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A B S T R A C T   

Transfer learning aims to extract knowledge from one or more source tasks and apply the knowledge to a 
different task for more accurate predictions. The main purposes of this study are to investigate different 
knowledge transfer techniques, apply them to accurately predict the lateral strength of reinforced concrete 
columns with only a small amount of training data, and compare the transferability of each method. According to 
the various source and target domains, three different experiments are designed to directly compare the per
formance across section type, shear reinforcement area, and concrete compressive strength. In all cases in this 
study, knowledge transfer techniques show better prediction performance than the models trained without any 
knowledge transfer techniques. Therefore, we can conclude that transferring pre-trained knowledge from the 
source domain enables a model to better explain the response variable in the target domain. The performance 
improvement is particularly emphasized when the available data for the target domain is small. Thus, transfer 
learning can be one way to address the data scarcity problem in structural engineering. Furthermore, transferring 
the pre-trained knowledge is more associated with the underlying physical relationship between the source and 
the target domains and less associated with the discrepancy between the source and the target domain 
distributions.   

1. Introduction 

1.1. Background 

Artificial Intelligence (AI) and Machine Learning (ML) are devel
oping rapidly and have shown tremendous success in various applica
tion domains [1,2]. One of the more powerful and essential 
characteristics of AI and ML is the capability to carry out tasks auton
omously by understanding and analyzing a given dataset. This charac
teristic has led to a variety of research domains and industrial fields 
adopting AI and ML including object detection [3–5], natural language 
processing [6–8], autonomous vehicles [9–11], and applied science and 
engineering fields [12–15] among many others. This success has also 
translated to the realm of structural engineering. In recent years, sub
stantial advancements have been made in an effort to apply ML to the 
structural engineering fields [16–19]. The previous studies have 
demonstrated the effectiveness of AI algorithms over traditional pro
cedures pertaining to evaluation, decision-making, prediction and 
optimization in structural engineering applications. 

One of the basic assumptions in a traditional ML algorithm is that the 
training and testing data must share not only the same feature space and 
distribution, but also the task. In other words, an individual learner can 
only acquire knowledge of a specific task from the identical feature 
space and distribution. Suppose that the trained model may need to 
predict a different task where the feature space or data distribution is not 
identical to the previously trained task but somewhat similar. In that 
case, the trained model will very likely yield poor performance and 
should be reconstructed from scratch based on new data. However, 
making a new ML model from scratch while maintaining good perfor
mance requires another hyperparameter tuning process and may be 
impractical if the new data samples are insufficient. Furthermore, in 
reality, obtaining more data samples involves additional costs and time, 
and often is not feasible. 

One alternative way to address this problem is via Transfer Learning 
(TL). TL is a sub-field of ML and also known as knowledge transfer. Fig. 1 
shows the schematic learning procedure of ML and TL. Generally, for 
training a typical ML model, an individual learner requires an individual 
dataset, as can be shown in Fig. 1(a). However, in Fig. 1(b), TL aims to 
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extract knowledge from one or more source tasks and apply the 
knowledge to a different target task [2]. The main concept of TL is to 
efficiently learn a target task with help of not only the target domain, but 
also from a single or multiple source domains or source tasks. 

Several approaches have been proposed for transferring knowledge, 
e.g., instance-based transfer [20–24], feature-representation-transfer 
[25–27], parameter-transfer [28–31], and information transfer from 
unlabeled data [32,33]. While various theories and applications have 
been developed, a few TL studies have been conducted in the structural 
engineering domain [34,35] and a limited number of studies have been 
proposed to estimate structural capacity [36] compared to the other 
fields where TL is more actively used. Furthermore, the majority of TL 
research in the structural engineering domain is associated with image- 
based models [37–40]. As the relevance between the source and target 
domains and tasks is critical in the success of such approaches, more 
investigation into the application of transfer learning within the realm of 
structural engineering is necessary. 

For structural engineering practices, in-depth understanding and 
prediction of the performance of existing or new structural components 
are essential for the effective design and maintenance of structures 
during their life cycle. In recent years, substantial advancements have 
been made in an effort to apply AI to the applied science and engineering 
fields, especially in civil engineering. Kakatand et al. [41] have proposed 
data-driven models to predict the shear strength of RC columns. 145 
rectangular and 91 circular columns were used to train the models, and 
the maximum R2 values from 106, 107, or 108 iterations of Monte Carlo 
simulation were reported. However, developing a robust and accurate AI 
model for any purpose, including to estimate the performance of a 
physical structure, should generally be accompanied by large amounts 
of data. Even in the field of structural engineering, to properly validate 
new structural materials, configurations, designs, and modeling tech
niques, a comprehensive experimental test setup is required. Therefore, 
by adopting knowledge transfer techniques into the structural engi
neering domain, researchers and practitioners will be able to efficiently 
use an ML model to quantify the structural capacity without excessive 
efforts to augment data samples. 

1.2. Lateral strength of RC columns 

Columns are the prime source of energy dissipation in a structural 
system and often the most critical components resisting seismic hazard 
[42]. Column failures are commonly classified as one of the following 
modes: flexure, shear, or flexure-shear failure. Flexure failure normally 
occurs after yielding of the longitudinal reinforcement and shear failure 
occurs before yielding of the longitudinal reinforcement. Many post- 

earthquake reconnaissance and researches have indicated that light 
and inadequately detailed transverse reinforcement are vulnerable to 
shear failure during seismic events [43–45]. Shear failure would dras
tically reduce the structural seismic performance and sometimes lead to 
structural collapse. Thus, special care should be needed to ensure 
enough amounts of transverse reinforcement to avoid shear failure prior 
to a flexural failure [46]. 

High-strength concrete (HSC) has been increasingly used in buildings 
and infrastructures because of its advantages, such as high strength, 
good durability, and reduction of member size. Due to these advantages 
of HSC, it displays more brittle behavior under the same reinforcement 
details, compared to the normal strength concrete (NSC) [47–49]. The 
lower ductility and undesirable brittleness of HSC restricts the use of 
HSC in the seismic regions. 

With these perspectives of views on ductility and HSC, this study 
mainly deals with developing a knowledge transfer data-driven model 
that can precisely calculate the shear strength of the RC column even 
with the small number of non-ductile columns or HSC samples. 

2. Transfer learning algorithms for regression problems 

The main purpose of this study is to investigate different knowledge 
transfer techniques and compare the transferability of each method. 
Three knowledge transfer methods are considered: Instance Weighting 
Kernel Ridge Regression (IW-KRR) [22], Two-stage TrAdaBoost.R2 [50], 
and Double-Weighted Support Vector Transfer Regression (DW-SVTR) 
[36]. Based on the categories summarized by Pan and Yang [2], the 
problems dealt with in this study are all classified as inductive transfer 
learning problems, where the response variable in the source and target 
domains are available. This study focuses on an instance transfer 
approach belonging to inductive transfer learning. This is attributed to 
the fact that the source and target domains related to the input dataset 
used in this study already have an identical feature space after using 
dimensional reduction techniques. Furthermore, this study has used 
different types of base learners to compare various aspects of ML and TL. 
The base learner of the selected methods uses a different ML algorithm: 
Kernel Ridge regression (KRR), random forest, and a support vector 
machine. Each method is briefly introduced in the following sections. 

2.1. Definition of transfer learning 

Let D S and D T denote the source and target domain data, respec
tively. Given D S and the source learning task T S, D T and the target 
learning task T T, TL aims to help improve the learning of the target 
predictive function fT(⋅) in D T using the knowledge in D S and T S, 

Fig. 1. Schematic learning procedure; (a) Machine Learning (ML) and (b) Transfer Learning (TL).  
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where D S ∕= D T , or T S ∕= T T. Even though D S ∕= D T or T S ∕= T T , 
D S can be a useful resource to improve the prediction for D T. This is the 
main idea behind TL, inspired by the human learning process. Based on 
this definition, some general notations used in the remainder of this 

discussion are defined as follows. D S can be represented as 
{ʀ

xS
i ,

yS
i
)n

i=1

}
where n is the number of samples in the source domain. Simi

larly, D T can be represented as 
{ʀ

xT
i , yT

i
)m

i=1

}
, where m is the number of 

samples in the target domain. Here xi ∈ Rd is the i th explanatory vari
able vector, where d indicates the vector dimension, and yi denotes the 
response variable, which could be a discrete variable for a classification 
problem or a continuous variable for a regression problem. In most 
cases, m≪n, and probabilistic distributions of the source and target 
domains are not equal but somewhat related. 

PSʀ
xS, yS)

≈ PT ʀ
xT , yT )

for some (x, y) (1)  

where, PS and PT denote the probabilistic distribution of the source and 
target domain, respectively. 

2.2. Kernel Ridge regression (KRR) for transfer learning 

The most important part of reweighting instances in KRR is to 
determine samples from D S which positively or negatively influence 
training and testing on D T. While there are some existing solutions to 
address this challenge, one effective way to find appropriate samples is 
to measure the similarity between the source and target distributions. 
Defining the importance weight function as w(x, y) : = PT(x,y)/PS(x, y), 
the prediction or estimated value can be written as: 

ŷT
= argmax

y
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⋅PT ʀ

xT ) )

= argmax
y

(

PT ʀ
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(2) 

In this study, a Gaussian kernel function is used for an approximation 
of the weight function, 

ŵα
i (x*, y) = αi⋅exp

(

−
‖(x*, y) −

ʀ
xS

i , yS
i

)
‖

2

2η2

)

(3)  

where αi is the coefficient of linear combination, η is a hyperparameter 
denoting the length scale of the kernel, and 

ʀ
xS

i , yS
i
)

denotes the center 
points for i = 1, ⋯,n. 

The main goal of the regression problem is to minimize the residual 
sum of square error (RSS). Substituting Eq. (2) into the RSS equation and 
omitting the PSʀ

xT
i
)

term since the argmax does not depend on it for a 
given sample xT , the RSS function for this problem can be represented as: 

min
ŵ

∑m

i=1

(

yT
i − argmax

y

ʀ
ŵ

ʀ
xT

i , y
)
⋅PSʀ

y|xT
i

) )
)2

(4) 

Given that suitable weights were obtained, the common RSS error 
function that we need to minimize can be slightly modified as:   

where θ is the vector of model parameters, φ(⋅) is a feature mapping 
function that maps the input x into the feature space, and λ is the reg
ularization parameter. 

By defining the diagonal matrix Ŵ ∈ R(m+n)×(m+n), 

Ŵ :=

⎡

⎣
Im [0]

[0] diag
(

w
ʀ
xS

i , yS
i

)

i=1⋯n

)

⎤

⎦ (6)  

where Im is the identity matrix with m dimensions. 
The final prediction function with weighted terms can be defined as: 

ŷ*
= argmax

y
(ŵ(x*, y)P(y|x*) ) ≈ fŵ(x* ,y)

(x*) = aT Ŵ(x*, y)k (x*) (7)  

where the discriminative model f now depends on the weight function 
Ŵ(x*, y) which depends on a, k (x*) : = (k(x1, x*), ⋯, k(xn, x*) )

T, k(xi,

x*) : = φ(xi)
Tφ(x*), aT is the vector of dual coefficients, and x* is a new 

data point. 
By inserting Eq. (7) into Eq. (4), proper weights in the prediction 

function can be estimated as follows: 

min
α≥0

∑m

i=1

(

yT
i − aT Ŵ

αʀ
xT

i , yT
i

)
k

ʀ
xT

i

)
)2

+ γ‖α‖
2 (8) 

The last term in Eq. (8) is added to avoid overfitting and to penalize 
large coefficients. Now, the weight function Ŵ can be calculated with 
the help of the estimated α. 

2.3. Two-stage TrAdaBoost.R2 

Dai et al. [51] proposed an instance-based TL algorithm, TrAdaBoost, 
which extends the boosting-based method [52]. It was combined with 
AdaBoost.R2 [53] to develop a model to solve regression problems. It 
basically reduces the weight of an instance with a high error rate and 
increases the weight of an instance with a low error rate. However, two 
issues with the TrAdaboost.R2 algorithm were reported by Pardoe and 
Stone [50]. First, the weights of the target data may be heavily skewed if 
the size of the source data is much larger than the target data. Especially, 
the entire weight vector is highly dependent on some target instances 
that are either outliers or most dissimilar to the source data. Second, the 
weights of some source instances closely associated with the target task 
tend to eventually be reduced to zero. Based on these issues, the authors 
proposed a new version of TrAdaBoost.R2 where the weights are 
adjusted in two stages. 

The first step of the Two-stage TrAdaboost.R2 is to set the initial 
weight vector w1, 

w1
i =

1
n + m

(9) 

for i = 1 ≤ i ≤ n + m, where n is the number of source samples and m 
is the number of target samples. 

In the first stage, the weights of source instances are designed to be 
gradually reduced until a certain point determined by cross validation. 
The next stage is to train a model on the dataset combining the source 
and target samples. The model used in this second stage is identical to 
the typical AdaBoost.R2, except that the weights of the source data will 
not be changed. The adjusted error et

i for each instance is calculated, and 
the weight vector is updated based on the following rule: 

Jw(θ) =
1
2

(
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ʀ
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ʀ
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))2
+

∑n

j=1
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(
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)

+
λ
2
‖θ‖

2 (5)   
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(10)  

where Zt is a normalizing constant, and βt is determined such that the 

resulting weight of the target instances is m
n+m + t

S−1

(
1 − m

n+m

)
. 

With this updating rule, the first total weight of the target instances 
starts from m

n+m, and increases uniformly up to 1. The binary search al
gorithm approximately searches the value of βt. The procedure in this 
algorithm will be terminated when the errors start to increase. 

2.4. DW-SVTR 

A novel regression-based TL approach was proposed by Luo and Paal 
[36], which is called Double-weighted support vector transfer regression 
(DW-SVTR). It is extended from Least squares support vector machines 
for regression (LS-SVMR) by coupling two methods to effectively esti
mate instance weights. Firstly, kernel mean matching (KMM) is used to 
reweight the source domain samples such that the mean values of the 
source and target domain in a reproduced kernel Hilbert space are close. 
With this technique, the source domain samples relevant to the target 
domain samples have a larger weight than irrelevant source domain 
samples. The second weight is a function of estimated residuals to 
reduce the negative interference of irrelevant source domain samples. 
Given the dataset combining the source and target domain, the objective 
function of DW-SVTR can be expressed as follows: 

J(θ, ei) =
1
2

θTθ +
1
2

γ
∑m+n

i=1
w(zi)v(xi)e2

i

Subject to : yi = θTφ(xi) + b + ei,

(11)  

where ei is the error term for i = 1⋯(m +n), γ is a regularization 
parameter, w(zi) is a weight to determine the importance of each data 
point, v(xi) is a weight function of the residuals, φ(⋅) is a mapping 
function into a higher dimensional space, and θ is a model parameter 
vector. 

By using the Lagrange multiplier method with Karush-Kuhn-Tucker 
(KKT) conditions and solving the quadratic programming problem, the 
DW-SVTR algorithm eventually finds the optimal weight vector such 
that the objective function J(w, ei) is minimized. 

3. Evaluation metrics 

3.1. Discrepancy measure 

There should be one or more source domain(s) and target domain in 
the TL problem. The source and target domains are somewhat related 
but not identical. One of the crucial factors closely associated with the 
success of TL is how far away those source and target domains are. 
Obviously, the probability of success of the TL technique would be lower 
if the distance between the source and target domains is larger. Thus, it 
is important to understand the relationship and distance between the 
source and target domains, which heavily influence the success of 
knowledge transfer. Some statistics can adequately estimate the distance 
metric between two different probabilistic distributions. When it comes 
to estimating the distance between two probability distributions, 
Kullback-Leibler divergence, widely used for a measure of how one 
distribution is different from another, does not satisfy the symmetric 
condition and the triangle inequality condition. Therefore, it cannot be 
used as a statistical measurement of discrepancy. In this study, three 
distance metrics, Maximum Mean Discrepancy (MMD), Earth Mover’s 
Distance (EMD), and Hellinger distance, are adopted to quantify the 
distance on the space of probability measures. 

MMD is a relevant criterion for comparing distributions based on the 

Reproducing Kernel Hilbert Space (RKHS). It can be well-estimated by 
the distance between the means of the two distributions mapped into the 
RKHS. Unlike Kullback-Leibler divergence, which requires an interme
diate probability density estimation, MMD is a non-parametric distance 
estimate between those distributions. The empirical MMD is defined as 
follows: 

MMD(X, Y) = ‖
1
n1

∑n1

i=1
φ(xi) −

1
n2

∑n2

i=1
φ(yi)‖H (12)  

where X = {x1, x2, ⋯, xn1 }, Y =
{
y1, y2, ⋯, yn2

}
, H is a universal RKHS, 

and φ is a kernel function mapping samples from X to H . 
The Wasserstein metric, also known as EMD (Earth Mover’s Dis

tance), is a distance function defined between probability distributions. 
EMD was proposed to measure a discrepancy between two distributions 
by quantifying the optimal cost of rearranging one distribution into the 
other. With this analogy, it is frequently referred to as the earth mover’s 
distance. The EMD between two distributions f and g is: 

EMD(f , g) =

∫ +∞

−∞
|F(x) − G(x)|dx (13)  

where F and G are the CDFs of f and g, respectively. 
The Hellinger distance (HD) is a measure of divergence of two dis

tributions and provides another way to estimate the distance between 
those distributions independent of parameters. It should be noted that 
the HD satisfies the triangle inequality, and the 

̅̅̅
2

√
coefficient in Eq. (14) 

is for ensuring that HD(p, q) ≤ 1. For the probability density functions p 
and q, the Hellinger distance between them can be expressed as: 

HD(p, q) =
1̅

̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫
ʀ ̅̅̅̅̅̅̅̅̅

p(x)
√

−
̅̅̅̅̅̅̅̅̅
q(x)

√ )2dx

√

(14)  

3.2. Prediction performance measure 

In order to measure the model performance and estimate the error, 
the root mean square error (RMSE) is monitored during the training 
process. Root mean square error (RMSE) and the coefficient of deter
mination (R2) are employed to directly compare the generalization 
ability of typical ML models and knowledge transfer in a comprehensive 
manner. In general, R2 is a good indication of the generalized model 
capabilities in comparison to other models in regression problems. 
Additionally, RMSE is widely used as one of the metrics that can indicate 
the model performance, especially whether or not the model is sensitive 
to outliers. An R2 value closer to 1 and RMSE value closer to 0 indicate 
better performance and better generalization ability to predict the 
response variable(s). In addition, an R2 value is not limited to a lower 
bound of zero, if the model prediction is worse than just using the mean 
value. The following equations show the definitions of MSE (Mean 
Square Error) and R2. RMSE is the square root of MSE. 

MSE =
1
n

∑n

i−1
(yi − ŷi )

2 (15)  

R2 = 1 −

∑n
i=1(yi − ŷi )

2

∑n
i=1(yi − y)

2 (16)  

where n is the number of samples, yi is the actual response value, ŷi is the 
predicted response value, and y denotes the mean of the actual response 
value. 

4. Experiment and results 

4.1. Dataset description 

In order to compare different TL techniques, a comprehensive 
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dataset should be acquired to train a model and appropriately evaluate 
its performance. In this study, a dataset consisting of 497 reinforced 
concrete (RC) column samples [54,55] is used to assess three different 
knowledge transferring techniques. One sample is excluded from the 
498 columns of the original dataset since its experimental result is 
significantly outside of the range covered by the remaining columns. 
The dataset comprises two different section types and a wide range of 
shear reinforcement ratios and concrete compressive strengths. Twelve 
explanatory variables are extracted or selected from the 30 explanatory 
variables in the original dataset by calculating the feature importance 
scores. The relative scores from the calculation of the feature importance 
highlight which features may be more relevant to the response variable 
and which features are less relevant. The statistical information of 12 
independent features and the response variable are summarized in 
Table 1. 

Three experimental cases were considered for evaluating and 
comparing TL methods, as shown in Table 2. The cases are designed with 
similar but slightly different source and target domains. For Case 1, the 
criteria of the source and target domain are the shape of column section. 
For Case 2, the criteria is based on the equations in ACI 318–19 [46]. The 
following equations show Av,min defined in ACI 318–19, and the greater 
value should be chosen: 

Av,min =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.75
̅̅̅̅

f ’
c

√ bws
fyt

50
bws
fyt

(17)  

where f ’
c is the concrete compressive strength, bw is the width, s is the 

spacing, and fyt is the yield strength of transverse reinforcement. 
For Case 3, the samples where the compressive strength is higher 

than 82.74 MPa (12000 psi) are classified as the target domain and the 
samples with less than or equal to 82.74 MPa (12000 psi) of the 
compressive strength are classified as the source domain. These three 
cases will illustrate the performance of the three TL techniques in 
knowledge transfer across section type, area of shear reinforcement, and 
concrete compressive strength values. For all cases, the maximum lateral 
shear strength is used as the response variable. Although the shear 

mechanism of RC structures can be divided into the contributions of 
concrete and steel reinforcement, this study focuses on the more 
comprehensive depiction of the shear behavior by directly estimating 
the maximum lateral shear strength of RC columns. 

The distances between the source and target domain in each case are 
different based on their physical characteristics. Thus, prior to analyzing 
the results of knowledge transferring techniques, the discrepancy met
rics introduced in Section 3 should be calculated and compared. The 
discrepancy metrics calculated from the three cases are shown in 
Table 3. Case 2 has the most different distributions between the source 
and target domains and Case 1 has the most similar distributions, 
regardless of which discrepancy metrics are used. The number of sam
ples used for training and testing a model in each target domain avail
ability is summarized in Table 4. While typical ML models use only the 
target domain samples in the training process, the TL models use both 
the source and target domain samples. In order to effectively find the 
optimal hyperparameters for each model, the Bayesian optimization 
process, named Hyperopt, developed by James Bergstra [56] is adopted 
in this study. It provides an automated hyperparameter optimization 
process and generally requires a lower number of iterations when 
compared to the random search or grid search methods, assuming that 
the given search space is the same. For each case, the target domain 
availability for training a model is increased from 10% of the entire 
target domain up to 70% of the entire target domain. The remaining 
30% of the target domain will be used to test the trained model. To 
accurately evaluate the trained model, training and test sets are mutu
ally exclusive from one another. For each case, ten experiments are 
conducted with randomly selected training and test sets. Thus, the 
generalized performance of knowledge transfer across the domains can 
be well observed by averaging the results from those ten experiments. 
Training and validation loss have been monitored over the training 
process in every model and trial, and overfitting was never observed. 
The transfer learning model is trained with a knowledge transfer tech
nique and tested on the target domain. On the other hand, the baseline 
model is trained and tested on the target domain without any source 
domain information. This enables us to directly and effectively compare 
the knowledge transferability across different domains. 

4.2. Case 1: Knowledge transfer across RC column section type 

Case 1 has the most similar distributions between the source and 
target domains, as shown in Table 3. It also has the largest number of 
target domain samples among the three cases, as is shown in Table 2. 

Table 1 
Statistical information of the RC column dataset.  

Description Unit Average Standard 
deviation 

Minimum Maximum 

Area mm2 121,432 112,703 6400 1,814,583 
Effective depth mm 294.13 117.09 62.99 1215.90 
Shear span mm 1179.32 837.69 80.01 9139.94 
Yield stress of 

longitudinal 
rebar 

MPa 423.54 62.20 239.94 586.90 

Longitudinal 
reinforcement 
ratio 

– 0.0242 0.0099 0.0046 0.0694 

Clear length mm 1351.03 817.12 160.02 9139.94 
Transverse 

reinforcement 
legs parallel to 
primary load 

– 2.60 0.88 2.00 6.00 

Spacing of 
transverse rebar 

mm 94.49 82.55 8.89 457.20 

Yield stress of 
transverse rebar 

MPa 450.76 185.75 199.95 1423.63 

Transverse 
reinforce ratio 

– 0.0059 0.0048 0.0004 0.0321 

Concrete 
compressive 
strength 

MPa 43.10 24.43 13.10 117.97 

Axial load KN 927.01 1160.99 0.00 7999.68 
Maximum lateral 

load 
KN 233.44 187.36 19.04 1338.69  

Table 2 
Experimental cases.  

Case No. Dataset 
partition 

Section type Number of samples 

Case 1 Source Rectangular 326 
Target Circular 171 

Case 2 Source Av ≥ Av,min 455 
Target Av < Av,min 42 

Case 3 Source Normal strength concrete 443 
Target High strength concrete 54 

Note: Av = area of shear reinforcement within spacing; Av,min = minimum area of 
shear reinforcement within spacing.  

Table 3 
Results of the discrepancy metrics.  

Case No. MMD EMD HD 

Case 1  0.0119  11.1395  0.1483 
Case 2  0.0305  25.4353  0.2731 
Case 3  0.0254  12.4887  0.2191  
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This characteristic can also be observed in Fig. 2, which shows the his
tograms of the source and target domains. As shown in Fig. 2, the ranges 
of the response variable between the source and target domains are 
similar, and their relative frequency also looks similar. A mutually 
exclusive set of 52 circular column samples is used to test the typical ML 
model and TL model. As the target domain availability increases from 
10% to 70%, the number of samples for training a model increases from 
17 to 119. 

The performance comparisons of the typical ML model and TL model 
obtained from IW-KRR, Two-stage TrAdaBoost.R2, and DW-SVTR are 
depicted in Fig. 3, Fig. 4, and Fig. 5, respectively. The shaded areas in the 
figures indicate 95% confidence intervals from the 10 trials. Compared 
to the baseline model, it is observed that both R2 and RMSE from the TL 
model are improved. Furthermore, the lower the percentage of target 
domain availability, the more significant the improvement between the 

baseline and TL model. Such trends can be observed in every TL tech
nique used in this study. The prediction performance in 10, 40, and 70% 
of target domain availability from the three TL techniques are compared 
in Fig. 6(a). DW-SVTR shows the highest R2 value not only from the case 
of low target domain availability but also for the case of high target 
domain availability. However, according to Fig. 6(b), which shows the 
differences between the typical ML model and the TL model, DW-SVTR 
has the smallest differences in all target domain availability, and the 
Two-stage TrAdaBoost.R2 model shows the most potent knowledge 
transferability. This is because DW-SVTR and typical LS-SVMR have 
good prediction performance, even for the low target domain 
availability. 

Table 4 
The number of samples used for training and testing a model in each case.  

Target domain 
availability [%] 

10 15 20 25 30 35 40 45 50 55 60 65 70 

Case 1 Source # of training samples 326 326 326 326 326 326 326 326 326 326 326 326 326 
Target # of training samples 17 26 34 43 51 60 68 77 86 94 103 111 119 

# of testing samples 52 52 52 52 52 52 52 52 52 52 52 52 52 
Case 2 Source # of training samples 455 455 455 455 455 455 455 455 455 455 455 455 455 

Target # of training samples 4 6 8 10 13 15 17 19 21 23 25 27 29 
# of testing samples 13 13 13 13 13 13 13 13 13 13 13 13 13 

Case 3 Source # of training samples 443 443 443 443 443 443 443 443 443 443 443 443 443 
Target # of training samples 5 8 11 14 16 19 22 24 27 30 32 35 37 

# of testing samples 17 17 17 17 17 17 17 17 17 17 17 17 17  

Fig. 2. Histograms of the source and target domains used in Case 1; (a) Frequency, and (b) Relative frequency (probability).  

Fig. 3. IW-KRR performance in Case 1 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  
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4.3. Case 2: Knowledge transfer across shear reinforcement amounts 

The source and target distributions for Case 2 are the most dissimilar 
among the three experimental cases. In accordance with the results 
presented in Table 3, the shape of the distribution and the range of the 
response variable are different, as shown in Fig. 7. Furthermore, in this 
case, only 42 samples with lower shear reinforcement area are classified 

as the target domain, which is the smallest target domain size of all three 
cases. As the target domain availability increases from 10% to 70%, the 
number of samples for training a model increases from 4 to 29. The 10% 
of target domain availability is the most challenging scenario where only 
four samples are used to train a model. It is difficult, perhaps impossible, 
to get a well-generalized model if the typical ML model would be used. 
The performance comparisons of the typical ML model and TL model 

Fig. 4. Two-stage TrAdaBoost.R2 performance in Case 1 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean 
square error. 

Fig. 5. DW-SVTR performance in Case 1 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  

Fig. 6. Summary of knowledge transfer performance in Case 1; (a) bar chart in 10, 40, and 70% target domain availability from three different TL techniques, and (b) 
differences of R2 between the typical ML model and TL model in terms of target domain availability. 
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obtained from IW-KRR, Two-stage TrAdaBoost.R2, and DW-SVTR are 
depicted in Fig. 8, Fig. 9, and Fig. 10, respectively. Similar to the trends 
observed in Case 1, R2 and RMSE from the typical ML model and TL 
model are improved as the available data from the target domain in
creases. Also, the less target domain data the model uses, the more 
remarkable the improvement between the baseline and TL for every TL 
technique used in this case. Particularly, in Case 2, compared to the 
other cases, large areas are observed between the performance of the 
typical ML model and TL model. In other words, the most significant 

improvements by using knowledge transfer techniques occur in Case 2. 
This is because there is a physically strong correlation between the 
source and target domain, even if those two domains are the most dis
similar. The strong correlation is not just limited to the relationship 
between source and target domain. It is also strongly linked to each 
domain and the task learned by the model. The amount of shear rein
forcement has a significant influence on the lateral capacity of RC col
umns, when compared to the shape of the section or concrete 
compressive strength. Even in the low target domain availability, the 

Fig. 7. Histograms of the source and target domains used in Case 2; (a) Frequency, and (b) Relative frequency (probability).  

Fig. 8. IW-KRR performance in Case 2 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  

Fig. 9. Two-stage TrAdaBoost.R2 performance in Case 2 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean 
square error. 
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prediction performance is reasonably good from all TL techniques in 
Case 2. This fact also supports the robust physical correlation between 
the source domain, target domain, and the lateral capacity of RC col
umns. The prediction performance in 10%, 40%, and 70% of target 
domain availability from the three TL techniques are compared in 
Fig. 11(a). DW-SVTR shows the highest R2 value for the case of low 
target domain data availability and high target domain data availability. 
All the TL techniques in Case 2 have good abilities to capture the 
behavior of the target domain even with a very small number of target 
samples, according to Fig. 11. 

4.4. Case 3: Knowledge transfer across concrete compressive strength 
values 

The calculated discrepancy metrics for Case 3 are higher than Case 1 
and less than Case 2, as shown in Table 3. This means that Case 3 has a 
moderate disparity between the source and target distributions, when 
compared to Case 1 and Case 2. Fig. 12 shows the distributions of the 
source and target domains. In this case, 54 samples are used as the target 
domain, which is slightly larger than Case 2, but much lower than Case 1. 
Similar to the experimental setting used in Case 1 and 2, the target 

Fig. 10. DW-SVTR performance in Case 2 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  

Fig. 11. Summary of knowledge transfer performance in Case 2; (a) bar chart in 10, 40, and 70% target domain availability from three different TL techniques, and 
(b) differences of R2 between the typical ML model and TL model in terms of target domain availability. 

Fig. 12. Histograms of the source and target domains used in Case 3; (a) Frequency, and (b) Relative frequency (probability).  
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domain availability increases from 10% to 70%, and the remaining 30% 
of target samples are used as a test set. The 10% of target domain 
availability corresponds to the scenario where only five samples are used 
for training a model. The performance comparisons of the typical ML 
model and TL model obtained from IW-KRR, Two-stage TrAdaBoost.R2, 
and DW-SVTR are depicted in Fig. 13, Fig. 14, and Fig. 15, respectively. 
Similar trends can also be observed in Case 3. Regardless of whether or 
not the knowledge transfer technique is employed, the prediction per
formance is improved as the available samples increase. Additionally, 

monotonic increasing behaviors for R2 values of the typical ML and TL 
model are observed. Understandably, monotonic decreasing behaviors 
are observed for the RMSE values. Compared to the other two cases, Case 
3 struggles to obtain a well-generalized model, especially in the low 
target domain availability. Such results are attributed to the physically 
weak relationship between the source and target domain. The prediction 
performance for 10%, 40%, and 70% of target domain availability from 
the three TL techniques are compared in Fig. 16(a). Although the R2 and 

Fig. 13. IW-KRR performance in Case 3 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  

Fig. 14. Two-stage TrAdaBoost.R2 performance in Case 3 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean 
square error. 

Fig. 15. DW-SVTR performance in Case 3 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.  
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RMSE values for the low target domain availability are not good 
compared to the other two cases, the results from DW-SVTR exhibit well- 
generalized prediction among the TL techniques in this case, as shown in 
Fig. 16(b). 

5. Discussion 

A relevant and well-established dataset is an essential aspect of any 
data-driven ML model. Training a good ML model with a very limited 
number of training samples is almost impossible. However, as reported 
in the earlier section, a better data-driven model can be obtained by 
adopting an appropriate knowledge transfer technique. For direct 
comparisons of the ML and TL models in terms of the required amount of 
training samples, the required target domain availability to get an 
acceptable data-driven model is summarized in Table 5. The required 
target domain availability is defined as the first target domain avail
ability where the upper limit of R2 confidence interval is equal to or 
higher than 0.85. For Two-stage TrAdaBoost.R2 in Case 1 and every 
model in Case 2, the prediction performance of the ML model does not 
reach 0.85 until 70% target domain availability. An inequality sign 
denotes that the number of training samples is not enough to get a good 
ML model, and collecting or adding more training samples is required. 
According to Table 5, the required number of target training samples for 
a good TL model is less than that for a good ML model in all cases and 
models considered in this study. These results support the idea that 
transferring knowledge from the source domain can reduce the number 
of samples necessary to properly train a model; thus, TL can successfully 

alleviate the data scarcity problem. Fig. 17 shows a bar chart depicting 
the performance of knowledge transfer techniques in terms of the 
required amount of training data. As can be seen in Fig. 17, DW-SVTR 
has the greatest ability in terms of reducing the required number of 
training samples. It reduces the number of training data up to 57%, 
when compared to an ML model without any integrated knowledge 
transfer technique. This is because DW-SVTR uses two different instance 
weight functions simultaneously, which are KMM and a residual func
tion. IW-KRR shows better abilities in terms of reducing the required 
training samples compared to the Two-stage TrAdaBoost.R2 algorithm. 

The equations for estimating the shear strength of a non-prestressed 
reinforced concrete member are specified in ACI 318–19 [46]. 
Depending on the criteria introduced earlier in Eq. (17), the shear 
strength of a non-prestressed concrete member, Vn, is given as: 

Vn =

⎧
⎪⎪⎪⎪⎪⎨
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ʀ
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)

(18)  

where λ is the modification factor for lightweight concrete, ρw is the 
longitudinal reinforcement ratio, Nu is axial force, Ag is the cross- 
sectional area, d is the effective depth of the cross-section, Av is the 
area of transverse reinforcement, and λs is the size effect modification 
factor. 

Fig. 16. Summary of knowledge transfer performance in Case 3; (a) bar chart in 10, 40, and 70% target domain availability from three different TL techniques, and 
(b) differences of R2 between the typical ML model and TL model in terms of target domain availability. 

Table 5 
Required target domain availability to get an upper limit of R2 confidence in
terval equal to or higher than 0.85.  

Case 
No. 

Model name Target domain 
availability [%] 

Reduction of the required data 
[%],((a −b)/a*100)

ML 
model 
(a)

TL 
model 
(b)

Case 1 IW-KRR 55% 45%  18.18 
TrAdaBoost. 
R2 

≥ 70% 60%  ≥14.29 

DW-SVTR 35% 20%  42.86 
Case 2 IW-KRR ≥ 70% 40%  ≥42.86 

TrAdaBoost. 
R2 

≥ 70% 65%  ≥7.14 

DW-SVTR ≥ 70% 30%  ≥57.14 
Case 3 IW-KRR 55% 35%  36.36 

TrAdaBoost. 
R2 

40% 25%  37.50 

DW-SVTR 40% 25%  37.50  

Fig. 17. Comparison of the knowledge transfer models in terms of reducing the 
required amount of training data. 
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ACI 318–19 imposes a maximum value of 100 psi on 
̅̅̅̅

f ’
c

√

for use in 
the calculation of shear strength of concrete members, because of a lack 
of test data and practical experience with concretes having compressive 

strengths greater than 10,000 psi [46]. Values of 
̅̅̅̅

f ’
c

√

greater than 100 
psi shall be permitted only for reinforced concrete members satisfying 
Av ≥ Av,min. They also require the upper limit of 60,000 psi on the value 
of fyt to control diagonal crack widths. With all these design specifica
tions, the shear strength of RC columns in the target domain are calcu
lated, and then compared with the shear strength values predicted by 
the three TL models in each case. The scatterplots comparing the pre
dicted values based on ACI 318–19 and the TL models in Case 1, Case 2, 
and Case 3 are depicted in Fig. 18, Fig. 19, and Fig. 20, respectively. 
Every TL model in all cases shows great ability to accurately predict the 
lateral capacity of RC columns with good R2 values higher than 0.95. 
However, there are substantial differences between the calculated 
values from ACI 318–19 and the experimental results in the target 
dataset of each case. As can be seen in Fig. 20, it is noteworthy that the 

calculated values of RC columns in Case 3 tend to have larger differences 
than those values from the other cases. Considering the perspective of 
precise estimations of the lateral strength of RC columns, the TL models 
considered in this study outperform the latest design standards. 

6. Conclusions 

This study has presented the feasibility of knowledge transfer tech
niques in a real-world structural engineering dataset and in three 
meaningful ways; across section type, shear reinforcement area, and 
compressive strength. Three different TL strategies are considered to 
more accurately predict the lateral capacity of the RC columns. This 
study uses a database consisting of 497 rectangular and circular RC 
column experiment specimens. The 12 explanatory variables are 
extracted and selected among the 30 explanatory features in the original 
dataset by calculating the feature importance scores. Ten repeated ex
periments are carried out with a randomly selected dataset to properly 
detect the generalized knowledge transfer performance. According to 

Fig. 18. Comparison of the predicted values in Case 1 based on ACI 318–19 versus the TL models; (a) IW-KRR, (b) Two-stage TrAdaBoost.R2, and (c) DW-SVTR.  

Fig. 19. Comparison of the predicted values in Case 2 based on ACI 318–19 versus the TL models; (a) IW-KRR, (b) Two-stage TrAdaBoost.R2, and (c) DW-SVTR.  

Fig. 20. Comparison of the predicted values in Case 3 based on ACI 318–19 versus the TL models; (a) IW-KRR, (b) Two-stage TrAdaBoost.R2, and (c) DW-SVTR.  

H. Pak and S.G. Paal                                                                                                                                                                                                                          



Engineering Structures 266 (2022) 114579

13

the different source and target domains, three different experiments are 
designed to directly compare their performance across the different 
structural engineering domains. The discrepancy between the source 
and target domains is also calculated with several statistical distance 
metrics. The prediction performances of each TL technique are 
computed and compared with the results of the more traditional ML 
model. The following conclusions can be drawn: 

• In all cases conducted in this study, the knowledge transfer tech
niques show better prediction performance, especially for the low 
target domain availability. The lower the percentage of target 
domain availability, the more significant the improvement between 
the baseline and TL model. Such trends can be observed in every TL 
technique used in this study. Therefore, we can conclude that 
transferring the pre-trained knowledge from the source domain en
ables a model to better explain the response variable in the target 
domain.  

• The improvement of performance is particularly emphasized when 
the available data for the target domain is small. This indicates that a 
good ML model can be obtained by adopting a knowledge transfer 
technique, even with a small number of training samples. Therefore, 
TL can be successfully applied to the field of structural engineering as 
a means of alleviating the data scarcity problem.  

• It is also demonstrated that DW-SVTR shows a good ability to 
transfer knowledge learned from the source domain, compared to 
IW-KRR and Two-stage TrAdaBoost.R2. Furthermore, the capability 
to accurately transfer the pre-trained knowledge is more associated 
with the underlying physical relationship between the source and 
target domains and less associated with the discrepancy between the 
source and target domain distributions.  

• This study quantifies the amount of training data necessary to obtain 
the same level of prediction performance. In every model considered 
in this study, the required number of target training samples for a 
good TL model is less than that for a good ML model. Especially, DW- 
SVTR has the greatest ability in terms of reducing the number of 
required training samples. 

• All TL models considered in this study show great ability to accu
rately predict the lateral capacity of RC columns with R2 values 
higher than 0.95. From the perspective of precise estimations of the 
lateral strength of RC columns, the TL models considered in this 
study outperform the recent design standards. 

Further research should be carried out to assess if the results ob
tained in this research can be extended to a broader range of applica
tions, for example, arbitrary cross-sections, different materials, model- 
scale to full-scale extrapolations, or various sizes of structures. Addi
tional research should be conducted on how to transfer knowledge more 
efficiently in structural engineering and how the injection of physics- 
based information in these approaches could further enhance the pre
dictive performance. Furthermore, a generalized set of guidelines 
regarding the use of knowledge transfer can be developed based on more 
results from various datasets and tasks in the field of structural 
engineering. 
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