as does W, with the proviso that their distributions
are different and thus filtering methods using thresholds (e.g.,
Elhmaidi et al. 1993) may affect them differently. The new
parameter is applied to a sample flow field taken from a high-
resolution regional MITgcm simulation, and is shown to be su-
perior to W for identifying strong fronts and filaments, whose
dynamics are dominated by baroclinic effects associated with Q.
It is further shown that there is a very close association between
W, fronts, and the frontogenesis function, such that W* is
equally useful for identifying strongly strained features as well as
vortices. Because W* is a direct extension of W, i.e., one can
exactly recover W by omitting the horizontal buoyancy gradient
term, one can use W* to cleanly separate how the flow dynamics
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FIG. 8. (a) Number of occurrences for each value of I1; from (b) its spatial distribution throughout the model
subdomain on year 5, day 100. (c),(d) Analogous results pertaining to I15.

are affecting horizontal gradients (W) versus vertical gradients
(W* — W).

Vortex detection parameters are employed both for the
analysis of remote sensing data and numerical model output,
typically for estimating tracer transport by coherent eddies.
A main advantage of 2D parameters like W is that they are
naturally applied to data observed at the sea surface, which
are readily available and densely sampled compared to ob-
servations at depth. The new parameter W* takes advantage
of the predominantly geostrophic nature of large-scale flows
that relates the vertical shear to horizontal density gradients
via thermal wind balance, thus also being applicable to 2D
(sea surface) flows despite including 3D dynamics. One of
the primary advantages of W* is that it gives a window into
vertical gradient dynamics despite only requiring 2D data.
Many tracers considered to be important by oceanographers
are either primarily forced at the surface (heat, via surface
heat fluxes) or tend to collect near the surface (buoyant
pollutants like oil, or chlorophyll), which would naturally
establish vertical gradients. The evolution of the vertical
gradients implied by large W* thus indicates important
processes such as subduction or ventilation are occurring
(i.e., the dynamics are stretching out or contracting the
gradients, respectively), particularly at small-scale strain
dominated regions as found by Balwada et al. (2021).
Indeed, the new scheme has been shown to be superior at
detecting precisely those features where subduction is
known to strongly occur, such as fronts, filaments, and the
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fringes of coherent eddies (e.g., Stukel et al. 2017; Taylor
et al. 2018; Freilich and Mahadevan 2020).

A subtle issue regarding how to apply W* concerns the kind
of datasets for which it is most suitable. Parameters such as W
are generally used only for vortex detection, not the detection
of fronts, and are thus advantaged by the large [?(10-100) km]
size of ocean mesoscale eddies. Fronts and filaments are sig-
nificantly smaller, often of ?(1) km width (McWilliams 2019),
and thus are not typically resolved by current observational
platforms. For this reason W* presently is most well suited for
the analysis of very high-resolution model output which re-
solves both large vortices and the fronts in the interstices.
Future, high-resolution observing missions (e.g., Fu et al. 2009;
Kilic et al. 2018; Rodriguez-Ferndndez et al. 2019) promise to
open up applications for W* within the space of observational
oceanography. It is also possible that innovative methods using
high-resolution satellite imagery, which are already used for
the detection of ocean fronts (e.g., Bouali et al. 2015), could be
developed for more near-term use.

The ability of W* to include baroclinicity in its measure of
vortex strength is the primary way it is distinguished from W.
Since by construction it has the same sign as W everywhere, it
can essentially be considered a reweighted version of the
Okubo-Weiss parameter that is particularly sensitive to nearly
geostrophic, baroclinic features. This feature of W* is precisely
what enables it to perform so well at identifying fronts and
filaments, and may be useful for differentiating eddies based on
their geometry (Fig. 8). However, for eddy detection it has the
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same limitations as W, namely, that it can be prone to mis-
identifying vorticity-dominated filaments as eddies (Fig. 2d). It
also has the tendency to visually identify vortices as doughnuts
rather than disks, since at the center of a vortex the |Q| term
reaches its minimum, which may require automated vortex
identification methods to be adjusted. Related to this point,
baroclinicity causes W* to take on a far larger range of values
than W, and one notable risk is that using a standard deviation-
based threshold to distinguish eddies from the background flow
may cause the scheme to miss the more weakly baroclinic
vortices. For these reasons, users may find it more useful to
simply use W for the vortex detection step, and then to employ
W* as an auxiliary means of analysis or for the particular ap-
plication of filament identification.

Finally, it is important to note the relative merits of Eulerian
vortex identification methods such as W* versus those of
Lagrangian methods (e.g., Beron-Vera et al. 2013; Froyland
etal.2015; Haller et al. 2016; Wang et al. 2016; Abernathey and
Haller 2018). Several disadvantages of Eulerian methods are
discussed by Haller (2015), most notably that they are not
objective (i.e., the identified structures may differ depending
on the rotation or translation of the reference frame) and are
materially incoherent (subject to significant leakage through
the identified boundaries of the structures). Eulerian methods
thus tend to strongly overestimate the degree of material co-
herence of eddies, as well as the volume of fluid that remains
trapped within the eddy core (Liu et al. 2019). For quantifying
water mass transport by coherent eddies in large-scale or
temporally filtered flows, Lagrangian methods are thus clearly
superior. However, recent work by Sinha et al. (2019) dem-
onstrated that Lagrangian methods are challenged at sub-
mesoscale- and internal gravity wave-resolving resolutions,
where the appearance of intricate small-scale structures can
obscure the large-scale transport barriers in the flow. They also
found that high-frequency motions can lead to substantially
higher leakage than would be detected if one instead used fil-
tered velocities, meaning that Lagrangian methods might also
overestimate material coherence when applied to observed
(coarser-scale) velocity fields.

It is also important to note that the lifespan of an eddy does
not necessarily coincide with the time that a bolus of water is
trapped inside it. That is, eddies may persist even after leaking
water, so Lagrangian methods may not be necessary for ap-
plications that do not require strict material coherence, such as
tracking eddy lifetimes, propagation distance, or mechanisms
of dissipation. Furthermore, Lagrangian methods are compu-
tationally very expensive, requiring high temporal resolution
and millions of advected particles to realize their full potential.
In comparison, Eulerian methods only require instantaneous
snapshots of the flow field, and are cheap enough to be used
over the entire globe for significant duration of time. They thus
retain an important place in the study of ocean turbulence, and
continue to be employed in the modern oceanographic litera-
ture (e.g., Faghmous et al. 2015; Cetina-Heredia et al. 2019). A
novel parameter like W* that is capable of simultaneously
detecting both eddies and fronts may open up new frontiers in
how Eulerian methods are used, and future work will continue
to explore this possibility.
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