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ABSTRACT

This study draws from the system resilience literature to propose three different metrics for
evaluating the resilience performance of organizations against disruptions: the initial loss due to
the disruption, the maximum loss, and the total loss over time. In order to show the usefulness of
the developed metrics in practice, we deploy these metrics to study the effectiveness of two
resilience strategies: maintaining operational slack and broadening operational scope, by
empirically analyzing the performance of manufacturing firms that experienced a disruption during
the period from 2005 to the end of 2014. The results show that maintaining certain aspects of
operational slack and broadening business scope and geographic scope can affect these different
metrics in different ways. Our results help decision makers in risk management to gain a better
understanding of the conditions under which the recommended strategies actually improve

organizations’ resilience, as well as the ways in which they may do so.
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Summary for social media
The results of this study provide a better understanding of the conditions under which
maintaining operational slack and broadening operational scope improve organizations’

resilience. @czobel



1. INTRODUCTION

Disruptive events, such as earthquakes, flood, and work stoppages, occur frequently in today’s
complex and interdependent business environment. These events have devastating impacts on the
disrupted organization and can propagate across its entire network of organizations, both
immediately and over longer time periods (Thekdi & Santos, 2016). Recent global disruptions due

to the COVID-19 crisis highlight the importance of preparedness for facing such events.

Over the past two decades, a variety of strategies have been recommended in the risk
management literature to attempt to improve organizations’ resilience against disruptions.
However, how and when such strategies can actually reduce the negative impact of disruptions
and improve the resilience of organizations is less well known. Part of this disconnect is due to a

lack of established metrics for evaluating organizations’ resilience.

Gaining a better understanding of resilience behavior is important from both a theoretical and
a practical perspective. From a theoretical viewpoint, it is critical for researchers to understand
how operational strategies improve resilience and how they affect the relationship between
disruptions and the negative impacts of those disruptions on performance over time. The
recommended strategies can be very costly for organizations, however, so from a practitioner's
viewpoint it is important to gain a better understanding of the conditions under which the
recommended strategies actually improve organizations’ resilience, as well as the ways in which

they may do so.

In this research effort, therefore, we build upon the system resilience literature to develop and
quantify three different metrics that indicate the resilience of organizations against disruptions:
initial loss, maximum loss, and total loss over time (which provides a combined measure of both

loss and recovery). These three indicators of resilience, named resilience metrics, are quantified
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with respect to the long-term operating performance of organizations and selected so that they
represent both the robustness capabilities and the recoverability capabilities of firms. We argue
that organizations with lower initial loss, maximum loss, and total loss over time aftermath of a
disruption are more resilience. The metrics then can be employed to evaluate the effectiveness of

different resilience strategies for improving the performance of organizations after disruptions.

To demonstrate the applicability of the new resilience metrics, we specifically investigate the
complex relationship between operational strategies and disruption impacts. We do so by focusing
on the effects of two types of operational strategies: maintaining operational slack and broadening
operational scope. Although these strategies have been recommended for improving
organizations’ resilience to disruptions, previous empirical studies suggest that they may not
always be effective at protecting against disruptions (Hendricks, Singhal, & Zhang, 2009; Kathryn,
Peter, & James, 2014). Our study helps to explain this disconnect by arguing that the effectiveness
of maintaining operational slack and broadening operational scope is highly dependent on the
severity of the disruption events and on the different types of resilience metrics that are applied.
Adopting a more comprehensive view of disruptions’ impacts through the use of disaster resilience
concepts and utilizing the resource-based view allows us to develop new and expanded inferences
about how and when maintaining operational slack and broadening operational scope can benefit

organizations by helping to reduce the negative impacts of disruptions.

The remainder of our discussion proceeds as follows. Section 2 describes the three resilience
metrics from the system resilience literature used in this study. Section 3 posits three hypotheses
about the relationship between the operational slack and operational scope and the three metrics.
Section 4 outlines the data collection procedures. Section 5 explains how the three metrics of

interest based on the system resilience literature are calculated and describes the methods used to
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conduct the results. Section 6 then summarizes the results. Finally, Section 7 discusses the

findings and provides future research directions.

2. ORGANIZATIONAL RESILIENCE

The concept of strengthening resilience to disruptions has received an increasing amount of
attention among both academics and practitioners over the past few decades (Aven, 2019; Baroud,
Ramirez-Marquez, Barker, & Rocco, 2014; Hosseini & Ivanov, 2020; Najarian & Lim, 2019).
Despite this growing focus, however, there is still inconsistency among interpretations of the
concept of resilience to disruptions within different academic disciplines (Hosseini, Barker, &
Ramirez-Marquez, 2016; Hosseini, Ivanov, & Dolgui, 2019; Linkov et al., 2018). For example, a
number of existing research efforts focus primarily on the recovery capability of organizations and
define resilience as the ability of an organization to return to an desirable performance level
following a disruption (Christopher & Peck, 2004; Zsidisin & Wagner, 2010). A number of other
studies consider resilience to include both the ability of an organization or a system to withstand a
disruption and the ability for that organization to recover to its previous state or to a more desirable
state (Haimes, 2009; Mackenzie & Zobel, 2016; Melnyk, Closs, Griffis, Zobel, & Macdonald,

2014; Schmitt & Singh, 2012; Zobel, 2014).

This latter view of resilience involves two different but interconnected capacities of
organizations: robustness and recoverability. Robustness refers to the extent to which an
organization is prepared to cope with disruptions, whereas recoverability refers to the ability of an
organization to recover to an acceptable level. In this paper, we consider the latter view of
resilience and define the resilience of an organization to a given disruption to be the ability of the
organization both to withstand the disruption and to recover its operational capability after the

disruption occurs (Haimes, 2009; Mackenzie & Zobel, 2016; Melnyk et al., 2014).
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Although different metrics have been provided to quantify resilience to disruptions in other
fields such as systems engineering (see Hosseini, Barker, et al. (2016) for a comprehensive
review), relatively little attention has been paid to operationalizing organizations’ responses to
improve resilience to supply chain disruptions (Hosseini & Ivanov, 2020; Kamalahmadi & Parast,
2016; Torabi, Baghersad, & Mansouri, 2015). As highlighted in a systematic literature review by
Hosseini, Ivanov, & Dolgui (2019) available metrics to quantify resilience in the supply chain
management context can be divided two distinct groups. The first group of studies attempt to
directly quantify resilience as a single metric, usually with a value between zero and one. Torabi
et al. (2015), for example, measured the resilience of a manufacturer’s supply base as a function
of the total amount of shortage after a disruption. Similarly, Ojha, Ghadge, Tiwari, & Bititci (2018)
measured resilience as a function of service loss after a disruption. Hosseini, Al Khaled, & Sarder
(2016) used Bayesian networks to assess the resilience of a manufacturer. They first identified the
key drivers of resilience in supply chain networks based on absorptive, adaptive, and restorative
capacities, and then calculated the resilience of the manufacturer as the ratio of recovered lost
production to the lost production capacity. More recently, Behzadi, O’Sullivan, & Olsen (2020)

also proposed using the net present value of the loss of performance as a measure of resilience.

The second group of studies, on the other hand, measure indicators and/or drivers of resilience
to evaluate the performance of supply chains against possible disruptions (Hosseini, Ivanov, et al.,
2019). For instance, Rajesh (2016) argued that a firm’s supply chain resilience to disruptions can
be evaluated based on a set of multiple measures and proposed five types of indicators of resilience:
flexibility indicators, responsiveness indicators, quality indicators, productivity indicators, and
accessibility indicators. Their flexibility indicators, for example, include four measures: stock out

rate, inventory accuracy rate, number of small disruptions managed through flexibility, and



percentage increase in sales from design flexibility. Hosseini, Morshedlou, et al. (2019) argued
that geographic diversification of suppliers is a critical strategy to improve resilience of firms and
proposed using a measure of supplier segregation as an indicator of firms’ resilience. Li & Zobel
(2020) also considered three indicators for measuring resilience of a supply chain network, which

include robustness, recovery time, and average functionality.

Resilience is inherently a multi-dimensional concept (Pant, Barker, & Zobel, 2014; Zobel,
2010, 2011, 2014). Therefore, considering different dimensions of an organization's behavior
against a disruption, similar to the second group of studies, is very beneficial in evaluating
resilience. An important perspective on this is provided by the seminal paper of Sheffi and Rice
(2005), in which they characterize the dynamics of an organization’s response to a disruption using
a response curve, referred to as a “disruption profile”. Such a response curve illustrates the
transient change in performance of a system over time, and as a result, it captures both the impact
of a disruption on the system and the response behavior of the system as it subsequently recovers.
Fig. 1 provides an illustration of a corresponding disruption profile. Sheffi and Rice (2005)
similarly argue that any serious disruption will affect an organization’s performance over time,
and they propose eight distinct phases to characterize the organizations’ responses to disruptions:
preparation, the disruptive event, first response, initial impact, full impact, preparation for
recovery, recovery, and long-term impact. They did not, however, define a unit of performance or

discuss how to measure each of these phases based on such a performance measure.

Insert Fig. 1 Approximately Here

The idea of using a response curve to characterize the performance of a system in response to

a disruption is well known in the system resilience literature (Barker, Ramirez-Marquez, & Rocco,



2013; Baroud et al., 2014; Curt & Tacnet, 2018; Kong, Simonovic, & Zhang, 2019; Zhang,
Mahadevan, & Goebel, 2019). Bruneau et al. (2003) initially proposed the idea of using the area
above such a response curve as a measure of the loss of resilience in a system, or the total loss
experienced by the system over time, with a larger area corresponding to a less resilient system.
Similar ideas are used to evaluate the resilience of systems across a number of different contexts
(Adams, Bekkem, & Toledo-Duran, 2012; Giahi, MacKenzie, & Hu, 2020; Mackenzie & Zobel,

2016; Sahebjamnia, Torabi, & Mansouri, 2015; Thekdi & Santos, 2019).

Zobel (2010, 2011, 2014) specifically argues that a single measure for resilience cannot
sufficiently capture the tradeoffs between the actual loss of performance due to the impact of a
disruption and the subsequent length of time needed for the system to recover. Since a large initial
impact followed by a quick recovery could result in the same area above the response curve as
would a much smaller impact with a much longer recovery time, he argues that multiple
characteristics of the system's response should be measured simultaneously, in order to better
reflect system performance and to more effectively characterize resilient behavior (Zobel, 2010;
2011). The robustness and resilience performance measures of Brandon-Jones et al. (2014) also
echo this perspective by directly considering both the amount of loss and the ability to return to
normal operating performance after a disruption. Mackenzie and Zobel (2016) also leverage this

idea to find optimal allocations of resources to increase an organization’s resilience to disruptions.

With this in mind, this current study seeks to provide a more complete characterization of the
impacts of disruptions on organizations’ performance by using three complementary metrics. As
illustrated in Fig. 2, the first metric reflects the initial impact of the disruption, whereas the second
metric reflects the subsequent maximum impact of the event, measured at the time when recovery

begins. The third metric then provides a combined measure of both robustness and recoverability,



similar to the original measure of loss of resilience provided by Bruneau et al. (2003). If the
maximum impact is equal to the initial impact then this implies that the organization is able to
resist increasing (or cascading) losses over time. Similarly, an organization with less total loss
over time is generally able either to maintain more functionality overall, or to recover more
quickly, than one with more total loss. Together, these performance metrics thus help to
characterize not just the immediate impacts of a disruption on an organization, but also the longer-
term impacts and the relative extent to which the organization is able to recover over time. These

three metrics are calculated using financial performance of firms in Section 5.

Insert Fig. 2 Approximately Here
With these three measures in mind, the following hypotheses serve to conceptualize the
relationship between operational strategies and the different characteristics of the organization's

subsequent performance response.

3. THEORETICAL BACKGROUND AND HYPOTHESES DEVELOPMENT

We ground our conceptual model in the resource-based view (RBV) of the organization. Known
as one of the most powerful theories for understanding organizations (Barney, Ketchen, & Wright,
2011), the RBV relates the competitive advantage of an organization to strategic resources that are
heterogeneously distributed across that organization (Barney, 1991; Wernerfelt, 1984). According
to the RBV, valuable, rare, unique, and non-substitutable resources enable an organization’s
competitive advantage (Barney, 1991). The RBV has been widely utilized by researchers to

explain differences in organizations’ performance outcomes.



3.1. Operational Slack

Organizational slack has been defined as the pool of resources in excess of what an organization
needs to execute its normal level of activities during a given planning cycle (Nohria and Gulati,
1996; Voss et al., 2008; Azadegan et al., 2013). Although lean production theory suggests that
eliminating slack resources enhances competitiveness and performance (Kinney & Wempe, 2002;
Modi & Mishra, 2011), several studies have found that having organizational slack actually
enhances organizations’ performance in specific business environments (Kovach, Hora, Manikas,

& Patel, 2015; Tan & Peng, 2003; Wan & Yiu, 2009) such as in highly unstable markets.

Organizations can carry slack resources in four different forms: operational, financial,
customer relational, and human resources (Voss et al., 2008). In our first set of hypotheses, we
evaluate the impacts of the first type of organizational slack, i.e. operational slack, on
organizations’ performance in the presence of disruptions. Operational slack is unused or
underutilized operational resources (Tan and Peng, 2003; Voss et al., 2008). Inventory slack (raw
materials, work-in-process, and finished products), supply chain slack (overall slack in a firm’s
supply chain), and capacity slack (such as backup utilities, extra production capacity, and excess

labor) are three common types of such operational slack (Kovach et al., 2015).

Operational slack can be considered as a strategic resource for organizations in case of
disruptions. Based on the resource-based view, therefore, organizations maintaining operational
slack have a competitive advantage over organizations that do not have enough operational slack.
These critical extra resources can be used to avoid significant losses after disruptions. Some of
these types of operational slack (such as inventory slack) can allow organizations, such as
manufacturing firms, to absorb the shock of disruptions (i.e. they can improve robustness), and

therefore help them to experience less initial loss and less maximum loss of performance.
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However, other types of operational slack (such as capacity slack) may instead help organizations

recover to a desirable service level after a disruption.

The existing literature thus suggests that having operational slack benefits organizations in
their efforts to respond to disruptions. The extent of such benefits, however, is not necessarily
clear. We argue that the benefits of operational slack depend on the level of severity of the
disruption. When disruptions are severe and can potentially cause significant losses, operational
slack helps organizations to reduce the actual amount of such losses. However, the benefits of
having operational slack in the case of minor disruptions are not as much as for severe disruptions.
Hypotheses 1a to lc formalize this expectation about the impacts of operational slack on the

resilience metrics in the presence of disruptions:

Hypothesis 1a (1b and 1c). Operational slack moderates the relationship between the severity of
a disruption and resilience metrics (the initial loss, the maximum loss, and the total loss over time)
of an organization such that an organization with higher operational slack will be more resilient to

disruptions.

3.2. Operational Scope
The next two subsections discuss the impacts of two different types of operational scope on the

performance of organizations after disruptions: business scope and geographic scope.

3.2.1. Business Scope
Business scope refers to the breadth of an organization’s business portfolio. There are at least two
reasons why we would expect broadening business scope to improve organizations’ performance

in the case of a disruption. First of all, we would expect the operational impacts of a disruption on
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a line of business to be less destructive for organizations with a large number of different
businesses than for organizations that are focused only on a few businesses (Hendricks et al.,
2009). This suggests that organizations with larger business scope would be more robust to
disruptions than less diversified organizations. Secondly, diversified organizations have
competitive advantages over their more focused counterparts through strategic resources, such as
flexibility in capital and labor markets, that diversification provides (Caves, 1981; Palich,
Cardinal, & Miller, 2000). “It [i.e. a diversified organization] can also shift capital (and other
critical resources, for that matter) between businesses within its portfolio” (Palich et al., 2000 p.
157). The resource-based view suggests that these additional critical resources derived from
business diversification provide a competitive advantage to organizations, especially in the case
of disruptions. Therefore, we expect managers in the more diversified organizations to have more
flexibility to accelerate the recovery process by shifting funds and resources from undisrupted
businesses to the disrupted businesses. We also expect the benefits of business scope for

organizations to be higher when organizations experience a more severe disruption.

Hypotheses 2a to 2¢ therefore formalize these expectations:

Hypothesis 2a (2b and 2¢). Business scope moderates the relationship between the severity of a
disruption and resilience metrics (the initial loss, the maximum loss, and the total loss over time)
of an organization such that an organization with higher business scope will be more resilient to

disruptions.

3.2.2. Geographic Scope
In contrast to business scope, geographic scope involves the establishment of manufacturing

facilities in different countries and regions (Kovach et al., 2015); in other words, regionalizing
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production. Geographic scope has been recommended as a strategy to decrease the impacts of
disruptions for organizations. Chopra and Sodhi (2014), for example, argue that regionalizing
operations avoids disruption of the entire organization by isolating a disruption in its region. From
a resource-based view, geographic diversification provides resource flexibility which enables
organizations to relocate resources from undisrupted locations to disrupted locations. This
flexibility provides a critical advantage for organizations during recovery after disruptions. More
geographically diversified organizations also have access to higher number of suppliers as they
operate in different locations and can use these suppliers to offset impacts of a disruption in other
regions. Similar to business scope and operational slack, we expect the benefits of geographic
scope to also be contingent on the level of severity of the disruption, i.e. the benefits of geographic
scope for organizations will be greater in case of a more severe disruption.

Hypotheses 3a to 3¢ formalize this expectation.

Hypothesis 3a (3b and 3c). Geographic scope moderates the relationship between the severity of
a disruption and resilience metrics (the initial loss, the maximum loss, and the total loss over time)
of an organization such that an organization with higher geographic scope will be more resilient

to disruptions.

Given these three sets of hypotheses, Fig. 3 presents the relationships of interest in this study.

Insert Fig. 3 Approximately Here

4. DISRUPTION DATA
PR Newswire and Business Wire in the Factiva database are our sources for finding disruption
announcements released by U.S. publicly traded firms. These two outlets are both reliable sources

for obtaining the vast majority of press releases from U.S. publicly traded firms (W. Schmidt &
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Raman, 2012). We limit our search to the time period from 2005 to the end of 2013. We use the
following sets of terms to search the headlines and lead paragraphs of the news articles: delay,
disruption, interruption, shortage, or problem, paired together with: component, delivery, parts,
shipment, manufacturing, production, or operations. Similar terms have been used by other
researchers to identify disruption announcements (Hendricks & Singhal, 2003; C. G. Schmidt,
Wuttke, Ball, & Heese, 2020). Out of more than 11,000 news articles that are retrieved and
reviewed one by one by the research team, we initially record more than 400 disruptions reported
by U.S. publicly traded firms. We then remove any explicit dependencies between announcements
by deleting each disruption announcement that relates to the same firm within the first two years
of another disruption; this is the same approach taken by Hendricks and Singhal in their study
(2005b), which decreases the number of sample firms to 397 firms. To be sure that the financial
impacts are purely driven by the disruptions, one of the authors spent more than one hundred hours
reviewing the announcements to ensure that the disruptions are relevant. We also removed firms
that experienced other significant events, such as a merger, within a two-year period after each

recorded disruption.

As a result of removing firms with insufficient data, we end up with a final sample of 316
distinct disruption announcements. Within this sample, several firms have missing data after the
quarter of the disruption announcement — these firms are included only in the context of calculating
the initial loss metric. Since the resilience strategies that we are considering may have different
effects on firms in different industry sectors (for example, managing inventory slack is more
relevant in the manufacturing sector than in the services sector), we focus our analyses on
manufacturing firms, i.e., firms with a Standard Industrial Classification (SIC) code from 2000 to

3999. Narrowing our focus in this way subsequently decreases our sample to 150 firms.
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5. MEASURES AND DESCRIPTIVE STATISTICS
5.1. Resilience Metrics

In this particular study, we choose to use return on assets (ROA) as a measure of organizations’
performance. “From an operations management perspective, ROA proxies for both profitability
and efficiency in utilization of assets” (Kovach et al., 2015, p. 6). To calculate the impact of
disruptions on the ROA of disrupted firms, we first match each sample firm with control firms that

are similar to the sample firm, using the performance-industry-matched method as presented in

Hendricks and Singhal (2008).

We calculate the abnormal performance of a sample firm at quarter ¢ (4:) using the difference
between its actual and expected ROA value:

Ar = Actual ROA of the sample firm at quarter t

- expected ROA of the sample firm at quarter t M

In normal conditions (without experiencing disruptions), sample firms are expected to grow at a
similar rate as their matched control firms. Therefore, we can find the expected ROA of a sample
firm from the change in ROA of its matched control group (Hendricks and Singhal 2008). When
0 <t < 4, the expected ROA of the sample firm at quarter ¢ is estimated from the firm’s ROA
value at quarter #-4 plus the change in the median ROA value of the set of matched control firms
between quarter #-4 and quarter . As in Hendricks and Singhal (2008), we use the change in the
median of the control firms’ ROA to calculate the expected ROA of the sample firms in order to
avoid the possible influence of outliers on the mean value. Similarly when 4 < t < 8, the expected
ROA of the sample firm at quarter ¢ is estimated from the firm’s estimated ROA value from four
quarters before (i.e., quarter #-4) plus the change in the median ROA value of the set of matched

control firms between quarter #-4 and quarter z.
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A negative value of 4, indicates that the sample firm’s growth is less than the control firms’
growth, and that the sample firm experiences a relative loss in quarter . Note that, for the sake of
analyses in the following sections, the calendar quarters of firms are transformed to their event
quarters. For example, quarters -4, 0, 4 represent four quarters before the disruption quarter, the

quarter of the disruption, and four quarters after the disruption quarter, accordingly.

In order to evaluate the total loss in performance over time in response to a disruption, the
firm’s performance should be considered during an appropriate time period after the disruption
has occurred. In this study, therefore, we consider the firm’s performance from the quarter of the
disruption announcement to eight quarters after the quarter of the disruption announcement. In
order to calculate this metric we also need the performance data of firms from four quarters before
the quarter of the disruption announcement. Therefore, the performance data of each sample firm
used in this study consists, in total, of 13 consecutive quarters. Our adoption of a two year time
frame echoes that of Hendricks and Singhal (2005b), who also use this same relative time frame

to evaluate the long-term impacts of disruptions on firms.

Although some disruptions, such as quality issues, may become known prior to the quarter of
the official announcement, in this study we simply define the initial loss to be that which occurs
in the actual quarter of the disruption announcement. Therefore, following the suggestion of Zobel
(2010, 2011, 2014), we calculate the amount of initial loss (Lo) to be:

Lo = =4, (2)
where 49 1s the abnormal performance of the sample form at time =0, and where the loss suffered
in quarter ¢ is given by L= —A,. Since 4o will be negative if the actual ROA is less than expected,

then a larger positive value of Lo indicates more initial loss.
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We also calculate the maximum loss for a given sample firm, beginning with the quarter of the
announcement of a disruption and ending eight quarters after that announcement, as follows:

Limagx = tg(gcgch{—At} = t;gcggcg{Lt} (3)

As with the measure of initial loss, a positive and higher value of L,,,, represents a larger

maximum loss value.
In order to calculate the total loss suffered by a sample firm over the first two years after a
disruption, we then simply consider the sum of the positive loss values over that given time period:

8
Total loss over time = z max (0, L;) 4

t=0
5.2. Independent Variables

5.2.1. Severity of Event

Most existing research characterizes the severity of a disruptive event only in terms of the strength
of its observed impacts on the organization (Ambulkar, Blackhurst, & Grawe, 2015; Bode &
Wagner, 2015; T. G. Schmitt, Kumar, Stecke, Glover, & Ehlen, 2017). It thus is often measured
by considering outcomes such as how much of a delay was introduced into the delivery of a
particular product and the amount by which a firm's revenue was decreased as a result. In our
current context, we may specifically measure such impacts by using the three performance
outcome measures introduced above. Given two organization affected by exactly the same
disruptive event, the differences in such measures could provide an indication of the relative
resilience of each organization. Iftwo different events affect the two organizations, however, then
it can be difficult to compare the resulting behaviors by looking only at performance outcomes.
This is because an inherently resilient organization that is subjected to an extremely disruptive
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event (such as a natural disaster) might suffer much more loss over time than would a much less
resilient firm subjected to a very minor disruptive event (such as the temporary failure of a supplier
that provides a non-critical component).

Even the same disruptive event, however, could lead either to a negligible impact on
production or to a significant long-term impact on firm performance, depending on the type of
event, the location of the event, the timing of the event, and the importance of the facilities or
resources that are impacted. For example, the same small fire that causes minimal damage to an
empty warehouse will have dramatically greater impacts, and cause a much more severe

disruption, if it occurs in a clean room facility and affects a critical component (Mukherjee, 2008).

In order to characterize the relative severity of the disruptive event itself, therefore, we need to
be able to capture some indication of both the event and the specific context in which it occurs.
To accomplish this, we asked a panel of experts in operations management to evaluate the actual
severity of the events. For each event, we provided the disruption announcement and basic
information about the company, including a summary of the company’s description, total assets,
annual sales, and number of employees. Table I shows one example of such a disruption
announcement and the basic information that was provided to experts. Given this information, we
then asked experts to evaluate the severity of the event based on a 5-point Likert scale adapted
from a risk assessment framework developed by the Committee of Sponsoring Organizations of
the Treadway Commission (Curtis & Carey, 2012). Table II shows the scale that was provided to
the experts. As some announcements may not provide enough information to rate the severity of

disruptions, experts could choose “not enough information is provided”.

Insert Table I Approximately Here
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Insert Table IT Approximately Here

We recruited experts with operations and supply chain management experience using the
Amazon Mechanical Turk service (MTurk) and an on-line survey instrument. MTurk has been
used in similar studies to study the behavior of experts in the context of disruptions (see for
example, Cantor et al. (2014) and Mena et al. (2019)). Similar to Cantor et al. (2014), we required
that the participants have supply chain experience and a current supply chain role. To ensure this,
we also conducted a prescreening test before the main survey, and the respondents were required
to answer all prescreening questions correctly to enter the main survey. Each survey was limited
to 10 events, which resulted in 15 different surveys. We collected 91 acceptable responses in total
(6 responses for each survey on average). We removed 9 events out of 150, which had more than
two experts selecting “not enough information is provided,” and this reduced the total number of

events to 141.

5.2.2. Operational Slack

In line with previous studies (Azadegan et al., 2013; Hendricks et al., 2009; Kovach et al., 2015),
we consider three different metrics for operational slack: inventory slack, supply chain slack, and
capacity slack, and we apply similar methods to those used in these studies to calculate the three

measurces.

Inventory slack of a firm is measured as the firm’s days of inventory, which is calculated as
365 times the ratio of average inventory to cost of goods sold. To account for differences in days
of inventory across different industries, we calculate industry-adjusted days of inventory of each
firm by first subtracting the average days of inventory for its industry from the firm's days of

inventory and then dividing the result by this same industry average. Firms with higher days of

19



inventory are better able to react to disruptions, by utilizing finished goods, compared to firms

with lower days of inventory (Kovach et al., 2015).

Supply chain slack is measured by cash-to-cash cycle, which is equal to the sum of days of
inventory and days of account receivables, minus days of account payables. Days of account
receivables is equal to 365 times the ratio of average account receivables to annual sales, and days
of account payables is equal to 365 times the ratio of average account payables to cost of goods
sold. To account for potential differences of cash-to-cash cycle across different industries, we use
the industry-adjusted cash-to-cash cycle, which is the cash-to-cash cycle of each firm minus the
average cash-to-cash cycle of its industry divided by 100. The cash-to-cash cycle includes the
inventory level of the focal firm, accounts receivables from customers, and accounts payable to
suppliers, and it is commonly used as a measure of leanness of firms’ supply chains, where a higher
cash-to-cash cycle means lower slack in the supply chain network (Hendricks et al., 2009; Kovach

etal., 2015).

The last form of operational slack, capacity slack, is measured as the ratio of net property,
plant, and equipment to sales. Similar to what is done for the other measures, we calculate the
industry-adjusted capacity slack for each firm, which is the capacity slack of the firm minus the
average capacity slack of its industry. When the ratio of net property, plant, and equipment to sales

is higher, it means that the firm has higher resources compared to other firms.

5.2.3. Business Scope
According to Statement 131 of the Financial Accounting Standards Board (FASB), firms are

required to disclose their major business segments (FASB, 1997). Based on firms’ business
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segment information available from COMPUSTAT Historical Segments, therefore, business scope

is calculated to be 1 minus the Herfindahl index of sales (Hendricks et al., 2009):

sP\”
2
Bury =1- ). (;) )
2
where S is the annual sales of business segment i and S is the total sales of the firm. When no

business segment is reported, By is assumed to be zero. A higher value of the business scope

measure indicates a higher degree of business diversification.

5.2.4. Geographic Scope

Firms are also required to disclose information about their major operating segments by
geographic area (FASB, 1997). As indicated in Statement No. 131 of the Financial Accounting
Standards, this can help firms better understand how their risk is concentrated. Similar to what
was done with business diversification, therefore, we may calculate a value for geographic scope
based on the firms’ geographic segment information available from the COMPUSTAT Historical
Segments database. This segment information includes, as follows (Hendricks et al., 2009):

g

S 2
Ginp =1- ) (;) ©)

i
where Sig is annual sales associated with their actual operations in geographic segment i and S is
total sales of the firm. The result therefore provides a measure of the extent to which the firm's
operations are distributed across different geographic segments. When no geographic segment is
reported, Guir is assumed to be zero. Similar to the business scope measure, higher values of the

geographic scope measure (Griy) indicate a higher degree of geographic diversification.
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5.2.5. Control Variables

We consider several control variables that may have significant impact on loss experienced by
firms after disruptions. First, we control for firms’ size. Larger firms typically have more resources
available with which to face unplanned events, and therefore we would expect larger firms to
withstand a disruption more easily and to recover more quickly after the disruption. We thus
include size of firm, calculated as the natural logarithm of the total assets, as one of the control
variables. Older firms may have more experience in response to disruptions. Therefore, we include
the firm’s age as a second control variable, with a value based on the difference between the year
of the disruption announcement and the first year that the firm was listed in the COMPUSTAT
database. We consider book to market value ratio as a third control variable. This ratio controls
the firms’ growth expectations and risk characteristics (Kim, Sambharya, & Yang, 2016). Next,
since we expect that disruptions have a different impact on firms operating in highly intense
industries, we also consider an additional variable: industry growth rate. Industry growth rate is
calculated to be the average sales growth rate of firms with the same two-digit SIC code as the

sample firm.

6. RESULTS

Table III provides zero-order correlations, means, and standard deviations for the dependent,
independent, and control variables. We used the student’s t-test for the mean and sign rank for the
median to test if the initial loss, the maximum loss, and the total loss over time are greater than
zero. The results of the statistical tests show that disruptions are associated with significant

negative impacts on firm performance for all three of the resilience metrics (o= 0.01).

Insert Table III Approximately Here
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Given these initial results, we use Ordinary Least Squares (OLS) regression to test the
hypotheses given in Section 2. We also evaluate variance inflation factors (VIF) for the variables
in each of our models. The VIFs in our models are lower than or equal to 5, which is less than the
recommended cut-off in the literature (i.e. 10), and therefore we do not expect multicollinearity

issues in our analyses.

Table IV provides the results of the regression analyses for the three dependent variables:
initial loss, maximum loss, and total loss. Models 1, 4, and 7 only include the control variables,
the direct effects for each dependent variable are included in Models 2, 5, 8, and the interaction
terms are introduced in Models 3, 6, and 9. Considering initial loss, the results of Model 1 indicate
that firm size is negatively associated with initial loss (p-value < 0.01). Model 2 shows that the
severity of the event is positively associated with initial loss (p-values < 0.01). Model 3, in turn,
shows that inventory slack and business scope have significant interaction terms with severity (p-
values < 0.10). This suggests that inventory slack and business scope negatively moderate the
relationship between severity of event and initial loss due to the disruption (supporting Hla and
H2a). On the other hand, the moderating effect of geographic scope on the relationship between

the severity of an event and the initial loss is not supported (H3a is not supported).

Model 4 shows that firm size and book to market ratio are both negatively associated with
maximum loss (p-values < 0.05). The results of Model 5 indicate that the severity of the event is
positively associated and inventory slack and geographic scope are negatively associated with
maximum loss (p-value < 0.05). The results from adding the interaction terms between severity
and each of the other factors suggest that inventory slack negatively, and supply chain slack

positively, moderate the relationship between severity of event and maximum loss (H1b is partially
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supported). At the same time, although the interaction of geographic scope with severity is not also
statistically significant (p-value > 0.10), the results show that geographic scope does have a direct

negative effect on maximum loss.

Finally, the last three columns of Table IV provide the results of regression analyses
considering total loss over time as the dependent variable. Similar to the results for maximum
loss, the results of Model 7 show that firm size and book to market ratio are both negatively
associated with total loss over time (p-values < 0.05). The results of Model 8 indicate that severity
of the event is positively associated and inventory slack and geographic scope are negatively
associated with total loss over time (p-value < 0.10). Model 9 then suggests that inventory slack
and business scope negatively, and supply chain slack positively, moderate the relationship
between the severity of the event and the total loss over time (p-values < 0.10), which supports
Hlc and H2c. At the same time, however, the interaction between severity and geographic scope
is not statistically significant (p-value > 0.10), although geographic scope is directly and negatively

associated with total loss (p-value < 0.05).

Overall, all the models presented in Table IV have F-values greater than or equal to 2.482, and
all of the models are statistically significant at the 1% level. The R? values of all models are

between 11.6% and 56.5%.

Insert Table IV Approximately Here

To further analyze the significant interactions between different strategies and disruption

severity, the associated relationships are plotted at one standard deviation below and one standard
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deviation above the mean values of the moderator variables. The resulting interaction plots are

provided in Fig. 4.

Fig. 4a and Fig. 4b show that inventory slack and business scope decrease the initial loss when
the disruption severity is high. Surprisingly, the results show that inventory slack and business
scope actually increase initial loss experienced by firms when severity is low. Fig. 4a and Fig. 4b
thus confirm our hypotheses that operational slack (H1a) and business scope (H2a) moderate the

relationship between the severity and initial loss.

Fig. 4c shows that inventory slack is negatively associated with maximum loss when severity
is high, whereas it does not have a significant effect on maximum loss when severity is low. Fig.
4d surprisingly shows that supply chain slack has a negative effect on maximum loss when severity
is low, but it has a positive effect on maximum loss when severity is high. The similar effect of
supply chain slack is observed considering total loss over time (Fig. 4f). Furthermore, Fig. 4e and
Fig. 4g show that operational slack (expressed as inventory slack) and business scope each have a
negative effect on total loss over time when severity is high, but they may increase total loss over

time when severity is low.

Insert Fig. 4 Approximately Here

7. CONCLUSION, LIMITATIONS, AND FURTHER RESEARCH

This study makes a general contribution to the disruption management literature and has several
important implications for risk managers. Our study is the first to explicitly consider and
operationalize three new metrics drawn from the disruption profile introduced by Sheffi and Rice
(2005) to evaluate organizations’ operating performance against disruptions. Using the three

resilience metrics, our study shows that different types of operational slack and operational scope
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may have different effects on these three metrics and therefore that they may benefit organizations
in different ways. In particular, our study shows that inventory slack does negatively moderate
the relationship between the severity of disruptions and the resilience metrics, in terms of the initial
loss, the maximum loss, and the total loss over time. The results also show that if the severity of
a disruption is high then firms with higher business scope are significantly more resilient to
disruptions, but if the disruption’s severity is low then business scope may not be beneficial to
firms. These results indicate that it may be the added complexity associated with more business
diversity that leads to negative impacts on performance. This aligns well with the results of
Craighead, Blackhurst, Rungtusanatham, & Handfield (2007), who showed that complexity can
increase the negative impact of disruptions on organizations.

Our findings also show that different types of operational slack and operational scope may
affect resilience abilities of organizations differently in the short-term versus the long-term. This
makes it important, for example, to recognize that investing resources in increasing geographic
scope may not have immediate effects but could be beneficial in the long run, regardless of the
size of any future potential disruption. Investing resources into building supply chain slack may
also have little to no effect on the initial impacts of a disruption, but if the disruption is not very
severe then having increased slack may help to significantly reduce both the total loss and the
maximum amount of loss suffered (see Fig. 4d and Fig. 4f). In contrast to geographic scope and
supply chain slack, which had no significant effect on the initial loss due to a disruption, investing
in inventory slack can help to significantly reduce the initial performance loss that can result from
a high severity disruption. Furthermore, given a severe disruption, such an investment can also
have a significant negative effect on both maximum loss and total loss over time by providing

firms with the time to find other sources of supply. The results of the study also show that
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broadening business scope can be a good strategy to allow a manager to reduce initial loss, and

total loss over time, in the case of high severity disruptions.

This study has several important implications for supply chain risk managers. First of all, our
findings show that different types of operational slack and operational scope may affect supply
chain disruptions differently in the short-term versus the long-term. This makes it important, for
example, to recognize that establishing manufacturing facilities in different regions to increase the
geographic scope may not have immediate effects in reducing the negative impacts of disruptions

but could be beneficial in the long run, regardless of the size of any potential future disruption.

In contrast to geographic scope and supply chain slack, which had no significant effect on the
initial loss due to a disruption, investing in strategies related to inventory slack, such as maintaining
a higher level of raw materials, work-in-process, and finished products, can help to significantly
reduce the initial performance loss that can result from a high severity disruption. Furthermore,
given a severe disruption, such an investment can also have a significant negative effect on both
maximum loss and total loss over time by providing firms with the time to find other sources of
supply. As an example of this, BioMarin Pharmaceutical Inc. experienced only minor effects when

its main supplier experienced a major disruption:

“BioMarin Pharmaceutical Inc. (Nasdaq: BMRN) announced today that the temporary
interruption of bulk production at Genzyme's Allston Landing manufacturing facility is not
expected to have any impact on Aldurazyme supply or revenue to BioMarin or Genzyme. ...
BioMarin has a total of approximately ten months of vialed inventory on hand, utilizes a second

fill finish supplier and a third is expected to be qualified later this year” (PR Newswire, 2009).
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The results of the study also show that broadening business scope, such as increasing the
number of different businesses a firm is involved in, can be a good strategy to allow managers to

reduce initial loss and total loss over time, in the case of high severity disruptions.

Taken together, these results imply that managers should invest available resources into
inventory slack and business scope, in order to decrease the impacts of a severe supply chain
disruption on a firm's performance, and they should invest in strategies related to supply chain
slack, such as maintaining a higher level of inventory alongside supply chain networks, if they
wish to reduce their losses in the case of low severity supply chain disruptions. On the other hand,
geographic diversification can be a good strategy for reducing the long-term impacts of both high
and low severity supply chain disruptions. In either case, however, it is important to recognize that
decisions about making such investments also need to consider additional factors before they are

implemented, such as their relative cost and their impacts on operational efficiency.

In this study, we consider the performance of firms over the first two years (8 quarters beyond
the quarter of the disruption) after the disruptions occurred. It is important to acknowledge that it
may take more than two years for a firm to recover from a disruption, or the firm simply may not
recover at all. Future research may therefore consider a longer timeframe to calculate the values
for the maximum loss and the total loss over time. It is also important to note that the OLS
regression method used in this study shows the correlation between our independent variables and
resilience metrics but does not necessarily imply causation. Although showing a positive
relationship between business factors and resilience metrics is very important, establishing
causality can provide more benefits to decision-makers. Future studies should consider alternative
methods, such as Bayesian networks (Hosseini and Ivanov, 2020), to establish causality between

business factors and the resilience metrics studied in this paper. Furthermore, in this study, we did
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not evaluate recovery time of organizations after disruptions. Recovery time has been considered
as an important measure of resilience in the literature, however it is more challenging to calculate
in our context since some organizations may never recover to their original level. Future research
may develop methods to calculate the recovery time of organizations after disruptions using

operating performance.
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Table I. An example of disruption announcement provided to experts

Announcement

Corning’s Taichung LCD Glass Production Disrupted; Fourth-quarter
glass volume to be impacted

19 October 2009 CORNING, N.Y. - (BUSINESS WIRE) -

Corning Incorporated (NYSE: GLW) announced today that its LCD glass
manufacturing facility in Taichung, Taiwan, experienced a power disruption
over the weekend that affected some of its glass-making operations. The
company said that although it will be several days before the full extent is
known, the disruption is expected to have a material impact on glass volume
in the fourth quarter.

“The majority of our Taichung glass production continues to operate
normally,” James B. Flaws, vice chairman and chief financial officer, said.
“However the power disruption caused the shutdown of several of our glass
melting tanks. We are in the process of determining how much glass melting
capacity was affected, the time to repair the tanks, and the impact on our
glass volume available for customers.”

Corning said its preliminary assessment of the impact is that fourth-quarter
glass volume now could be flat to down slightly sequentially. Without the
power disruption, the company said it believes quarterly glass volume would
have increased by as much as 5%.

Flaws said, “We are doing everything possible to accelerate repairs and
leverage our worldwide supply chain to secure additional glass supply.

Company
information

About Corning Incorporated

Corning Incorporated is the world leader in specialty glass and ceramics.
Drawing on more than 150 years of materials science and process
engineering knowledge, Corning creates and makes keystone components
that enable high-technology systems for consumer electronics, mobile
emissions control, telecommunications and life sciences. Our products
include glass substrates for LCD televisions, computer monitors and laptops;
ceramic substrates and filters for mobile emission control systems; optical
fiber, cable, hardware & equipment for telecommunications networks;
optical biosensors for drug discovery; and other advanced optics and
specialty glass solutions for a number of industries including semiconductor,
aerospace, defense, astronomy and metrology.

Total assets (million): $19256
Annual sales (million): $5948
Number of employees (thousand): 27

Question

How do you rate the severity of the above event?
1 (Incidental)

2 (Minor)

3 (Moderate)

4 (Major)

5 (Extreme)

Not enough information is provided.
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Table II. Severity scale adapted from risk assessment framework (Curtis & Carey, 2012)

Rating*

Descriptor

Potential consequence

[Extreme

Extreme financial loss

International long-term negative media coverage

Game-changing loss of market share

Significant prosecution and fines, litigation including class actions,
incarceration of leadership

Significant injuries or fatalities to employees or third parties, such as customers
or vendors

Multiple senior leaders leave

Major

Major financial loss

National long-term negative media coverage; significant loss of market share
Report to regulator requiring major project for corrective action

Limited in-patient care required for employees or third parties, such as
customers or vendors

Some senior managers leave, high turnover of experienced staff, not
perceived as employer of choice

Moderate

Moderate financial loss

National short-term negative media coverage

Report of breach to regulator with immediate correction to be implemented
Out-patient medical treatment required for employees or third parties, such as
customers or vendors

Widespread staff morale problems and high turnover

Minor

Minor financial loss

Local reputational damage

Reportable incident to regulator, no follow up

No or minor injuries to employees or third parties, such as customers or
vendors

General staff morale problems and increase in turnover

Incidental

Very minor financial loss

Local media attention quickly remedied

Not reportable to regulator

No injuries to employees or third parties, such as customers or vendors

Isolated staff dissatisfaction

* Assign the rating for the highest consequence anticipated. For example, if any one of the
criteria for a rating of 5 is met, then the impact rating assigned is 5 even though other criteria

may fall lower in the scale.
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Table III. Means, standard deviations, and correlations

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13
1. Initial loss (x100) 1.00
2. Maximum loss (x100) 0.67 1.00
3. Total loss (x100) 0.59 0.92 1.00
4. Firm size -0.32 -0.50 -0.46 1.00
5. Firm age 021 028 026 0.52 1.00
6. Book to market ratio -0.13 -0.29 -0.29 0.13 0.02 1.00
7. Growth rate 0.02 20.07 20.06 20.01 0.10 0.01 1.00
8. Severity of event 0.25 0.46 0.46 0.14 20.08 20.09 20.05 1.00
9. Inventory slack -0.07 023 024 0.03 20.05 0.07 0.00 0.17 1.00
10.Supply chain slack 0.00 0.04 0.06 0.15 20.10 0.03 20.01 0.01 0.17 1.00
11.Capacity slack 0.02 -0.03 -0.01 0.03 -0.02 027 0.10 0.17 0.03 036 1.00
12.Business diversification 0.14 2030 2030 0.41 0.24 0.07 20.04 0.16 0.00 -0.08 0.10 1.00
13.Geographic diversification -0.16 -0.45 -0.42 0.49 0.40 -0.03 0.09 -0.26 0.11 -0.13 0.26 0.38 1.00
Sample size 141 119 119 141 141 141 141 141 141 141 141 141 141
Mean 112 438 11.20 735 29.13 0.48 0.12 2.99 -0.25 0.98 0.18 033 034
Standard deviation 3.68 5.10 16.48 1.99 18.84 0.42 0.20 0.94 0.50 5.03 0.59 0.32 0.30
Table IV. Results of regression analyses.
Initial Loss (x100) Maximum Loss (x100) Total Loss (x100)
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
Intercept 5.61 ik 2.84 * 292 * 14.45 #*%* 7.52 7.91 Hx* 40.66 *** 16.87 *** 18.79 #k*
(1.17) (1.70) *** (1.72) (1.59) (2.01) (2.00) (5.31) (6.67) (6.40)
Firm size -0.5] *** -0.51 -0.52 *** -1.13 *k -0.82 ik -0.85 *** -3.20 *** 22,16 *** -2.39 #kk
(0.18) (0.20) (0.20) (0.24) (0.23) (0.23) (0.81) (0.77) (0.73)
Firm age -0.01 -0.01 -0.01 -0.01 0.00 0.00 -0.04 -0.02 0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.08) (0.07) (0.07)
Book to market -0.86 -0.63 -0.67 -2.51 ** -1.83 * -2.24 ** -8.54 ** -5.72 % -6.99 **
(0.72) (0.76) (0.77) (1.08) (1.00) (0.99) (3.58) (3.33) (3.18)
Growth rate 0.38 0.51 0.61 -1.56 -0.99 -0.20 -3.92 -2.52 0.05
(1.49) (1.50) (1.50) (2.07) (1.83) (1.78) (6.88) (6.06) 5.71)
Severity of event 0.8] *** 0.67 ** 1.57 #** 1.43 Hk* 5.23 H** 4.62 ***
(0.33) (0.33) (0.40) (0.38) (1.31) (1.22)
Inventory slack -0.22 0.28 -2.14 Hxk -1.33 * -8.10 *x* -4.47 *
(0.62) (0.64) (0.82) (0.71) 2.71) (2.63)
Supply chain slack -0.02 -0.03 0.09 -0.08 0.46 -0.13
(0.07) (0.07) 0.12) (0.13) (0.40) (0.42)
Capacity slack 0.07 0.07 0.51 0.13 2.68 0.58
(0.60) (0.64) (0.83) (0.86) (2.76) (2.75)
Business scope 0.17 0.49 -0.90 -0.15 -4.55 -1.94
(1.03) (1.05) (1.24) (1.23) (4.13) (3.95)
Geographic scope 0.57 0.23 -3.16 ** -3.55 ** -8.95 * -9.86 **
(1.25) (1.26) (1.56) (1.52) (5.19) (4.87)
Severity of event x -1.57 ** -2.43 *kk -9.19%**
Inventory slack (0.75) (0.93) (2.98)
Severity of event x 0.05 0.4] *#* 1.42 #k*
Supply chain slack (0.09) (0.15) (0.49)
Severity of event x -0.10 0.47 2.97
Capacity slack (0.69) (0.81) (2.59)
Severity of event x -1.73 * -0.70 -7.34 *
Business scope (0.89) (0.81) (4.07)
Severity of event x -1.03 -1.84 -7.69
Geographic scope (1.28) (1.54) (4.93)
Model F statistic 4.469 *** 2.482 2.339 dkk 11.814 *** 10.314 *** 8.653 *** 9.478 ik 9.229 % 8.925 #**
N 141 141 141 119 119 119 119 119 119
R? 0.116 0.160 0.219 0.293 0.488 0.558 0.250 0.461 0.565
Adjusted R? 0.090 0.096 0.125 0.268 0.441 0.493 0.223 0.411 0.502
AR? 0.044 0.059 0.195 0.070 0.211 0.104

Note: two-tailed tests, *** ** * indicates significance at 0.01,0.05,0.1 levels, standard errors in parentheses
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