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ABSTRACT: The identification of vortices in a fluid flow is a dynamically interesting problem that has practical appli-

cations in oceanography due to the outsized role eddies play in water mass, heat, and tracer transport. Here a new Eulerian

scheme is developed to detect both vortices and strongly strained fronts, which are both ubiquitous in theWorldOcean. The

new scheme is conceptually linked to the well-knownOkubo–Weiss parameter, but is extended to quasigeostrophic flows by

recognizing the strong role played by vertical shear in ocean dynamics. Adapted from the l2 criterion for vortex identifi-

cation, the scheme considers the curvature of the pressure field as the differentiator between vortical and strained flow

structures, and it is shown that its underlying geometry also exhibits characteristics of quasigeostrophic flow. The uses and

skill of the scheme are demonstrated using a high-resolution regional ocean simulation, and prospects for its use with

observational products are discussed.
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1. Introduction

The stratification and small aspect ratio of ocean mesoscale

flows oftenmakes themwell approximated by two-dimensional

(2D) dynamics. Even with the vast simplifications afforded by

approximating mesoscale motions in this way, the emergent

flow structures often bear excellent qualitative and dynamical

resemblance to real ocean turbulence. Two-dimensional flows

feature analogous cascades of enstrophy and energy as do

quasigeostrophic (QG) flows, and in the presence of a Coriolis

force bear similar flow structures such as vortices, jets, and

filaments (Herring 1980;McWilliams 1984; Hua andHaidvogel

1986; McWilliams 1989). The generation of filaments has been

of particular interest in the context of both two- and three-

dimensional flows (e.g., Ashurst et al. 1987; Melander et al.

1987; Dritschel et al. 1991; Ohkitani and Kishiba 1995; Galanti

et al. 1997; Kevlahan and Farge 1997; Von Hardenberg et al.

2000), and is manifested in the stretching and folding of fluid

elements such that vorticity is accumulated into thin sets with

sharp gradients. The accumulation of vorticity into these

small-scale structures is the embodiment of the downscale

enstrophy cascade (Chen et al. 2003), the study of which

continues to draw interest due to its relevance to atmospheric

and oceanic flows.

The enstrophy cascade itself, being a spectral quantity, is

inherently nonlocal and thus challenging to examine in the

highly heterogeneous flows of the real ocean. An alternative

approach for studying its dynamics instead focuses on the

processes governing the production of vorticity gradients, or

equivalently the gradients of any tracer which obeys the

same evolution equation as vorticity (McWilliams 1984;

Weiss 1991; Ohkitani and Kishiba 1995; Protas et al. 1999;

Straub 2003).

Regions where the production of gradients is particularly

vigorous indicate where the turbulent cascades are especially

active, and tend to lie outside the coherent structures asso-

ciated with large-scale vortices (Mariotti et al. 1994). Methods

used to identify vortices thus also implicitly indicate where

gradient production is occurring, and by extension where the

enstrophy cascade is strongest. These considerations have

motivated a sizable body of literature dedicated to parti-

tioning flows into regions that are dominated by strain

(gradient-producing) versus those dominated by vorticity.

The so-called ‘‘Okubo–Weiss parameter’’ (hereafterW; Okubo

1970; Weiss 1991) is perhaps the most well-known and easily

applied criterion to partition ocean flows in this way, and has

foundmany applications due to its facility with bothmodel (e.g.,

Poje et al. 2010; Williams et al. 2011; Petersen et al. 2013) and

altimetric data (e.g., Isern-Fontanet et al. 2003, 2004; Chelton

et al. 2007; Henson and Thomas 2008; Souza et al. 2011, among

others). It, too, was conceptualized for 2D flows, and its use in

physical oceanography is justified largely by the quasi-horizontal

nature of mesoscale motions.

Among oceanographers W is perhaps the most familiar solu-

tion to a more general problem in fluid dynamics, which is to

develop a mathematical criterion with which to identify vortices.

Several Eulerian schemes for vortex identification have been

proposed in previous literature, many of which, likeW, are based

on an eigendecomposition of the velocity gradient tensor (e.g.,

Hunt et al. 1988; Chong et al. 1990; Berdahl and Thompson 1993;

Zhou et al. 1999). Essentially all of these schemes are mathe-

matically related to each other (Chakraborty et al. 2005); in fact,

the Q criterion of Hunt et al. (1988) is identified as the three-

dimensional generalization of W. Even more mathematically

rigorous identification schemes have been developed which are

invariant under rotations and translations (‘‘objective’’; e.g.,

Haller and Yuan 2000; Haller 2005; Haller et al. 2016), and which

are shown to be superior to eigenvalue-based methods for vortex

identification in unsteady and chaotic flows (e.g., Serra andHaller

2016; Pedergnana et al. 2020). Such methods are superior in their

ability to track the material coherence of eddies, and recent work

has shown that they can differ greatly from Eulerian methods inCorresponding author: Scott D. Bachman, bachman@ucar.edu
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their estimates of ocean eddy transport (e.g., Abernathey and

Haller 2018; Tarshish et al. 2018; Liu et al. 2019).

Nonetheless, among all of the available vortex identifica-

tion schemes, the use of W remains prevalent in physical

oceanography due to its simplicity and practicality. It is most

commonly applied with altimetric data (e.g., Isern-Fontanet

et al. 2003, 2004; Chelton et al. 2007, among others) to study

mesoscale eddy characteristics, such as eddy lifetime, prop-

agation distance, and size (e.g., Chelton et al. 2007, 2011). The

prominence of mesoscale eddies and the strong tendency of

their cores to be vorticity-dominated tends to make W-based

detection methods reasonably skillful and quite visually

compelling. The use of W as a diagnostic tool is not without

shortcomings, however, and simple examples can be con-

structed where the criterion fails (e.g., Pierrehumbert and

Yang 1993; Balmforth et al. 2000). In observational ocean-

ography its primary deficiency, as described by Chelton et al.

(2011), is that the geostrophic velocities that are used in its

calculation are inferred from the sea surface height field h.

The resulting equation for W is a quadratic function of the

second derivatives of h, making it highly sensitive to noise in

the altimetric data. For the particular application of eddy

detection, W-based methods can also have difficulty dis-

tinguishing eddies from other strongly vortical features such

as jet meanders (e.g., d’Ovidio et al. 2009; Souza et al. 2011;

Williams et al. 2011). For these reasons eddy detection

methods based on W are frequently employed using addi-

tional constraints, such as imposing a user-defined threshold

to filter out regions where jWj is small and the flow structures

are ambiguous (e.g., Isern-Fontanet et al. 2003; Morrow et al.

2004; Chelton et al. 2007).

This manuscript is partially motivated by the recognition

that there are other vorticity-dominated features in the ocean

that would not be properly classified as mesoscale eddies, but

are nonetheless of dynamical interest. An obvious limitation of

W as an ocean diagnostic is that it is purely a function of hor-

izontal velocities and derivatives, whereas the ocean’s vertical

shear and circulations drive some of the processes most fun-

damental to the broader climate system (e.g., Mahadevan and

Tandon 2006; Thomas et al. 2008; Klein and Lapeyre 2009;

Lévy et al. 2012). At large scales the velocity field is in ap-

proximate geostrophic and thermal wind balance, such that the

vertical shears can be related to the horizontal derivatives of

density via the QG approximation. This suggests an opportu-

nity to explore new vortex identification schemes that have the

same practical advantages as W (viz., that they can be diag-

nosed from surface fields via remote sensing) while still taking

the vertical dimension into account. The increasing resolution

of gridded observational products pertaining to h (e.g., Taburet

et al. 2019; Zlotnicki et al. 2019), sea surface temperature (e.g.,

Donlon et al. 2012), and sea surface salinity (e.g., Droghei et al.

2018; Reul et al. 2020) means that observing structures smaller

thanmesoscale eddies is within reach (Reul et al. 2014; Umbert

et al. 2015; Isern-Fontanet et al. 2016; Melnichenko et al. 2017;

Vinogradova et al. 2019), and will become even more so with

future remote sensing missions such as the Surface Water and

Ocean Topography (SWOT; Fu et al. 2009), the proposed

Copernicus Imaging Microwave Radiometer (CIMR; Kilic

et al. 2018), and Soil Moisture and Ocean Salinity–High

Resolution (SMOS-HR; Rodríguez-Fernández et al. 2019).
Looking beyond the application of vortex identification, the

dynamics also provide motivation to explore new methods for

separating strain- and rotation-dominated parts of the flow.

Partitioning the flow in this way can yield information about

which parts of the ocean favor vigorous turbulent cascades or are

conduits for ocean ventilation (e.g., Klocker 2018; Bachman and

Klocker 2020; Balwada et al. 2021), as well as their unique roles

in the ocean energy cycle (e.g., Ferrari and Wunsch 2009, 2010;

Storch et al. 2012; Chen et al. 2014). Part of the approach here is

to take a critical look at the use of W in this context and to

evaluate how it might fail, and alternatively, to consider whether

any of the other previously mentioned schemes are better suited

for exploring these topics. Last, the inclusion of the vertical di-

mension allows us to consider what geometric properties of

these flow structures can be inferred from just the surface fields.

The purpose of this manuscript is to develop alternative

Eulerian diagnostics to W that retain its appealing mathe-

matical simplicity and applicability with surface diagnostics,

while including dynamics associated with the vertical dimen-

sion. As such, the approach here begins by considering a QG

flow, as opposed to the 2D framework typically used for W.

Like many of the extant schemes mentioned above, the

mathematics will involve an eigenanalysis based on decom-

posing the velocity gradient tensor, so that the results can be

understood both algebraically (via eigenvalues) and geomet-

rically (via eigenvectors).

The remainder of this paper is laid out as follows. Section 2

will review the mathematical concepts behind the Okubo–

Weiss approach and why it becomes a degenerate mathemat-

ical problem in QG. An alternative approach based on the l2
criterion (Jeong and Hussain 1995) will be presented, and will

be analyzed via the eigenvalues and eigenvectors of the asso-

ciated tensor. Section 4 will present diagnoses of the resulting

parameters (both 2D and QG) from realistic numerical simu-

lations. Concluding remarks appear in section 5.

2. The Okubo–Weiss approach for 2D and QG flows

a. The velocity gradient, strain-rate, and vorticity tensors

As this study will examine both two- and three-dimensional

(QG) flows, this introductory discussion will establish the

mathematical underpinnings of the Okubo–Weiss parameter

in the 2D case before examining why this approach becomes

degenerate in QG. Unlike the original derivations by Okubo

(1970) and Weiss (1991), here the dynamics will be considered

in the rotating frame to make the role of the Coriolis force

explicit. For simplicity the motion will be considered on the f

plane (which in the context of W is appropriate since it is en-

tirely based on local velocity gradients) with constant Coriolis

parameter f0, though it is possible to generalize these argu-

ments to cases where f varies meridionally as well (Hua

et al. 1998).

The underlying concept of the Okubo–Weiss parameter is to

consider whether a flow is more likely to stretch and strain fluid

elements, or to simply rotate them in the absence of deformation.

The tendency of a flow to perform these actions is reflected in the
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way the velocity field varies in space, which is given mathemat-

ically by the velocity gradient tensor,

=u5 ›
j
u
i
, (1)

where i indicates the row and j indicates the column. The sym-

metric and antisymmetric parts of the velocity gradient tensor are

known as the strain-rate (rate of deformation) tensor S and vor-

ticity (spin) tensorV, respectively, which are easily calculated via

=u and its transpose, =uT. Mathematically they are identified as

=u5S1V , (2)

S5
1

2
(=u1=uT) , (3)

V5
1

2
(=u2=uT). (4)

The evolution of the strain-rate and vorticity tensors can be

obtained by taking the gradient of the momentum equations,

here written in a general form for both 2D and QG flows as

Du

Dt
52F 2=f1 n=2u , (5)

for an incompressible velocity field u5 (u, y), Coriolis term F ,

pressure potential u, constant viscosity n, and material deriv-

ative D/Dt 5 ›t 1 u›x 1 y›y. The gradient of (5) can then be

split into symmetric and antisymmetric parts to obtain evolu-

tion equations for S and V,

DS

Dt
52S2 2V2 2F

S
2f00 1 y=2S , (6)

DV

Dt
52SV2VS2F

V
1 y=2V , (7)

where the subscripts on F indicate the decomposition of the

Coriolis term. The nonlinear terms immediately to the right of

the equal signs arise from applying the gradient operator to the

advection terms inside the material derivative. The term f00 is
known as the pressure Hessian, which has historically played a

central role in studies of vortex identification and gradient for-

mation in incompressible flows (e.g., Jeong and Hussain 1995;

Hua and Klein 1998; Chevillard et al. 2008). Note that conve-

nient simplifications to (7) can be made for 2D flow since in this

special case SV1VS and F V 5 0. The evolution equation for

V thus reduces to the familiar identity that for inviscid flow the

vorticity is conserved along Lagrangian trajectories.

As a final introductory step before deriving the Okubo–

Weiss parameter, note that for two-dimensional flow the ten-

sors S and V can be expressed as

S5
1

2

"
s
n

s
s

s
s

2s
n

#
and V5

1

2

"
0 2v

v 0

#
, (8)

using the normal strain, sn 5 ›xu 2 ›yy, shearing strain, ss 5
›xy 1 ›yu, and relative vorticity, v 5 ›xy 2 ›yu.

b. The 2D tracer gradient problem

The derivation of W in the 2D problem begins by either

considering the evolution of particle trajectories (e.g., Okubo

1970) or tracer gradients (e.g., Weiss 1991), which are essen-

tially dual approaches that yield the same overall interpreta-

tion (Hua and Klein 1998). Here the analysis will focus on the

tracer gradient problem, and in particular we will consider a

conserved tracer q. The choice to name this tracer q is done

purposefully to evoke that these derivations also apply when

considering the absolute vorticity (2D) or potential vorticity

(QG) on the f plane, both of which are conserved in their re-

spective flow regimes and are often denoted by q in the

oceanographic literature.

The evolution of the gradient of q along a Lagrangian tra-

jectory is given by

D=q

Dt
52=uT=q . (9)

This is a set of coupled partial differential equations for the

elements of the vector =q, where the coupling coefficients are

the elements of =uT and vary in both time and space. In the

standard derivation of W one assumes that the elements of

=uT evolve slowly in comparison to =q,1 in which case (9) can

be approximated as a linear set of ordinary differential

equations (ODEs) in t with constant coefficients. The general

solution for this problem is a linear combination of the ei-

genvalues and eigenvectors of =uT, with the eigenvalues de-

picting the nature of the velocity field and the eigenvectors

governing the rate of change depending on their alignment

with =q (more on this below). Both Okubo (1970) and Weiss

(1991) focused on the eigenvalues l, showing that they are

roots of the characteristic equation

l2 5
1

4
(s2 2v2) , (10)

where s2 5s2
n 1s2

s is the square of the total deformation. The

Okubo–Weiss parameter is given by the expression in (10)

bracketed by parentheses,

W5s2 2v2 . (11)

When W is positive, strain dominates over vorticity, the eigen-

values of =uT are real, and the general solution of (9) predicts

exponential growth of =q in time. When it is negative, the vor-

ticity dominates over the strain, the eigenvalues are purely

complex, and the solution of (9) predicts orbital motion that

neither grows or decays in time. In this sense negative values of

W evoke what one might imagine to be the behavior of a vortex,

where the orientation of the tracer gradient merely gets rotated

by the vortical flow without changing in magnitude.

Another way to analyze this problem is through the gradient

norm equation, which is derived by taking the dot product of

(9) with =q and can be written

Dj=qj2
Dt

522=qTS=q . (12)

1 Note that this assumption was shown by Basdevant and

Philipovitch (1994) to generally not hold except in vortex cores.
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A salient property of this equation is that, unlike in (9) where

the full velocity gradient tensor affects the dynamics, the

change in the gradient norm only depends on the strain-rate

tensorS. Note that this equation is derived without making any

assumptions about whether S varies slowly, but the dynamics

are broadly consistent with what the Okubo–Weiss method

predicts. For example, supposing thatVij� Sij for all i and j so

that one can replace =uT with V in (9), one would obtain that

the right hand side of (12) would be zero and the gradient norm

would not change following the motion. Alternatively, one can

make the assumption Sij � Vij for all i and j, the results of

which are most easily shown by rotating the coordinate system

into a frame that is aligned with the eigenvectors of S (the

strain basis). To do so, one can define a rotation matrix R(u)

that rotates the coordinate axes by an angle

u5
1

2
tan21

�
s
s

s
n

�
. (13)

With this transformation one can define a new vector Y, such

that =q5R(u)Y, which gives

DjYj2
Dt

522½R(u)Y�TSR(u)Y , (14)

522YTR(u)
T
SR(u)Y , (15)

52YTSY , (16)

where

S5

 
s 0

0 2s

!
(17)

is a diagonal matrix of the eigenvalues of S (or equivalently, the

strain-rate tensor written in the strain basis).WritingY5 (y1, y2),

(16) can be rewritten as

DjYj2
Dt

52s(y21 2 y22) , (18)

which shows that the tendency of the gradient norm depends

on both the magnitude of the strain and its orientation. The

latter is an aspect of the tracer gradient dynamics that the

Okubo–Weiss approach ignores. Equation (18) makes it clear

that the change of the gradient norm depends on the alignment

ofYwith the axes of the strain basis. The growth of the norm is

maximized if Y 5 (0, 1), wherein the tracer gradient is aligned

with the eigenvector e25 (0,1) (the compressional axis) for the

negative eigenvalue of S. The norm neither grows or decays if

Y 5 (1, 1), which would be aligned with the bisector of the

strain-rate eigenvectors (e.g., Lapeyre et al. 1999; Klein et al.

2000). The decay of the norm is maximized if Y 5 (1, 0),

aligned with the eigenvector e1 5 (1, 0) (the extensional axis)

of the positive eigenvalue. For a visual depiction of this ge-

ometry the reader is encouraged to consult Fig. 1 of Klein et al.

(2000). Note that if one assumes that the strain rate varies

slowly compared toY, i.e., the same assumption as used for the

Okubo–Weiss derivation, (18) predicts exponential growth

(decay) of the norm if the tracer gradient is aligned with e2 (e1).

A key point here is that both unique elements of the strain-rate

tensor (sn and ss) appear in the growth rate for the gradient

norm. The Okubo–Weiss parameter for 2D flows is thus consis-

tent in the sense that it is completely described by the elements of

S and V; that is, there are no components of the strain-rate or

vorticity tensors that are not accounted for in the expression for

W. It will next be shown that this is not the case for the QG

problem, requiring deeper consideration of how to measure the

competition between strain and vorticity in QG flows.

c. The degeneracy of the QG tracer gradient problem

In QG the evolution of the gradient of q along a Lagrangian

trajectory is still given by (9), except that the problem now

involves three dimensions so that

=uT
QG 5

0
BBB@

u
x

y
x

0

u
y

y
y

0

u
z

y
z

0

1
CCCA . (19)

Note that the third column is zero because in QG the vertical

velocity in the advection operator is asymptotically small.

Following the same procedure as for the 2D case, one assumes

that the elements of =uT
QG evolve slowly compared to =q,

yielding a system of coupled linearODEswhose solution is given

by the eigenvalues and eigenvectors of=uT
QG. The eigenvalues of

=uT
QG are l5 0, 6 (1/2)(s2 2v2)

1/2
, with the zero eigenvalue

corresponding to the vertical eigenvector, e3 5 (0, 0, 1). One

readily notices that the nonzero eigenvalues are the same as for

the 2D problem.

That the 2D andQG velocity gradient tensors have the same

nonzero eigenvalues suggests that W remains a useful metric

for QG flows. However, examination of the gradient norm

problem [introduced for the 2D case in (12)] reveals an im-

portant difference. As was the case for the tracer gradient

problem (9), theQG version of the gradient norm problem also

shares the same mathematical form as in the 2D case, but in-

stead uses the QG strain-rate tensor

S
QG

5
1

2

0
BBB@

s
n

s
s

u
z

s
s

2s
n

y
z

u
z

y
z

0

1
CCCA . (20)

It is immediately clear that SQG contains elements related to

the vertical geostrophic shear, uz and yz, which are not ac-

counted for in W. Taking this point further, one can easily

create a pathological example wherein the vertical shear is the

only relevant parameter in the gradient norm problem. For

example, consider a purely zonal flow whose only spatial var-

iations are in the vertical direction, so that uz is the only non-

zero element of SQG. One can then follow an analogous

procedure as in (13)–(18), where this time a counterclockwise

rotation of 458 about the y axis is sufficient to rotate the co-

ordinate frame into the strain basis and diagonalize SQG.

Writing Y 5 (y1, y2, y3), the analogous equation to (18) is

DjYj2
Dt

52u
z
(y21 2 y23) . (21)
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The zonal vertical shear uz here plays the same role as did s in

(18), modulating the rate of change of the gradient norm in-

dependent of the gradient’s orientation. Crucially, it confirms

that the component of the strain-rate tensor associated with the

vertical shear should be accounted for by any parameter aim-

ing to categorize strain-vorticity dynamics in QG. The 2D

Okubo–Weiss parameter does not satisfy this requirement, as

it measures only the horizontal components of the strain.

That the eigenvalues of =uT
QG lack any information about the

vertical shear is an example of the ‘‘degenerate dynamics of

particle stirring’’ at leading order for QG flows (cf. Hua et al.

1998). This use of the adjective ‘‘degenerate’’ refers to mathe-

matical degeneracy, in which the dimensionality of the solution to

(9) is reduced. In this context it means that the QG version of (9)

is a three-dimensional problem, but its solution is effectively only

2D since the third (vertical) eigenvalue is zero. Both Hua et al.

(1998) and Smith and Ferrari (2009) show that the degeneracy

arises because of a peculiarity in the dynamics of the QG tracer

gradient problem, which is that the vertical gradient depends on

the strength of the horizontal gradient but not vice versa. Because

the Okubo–Weiss approach assesses the horizontal and vertical

gradients jointly it is unaware of this degeneracy and only detects

the horizontal dynamics as being important.

The use ofW in QG flows (here taken as synonymous with real

ocean mesoscale flows) thus misses the vertical shears that are

crucial in both theQGstrain-rate tensor, (20), and vorticity tensor,

V
QG

5
1

2

0
BBB@

0 2v u
z

v 0 y
z

2u
z

2y
z

0

1
CCCA . (22)

It is this degeneracy thatmotivates the effort in this paper, which

is to develop an alternative Eulerian method to W for use in

large-scale oceanography. Many of the candidate vortex iden-

tification parameters mentioned in the Introduction (e.g., Hunt

et al. 1988; Chong et al. 1990; Berdahl and Thompson 1993;

Zhou et al. 1999) are immediately disqualified on the basis that

they are also informed by the eigenvalues of=uT
QG. That is, none

of these parameters will overcome the degeneracy that afflictsW

in QG. Others involve a level of mathematical sophistication

that is likely beyond the needs or capabilities of typical ocean-

ographic applications.2 The next section will highlight one

scheme, the l2 criterion proposed by Jeong and Hussain (1995),

as a promising way to avoid the degeneracy of the above

schemes despite its mathematical connection with W.

3. The l2 criterion for QG flows

Before discussing themerits of the l2 criterion, it is useful to list

some desirable properties that a vortex identification scheme

should possess when used for QG flows. Note that this discussion

will only pertain to Eulerian schemes based on velocity gradients

and their constituent tensors (2)–(4), so approaches usingmethods

such as streamline computation (e.g., Sadarjoen and Post 2000;

Nencioli et al. 2010) or Lagrangian descriptors (e.g., Madrid and

Mancho 2009; Mancho et al. 2013) will not be considered.

It is important to recognize that the family of schemes based on

measuring the eigenvalues of =uT
QG (which includes W) is both

well recognized and highly successful. Though the new scheme

does not necessarily have to follow this exact approach, the ve-

locity gradient tensor (2) does serve as a mathematical common

ground for an even broader array of schemes (Chakraborty et al.

2005). Given the dynamical and mathematical similarities be-

tween 2DandQGflows, it is thus not unreasonable to expect that

the newQG scheme should exhibit some connections with its 2D

counterpart. In particular, we will use W as a sort of ‘‘baseline

scheme’’ in this discussion, such that for the QG scheme the

following properties are desired:

d The scheme should somehow manifest the standard (2D)

definition of W if uz 5 0.
d The parameters obtained through the scheme must be real,

i.e., the eigenvalues of a symmetric tensor.
d The small aspect ratio of QG flows means that the relevant

strain and vorticity dynamics are quasi-horizontal. The ten-

sor that yields these new parameters should have eigen-

vectors that reflect this quasi-horizontal geometry.

These criteria essentially insist that this scheme is treated as

an extension of a 2D problem, in that purely 2D dynamics are

recovered in the limit of no vertical shear. This section will

introduce the l2 criterion as a scheme that satisfies these cri-

teria. It was previously applied to a QG flow by Petersen et al.

(2006) to identify vortices in an idealized domain, but was not

examined in terms of its geometric properties. These proper-

ties will be one of the focal points here.

The l2 criterion was originally derived by Jeong and Hussain

(1995), who insisted that for an object to be considered a vortex it

must have a net circulation and it must beGalilean invariant. They

noted that many extant vortex definitions (pressure minima, closed

streamlines, and surfaces of constant vorticity) fail to meet these

criteria even in relatively well-understood flows. In particular, they

sought to avoid scenarios where pressure minima occurred without

vortical motion and, conversely, where vortical motion occurred

but the pressure minima were destroyed by other effects such as

viscosity. To that end, theyproposed ignoring all terms in the strain-

rate equation (6) except for the nonlinear terms S2 1 V2 and the

pressureHessian, so that the topologyof thepressurefieldwouldbe

directly associated with the local strain and vorticity fields. Their

rationale was that, by isolating the effects of the local velocity

gradients on the pressure field, a vortex would unambiguously

correspond to a pressure minimum. This would occur when f00

has two negative eigenvalues, or by the above assumption, when

S2 1 V2 has two negative eigenvalues, permitting analysis akin to

the Okubo–Weiss approach where the nature of the flow depends

on the local velocity gradients. Note that themoniker ‘‘l2’’ refers to

the critical role the second eigenvalue plays in this framework, as it

is simple to see that if one sorts the eigenvalues ofS21V2 such that

l1 $ l2 $ l3, the sign of l2 is sufficient to determine whether an

object is a vortex or not.

2 The author notes that the criterion introduced by Haller (2005)

requires no mathematics beyond what will be used in this paper,

and thus would be an intriguing target for future work that is both

sophisticated and accessible.
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It is notable that the l2 criterion applies to both 2D and 3D

flows. In fact, in 2D the relationship between theOkubo–Weiss

and l2 approaches is quite explicit, since

S2 1V2 5
1

4

 
W 0

0 W

!
(23)

is a symmetric tensor with a double eigenvalue, W/4. This

tensor thus has two negative eigenvalues whenW, 0, which is

associated with a vortex according to both the l2 and Okubo–

Weiss criteria.

TheQG version of this tensor is more interesting, and can be

written

S2
QG 1V2

QG 5
1

4

0
BBB@

s2 2v2 0 s
n
u
z
1s

s
y
z
2vy

z

0 s2 2v2 s
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1vu
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s
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s
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z
2vy
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s
s
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z
1vu
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n
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0

1
CCCA (24)
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4
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W 0 2
2

f
0

Q
2

0 W
2

f
0

Q
1

2
2

f
0

Q
2

2

f
0

Q
1

0

1
CCCCCCCCCA
. (25)

The second, more succinct, equality in (25) employs thermal

wind balance,

f
0
k̂3 ›

z
u52=

h
b , (26)

to introduce the quasigeostrophic Q vector, Q5 (Q1, Q2)5
(2ux � =hb, 2uy � =hb) (Hoskins et al. 1978), where=h 5 (›x, ›y)

and b is the buoyancy. The eigenvalues of S2
QG 1V2

QG, written

from largest to smallest and labeled such that l1 $ l2 $ l3, are

(Petersen et al. 2006):

l
1
5
1

2

�
1

4
W

�
1
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
W

�2

1
jQj2
f 20

s
, (27)

l
2
5

1

4
W , (28)

l
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1
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�
1

4
W

�
2
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
W

�2

1
jQj2
f 20

s
. (29)

Simple inspection reveals that, as long as jQj is nonzero, l1 is
always positive, l3 is always negative, and the sign of l2 is the

same as the sign of W.3 Notably, the magnitudes of l1 and l3
are asymmetric about zero, with the asymmetry determined

by the sign of W: if W , 0 then jl3j . jl1j, and vice versa

if W . 0.

Before proceeding further it is worth examining the key

features of (25) and whether they satisfy the desired bullet

points at the beginning of this section. First, it is clear that this

tensor is symmetric and its eigenvalues are thus guaranteed to

be real. In the limit where uz 5 0 the tensor as a whole reduces

to the 2D version in (23), with zeros in the third row and col-

umn. It is thus perhaps unsurprising that, in similar fashion to

(23), its eigenvalues reflect the influence of W. The final bullet

point requires a derivation of the eigenvectors, and will make

use of the asymmetry of the eigenvalues noted above.

a. The geometry of S2
QG 1V2

QG

For an arbitrary scalar field the Hessian matrix is a matrix of

second derivatives that describes the curvature, or topology, of the

field. Because the Hessian is symmetric its eigenvectors are or-

thogonal, and so its axes form a coordinate system with which to

naturally describe the geometry of the field. In using the approach

of the l2 criterion, setting S2
QG 1V2

QG equal to the pressure

Hessian means that the topology of the pressure field is described

by the eigenvectors of S2
QG 1V2

QG. When S2
QG 1V2

QG has two

negative eigenvalues the pressurefield therefore has aminimum in

theplane spannedby the corresponding eigenvectors, and a vortex

rotating in this plane has its axis alignedwith the third eigenvector.

Here the eigenvectors of S2
QG 1V2

QG will be denoted ei for

i 5 {1,2,3}, with the subscript indices matching those of the

corresponding eigenvalues (27)–(29). Using standard linear

algebra techniques, it is straightforward to show that

e
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Q
1

f
0

l
1

1
CCCCCCCA
. (30)

A few points are worth noting regarding these eigenvectors.

First, e2 is always strictly horizontal and is aligned with Q. By

the orthogonality of the eigenvectors, e1 and e3 are thus tilted

with respect to the horizontal and their projections onto the

horizontal plane lie perpendicular to Q. The angles formed

between the horizontal plane and e1 and e3 thus indicate the tilt

of the resulting flow structures: when l2 , 0 a pressure mini-

mum occurs in the plane spanned by e2 and e3, and the axis of

the resulting vortex is given by n25 e23 e3 and is parallel with

e1. Conversely, when l2 . 0 a pressure maximum occurs in the

3 The signs of the eigenvalues retain this property even for

general 3D flows. The ‘‘l2’’ moniker of the criterion thus alludes to

the fact that the occurrence of a vortex hinges entirely on the sign of

l2, or in the 2D and QG cases, the sign ofW (Petersen et al. 2006).
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plane spanned by e2 and e1, and the axis of the strain field is

n15 e13 e2 and is parallel with e3. Since e2 is purely horizontal

the tilt of the vortex or strain field is given by the slope of the

accompanying vector, e3 or e1, for cases when l2, 0 and l2. 0,

respectively. A schematic depiction of these results appears in

Fig. 1, which are also summarized in Table 1.

The slope of this vector can be calculated as the vector’s

vertical component divided by the Euclidean norm of its hor-

izontal components. Using the identity

l
1
l
3
52

1

4

jQj2
f 20

, (31)

the slope of e1 is

S
1
5

l
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l
1
l
3

p 52

ffiffiffiffiffiffiffiffiffiffi
2

l
3

l
1

s
, 0, (32)

and, likewise, it can readily be shown that the slope of e3 is

S
3
5

ffiffiffiffiffiffiffiffiffiffi
2

l
1

l
3

s
. 0: (33)

Here we return to the earlier point that l1 and l3 are asym-

metric about zero, and that the eigenvalue with the larger

magnitude is the one that shares the same sign as W (or l2).

When l1 , 0 the tilt of the resulting vortex is given by S3, and

since in this case jl3j$ jl1j, by (33) this establishes the bounds
0, S3 # 1. An analogous effect occurs when strain dominates:

l2 . 0 implies that the slope of the strain field is given by S1,

and since jl1j$ jl3j a bound emerges that21# S1 , 0. When

W5 0 we reach the limiting case where S1 5 1 and S3 5 1. The

eigenvectors of S2
QG 1V2

QG are thus oriented so that the

dominant flow structure (vortex or strain) has a slope that is

bounded in magnitude by one, so that its tilt is more horizontal

than vertical. These rules regarding the slope of the eigen-

vectors always remain valid for QG flows except in the singular

limit uz 5 0. These results affirm the final bullet point at the

beginning of this section, which is that the flow structures in

QG should exhibit quasi-horizontal geometry.

One final interesting property of these eigenvectors is worth

noting, which is that they can be used to diagnose the relative

importance of the baroclinicity in setting the curvature of the

pressure field. Consider the case of a vortex, so thatW, 0 and

the tilt of the vortex is given by S3. Using (31), one may rewrite

(33) in the form

P
3
[ S

3
jW, 05

jf
0
jW

4jQj 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jf

0
jW

4jQj
�2

1 1

s
, (34)

where the new variable,P3, has been defined to indicate that we

are only considering S3 for vortex-dominated flows. Rewriting

(33) in this way allows us to anticipate the behavior of P3 for

different values ofW and jQj. To begin, note that the first term

on the right side of (34) is negative, the term involving the square

root is positive, and thus 0 , P3 # 1. In the limit where

jWj � jQj/jf0j, when the eigenvalues l1 and l3 are dominated by

the baroclinic term involving jQj, we would expect P3 ’ 1.

Conversely, when jWj � jQj/jf0j, then l1 converges to 0while l3
does not, and so P3 ’ 0. These limits are also reflected in the

structure ofS2
QG 1V2

QG; whenP3’ 1 the structure of the tensor

is dominated by the off-diagonal terms, and when P3 ’ 0 it

FIG. 1. Schematic showing the tilt of the principal axes of S2
QG 1V2

QG for (left) strain and (right) vortex structures. The coordinate axes

are shown by the dashed gray lines. Eigenvector e2 is always horizontal. The angle between the horizontal plane and the plane parallel to

the pressure extremum is given by u.

TABLE 1. Summary of the eigendecomposition and geometry for

each flow type.

Type l1 l2 l3 Normal vector Slope of plane

Strain 1 1 2 n1 5 e3 S1 52
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2l3/l1)

p
$21

Vortex 1 2 2 n2 5 e1 S3 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2l1/l3)

p
# 1
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essentially takes on the structure of a 2D diagonal matrix with

zeros in the third row and column.

An analogous expression can also be derived for a strain

field with W . 0, whose tilt is given by S1. In this case we use

(32) to define

P
1
[S

1
jW. 05

jf
0
jW

4jQj 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�jf

0
jW

4jQj
�2

1 1

s
, (35)

which is bounded such that 1 # P3 , 0. A similar result as

above is obtained: when jWj � jQj/jf0jwe expectP1’21, and

when jWj � jQj/jf0j then P1 ’ 0. It is thus clear that both

vortices and strain fields are most steeply tilted when the jQj
term dominates jWj, and are essentially horizontal when jWj
dominates the jQj term.

b. A geometrically motivated extension of the
Okubo–Weiss parameter

For real oceanic flows the l2 criterion possesses some

interesting advantages over the Okubo–Weiss approach,

and by the previous subsections these are intrinsically re-

lated to the geometry of the flow and its pressure field. As

argued earlier, the most important feature of the l2 criterion

for QG flows is that it accounts for the vertical shear, whose

effects are missing in the standard Okubo–Weiss parameter.

The cost of these advantages is added complexity–instead of

having a single parameter W to identify vortices and quan-

tify their strength, there are now three eigenvalues of

S2
QG 1V2

QG that contain information about both strength

and orientation. In this section we explore whether a sen-

sible extension to W can be distilled from these eigenvalues

and cast as a single parameter, so as to combine the sim-

plicity of the Okubo–Weiss approach with the geometric

advantages of the l2 criterion.

For the sake of simply identifying vortices the l2 criterion

is exactly as straightforward as the Okubo–Weiss parame-

ter, where a structure is a ‘‘vortex’’ purely based on the sign

of l2 (or W ). However, l2 alone is an insufficient descriptor

of the strength of these flow structures since it fails to ac-

count for the Q terms in the other eigenvalues. Put another

way, since the whole point of the l2 criterion is to describe

the curvature of the pressure field, omitting the other ei-

genvalues is akin to ignoring the direction with greater

curvature. Ideally, a single parameter would exist that

would retain the simplicity of identifying eddies based

purely on the parameter’s sign, while still accounting for the

contributions of Q. As before, it would be optimal if this

parameter (hereafter labeled W*) reduces to W in the limit

of no vertical shear, or alternatively if it could be expressed

in an analogous way for both S2 1V2 in the 2D problem and

S2
QG 1V2

QG for the QG problem.

Since no obvious choice for such a parameter emerges from

the tensors or their geometry, one must construct the pa-

rameter using a combination of mathematical and physical

insight. One possibility that was considered forW* was to use

the determinant of S2
QG 1V2

QG, which is the product of its

eigenvalues. At first glance this choice seems both convenient

and logical—simple inspection of (23) reveals that its square

root returns W for the 2D problem, its cube root retains the

correct sign of l2 for the QG problem, its expression in QG is

both uncomplicated and clearly dependent on Q, and also is

appealing from a physics perspective since the determinant

has well-known geometric properties (Peng 2007). However,

the disadvantages of this choice are subtle but critical. The

square root of the determinant in the 2D problem has two

possibilities for its sign, which is a problem that is easily

overcome but still bothersome.More importantly, for the QG

problem in the limit where uz 5 0 the determinant is zero.

This means that a purely horizontal vortex cannot be mea-

sured using this definition of W*, and so the QG version of

this parameter does not cleanly reduce to the 2D version. This

potential definition for W* was thus rejected.

With the above considerations in mind, the definition pro-

posed here will instead be

W*5 4 sgn(l
2
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1 1 l2

2

2

s
, (36)

where sgn(x)5 x/jxj is the sign function, the radical sign indi-

cates the principal square root, and l1 and l2 are the first and

second eigenvalues ofS2
QG 1V2

QG (or both eigenvalues ofS21
V2 for the 2D problem). The rationale for defining W* in this

way is as follows. Simple algebra can be used to show thatW*5
W when calculated for the 2D case using the eigenvalues of

S2 1 V2, so that it is equivalent to the Okubo–Weiss param-

eter. In QG this definition of W* includes terms involving Q

and is equivalent to W in the limit where uz 5 0, thereby re-

ducing cleanly to the 2D case. In the QG case the magnitude of

W* remains the same even if l3 were substituted for l1 in (36),

so it can be used to measure the strength of both vortex- and

strain-dominated flows without biasing the magnitude one way

or another. Finally, the sign function ensures that W* retains

the same sign as l2, and so retains the convenience of identi-

fying vortices purely by its sign.4

In all, this exploration of the l2 criterion has led to several

new parameters that can be used to partition QG flow struc-

tures based on their dynamics, magnitude, and geometry. A

new parameter,W*, has been introduced which reduces toW in

2D flows but improves upon the Okubo–Weiss parameter by

accounting for the effects of baroclinicity. The vertical tilt of

the flow structures diagnosed usingW* is indicated by the slope

parameters, S1 and S3, which derive from the eigenvectors of

S2
QG 1V2

QG. The geometry of the eigenvectors has also been

used to develop new parameters, P1 and P3, that describe the

tilt of fronts and vortices, respectively. Each of these new

4Note that, by definition, W* has the same sign as the standard

Okubo–Weiss parameter and thus will identify the exact same

vortical structures based on the criterion W* , 0. However, most

applications of the Okubo–Weiss parameter utilize some threshold

value to distinguish eddies from other vortical structures, and

similar thresholding will likely be required for W*. Note that the

optimal threshold for W will likely not be the same as for W*, and

both should be chosen on a case-by-case basis depending on the

amount of noise in and resolution of the data.
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parameters provides a way to describe ocean dynamics beyond

the purely two-dimensional scope of the Okubo–Weiss pa-

rameter, which will be explored in the following section using

high-resolution numerical model output.

4. Simulations

Both ocean observations and numerical simulations are

appropriate for testing the new parameters developed in this

paper. Given that it is standard practice to use the Okubo–

Weiss parameter, a fundamentally 2D quantity, for diagnoses

even in 3D flows, we are not necessarily limited to using

strictly 2D or QG flows for these tests. Here we choose to test

the new parameters using a high-resolution primitive equa-

tion numerical simulation, whose output depicts a highly

turbulent eddy field and contains dense information about

both the velocity and buoyancy fields. The simulation output

thus allows the new parameters to be diagnosed for many

different types of flow structures, just as they would be ap-

plied for real ocean flows.

The simulation examined here is the same as was used in

Bachman and Klocker (2020), whose key features are

summarized below. The MITgcm (Marshall et al. 1997) was

used to perform a 5-yr experiment of the Kerguelen

Plateau region at 1/1208 resolution (nominally 650-m grid

spacing in each direction), with a domain extending from

608 to 858E in the zonal direction and from 508 to 388S in the

meridional direction. The vertical grid consisted of 150

layers of varying thickness, ranging from 10 m at the surface

to 50 m at depth. Open boundary conditions were used to

force the model at the lateral boundaries, where the ve-

locity, temperature, and salinity fields were forced using

daily output from a larger simulation of the Indian Ocean

sector of the Southern Ocean (Klocker 2018). A 1/28-wide

sponge layer was used to relax the model to the boundary

conditions, with a one-day relaxation time scale at the inner

edge of the sponge and a 4-h time scale at the outer edge of

the sponge. The wind and buoyancy forcing was derived

from annually and zonally averaged output from the

Southern Ocean State Estimate (Mazloff et al. 2010) and

applied as meridionally varying but constant-in-time forc-

ing over the model domain.

Instantaneous snapshots of the velocities and buoyancy field

were written out every six hours during the final year of sim-

ulated time. Given the very tight horizontal grid spacing, each

snapshot resolved a vigorous and fast-evolving eddy field at

nearly submesoscale-resolving resolution. While larger flow

structures such as mesoscale eddies would be expected to ex-

hibit QG dynamics, the submesoscale structures in the model

feature Rossby numbers that are too large and balanced

Richardson numbers that are too small for QG scaling to be

appropriate (Thomas et al. 2008). The small-scale dynamics in

the simulation are thus admittedly outside both the 2D andQG

regimes that underpin the theory here. However,W and the l2
criterion are intended to be applied to real ocean flows which

do not fit neatly into either of these dynamical boxes either.

The high-resolution simulation thus provides a realistic, rig-

orous, and challenging setting in which to test and compare the

new parameters. Snapshots from day 100 and day 300 of the

fifth year were arbitrarily chosen to demonstrate the new pa-

rameters developed in this paper. A region of particularly

vigorous mesoscale turbulence stretching from 748 to 848E and

from 508 to 438S was selected for visualization of these diag-

nostics, as it was large enough to permit several distinct vor-

tical and frontal structures while being small enough to

clearly view features at O (1) km scales. While these struc-

tures are clearly visible in both the maps of surface buoyancy

(Fig. 2a) and vorticity (Fig. 2b), neither field clearly delin-

eates what types of dynamics are dominant at a given point in

space, justifying the need for more rigorous identification

methods as are explored here.

The middle and bottom rows of Fig. 2 show visualizations

of the Okubo–Weiss parameter (labeled with a reminder

that it is equal to 4 times the middle eigenvalue of

S2
QG 1V2

QG; Fig. 2c), the new parameter W* (Fig. 2d), and

the first and third eigenvalues of S2
QG 1V2

QG (Figs. 2e,f). As

demonstrated in numerous prior studies, the Okubo–Weiss

parameter clearly singles out vortical structures as blue

(negative) disk-shaped structures of various sizes that are

interspersed throughout the domain. Many of the vortices

are ringed by regions of positive W (red), which tend to

occur in elongated, thin sets that are typical of strained

density fronts. A key property to note is that these fronts, as

visualized by W, tend to appear broken up into shorter

segments reminiscent of dashed lines, rather than elon-

gated, continuous streamers. This behavior is easily con-

trasted with the visualization of W* (Fig. 2d), where the

fronts are readily seen as continuous structures with very

large magnitude. The subpanels above Figs. 2c and 2d

show a magnified view of a region where these character-

istics of W and W* are especially apparent.

Here the reader is reminded that the sign of W* and W are

the same at every point, so the main visual difference between

Figs. 2c and 2d is due to baroclinicity that is accounted for by

the jQj terms in W*. Likewise, though all vortices in Fig. 2c

still have negative values in Fig. 2d, the more baroclinic

vortices stand out in Fig. 2d. Many of the vortices in Fig. 2d

also appear as ‘‘doughnut’’ structures rather than disks be-

cause the baroclinicity is weakest at the vortex core. Last,

note that the baroclinicity contributes significantly to the overall

magnitude of the W* diagnostic, and as such the color scale in

Fig. 2d is an order of magnitude larger than that of Fig. 2c.

Figures 2e and 2f also are shown at this enlarged color scale,

and confirm that eigenvalues l1 and l3 are positive- and

negative-definite, as stated earlier. Histograms comparing the

magnitudes of W and W* also demonstrate the relative sig-

nificance of the jQj terms (Fig. 3), such that the shapes of the

respective histograms are very similar (both approximately

lognormal) but the W* histogram is shifted approximately an

order of magnitude toward more extreme values.

The middle row of Fig. 2 suggests that an advantage of the

new parameter W* lies in its tendency to identify highly baro-

clinic frontal structures, which are not as clearly shown by W.

This feature of W* can be understood by examining the (in-

viscid) QG evolution equation for the buoyancy gradient

magnitude,
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Dj=
h
bj

Dt
5F2N2=

h
w � =

h
b

j=
h
bj , (37)

F5 2Q � =
h
b

j=
h
bj , (38)

where F is the frontogenesis function (Hoskins 1982). By (38) it

is clear that the Q vector and F are closely related, such that

one might expect a relationship jQj } jFj to generally hold.

Furthermore, by writing the definition of the l1 vector in the

formQ52=hu
T � =hb, one might also expect jQj } j=hbj. The

dependence of W* on the jQj term in l1 would then suggest

that the magnitude ofW* would be especially amplified where

fronts are evolving rapidly and the buoyancy gradient is tight.

Figure 4 shows that these proposed relationships are

supported well by the results from the numerical model. The

first column shows intensity (scatter) plots of jWj (top) and
jW*j (bottom) against jFj in logarithmic space. As in Fig. 3,

these plots are produced using all surface points in the

model subdomain, where lighter colors indicate a greater

number of occurrences. The intensity plot for jWj demon-

strates only a weak trend with jFj, as indicated by the wide

bullseye structure of the cloud of points. The Pearson’s

correlation coefficient between these two variables is 0.28.

In contrast, the intensity plot for jW*j shows a strongly linear

and positive trend with jFj, with a correlation coefficient of

0.88. Note that individual points in the intensity plot are

restricted to lie above the line

log
10
jW*j5 1

2
log

10
jFj2 1

2
log

10
4jf

0
j , (39)

FIG. 3. Histograms of the base-10 logarithm of W and W*, taken

over all surface points in the model subdomain at year 5, day 100.

FIG. 2. Visualizations of (a) surface buoyancy, (b) relative vorticity, (c) W, (d) W*, and the (e) first and (f) third

eigenvalues of S2
QG 1V2

QG, taken on year 5, day 100. Note the different color scale in (c) from (d)–(f).
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which can be straightforwardly derived by using (36) and (38)

to establish an inequality between log10jW*j and log10jFj.
Intensity plots for log10j=hbj (right column) show similar be-

havior; although no useful bounds can be derived in this case,

the logarithm of jW*j exhibits a much clearer trend with

log10j=hbj (correlation coefficient 0.81) than does the loga-

rithm of jWj (0.13).
The close relationship between F, j=hbj, and W* is also

clearly visible in spatial maps of these variables (Fig. 5), par-

ticularly with regard to strong frontal structures. Each panel of

this figure shows values measured on year 5, day 100, where the

range of the color axes are chosen to highlight how the tightest

fronts and filaments are easily seen in all three metrics and

match quite well between them. A particularly interesting re-

sult emerges by considering weaker values of these variables as

well, where forming histograms of their magnitudes in loga-

rithmic space reveals that all three have approximately log-

normal distributions (Fig. 6). For the sake of identifying fronts

by employing a threshold value on W*, this implies that a

threshold based on standard deviations of log10jW*j would be

likely to isolate the same strong features as would emerge by

applying a threshold on the standard deviations of log10jFj or
log10j=hbj.

Figure 7 shows the result of applying such a threshold to each

of these variables. The vast majority of the features shown here

are strain-dominated fronts, since they tend to be associated

with larger values of jQj than do vortices. In these plots an

overbar represents the mean and s represents the standard

deviation of each variable’s magnitude in logarithmic space.

Each panel shows the structures that are identified by taking

only those points with magnitudes stronger than the mean plus

half a standard deviation (first column), the mean plus one

standard deviation (second column), and the mean plus 1.5

standard deviations (third column). Naturally, each column

represents a progressively stronger filter moving from left to

right across this figure (keeping approximately 31%, 16%, and

7% of points, respectively), which results in detecting fewer

and thinner segments of these features. As seen previously in

Figs. 6b–d, there is very close agreement between each variable

in terms of which structures are detected, with differences

generally pertaining to the precise size and shape of each

feature. A noteworthy exception is highlighted in the green box

in Fig. 7a, where a strongly vortical eddy (detected by all three

metrics due to a strong temperature contrast between its fringe

and its core) is detected quite clearly by the W* metric but

slightly less so for the other two. For the stronger filters in the

right two columns, more of this eddy is able to pass through the

filter onW*, whereas it is effectively filtered out completely as

measured by F and=hb. In practical terms these differences are

unlikely to matter, since none of these variables are materially

conserved and do not truly represent the stability of fluid tra-

jectories in any case (e.g., Haller 2005); their similarity is pre-

sented here only to confirm the utility of W* for detecting

strongly baroclinic structures.

To emphasize the superior skill of W* at identifying frontal

structures, the bottom row of Fig. 7 shows the same standard

deviation-based thresholds applied to log10jWj. In all three

columns it is clear that W identifies an entirely different set of

structures that are more circular in shape, which is indicative of

its facility at identifying eddies in comparison to its identifi-

cation of fronts (see also the discussion of Fig. 2).

Finally, Fig. 8 shows a map of the strain and vortex tilt as

predicted by the new parameters, P1 and P3, respectively.

The maps in Figs. 8b and 8d are filtered so that only regions

where W . 0 and W , 0 are shown in color, respectively.

Figures 8a and 8c show the frequency at which each value of P1

andP3 occurs in themap, where the vertical axis is in logarithmic

scale. The convexity of the PDFs in Figs. 8a and 8c indicate that

the distributions are not quite exponential, but are nonetheless

dominated by values near 21 and 1, respectively. Likewise,

Figs. 8b and 8d are dominated by darker shades, indicating

values near j1j, except for some conspicuous regions of or-

ange shading within certain vortices in Fig. 8d. As noted in

section 3a, smaller values indicate whereW is dominant over

FIG. 4. Intensity plots showing the relationship between the magnitudes of F, =hb,W, andW* in logarithmic space.

Values for these plots are gathered from surface points on year 5, day 100.
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the contribution of jQj/f0, or where the baroclinicity is rel-

atively weak. It is curious, though not necessarily notewor-

thy, that only a very small number of structures seem to bear

this characteristic.

Several other diagnostics were compared to the spatial maps

of P1 and P3 to try to discern whether there exist correlations

with other features of the flow. Among these were mixed layer

depth, ratio of shear production to buoyancy flux (essentially to

determinewhether energy conversion in these eddies wasmore

associated with lateral or vertical shears), and vortex size, but

no firm correlations were found with any of these features. It is

possible that P1 and P3 may be relatable to other, more

complicated questions about ocean eddies—how do these pa-

rameters evolve over the lifetime of an eddy, for example, or is

there any connection with the amount or distance of water

mass transport—that are beyond the scope and capability of

this dataset. It is also possible that P1 and P3 are simply

mathematical novelties, given that they essentially represent

the degree of structural tilt despite that the 3D QG equations

have no vortex tilting term. Their precise relationship with the

curvature of the pressure field could also be investigated,

though it would require a specially designedQGmodel to do so

since the steepest slopes of j1j are not resolvable with the as-

pect ratio, Dz/Dx5O (1023), of a typical eddy-resolving ocean

model. For now these questions are posed here to motivate

future investigation into this topic, and the results in Fig. 8 are

shown for completeness and consistency with the theory from

section 3a.

5. Discussion and conclusions

A new Eulerian vortex detection scheme has been devel-

oped that aims to differentiate vorticity-dominated and strain-

dominated regions in realistic ocean flows. Like other, earlier

methods that are popularly used for eddy detection in obser-

vational and computational oceanography, the scheme differ-

entiates these regions based on the velocity gradients of the

flow. The motivation for the new scheme is the ocean’s quasi-

two-dimensional behavior at large scales, which nonetheless

features vertical shear and horizontal density gradients that are

not accounted for by other methods that are based on the eigen-

values of the velocity gradient tensor. This issue stems from the

fact that the nonzero eigenvalues of the 2D and QG velocity

gradient tensors are identical, resulting in a mathematical de-

generacy wherein the vertical shear is ignored. It is shown here,

via pathological example, that the vertical shear can play a

leading-order role in the evolution of tracer gradients in QG

flow, thus necessitating a new scheme that accounts for the

vertical dimension.

Under the QG approximation the vertical and horizontal

dimensions are coupled through thermal wind balance. In

principle this allows a scheme to be developed that is sensitive

to dynamics in the vertical while still only measuring quantities

in a horizontal plane, e.g., at the surface. In fact, since the QG

tracer gradient problem is decoupled between the horizontal

and vertical directions and the vertical shear only affects the

vertical tracer gradient (e.g., Hua et al. 1998; Smith and Ferrari

2009), the information gained by measuring the vertical shear

FIG. 6. Histograms of the magnitudes of F, =hb, and W* in log-

arithmic space, on year 5, day 100. Note that all three histograms

show approximately lognormal distributions.

FIG. 5. Spatial maps of (a) W*, (b) the frontogenesis function,

and (c) the horizontal buoyancy gradient magnitude, highlighting

their similarities for identifying strong fronts and filaments on year

5, day 100.
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(the horizontal buoyancy gradient) is specific to the tracer

evolution in the vertical. It is thus natural that a scheme that

includes the horizontal buoyancy gradient would be sensitive

those features where vertical dynamics are known to be sig-

nificant, i.e., fronts and filaments.

The scheme developed here is based on theQGversion of the

l2 criterion (Jeong and Hussain 1995), which decomposes the

flow based on the eigenvalues of a different tensor of velocity

gradients, S2 1 Q2, and so avoids the mathematical degeneracy

problem. This approach reduces neatly to the Okubo–Weiss

parameter W for purely 2D flow, but in QG its eigenvalues

include a combination of vorticity and straining in the horizontal

plane as well as a baroclinic term involving theQ vector. Being a

geometric object, theS21Q2 tensor is also examined in terms of

its eigenvectors, and it is shown that their orientation is restricted

to be predominantly horizontal under the QG approximation.

Finally, a new parameter W* is derived that is everywhere the

same sign asW, and that smoothly transitions to it the limit of no

vertical shear (i.e., purely 2D flow). It thus identifies the exact

same vortices as doesW, with the proviso that their distributions

are different and thus filtering methods using thresholds (e.g.,

Elhmaïdi et al. 1993) may affect them differently. The new

parameter is applied to a sample flow field taken from a high-

resolution regional MITgcm simulation, and is shown to be su-

perior to W for identifying strong fronts and filaments, whose

dynamics are dominated by baroclinic effects associated withQ.

It is further shown that there is a very close association between

W*, fronts, and the frontogenesis function, such that W* is

equally useful for identifying strongly strained features as well as

vortices. Because W* is a direct extension of W, i.e., one can

exactly recoverW by omitting the horizontal buoyancy gradient

term, one can useW* to cleanly separate how the flow dynamics

FIG. 7. Baroclinic structures detected by applying a threshold filter to the magnitudes of W*, F, =hb, and W in logarithmic space. The

lognormal probability distributions for each variable (Fig. 6) suggest that these thresholds can be defined using standard deviations.

Regions in white indicatewhere themagnitude is greater than themean plus (left) 0.5, (center) 1.0, and (right) 1.5 standard deviations. The

green box identifies an exceptionally baroclinic eddy. Values for these plots are gathered from surface points on year 5, day 300.
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are affecting horizontal gradients (W) versus vertical gradients

(W* 2 W).

Vortex detection parameters are employed both for the

analysis of remote sensing data and numerical model output,

typically for estimating tracer transport by coherent eddies.

A main advantage of 2D parameters like W is that they are

naturally applied to data observed at the sea surface, which

are readily available and densely sampled compared to ob-

servations at depth. The new parameterW* takes advantage

of the predominantly geostrophic nature of large-scale flows

that relates the vertical shear to horizontal density gradients

via thermal wind balance, thus also being applicable to 2D

(sea surface) flows despite including 3D dynamics. One of

the primary advantages of W* is that it gives a window into

vertical gradient dynamics despite only requiring 2D data.

Many tracers considered to be important by oceanographers

are either primarily forced at the surface (heat, via surface

heat fluxes) or tend to collect near the surface (buoyant

pollutants like oil, or chlorophyll), which would naturally

establish vertical gradients. The evolution of the vertical

gradients implied by large W* thus indicates important

processes such as subduction or ventilation are occurring

(i.e., the dynamics are stretching out or contracting the

gradients, respectively), particularly at small-scale strain

dominated regions as found by Balwada et al. (2021).

Indeed, the new scheme has been shown to be superior at

detecting precisely those features where subduction is

known to strongly occur, such as fronts, filaments, and the

fringes of coherent eddies (e.g., Stukel et al. 2017; Taylor

et al. 2018; Freilich and Mahadevan 2020).

A subtle issue regarding how to applyW* concerns the kind

of datasets for which it is most suitable. Parameters such as W

are generally used only for vortex detection, not the detection

of fronts, and are thus advantaged by the large [O (10–100) km]

size of ocean mesoscale eddies. Fronts and filaments are sig-

nificantly smaller, often of O (1) km width (McWilliams 2019),

and thus are not typically resolved by current observational

platforms. For this reason W* presently is most well suited for

the analysis of very high-resolution model output which re-

solves both large vortices and the fronts in the interstices.

Future, high-resolution observing missions (e.g., Fu et al. 2009;

Kilic et al. 2018; Rodríguez-Fernández et al. 2019) promise to

open up applications for W* within the space of observational

oceanography. It is also possible that innovative methods using

high-resolution satellite imagery, which are already used for

the detection of ocean fronts (e.g., Bouali et al. 2015), could be

developed for more near-term use.

The ability of W* to include baroclinicity in its measure of

vortex strength is the primary way it is distinguished from W.

Since by construction it has the same sign as W everywhere, it

can essentially be considered a reweighted version of the

Okubo–Weiss parameter that is particularly sensitive to nearly

geostrophic, baroclinic features. This feature ofW* is precisely

what enables it to perform so well at identifying fronts and

filaments, andmay be useful for differentiating eddies based on

their geometry (Fig. 8). However, for eddy detection it has the

FIG. 8. (a) Number of occurrences for each value of P1 from (b) its spatial distribution throughout the model

subdomain on year 5, day 100. (c),(d) Analogous results pertaining to P3.
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same limitations as W, namely, that it can be prone to mis-

identifying vorticity-dominated filaments as eddies (Fig. 2d). It

also has the tendency to visually identify vortices as doughnuts

rather than disks, since at the center of a vortex the jQj term
reaches its minimum, which may require automated vortex

identification methods to be adjusted. Related to this point,

baroclinicity causes W* to take on a far larger range of values

thanW, and one notable risk is that using a standard deviation-

based threshold to distinguish eddies from the background flow

may cause the scheme to miss the more weakly baroclinic

vortices. For these reasons, users may find it more useful to

simply useW for the vortex detection step, and then to employ

W* as an auxiliary means of analysis or for the particular ap-

plication of filament identification.

Finally, it is important to note the relative merits of Eulerian

vortex identification methods such as W* versus those of

Lagrangian methods (e.g., Beron-Vera et al. 2013; Froyland

et al. 2015; Haller et al. 2016;Wang et al. 2016; Abernathey and

Haller 2018). Several disadvantages of Eulerian methods are

discussed by Haller (2015), most notably that they are not

objective (i.e., the identified structures may differ depending

on the rotation or translation of the reference frame) and are

materially incoherent (subject to significant leakage through

the identified boundaries of the structures). Eulerian methods

thus tend to strongly overestimate the degree of material co-

herence of eddies, as well as the volume of fluid that remains

trapped within the eddy core (Liu et al. 2019). For quantifying

water mass transport by coherent eddies in large-scale or

temporally filtered flows, Lagrangian methods are thus clearly

superior. However, recent work by Sinha et al. (2019) dem-

onstrated that Lagrangian methods are challenged at sub-

mesoscale- and internal gravity wave-resolving resolutions,

where the appearance of intricate small-scale structures can

obscure the large-scale transport barriers in the flow. They also

found that high-frequency motions can lead to substantially

higher leakage than would be detected if one instead used fil-

tered velocities, meaning that Lagrangian methods might also

overestimate material coherence when applied to observed

(coarser-scale) velocity fields.

It is also important to note that the lifespan of an eddy does

not necessarily coincide with the time that a bolus of water is

trapped inside it. That is, eddies may persist even after leaking

water, so Lagrangian methods may not be necessary for ap-

plications that do not require strict material coherence, such as

tracking eddy lifetimes, propagation distance, or mechanisms

of dissipation. Furthermore, Lagrangian methods are compu-

tationally very expensive, requiring high temporal resolution

and millions of advected particles to realize their full potential.

In comparison, Eulerian methods only require instantaneous

snapshots of the flow field, and are cheap enough to be used

over the entire globe for significant duration of time. They thus

retain an important place in the study of ocean turbulence, and

continue to be employed in the modern oceanographic litera-

ture (e.g., Faghmous et al. 2015; Cetina-Heredia et al. 2019). A

novel parameter like W* that is capable of simultaneously

detecting both eddies and fronts may open up new frontiers in

how Eulerian methods are used, and future work will continue

to explore this possibility.
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