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Transfer learning aims to extract knowledge from one or more source tasks and apply the knowledge to a
different task for more accurate predictions. The main purposes of this study are to investigate different
knowledge transfer techniques, apply them to accurately predict the lateral strength of reinforced concrete
columns with only a small amount of training data, and compare the transferability of each method. According to
the various source and target domains, three different experiments are designed to directly compare the per-
formance across section type, shear reinforcement area, and concrete compressive strength. In all cases in this
study, knowledge transfer techniques show better prediction performance than the models trained without any
knowledge transfer techniques. Therefore, we can conclude that transferring pre-trained knowledge from the
source domain enables a model to better explain the response variable in the target domain. The performance
improvement is particularly emphasized when the available data for the target domain is small. Thus, transfer
learning can be one way to address the data scarcity problem in structural engineering. Furthermore, transferring
the pre-trained knowledge is more associated with the underlying physical relationship between the source and
the target domains and less associated with the discrepancy between the source and the target domain

distributions.

1. Introduction
1.1. Background

Artificial Intelligence (AI) and Machine Learning (ML) are devel-
oping rapidly and have shown tremendous success in various applica-
tion domains [1,2]. One of the more powerful and essential
characteristics of Al and ML is the capability to carry out tasks auton-
omously by understanding and analyzing a given dataset. This charac-
teristic has led to a variety of research domains and industrial fields
adopting AI and ML including object detection [3-5], natural language
processing [6-8], autonomous vehicles [9-11], and applied science and
engineering fields [12-15] among many others. This success has also
translated to the realm of structural engineering. In recent years, sub-
stantial advancements have been made in an effort to apply ML to the
structural engineering fields [16-19]. The previous studies have
demonstrated the effectiveness of Al algorithms over traditional pro-
cedures pertaining to evaluation, decision-making, prediction and
optimization in structural engineering applications.

* Corresponding author.

One of the basic assumptions in a traditional ML algorithm is that the
training and testing data must share not only the same feature space and
distribution, but also the task. In other words, an individual learner can
only acquire knowledge of a specific task from the identical feature
space and distribution. Suppose that the trained model may need to
predict a different task where the feature space or data distribution is not
identical to the previously trained task but somewhat similar. In that
case, the trained model will very likely yield poor performance and
should be reconstructed from scratch based on new data. However,
making a new ML model from scratch while maintaining good perfor-
mance requires another hyperparameter tuning process and may be
impractical if the new data samples are insufficient. Furthermore, in
reality, obtaining more data samples involves additional costs and time,
and often is not feasible.

One alternative way to address this problem is via Transfer Learning
(TL). TL is a sub-field of ML and also known as knowledge transfer. Fig. 1
shows the schematic learning procedure of ML and TL. Generally, for
training a typical ML model, an individual learner requires an individual
dataset, as can be shown in Fig. 1(a). However, in Fig. 1(b), TL aims to
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extract knowledge from one or more source tasks and apply the
knowledge to a different target task [2]. The main concept of TL is to
efficiently learn a target task with help of not only the target domain, but
also from a single or multiple source domains or source tasks.

Several approaches have been proposed for transferring knowledge,
e.g., instance-based transfer [20-24], feature-representation-transfer
[25-27], parameter-transfer [28-31], and information transfer from
unlabeled data [32,33]. While various theories and applications have
been developed, a few TL studies have been conducted in the structural
engineering domain [34,35] and a limited number of studies have been
proposed to estimate structural capacity [36] compared to the other
fields where TL is more actively used. Furthermore, the majority of TL
research in the structural engineering domain is associated with image-
based models [37-40]. As the relevance between the source and target
domains and tasks is critical in the success of such approaches, more
investigation into the application of transfer learning within the realm of
structural engineering is necessary.

For structural engineering practices, in-depth understanding and
prediction of the performance of existing or new structural components
are essential for the effective design and maintenance of structures
during their life cycle. In recent years, substantial advancements have
been made in an effort to apply Al to the applied science and engineering
fields, especially in civil engineering. Kakatand et al. [41] have proposed
data-driven models to predict the shear strength of RC columns. 145
rectangular and 91 circular columns were used to train the models, and
the maximum R? values from 10°, 107, or 108 iterations of Monte Carlo
simulation were reported. However, developing a robust and accurate Al
model for any purpose, including to estimate the performance of a
physical structure, should generally be accompanied by large amounts
of data. Even in the field of structural engineering, to properly validate
new structural materials, configurations, designs, and modeling tech-
niques, a comprehensive experimental test setup is required. Therefore,
by adopting knowledge transfer techniques into the structural engi-
neering domain, researchers and practitioners will be able to efficiently
use an ML model to quantify the structural capacity without excessive
efforts to augment data samples.

1.2. Lateral strength of RC columns

Columns are the prime source of energy dissipation in a structural
system and often the most critical components resisting seismic hazard
[42]. Column failures are commonly classified as one of the following
modes: flexure, shear, or flexure-shear failure. Flexure failure normally
occurs after yielding of the longitudinal reinforcement and shear failure
occurs before yielding of the longitudinal reinforcement. Many post-
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earthquake reconnaissance and researches have indicated that light
and inadequately detailed transverse reinforcement are vulnerable to
shear failure during seismic events [43-45]. Shear failure would dras-
tically reduce the structural seismic performance and sometimes lead to
structural collapse. Thus, special care should be needed to ensure
enough amounts of transverse reinforcement to avoid shear failure prior
to a flexural failure [46].

High-strength concrete (HSC) has been increasingly used in buildings
and infrastructures because of its advantages, such as high strength,
good durability, and reduction of member size. Due to these advantages
of HSC, it displays more brittle behavior under the same reinforcement
details, compared to the normal strength concrete (NSC) [47-49]. The
lower ductility and undesirable brittleness of HSC restricts the use of
HSC in the seismic regions.

With these perspectives of views on ductility and HSC, this study
mainly deals with developing a knowledge transfer data-driven model
that can precisely calculate the shear strength of the RC column even
with the small number of non-ductile columns or HSC samples.

2. Transfer learning algorithms for regression problems

The main purpose of this study is to investigate different knowledge
transfer techniques and compare the transferability of each method.
Three knowledge transfer methods are considered: Instance Weighting
Kernel Ridge Regression (IW-KRR) [22], Two-stage TrAdaBoost.R2 [50],
and Double-Weighted Support Vector Transfer Regression (DW-SVTR)
[36]. Based on the categories summarized by Pan and Yang [2], the
problems dealt with in this study are all classified as inductive transfer
learning problems, where the response variable in the source and target
domains are available. This study focuses on an instance transfer
approach belonging to inductive transfer learning. This is attributed to
the fact that the source and target domains related to the input dataset
used in this study already have an identical feature space after using
dimensional reduction techniques. Furthermore, this study has used
different types of base learners to compare various aspects of ML and TL.
The base learner of the selected methods uses a different ML algorithm:
Kernel Ridge regression (KRR), random forest, and a support vector
machine. Each method is briefly introduced in the following sections.

2.1. Definition of transfer learning

Let &% and 27 denote the source and target domain data, respec-
tively. Given &° and the source learning task .7°, " and the target
learning task .77, TL aims to help improve the learning of the target
predictive function f7(-) in 7 using the knowledge in Z° and .75,
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Fig. 1. Schematic learning procedure; (a) Machine Learning (ML) and (b) Transfer Learning (TL).
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where 75 £ 27, or 75+ .7, Even though 7% £ 9T or 75 £ .77,
75 can be a useful resource to improve the prediction for 7. This is the
main idea behind TL, inspired by the human learning process. Based on
this definition, some general notations used in the remainder of this

S

discussion are defined as follows. Z° can be represented as {(xi,

¥ } where n is the number of samples in the source domain. Simi-

larly, " can be represented as { L yhE, }, where m is the number of

samples in the target domain. Here x; € R? is the i th explanatory vari-
able vector, where d indicates the vector dimension, and y; denotes the
response variable, which could be a discrete variable for a classification
problem or a continuous variable for a regression problem. In most
cases, m<n, and probabilistic distributions of the source and target
domains are not equal but somewhat related.

P(.5°) ~ P (57 37) forsome (x.) .

where, P’ and PT denote the probabilistic distribution of the source and
target domain, respectively.

2.2. Kernel Ridge regression (KRR) for transfer learning

The most important part of reweighting instances in KRR is to
determine samples from Z° which positively or negatively influence
training and testing on Z”. While there are some existing solutions to
address this challenge, one effective way to find appropriate samples is
to measure the similarity between the source and target distributions.
Defining the importance weight function as w(x,y) : = PT(x,y)/PS(x,y),
the prediction or estimated value can be written as:

3 = argmax (PT (y|XT) P (XT) )

= argmax (PT (yx")-PT(x") -ﬁ-PS (yx")-P5(x") ) 2)

y X,y

= arg;nax (w(x",y)-P*(y[x")-P*(x") )

In this study, a Gaussian kernel function is used for an approximation
of the weight function,

¥ . 2
I3 — (5,59l )

o ©)

Wi (x',y) = arexp ( -
where ¢; is the coefficient of linear combination, 5 is a hyperparameter
denoting the length scale of the kernel, and (x{,y7) denotes the center
points fori = 1,---,n.

The main goal of the regression problem is to minimize the residual
sum of square error (RSS). Substituting Eq. (2) into the RSS equation and
omitting the P(x[) term since the argmax does not depend on it for a
given sample x”, the RSS function for this problem can be represented as:

2
min" (of - e (@ 70)-7 ) ) ) @

Given that suitable weights were obtained, the common RSS error
function that we need to minimize can be slightly modified as:

N —
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where 0 is the vector of model parameters, ¢(-) is a feature mapping
function that maps the input x into the feature space, and 4 is the reg-
ularization parameter.

By defining the diagonal matrix W € R (m+n)
1, 0
0] diag(w(x%,),,.., )

W .= (6)

where I, is the identity matrix with m dimensions.
The final prediction function with weighted terms can be defined as:

5 = argmax((x 3)PON)) ~fip, () ='W k() @)

where the discriminative model f now depends on the weight function
W(x",y) which depends on a, k_(x") : = (k(x1,x"), - k(xn,x))T, k(x;,

x") := o(x;)Tp(x"), a” is the vector of dual coefficients, and x" is a new
data point.

By inserting Eq. (7) into Eq. (4), proper weights in the prediction
function can be estimated as follows:

—~a

2
miny " (y}’—aTW (X?‘syf)k—(X}")) +7lalf (8)

a>0 i=1

The last term in Eq. (8) is added to avoid overfitting and to penalize

large coefficients. Now, the weight function W can be calculated with
the help of the estimated .

2.3. Two-stage TrAdaBoost.R2

Dai et al. [51] proposed an instance-based TL algorithm, TrAdaBoost,
which extends the boosting-based method [52]. It was combined with
AdaBoost.R2 [53] to develop a model to solve regression problems. It
basically reduces the weight of an instance with a high error rate and
increases the weight of an instance with a low error rate. However, two
issues with the TrAdaboost.R2 algorithm were reported by Pardoe and
Stone [50]. First, the weights of the target data may be heavily skewed if
the size of the source data is much larger than the target data. Especially,
the entire weight vector is highly dependent on some target instances
that are either outliers or most dissimilar to the source data. Second, the
weights of some source instances closely associated with the target task
tend to eventually be reduced to zero. Based on these issues, the authors
proposed a new version of TrAdaBoost.R2 where the weights are
adjusted in two stages.

The first step of the Two-stage TrAdaboost.R2 is to set the initial
weight vector w?,

W= ©

_n+m

fori =1 <i < n +m, where nis the number of source samples and m
is the number of target samples.

In the first stage, the weights of source instances are designed to be
gradually reduced until a certain point determined by cross validation.
The next stage is to train a model on the dataset combining the source
and target samples. The model used in this second stage is identical to
the typical AdaBoost.R2, except that the weights of the source data will
not be changed. The adjusted error e for each instance is calculated, and
the weight vector is updated based on the following rule:

(Z?’l OF =60 (D) + 327 97 (557) (o7 - 9T~so(x.f))2> +LJol? Q)
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P
% (1<i<n)
Wil = f (10
w!
?’, (n+1<i<n+m)
't

where Z; is a normalizing constant, and f, is determined such that the

resulting weight of the target instances is ;™. + g5 (1 7H+Lm)

With this updating rule, the first total weight of the target instances
starts from 't and increases uniformly up to 1. The binary search al-
gorithm approximately searches the value of §,. The procedure in this

algorithm will be terminated when the errors start to increase.
2.4. DW-SVIR

A novel regression-based TL approach was proposed by Luo and Paal
[36], which is called Double-weighted support vector transfer regression
(DW-SVTR). It is extended from Least squares support vector machines
for regression (LS-SVMR) by coupling two methods to effectively esti-
mate instance weights. Firstly, kernel mean matching (KMM) is used to
reweight the source domain samples such that the mean values of the
source and target domain in a reproduced kernel Hilbert space are close.
With this technique, the source domain samples relevant to the target
domain samples have a larger weight than irrelevant source domain
samples. The second weight is a function of estimated residuals to
reduce the negative interference of irrelevant source domain samples.
Given the dataset combining the source and target domain, the objective
function of DW-SVTR can be expressed as follows:

1 1 m+n
J(0.e) =500 + 57> " wlz)v(x)el an

Subjectto : y; = 0 p(x;) + b +e;,

where ¢; is the error term for i = 1---(m+n), y is a regularization
parameter, w(z;) is a weight to determine the importance of each data
point, v(x;) is a weight function of the residuals, ¢(-) is a mapping
function into a higher dimensional space, and 6 is a model parameter
vector.

By using the Lagrange multiplier method with Karush-Kuhn-Tucker
(KKT) conditions and solving the quadratic programming problem, the
DW-SVTR algorithm eventually finds the optimal weight vector such
that the objective function J(w, ¢;) is minimized.

3. Evaluation metrics
3.1. Discrepancy measure

There should be one or more source domain(s) and target domain in
the TL problem. The source and target domains are somewhat related
but not identical. One of the crucial factors closely associated with the
success of TL is how far away those source and target domains are.
Obviously, the probability of success of the TL technique would be lower
if the distance between the source and target domains is larger. Thus, it
is important to understand the relationship and distance between the
source and target domains, which heavily influence the success of
knowledge transfer. Some statistics can adequately estimate the distance
metric between two different probabilistic distributions. When it comes
to estimating the distance between two probability distributions,
Kullback-Leibler divergence, widely used for a measure of how one
distribution is different from another, does not satisfy the symmetric
condition and the triangle inequality condition. Therefore, it cannot be
used as a statistical measurement of discrepancy. In this study, three
distance metrics, Maximum Mean Discrepancy (MMD), Earth Mover’s
Distance (EMD), and Hellinger distance, are adopted to quantify the
distance on the space of probability measures.

MMD is a relevant criterion for comparing distributions based on the
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Reproducing Kernel Hilbert Space (RKHS). It can be well-estimated by
the distance between the means of the two distributions mapped into the
RKHS. Unlike Kullback-Leibler divergence, which requires an interme-
diate probability density estimation, MMD is a non-parametric distance
estimate between those distributions. The empirical MMD is defined as
follows:

ni ny

MMD(Y) =20 o) = D w0l a2)
i=1 i=1

where X = {x1,x2,+, Xn, }, Y = {¥1,¥2,*,¥n, }» # is a universal RKHS,

and ¢ is a kernel function mapping samples from 2’ to 7.

The Wasserstein metric, also known as EMD (Earth Mover’s Dis-
tance), is a distance function defined between probability distributions.
EMD was proposed to measure a discrepancy between two distributions
by quantifying the optimal cost of rearranging one distribution into the
other. With this analogy, it is frequently referred to as the earth mover’s
distance. The EMD between two distributions f and g is:

+o0

EMD(f, ) = / F(x) — G)|dx as)

-0

where F and G are the CDFs of f and g, respectively.

The Hellinger distance (HD) is a measure of divergence of two dis-
tributions and provides another way to estimate the distance between
those distributions independent of parameters. It should be noted that
the HD satisfies the triangle inequality, and the /2 coefficient in Eq. (14)
is for ensuring that HD(p, q) < 1. For the probability density functions p
and g, the Hellinger distance between them can be expressed as:

HD(p,q) = % \/ / (V@) — v )dx 14)

3.2. Prediction performance measure

In order to measure the model performance and estimate the error,
the root mean square error (RMSE) is monitored during the training
process. Root mean square error (RMSE) and the coefficient of deter-
mination (R?) are employed to directly compare the generalization
ability of typical ML models and knowledge transfer in a comprehensive
manner. In general, R? is a good indication of the generalized model
capabilities in comparison to other models in regression problems.
Additionally, RMSE is widely used as one of the metrics that can indicate
the model performance, especially whether or not the model is sensitive
to outliers. An R? value closer to 1 and RMSE value closer to 0 indicate
better performance and better generalization ability to predict the
response variable(s). In addition, an R? value is not limited to a lower
bound of zero, if the model prediction is worse than just using the mean
value. The following equations show the definitions of MSE (Mean
Square Error) and R2. RMSE is the square root of MSE.

MSE:%Z(y,- -5 a5)
i—1

R — 1,M (16)
Z:’l:l(yi _y)z

where n is the number of samples, y; is the actual response value, y; is the
predicted response value, and y denotes the mean of the actual response
value.

4. Experiment and results

4.1. Dataset description

In order to compare different TL techniques, a comprehensive
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dataset should be acquired to train a model and appropriately evaluate
its performance. In this study, a dataset consisting of 497 reinforced
concrete (RC) column samples [54,55] is used to assess three different
knowledge transferring techniques. One sample is excluded from the
498 columns of the original dataset since its experimental result is
significantly outside of the range covered by the remaining columns.
The dataset comprises two different section types and a wide range of
shear reinforcement ratios and concrete compressive strengths. Twelve
explanatory variables are extracted or selected from the 30 explanatory
variables in the original dataset by calculating the feature importance
scores. The relative scores from the calculation of the feature importance
highlight which features may be more relevant to the response variable
and which features are less relevant. The statistical information of 12
independent features and the response variable are summarized in
Table 1.

Three experimental cases were considered for evaluating and
comparing TL methods, as shown in Table 2. The cases are designed with
similar but slightly different source and target domains. For Case 1, the
criteria of the source and target domain are the shape of column section.
For Case 2, the criteria is based on the equations in ACI 318-19 [46]. The
following equations show A, ;i» defined in ACI 318-19, and the greater
value should be chosen:

- by,s
0.75¢/f, —
S
Av,mm = (17)
b,,s
50
S

where f; is the concrete compressive strength, b, is the width, s is the
spacing, and f,; is the yield strength of transverse reinforcement.

For Case 3, the samples where the compressive strength is higher
than 82.74 MPa (12000 psi) are classified as the target domain and the
samples with less than or equal to 82.74 MPa (12000 psi) of the
compressive strength are classified as the source domain. These three
cases will illustrate the performance of the three TL techniques in
knowledge transfer across section type, area of shear reinforcement, and
concrete compressive strength values. For all cases, the maximum lateral
shear strength is used as the response variable. Although the shear

Table 1
Statistical information of the RC column dataset.
Description Unit  Average Standard Minimum  Maximum
deviation

Area mm? 121,432 112,703 6400 1,814,583

Effective depth mm 294.13 117.09 62.99 1215.90

Shear span mm 1179.32 837.69 80.01 9139.94

Yield stress of MPa 423.54 62.20 239.94 586.90
longitudinal
rebar

Longitudinal - 0.0242 0.0099 0.0046 0.0694
reinforcement
ratio

Clear length mm 1351.03 817.12 160.02 9139.94

Transverse - 2.60 0.88 2.00 6.00
reinforcement
legs parallel to
primary load

Spacing of mm 94.49 82.55 8.89 457.20
transverse rebar

Yield stress of MPa 450.76 185.75 199.95 1423.63
transverse rebar

Transverse - 0.0059 0.0048 0.0004 0.0321
reinforce ratio

Concrete MPa  43.10 24.43 13.10 117.97
compressive
strength

Axial load KN 927.01 1160.99 0.00 7999.68

Maximum lateral KN 233.44 187.36 19.04 1338.69
load
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Table 2
Experimental cases.
Case No.  Dataset Section type Number of samples
partition
Case 1 Source Rectangular 326
Target Circular 171
Case 2 Source Ay > Ay min 455
Target Ay < Aymin 42
Case 3 Source Normal strength concrete 443
Target High strength concrete 54

Note: A, = area of shear reinforcement within spacing; Ay mi» = minimum area of
shear reinforcement within spacing.

Table 3

Results of the discrepancy metrics.
Case No. MMD EMD HD
Case 1 0.0119 11.1395 0.1483
Case 2 0.0305 25.4353 0.2731
Case 3 0.0254 12.4887 0.2191

mechanism of RC structures can be divided into the contributions of
concrete and steel reinforcement, this study focuses on the more
comprehensive depiction of the shear behavior by directly estimating
the maximum lateral shear strength of RC columns.

The distances between the source and target domain in each case are
different based on their physical characteristics. Thus, prior to analyzing
the results of knowledge transferring techniques, the discrepancy met-
rics introduced in Section 3 should be calculated and compared. The
discrepancy metrics calculated from the three cases are shown in
Table 3. Case 2 has the most different distributions between the source
and target domains and Case 1 has the most similar distributions,
regardless of which discrepancy metrics are used. The number of sam-
ples used for training and testing a model in each target domain avail-
ability is summarized in Table 4. While typical ML models use only the
target domain samples in the training process, the TL models use both
the source and target domain samples. In order to effectively find the
optimal hyperparameters for each model, the Bayesian optimization
process, named Hyperopt, developed by James Bergstra [56] is adopted
in this study. It provides an automated hyperparameter optimization
process and generally requires a lower number of iterations when
compared to the random search or grid search methods, assuming that
the given search space is the same. For each case, the target domain
availability for training a model is increased from 10% of the entire
target domain up to 70% of the entire target domain. The remaining
30% of the target domain will be used to test the trained model. To
accurately evaluate the trained model, training and test sets are mutu-
ally exclusive from one another. For each case, ten experiments are
conducted with randomly selected training and test sets. Thus, the
generalized performance of knowledge transfer across the domains can
be well observed by averaging the results from those ten experiments.
Training and validation loss have been monitored over the training
process in every model and trial, and overfitting was never observed.
The transfer learning model is trained with a knowledge transfer tech-
nique and tested on the target domain. On the other hand, the baseline
model is trained and tested on the target domain without any source
domain information. This enables us to directly and effectively compare
the knowledge transferability across different domains.

4.2. Case 1: Knowledge transfer across RC column section type

Case 1 has the most similar distributions between the source and
target domains, as shown in Table 3. It also has the largest number of
target domain samples among the three cases, as is shown in Table 2.
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Maximum lateral load [KN]

(2)

Table 4
The number of samples used for training and testing a model in each case.
Target domain 10 15 20 25 30 35 40 45 50 55 60 65 70
availability [%]
Case 1 Source # of training samples 326 326 326 326 326 326 326 326 326 326 326 326 326
Target # of training samples 17 26 34 43 51 60 68 77 86 94 103 111 119
# of testing samples 52 52 52 52 52 52 52 52 52 52 52 52 52
Case 2 Source # of training samples 455 455 455 455 455 455 455 455 455 455 455 455 455
Target # of training samples 4 6 8 10 13 15 17 19 21 23 25 27 29
# of testing samples 13 13 13 13 13 13 13 13 13 13 13 13 13
Case 3 Source # of training samples 443 443 443 443 443 443 443 443 443 443 443 443 443
Target # of training samples 5 8 11 14 16 19 22 24 27 30 32 35 37
# of testing samples 17 17 17 17 17 17 17 17 17 17 17 17 17
80 ; : , : : 025 T " v i
[ Source data (Rectangular) 2 {ﬁ Source data (Rectangular)
X i 2 02 g
g So1s 1
£.40 &
3 2 01
o) ] g
S 0.05 1
=2
0 I L L NP L PR,
80 : : B B : 02 ! . , . .
[ Target data (Circular) % m
o 60 - 1 § 0.15 1
5 g
gan E 0.1 .
S0l E = 005 -
&
o . T = . o . —— e = =
0 200 400 600 00 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Maximum lateral load [KN]

(b)

Fig. 2. Histograms of the source and target domains used in Case 1; (a) Frequency, and (b) Relative frequency (probability).
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Fig. 3. IW-KRR performance in Case 1 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.

This characteristic can also be observed in Fig. 2, which shows the his-
tograms of the source and target domains. As shown in Fig. 2, the ranges
of the response variable between the source and target domains are
similar, and their relative frequency also looks similar. A mutually
exclusive set of 52 circular column samples is used to test the typical ML
model and TL model. As the target domain availability increases from
10% to 70%, the number of samples for training a model increases from
17 to 119.

The performance comparisons of the typical ML model and TL model
obtained from IW-KRR, Two-stage TrAdaBoost.R2, and DW-SVTR are
depicted in Fig. 3, Fig. 4, and Fig. 5, respectively. The shaded areas in the
figures indicate 95% confidence intervals from the 10 trials. Compared
to the baseline model, it is observed that both R? and RMSE from the TL
model are improved. Furthermore, the lower the percentage of target
domain availability, the more significant the improvement between the

baseline and TL model. Such trends can be observed in every TL tech-
nique used in this study. The prediction performance in 10, 40, and 70%
of target domain availability from the three TL techniques are compared
in Fig. 6(a). DW-SVTR shows the highest R? value not only from the case
of low target domain availability but also for the case of high target
domain availability. However, according to Fig. 6(b), which shows the
differences between the typical ML model and the TL model, DW-SVTR
has the smallest differences in all target domain availability, and the
Two-stage TrAdaBoost.R2 model shows the most potent knowledge
transferability. This is because DW-SVTR and typical LS-SVMR have
good prediction performance, even for the low target domain
availability.
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Fig. 5. DW-SVTR performance in Case 1 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.
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Fig. 6. Summary of knowledge transfer performance in Case 1; (a) bar chart in 10, 40, and 70% target domain availability from three different TL techniques, and (b)
differences of R? between the typical ML model and TL model in terms of target domain availability.

4.3. Case 2: Knowledge transfer across shear reinforcement amounts

The source and target distributions for Case 2 are the most dissimilar
among the three experimental cases. In accordance with the results
presented in Table 3, the shape of the distribution and the range of the
response variable are different, as shown in Fig. 7. Furthermore, in this
case, only 42 samples with lower shear reinforcement area are classified

as the target domain, which is the smallest target domain size of all three
cases. As the target domain availability increases from 10% to 70%, the
number of samples for training a model increases from 4 to 29. The 10%
of target domain availability is the most challenging scenario where only
four samples are used to train a model. It is difficult, perhaps impossible,
to get a well-generalized model if the typical ML model would be used.
The performance comparisons of the typical ML model and TL model
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Fig. 9. Two-stage TrAdaBoost.R2 performance in Case 2 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean

square error.

obtained from IW-KRR, Two-stage TrAdaBoost.R2, and DW-SVTR are
depicted in Fig. 8, Fig. 9, and Fig. 10, respectively. Similar to the trends
observed in Case 1, R? and RMSE from the typical ML model and TL
model are improved as the available data from the target domain in-
creases. Also, the less target domain data the model uses, the more
remarkable the improvement between the baseline and TL for every TL
technique used in this case. Particularly, in Case 2, compared to the
other cases, large areas are observed between the performance of the
typical ML model and TL model. In other words, the most significant

improvements by using knowledge transfer techniques occur in Case 2.
This is because there is a physically strong correlation between the
source and target domain, even if those two domains are the most dis-
similar. The strong correlation is not just limited to the relationship
between source and target domain. It is also strongly linked to each
domain and the task learned by the model. The amount of shear rein-
forcement has a significant influence on the lateral capacity of RC col-
umns, when compared to the shape of the section or concrete
compressive strength. Even in the low target domain availability, the
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(b) differences of R? between the typical ML model and TL model in terms of target domain availability.

prediction performance is reasonably good from all TL techniques in
Case 2. This fact also supports the robust physical correlation between
the source domain, target domain, and the lateral capacity of RC col-
umns. The prediction performance in 10%, 40%, and 70% of target
domain availability from the three TL techniques are compared in
Fig. 11(a). DW-SVTR shows the highest R? value for the case of low
target domain data availability and high target domain data availability.
All the TL techniques in Case 2 have good abilities to capture the
behavior of the target domain even with a very small number of target
samples, according to Fig. 11.
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4.4. Case 3: Knowledge transfer across concrete compressive strength
values

The calculated discrepancy metrics for Case 3 are higher than Case 1
and less than Case 2, as shown in Table 3. This means that Case 3 has a
moderate disparity between the source and target distributions, when
compared to Case 1 and Case 2. Fig. 12 shows the distributions of the
source and target domains. In this case, 54 samples are used as the target
domain, which is slightly larger than Case 2, but much lower than Case 1.
Similar to the experimental setting used in Case 1 and 2, the target
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Fig. 12. Histograms of the source and target domains used in Case 3; (a) Frequency, and (b) Relative frequency (probability).
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Fig. 15. DW-SVTR performance in Case 3 between the typical ML model and TL model; (a) The coefficient of determination, and (b) Root mean square error.

domain availability increases from 10% to 70%, and the remaining 30%
of target samples are used as a test set. The 10% of target domain
availability corresponds to the scenario where only five samples are used
for training a model. The performance comparisons of the typical ML
model and TL model obtained from IW-KRR, Two-stage TrAdaBoost.R2,
and DW-SVTR are depicted in Fig. 13, Fig. 14, and Fig. 15, respectively.
Similar trends can also be observed in Case 3. Regardless of whether or
not the knowledge transfer technique is employed, the prediction per-
formance is improved as the available samples increase. Additionally,

10

monotonic increasing behaviors for R? values of the typical ML and TL
model are observed. Understandably, monotonic decreasing behaviors
are observed for the RMSE values. Compared to the other two cases, Case
3 struggles to obtain a well-generalized model, especially in the low
target domain availability. Such results are attributed to the physically
weak relationship between the source and target domain. The prediction
performance for 10%, 40%, and 70% of target domain availability from
the three TL techniques are compared in Fig. 16(a). Although the R? and
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RMSE values for the low target domain availability are not good
compared to the other two cases, the results from DW-SVTR exhibit well-
generalized prediction among the TL techniques in this case, as shown in
Fig. 16(b).

5. Discussion

A relevant and well-established dataset is an essential aspect of any
data-driven ML model. Training a good ML model with a very limited
number of training samples is almost impossible. However, as reported
in the earlier section, a better data-driven model can be obtained by
adopting an appropriate knowledge transfer technique. For direct
comparisons of the ML and TL models in terms of the required amount of
training samples, the required target domain availability to get an
acceptable data-driven model is summarized in Table 5. The required
target domain availability is defined as the first target domain avail-
ability where the upper limit of R? confidence interval is equal to or
higher than 0.85. For Two-stage TrAdaBoost.R2 in Case 1 and every
model in Case 2, the prediction performance of the ML model does not
reach 0.85 until 70% target domain availability. An inequality sign
denotes that the number of training samples is not enough to get a good
ML model, and collecting or adding more training samples is required.
According to Table 5, the required number of target training samples for
a good TL model is less than that for a good ML model in all cases and
models considered in this study. These results support the idea that
transferring knowledge from the source domain can reduce the number
of samples necessary to properly train a model; thus, TL can successfully

Table 5
Required target domain availability to get an upper limit of R? confidence in-
terval equal to or higher than 0.85.

Case Model name  Target domain Reduction of the required data
No. availability [%] [%],((a—b)/a*100)
ML TL
model model
(a) (b)
Case 1 IW-KRR 55% 45% 18.18
TrAdaBoost. > 70% 60% >14.29
R2
DW-SVTR 35% 20% 42.86
Case 2 IW-KRR > 70% 40% >42.86
TrAdaBoost. > 70% 65% >7.14
R2
DW-SVTR > 70% 30% >57.14
Case 3 IW-KRR 55% 35% 36.36
TrAdaBoost. 40% 25% 37.50
R2
DW-SVTR 40% 25% 37.50
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Fig. 17. Comparison of the knowledge transfer models in terms of reducing the
required amount of training data.

alleviate the data scarcity problem. Fig. 17 shows a bar chart depicting
the performance of knowledge transfer techniques in terms of the
required amount of training data. As can be seen in Fig. 17, DW-SVTR
has the greatest ability in terms of reducing the required number of
training samples. It reduces the number of training data up to 57%,
when compared to an ML model without any integrated knowledge
transfer technique. This is because DW-SVTR uses two different instance
weight functions simultaneously, which are KMM and a residual func-
tion. IW-KRR shows better abilities in terms of reducing the required
training samples compared to the Two-stage TrAdaBoost.R2 algorithm.
The equations for estimating the shear strength of a non-prestressed
reinforced concrete member are specified in ACI 318-19 [46].
Depending on the criteria introduced earlier in Eq. (17), the shear
strength of a non-prestressed concrete member, V,, is given as:

I N,
s+
8

N

{SAxl(pw)%\/Z +ed

A fud

N

] bud + 22 (A, > Ay i)

18)
Afud
N

:| bwd + (Av < A\unin)

where 1 is the modification factor for lightweight concrete, p,, is the
longitudinal reinforcement ratio, N, is axial force, A, is the cross-
sectional area, d is the effective depth of the cross-section, A, is the
area of transverse reinforcement, and /; is the size effect modification
factor.
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ACI 318-19 imposes a maximum value of 100 psi on f; for use in

the calculation of shear strength of concrete members, because of a lack
of test data and practical experience with concretes having compressive

strengths greater than 10,000 psi [46]. Values of \/Z greater than 100

psi shall be permitted only for reinforced concrete members satisfying
A, > A, min. They also require the upper limit of 60,000 psi on the value
of f,; to control diagonal crack widths. With all these design specifica-
tions, the shear strength of RC columns in the target domain are calcu-
lated, and then compared with the shear strength values predicted by
the three TL models in each case. The scatterplots comparing the pre-
dicted values based on ACI 318-19 and the TL models in Case 1, Case 2,
and Case 3 are depicted in Fig. 18, Fig. 19, and Fig. 20, respectively.
Every TL model in all cases shows great ability to accurately predict the
lateral capacity of RC columns with good R? values higher than 0.95.
However, there are substantial differences between the calculated
values from ACI 318-19 and the experimental results in the target
dataset of each case. As can be seen in Fig. 20, it is noteworthy that the

12

calculated values of RC columns in Case 3 tend to have larger differences
than those values from the other cases. Considering the perspective of
precise estimations of the lateral strength of RC columns, the TL models
considered in this study outperform the latest design standards.

6. Conclusions

This study has presented the feasibility of knowledge transfer tech-
niques in a real-world structural engineering dataset and in three
meaningful ways; across section type, shear reinforcement area, and
compressive strength. Three different TL strategies are considered to
more accurately predict the lateral capacity of the RC columns. This
study uses a database consisting of 497 rectangular and circular RC
column experiment specimens. The 12 explanatory variables are
extracted and selected among the 30 explanatory features in the original
dataset by calculating the feature importance scores. Ten repeated ex-
periments are carried out with a randomly selected dataset to properly
detect the generalized knowledge transfer performance. According to
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the different source and target domains, three different experiments are
designed to directly compare their performance across the different
structural engineering domains. The discrepancy between the source
and target domains is also calculated with several statistical distance
metrics. The prediction performances of each TL technique are
computed and compared with the results of the more traditional ML
model. The following conclusions can be drawn:

e In all cases conducted in this study, the knowledge transfer tech-
niques show better prediction performance, especially for the low
target domain availability. The lower the percentage of target
domain availability, the more significant the improvement between
the baseline and TL model. Such trends can be observed in every TL
technique used in this study. Therefore, we can conclude that
transferring the pre-trained knowledge from the source domain en-
ables a model to better explain the response variable in the target
domain.

The improvement of performance is particularly emphasized when

the available data for the target domain is small. This indicates that a

good ML model can be obtained by adopting a knowledge transfer

technique, even with a small number of training samples. Therefore,

TL can be successfully applied to the field of structural engineering as

a means of alleviating the data scarcity problem.

It is also demonstrated that DW-SVTR shows a good ability to

transfer knowledge learned from the source domain, compared to

IW-KRR and Two-stage TrAdaBoost.R2. Furthermore, the capability

to accurately transfer the pre-trained knowledge is more associated

with the underlying physical relationship between the source and
target domains and less associated with the discrepancy between the
source and target domain distributions.

This study quantifies the amount of training data necessary to obtain

the same level of prediction performance. In every model considered

in this study, the required number of target training samples for a

good TL model is less than that for a good ML model. Especially, DW-

SVTR has the greatest ability in terms of reducing the number of

required training samples.

e All TL models considered in this study show great ability to accu-
rately predict the lateral capacity of RC columns with R? values
higher than 0.95. From the perspective of precise estimations of the
lateral strength of RC columns, the TL models considered in this
study outperform the recent design standards.

Further research should be carried out to assess if the results ob-
tained in this research can be extended to a broader range of applica-
tions, for example, arbitrary cross-sections, different materials, model-
scale to full-scale extrapolations, or various sizes of structures. Addi-
tional research should be conducted on how to transfer knowledge more
efficiently in structural engineering and how the injection of physics-
based information in these approaches could further enhance the pre-
dictive performance. Furthermore, a generalized set of guidelines
regarding the use of knowledge transfer can be developed based on more
results from various datasets and tasks in the field of structural
engineering.
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