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spaces (e.g., vegetated or natural landcover) and gray spaces (e.g., 

built structures, impervious surface, and associated infrastructure) 

leading to increased interactions with human populations (Deplazes 
et al., 2004; Hansford et al., 2017; Mckinney, 2008; Rothenburger 
et al., 2017). Globally, cities are growing both in their number of 
inhabitants— with over 68% of the world's populations expected 
to be urban- dwelling by 2080 (United Nations, 2018), and in their 

geographic footprint— with urban land cover steadily increasing 

(Seto et al., 2012). The process of urbanization contributes to bi-

otic homogenization (McKinney, 2006), invasive species introduc-

tions (Blair, 1996; Shochat et al., 2010), and results in a wealth of 
exploitable resources, which promotes the increased richness and 

abundance of zoonotic host species and their associated pathogens 

(Gibb et al., 2020). The COVID- 19 pandemic highlighted the risk of 
zoonotic disease emergence and the unique vulnerability of cities 
to emerging zoonotic pathogens, emphasizing concerns regarding 

effective prevention and response to spillover events (Alirol et al., 

2011; Bradley & Altizer, 2007; Mackenstedt et al., 2015; Neiderud, 
2015). However, there is a persistent need to understand how ur-

banization alters ecological processes that underlie human zoonotic 

risk and spillover potential in cities (Karesh et al., 2012) (Figure 1).
Recent discussions of urban zoonoses have focused on factors 

influencing spillover events (Hassell et al., 2017; Plowright et al., 
2017, 2021), pathogen– landscape interactions (Eisenberg et al., 
2007; Lambin et al., 2010), and the impacts of urbanization on ani-
mal health (Bengis et al., 2004; Bradley & Altizer, 2007; Mackenstedt 
et al., 2015). The emphasis of these reviews is on the combined in-

fluence of environmental change, wildlife biology, and human risk 

factors (including exposure and vulnerability, see Table 1 for glos-

sary of terms) to broadly illustrate the drivers of zoonotic disease 

emergence. However, a detailed assessment of the ecological driv-

ers of zoonotic hazards is needed to improve pre- spillover surveil-

lance, research, and management of hazards in cities. Such efforts 

require collaboration between public health practitioners, wildlife 
biologists, urban planners, community leaders and others invested 

in the health of local human communities (hereafter “public health 

stakeholders”) that often go beyond the scope of a single entity. 

Multi- sectoral partnerships have shown promise for tackling chronic 
physical and mental health issues and enabling action on climate 

change adaptation and mitigation (Ramaswami et al., 2016). Similar 
efforts are essential to prevent urban zoonotic disease, and begin 

with a thorough understanding of the foundational biology and 

socio- ecological interactions driving the presence and prevalence of 

urban zoonotic hazards.

While drivers of urban zoonoses have been mostly studied in 

tropical regions where health impacts are greatest (Gottdenker et al., 
2014; White & Razgour, 2020), the emergence and persistence of 

these diseases has been overlooked in highly urbanized cities (HUCs) 
in temperate climates, which also support a diverse suite of zoonotic 

hazards. These often include human commensal rodents and me-

somammals (Feng & Himsworth, 2014; Plumer et al., 2014; Tufts 
et al., 2021), Ixodidae ticks (Adalsteinsson et al., 2018; Mancini et al., 
2014; Steere, 1994), Aedes spp., and Culex spp. mosquitoes (Calhoun 
et al., 2007; Goodman et al., 2018; Muir & Kay, 1998; Shragai & 
Harrington, 2019), all of which can harbor and transmit zoonotic 
pathogens. In our definition, HUCs are those with more than 500 k 

F I G U R E  1  Socio- ecological drivers influencing zoonotic hazards in HUCs. (a) Individual drivers illustrated across a simplified urban 
landscape and color coded based on whether they are predominantly related to landscape (blue), abiotic (purple), or biotic (green) factors. (b) 

Thematic flow chart illustrating how socio- ecological processes drive the intensity of zoonotic hazard, a foundational component of zoonotic 

risk, which ultimately impacts the likelihood of zoonotic spillover events [Colour figure can be viewed at wileyonlinelibrary.com]
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residents, citywide sanitation infrastructure, life expectancy above 

75 years, as well as a prolonged and pervasive historical conversion 

of earthen land cover to impervious surfaces. Here, we focus on the 

ecological conditions and emergent processes accompanying urban-

ization that drive differences in hazard intensity across HUCs in tem-

perate climates through (1) the distribution and abundance of hosts 

and vectors and (2) patterns of pathogen prevalence across hosts, 

vectors, and the environment.

Each HUC supports multiple zoonotic hosts and vectors that ex-

perience the heterogeneity of cities differently based on their bio-

logical traits and habitat requirements, creating divergent outcomes 
for the pathogens they harbor and transmit across space, within or 

among species. Understanding and managing these hazards requires 
acknowledging several key concepts highlighted throughout this per-

spective article. (1) There is an inherent ecological tradeoff between 

green or gray infrastructure and the presence of zoonotic hazards 

(Diuk- Wasser et al., 2021; Jennings et al., 2019; Lõhmus & Balbus, 
2015; Soulsbury & White, 2015; Taguchi et al., 2020). While urban 

green spaces provide ecosystem services, including climate mitiga-

tion and physical and mental health benefits (Gómez- Baggethun & 
Barton, 2013; Gregory McPherson, 1992; Luederitz et al., 2015), 
these same spaces produce ecosystem disservices when they in-

crease human exposure to pathogens and act as venues for zoonotic 

spillover (Shackleton et al., 2016; Vanwambeke et al., 2019). Efforts 
to increase urban biodiversity or human well- being through urban 

greening (Fuller et al., 2007) may also alter disease risk, although 

biodiversity- disease relationships remain widely debated (Ogden & 
Tsao, 2009; Randolph & Dobson, 2012; Rohr et al., 2020; Salkeld 
et al., 2013). Similarly, while gray spaces provide human communities 

and economies room to grow, these spaces support zoonotic haz-

ards that we experience with more direct spatial and temporal over-

lap. (2) Urban zoonotic hazards are a component of socio- ecological 

systems; environmental conditions in cities (including the distribu-

tion and prevalence of hazards) are co- produced by the interaction 

of biophysical and social processes (McGinlay et al., 2016). A city's 
greening or graying process depends on its history, socio- cultural 

values, and socio- economic drivers of land use (Des Roches et al., 
2020; Pickett et al., 2001). Thus, effective and equitable prevention 
of urban zoonoses is facilitated by an integrated socio- ecological 

framework for understanding disease emergence. (3) Plans to study 
and manage hazards should be species- specific. Because of differ-
ences in their spatial scale of movement, each host and vector spe-

cies experiences a unique pattern of landscape connectivity, which 
depends on traits such as migration propensity, dispersal distance, 

resource needs, physiological constraints, and response to distur-

bance and fluctuating population densities (Jetz et al., 2004; Peters 
et al., 2019; Tucker et al., 2014). Research and management strate-

gies should reflect the scale at which sampling is most informative 

and management efforts are most effective.

In this article, we first describe how characteristics of urban 
socio- ecological landscapes, in tandem with their unique abiotic 
conditions and biotic interactions, determine zoonotic hazards 

Term Definition

Zoonotic disease Any disease caused by a pathogen transmitted between non- human 

animals and humans

Hazard Potential source of harm (e.g., infected host or vector, shed pathogens) 
expected to contribute to zoonotic disease, at varying intensities 

over space and time

Exposure Likelihood of human contact with hazards from interaction with the 
environment

Vulnerability Human or societal condition altering the likelihood of harm, given 

exposure

Risk The likelihood of adverse outcomes caused by a hazard, given exposure 

and vulnerability

Spillover Event in which zoonotic pathogen enters the human population

Reservoir Host A species competent to harbor a particular pathogen, such that it 

sustains the pathogen in the environment and serves as a source of 

human or vector infection

Vector An organism capable of transmitting a pathogen between non- human 

animals and humans

Pathogen An infectious agent (bacteria, virus, endoparasite, or microorganism) 

capable of causing disease

Eco- epidemiology The study of human disease that incorporates information from human 

populations and societies as well as environmental and biological 

factors

Ecosystem 
Disservice

Any consequence of interacting ecological factors or agents that lead to 
negative outcomes for human and economic well- being

Dilution Effect Theory that increasing biodiversity results in decreased human disease 

risk due to increased abundance of lower- competence hosts

TA B L E  1  Glossary of terms
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distribution and prevalence. Then using New York City (NYC), USA 
as a case study, we apply these concepts to evaluate different zoo-

notic hazards and spillover prevention strategies that incorporate 

the city's ecological context. Throughout, we discuss implications 
for pathogen surveillance, research, and mitigation to improve un-

derstanding and outcomes of urban zoonotic emergence and per-

sistence (Box 1).

2  |  L ANDSC APE CHAR AC TERISTIC S

The intensity of zoonotic hazards exhibits strong spatial heteroge-

neity across HUCs. Effectively evaluating and managing these haz-

ards requires an understanding of how landscape patterns influence 

populations of hosts, vectors, and associated pathogens as they 

interact with one another and the environment. In particular, it is 
important to address the influence of landscape composition, con-

figuration, and connectivity on specific hazards, and identify the 

spatial scale at which eco- epidemiological processes take place. But 
understanding current landscape patterns and their influence on zo-

onotic hazards necessitates knowledge of their historical and ongo-

ing socio- ecological drivers.

Urban development is driven by natural ecological processes 

and biophysical features such as topography, hydrology, and native 

vegetation, in combination with pervasive social forces (Des Roches 
et al., 2020; Keeler et al., 2019). Indeed, widespread land cover 
conversion and patterns of fragmentation among HUCs are largely 
driven by societal values informed by culture, economics, and local 

history. During early stages of temperate HUC growth, the adop-

tion of Eurocentric ideals of nature and aesthetics promoted grid-

ded urban forms and open lawns, which greatly contributed to their 

biotic homogenization (Ignatieva & Stewart, 2009; Loughran, 2020; 
Shackleton & Gwedla, 2021). During post- industrial growth, system-

atic racism and classism was institutionalized in many cities through 

land use policy, development projects, and lending decisions (Schell 

et al., 2020), which was driven in large part by capitalist systems 

that prioritized profit and exploited the a- spatiality of marginal-

ized communities (Bledsoe & Wright, 2019). These legacies drive 
current patterns of habitat suitability for hazards through unequal 
distribution of green space as well as investment in infrastructure 

and services across racial-  and class- based lines (Schell et al., 2020; 

Venter et al., 2020). For example, brown rat habitat and elevated 
pathogen prevalence among adult mosquitos are consistently cor-
related with low- income areas (Dowling et al., 2013; Harrigan et al., 
2010; Johnson et al., 2016; LaDeau et al., 2013; Masi et al., 2010; 
Rothenburger et al., 2017). Social factors, such as income, education, 

and employment, also affect people's interactions with the environ-

ment through their impact on personal exposure, vulnerability, and 

coping capacity, but these risk factors are more fully described else-

where (Hosseini et al., 2017; Solar & Irwin, 2014). We focus here on 
how public health stakeholders can account for socio- ecologically 

complex landscape attributes such as composition, configuration, 

connectivity, and scale in their study and management of zoonotic 

hazards (Frank et al., 2017; Ostrom, 2018).
Landscape composition describes the identity of patch types 

and their relative geographic coverage (Ostfeld et al., 2005). The 
land cover attributes used to define composition and identify suit-

able niche space may differ for each reservoir host or vector spe-

cies. For instance, variation in the vegetative understory in patches 

of urban green space impacts the presence of both mice and ticks 

(Adalsteinsson et al., 2018), altering local Lyme disease (LD) hazard. 
Thus, satellite data describing canopy cover may not be as informa-

tive as vegetative surveys that directly sample variation in relevant 

tick and host habitat. Similarly, urban gray spaces differ dramatically 

in their intensity and type of human use and maintenance, and these 

characteristics can change between and within neighborhoods. 

For instance, increasing abandonment rates within neighborhoods 

BOX 1 Priority areas for strategic surveillance, 
research, and mitigation of urban zoonotic hazards

(1) Surveillance:

a. Identify baseline distribution and abundance of zo-

onotic hosts and vectors across diverse urban sites 

(i.e., land use, wildlife community, vegetation char-

acteristics, history, socioeconomic status); balance 

financial limitations with long- term active samplings 

of key sites and passive sampling through community 

reporting.

b. Leverage molecular approaches to identify vari-
able pathogen prevalence in hosts, vectors, and 

environment.

c. Monitor changes in hazard intensity linked to dynamic 
urban landscape (i.e., greening or degreening of neigh-

borhoods, development).

(2) Research:

a. Establish multi- sectoral collaborations with diverse 
public health stakeholders (municipal departments, 

epidemiologists, community leaders, disease ecolo-

gists, social scientists, non- profit groups) to study 

influence of socio- ecological landscape attributes, abi-

otic conditions, biotic interactions across local multi- 

hazard suite.

b. Create and maintain public data repositories on host, 
vector, and pathogen distribution, and fine- scale spa-

tial environmental data.

(3) Prevention:
a. Develop ecologically- informed management strate-

gies by mathematical modeling of habitat, pathogen 

dynamics, and host/vector connectivity; prioritize 

interventions on prevalence hotspots in conjunction 

with societal risk factors.

b. Implement management strategies at spatial scale rel-
evant to species- specific biology and dispersal.
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correlates to increases in the abundance of rodent hosts and fit-

ness of mosquito vectors (Katz et al., 2020; Peterson et al., 2020a). 
Such responses impact public health outcomes for spatially adjacent 

communities (Gulachenski et al., 2016), with homeless populations 
often experiencing the highest exposure rates to hosts and vectors 

(Leibler et al., 2018). Identifying zoonotic host habitat in gray spaces 
may be possible through evaluation of easily recorded, physical at-

tributes like building age or land use; however, ephemeral qualities 
should also be considered. For example, the likelihood of standing 

water or solid waste buildup may influence mosquito- borne patho-

gens and leptospirosis transmission (Murray et al., 2020) by increas-

ing mosquito and commensal rodent presence (Krystosik et al., 
2020), respectively. Further, in evaluating when and where to per-

form surveillance or interventions it is important to consider tem-

poral changes due to seasonality, maintenance frequency, or longer 
trends of de- urbanization and re- greening (Eskew & Olival, 2018), as 
well as links between broad- scale habitat attributes and fine- scale 

patterns of landscape composition.

Landscape configuration reflects the spatial arrangement of 
patches and their proximity or isolation to one another. In HUCs, 
patch configuration depend on land use and zoning policies, as well 

as historical contingencies and natural topography or hydrology 

that drive local decision making. The degree of landscape fragmen-

tation is metric of configuration that is sometimes used as a proxy 

for biological community composition and increased potential for 

zoonotic hazards (Allan et al., 2003; Brock et al., 2019; Diuk- Wasser 
et al., 2021; Zolnik et al., 2015). Increased landscape fragmentation 
is associated with increased edges between green and gray spaces 

that influence hazard distribution and creates increased opportuni-

ties for human- wildlife interactions (Barding & Nelson, 2008). For 
example, in gray spaces, adult mosquitos fly through the landscape 
(Morlan & Hayes, 1958; Muir & Kay, 1998) and rodents migrate 
within and between city blocks (Byers et al., 2019), putting residents 
at risk simply by living within host and/or vector dispersal distance 

of habitat supporting hazards. While evidence for the impact of 

green space edges in forests, parks, or yards on vector abundance 

or pathogen prevalence is mixed (Finch et al., 2014; Hansford et al., 

2017; Horobik et al., 2006), assessing the ecology of spillover events 
at the transition zone between different land covers should be a re-

search priority.

Landscape connectivity results from the integration of compo-

sition and configuration and describes both the network of habit-

able patches available (structural connectivity) and the realized 

movement of organisms and gene flow among those patches (func-

tional connectivity) (Brooks, 2003). Incorporating connectivity into 
urban zoonoses mitigation is important because networks of con-

nected habitat permit the flow of pathogens as hosts and vectors 

move through cities among suitable patches (Ostfeld et al., 2005). 
For example, taking a species- specific view, habitat connectivity for 

white- tailed deer based on green space coverage strongly predicts 

the density and infection prevalence of ticks, and thus LD risk in 
New York City (Vanacker et al., 2019). In HUCs, linear features like 
railways, greenbelts, and riverbanks provide movement corridors 

allowing for rapid dissemination of pathogens across landscapes, 

suggesting zoonotic disease emergence can occur rapidly via a small 

number of linked habitat patches. Behaviorally- flexible species like 
red foxes often use urban infrastructure in unintended ways, for 

instance by dispersing along roadways (Kimmig et al., 2020), effec-

tively introducing parasitic infections and occasionally the rabies 

virus to new areas (Mackenstedt et al., 2015; Plumer et al., 2014; 
Smith et al., 2003). Given the idiosyncratic ways in which different 
wildlife hosts and vectors navigate urban landscapes, a key research 

priority should be to understand movement behavior and connec-

tivity for local zoonotic threats through observations, tracking, and 

spatial modeling (Deplazes et al., 2004; Hemming- Schroeder et al., 
2018; Heylen et al., 2019; Richardson et al., 2017).

Networks of habitat connectivity may result in either spatial 

concentration or spread of zoonotic hosts and their pathogens. This 

outcome depends on species- specific responses to the distribu-

tion of landscape features and should be incorporated into models 

of zoonotic risk and the development of hazard management pro-

grams. Movement barriers reduce connectivity by limiting species 
movement through physiological limitations (e.g., inability to cross 

waterways, impervious surface) or behavioral avoidance (e.g., road 

traffic, noise) (Clark et al., 2010; Fusco et al., 2021; Munshi- South, 
2012). Typically, habitat isolation reduces the invasion potential of 

pathogens, but if pathogens generate immune- dependent responses 

in host populations, patch isolation can increase future susceptibil-

ity. For example, fruit bats forming high- density groups in urban 

Australia experienced large outbreaks of Hendra virus when de-

creased connectivity among patches reduced local population im-

munity (Plowright et al., 2011). Connectivity networks also influence 
the formation of, and dispersal from, pathogen hotspots, where local 

hazard intensity is significantly higher than baseline levels, increas-

ing spillover potential (Paull et al., 2012). Prevalence of Leptospira 

interrogans and Bartonella tribocorum in urban rats is driven in part by 

reduced movement among city blocks, leading to high contact rates 

among high- density groups (Byers et al., 2020). This suggests that 
zoonotic hazards can persist without widespread movement when 

infections are endemic and contact rate is high among hosts.

The spatial scale at which the composition, configuration, and 

connectivity of landscapes is assessed is central to understanding 

and managing zoonotic hazards (Fischhoff et al., 2019; McGarigal 
et al., 2016; Richardson et al., 2016). The spatial scale is composed 
of the scope (i.e., spatial bounds) and grain (i.e., resolution of ob-

served detail) and it must match the resource needs and movement 

patterns of the particular host(s) or vector(s) (Cushman et al., 2016). 
For instance, larval mosquito habitat requires only small amounts 
of standing water that may be perceptible only when composition 

is characterized at very fine spatial grain, while large mammals or 

mesomammal host habitat requires larger vegetated patches that 
are observable at coarser spatial grain. In HUCs, the relevant scale 
for effective management may differ from the scale at which spe-

cies sampling or treatments are most practical, creating additional 

economic and policy hurdles for stakeholders. Brown rats, for exam-

ple, are often managed across individual properties despite ample 
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evidence that block- level or neighborhood- level management is re-

quired to limit host and pathogen presence (Byers et al., 2019, 2020; 
Combs et al., 2019). Dispersal distance is a key characteristic influ-

encing the potential for human– wildlife interactions, thus spatial 

grain of analyses must be smaller than this distance to accurately 

encompass movement dynamics into management approaches 

(Cushman et al., 2016). A wealth of high- resolution spatial data de-

scribing human population, wildlife, and the environment is often 

available for HUCs, creating tremendous opportunities to assess the 
links between urban form, biodiversity, and zoonotic disease emer-

gence at appropriate spatial scales.

3  |  ABIOTIC CONDITIONS

Landscape changes driven by urbanization significantly alter abiotic 
conditions, including temperature, light, noise, heavy metal pol-

lution, and hydrology, each of which have downstream effects on 

wildlife hosts, arthropod vectors, and their associated pathogens 

(Alberti, 2005). The widespread presence of impervious surfaces 

(e.g., roads, buildings, parking lots) is a defining characteristic of 

HUCs. This graying of urban landscapes drastically alters abiotic 
conditions and presents ecological tradeoffs regarding the pres-

ence and intensity of zoonotic hazards, and their impacts on human 

health. While impervious surfaces may act as a buffer against path-

ogen transmission when hosts and vectors are restricted to green 

space, these land cover types support the densification of human 

settlements, which can increase hazard presence and opportunities 

for zoonotic spillover by providing high- quality habitat for a suite 
of urban- adapted commensal rodents and mosquito vectors (Bajwa, 
2018; Feng & Himsworth, 2014).

High impervious surface coverage also leads to increased am-

bient temperatures in urban landscapes, known as the “heat is-

land” effect (Rizwan et al., 2008). Elevated temperature in cities 
has a strong direct effect on populations of small ectothermic 

arthropods (LaDeau et al., 2015; Youngsteadt et al., 2017), in-

cluding observed increases in Aedes spp. mosquitos (de Azevedo 
et al., 2018) and increasing overwintering survival of Phlebotomus 

sand flies, the vector for leishmaniasis (Trajer et al., 2014). Heat 

island effects may have a strong impact in temperate HUCs spe-

cifically, by increasing the number of days above threshold activity 

temperatures for vectors like Ixodes ticks, though this mechanism 

requires further study (Duffy & Campbell, 1994; Gray, 2008). 
Underground infrastructure in cities also provides a geothermally 

stable environment that supports arthropod and rodent popu-

lations year- round (Bajomi et al., 2013; Byrne & Nichols, 1999; 
Channon et al., 2006). Green infrastructure (e.g., parks, green 
roofs, plantings) offers climate mitigation for humans while also 

providing thermal refugia for vectors by buffering against extreme 

temperatures (Venter et al., 2020), presenting a tradeoff between 
ecosystem services and disservices. Cities should seek to better 
characterize the thermal landscape at scales relevant to hosts and 

vectors of concern, as well as integrate future warming conditions 

due to climate change and expected consequences on species ac-

tivity and range shifts (Gray, 2008; Ryan et al., 2018).
Impervious surfaces can also drastically influence hydrol-

ogy by reducing drainage and restructuring watersheds (Pickett 
et al., 2001; Shuster et al., 2005). At broad spatial scales, this 

can increase the risk of flooding events, which is correlated with 

Leptospira spp. infection in humans (Naing et al., 2019) and con-

taminated drinking water, though this phenomenon is more likely 

in cities lacking robust sanitation systems (Ko et al., 1999; Lau 
et al., 2010; Rydin et al., 2012). Impervious surfaces also cause 
environmentally acquired pathogens to concentrate downstream 
along urban watersheds, increasing hazard exposure (Mallin et al., 
2000; VanWormer et al., 2016). At fine spatial scales, impervious 
surfaces increase opportunities for standing water, which pro-

vides breeding habitat for urban mosquitoes and has been cor-
related with increased Leptospira spp. infection in brown rats due 

to environmental persistence of bacteria shed in urine of infected 

hosts (Murray et al., 2020).
Urban environments can alter urban wildlife behavior and host– 

parasite interactions through light and noise pollution (Francis et al., 

2011; Francis et al., 2015; Singh et al., 2014). Migrating birds are at-
tracted to regions with more artificial light at night, which may result 

in increased deposition of bird- fed ticks and associated pathogens 

around urban areas (Brinkerhoff et al., 2011; Ogden et al., 2008). 
Light and noise have variable effects on arthropod activity in non- 
temperate cities (McMahon et al., 2017; Pacheco- Tucuch et al., 
2012) and alter gene expression in Culex pipiens (Honnen et al., 

2016), though downstream consequences of these genomic effects 
for zoonoses are currently unknown. Furthermore, artificial light at 

night has been linked to increased West Nile Virus (WNV) exposure 
in Florida (Kernbach et al., 2021), a pattern that may hold true in 
temperate HUCs as well. These forms of pollution are pervasive in 
HUCs and should be recognized for their potential impacts on zoo-

notic hazards.

Zoonotic systems in HUCs may be influenced by heavy metal 
pollution, which has historically tainted cities and may have per-

sistent physiological and immune effects, despite ongoing cleanup 

efforts (Perugini et al., 2011; Rodríguez Martín et al., 2015; Swaileh & 
Sansur, 2006). Heavy metal contamination is spatially aggregated in 
post- industrial sites, often positively correlated with neighborhood 

poverty (Aelion et al., 2013), and can have varied downstream influ-

ences on reservoir host immunity and pathogen dynamics (Sánchez 

et al., 2020). For example, urban pigeons with higher lead concen-

trations suffered higher intensities of blood pathogens, but those 

with increased zinc concentrations experienced protective effects 

against Chlamydiaceae infection, a family of potentially human zoo-

notic bacteria (Gasparini et al., 2014). Lead exposure and cadmium 
exposure have been found to increase susceptibility of brown rats 

to bacterial challenge, suggesting that heavy metal pollution could 

increase their capacity to host zoonotic agents (Cook et al., 1975). 
In contrast, a recent study of white- footed mice on polluted sites 
showed no evidence of reduced immunocompetence (Biser et al., 
2004). Further work is needed to elucidate how pollution- mediated 



    |  1711COMBS et al.

variation in host susceptibility impacts zoonotic disease risk across 

urban landscapes.

4  |  BIOTIC INTER AC TIONS

Species interactions in wildlife communities and their reactions to 

abiotic factors and socio- ecological landscape features structure 

the presence of zoonotic hazards in HUCs, their pathogen burden, 
and human– wildlife interactions that may result in spillover events 

(Plowright et al., 2017). Identifying and managing zoonotic hazards 
is thus contingent on understanding (i) how species traits influence 

their distribution, (ii) how intra-  and inter- species interactions, in-

cluding indirect effects of community diversity, influence patho-

gen prevalence, and (iii) how resource availability modifies these 

processes. With this knowledge, public health stakeholders can 

better implement both direct interventions (e.g., species removal, 

pathogen- targeted vaccinations) and indirect management solutions 

(e.g., habitat modification, policy changes).

For reservoir hosts in HUCs, behavioral traits, particularly flex-

ibility to resource shifts and human disturbance, allow colonization 

and population persistence in habitable patches of either green and/

or gray space (Lowry et al., 2012). Generalist species often domi-
nate urban wildlife communities, and typically exhibit a dependence 

on humans for resources (i.e., human commensal ecology) and high 

spatial overlap with urban residents (Pickett et al., 2011). Intense 
urbanization can also filter for individuals with increased boldness 

and reduced stress responses, possibly increasing opportunities 

for human– wildlife interaction (Atwell et al., 2012; Carrete & Tella, 
2017; Lowry et al., 2012). Additionally, behavioral and phenotypi-
cally plastic traits interact with landscape heterogeneity to deter-

mine species- specific dispersal success and home ranges (Baguette 
et al., 2013). Generally, host movement is restricted in cities com-

pared to non- urban habitats due to patchy distribution of suitable 

habitat (Tucker et al., 2018); however, those species capable of sur-

viving within and traversing the urban matrix can play a major role in 

the presence and prevalence of zoonotic pathogens across the land-

scape (Firth et al., 2014; Vanacker et al., 2019). By modeling both 
habitat suitability and dispersal pathways of hosts in HUCs, public 
health stakeholders can better understand the ecological determi-

nants of their distribution and incorporate these findings into tar-

geted management solutions that reflect the spatial scale relevant 

to the target species.

Arthropod vectors usually require bloodmeals, providing direct 
links between the distribution of habitat, hosts, and the patchy dis-

tribution of mosquitos and ticks across green and gray space (Bajwa, 
2018). For example, Culex mosquitoes are attracted to breeding hab-

itats high in organic matter and bacteria (Burkett- Cadena & Mullen, 
2007), and preferentially feed on avian hosts (Bernard et al., 2001). 
This limits them to avian habitats, which may consist of relatively 

small patches of green space compared to mammal habitat and is 

often interspersed across human- populated areas, creating oppor-

tunities for host shifts from avian to human populations (Kilpatrick 

et al., 2006). In contrast, Ae. aegypti and Ae. albopictus, important vec-

tors of arboviruses, exploit small artificial container habitats in cities 

(e.g., rainwater in tires, tree holes, etc.) (Hawley, 1988), and blood 
feed largely on mammals (Faraji et al., 2014; Valerio et al., 2008), in-

cluding humans (Rose et al., 2020). As a result, these mosquitoes are 
typically distributed across a broader range of green and gray spaces 

(Pless et al., 2021). Ticks are an increasingly important vectors of 
bacterial, viral, and parasitic pathogens in cities globally (Dautel & 
Kahl, 1999; Hansford et al., 2017; Heylen et al., 2019; LaDeau et al., 
2015; Lydecker et al., 2019; Steere, 1994; Vanacker et al., 2019). 
Pathogen prevalence in urban ticks has been linked to green space 
structure, including understory composition (Adalsteinsson et al., 

2018), and its influence on the movement and community dynamics 

of hosts (see discussion of dilution effect below).

Though available niche space for zoonotic hazards in urban land-

scapes may remain unoccupied when landscape barriers and species 

traits limit successful colonization, urbanization often facilitates in-

troductions (Reed et al., 2020). HUCs are often global and regional 
hubs of interconnectivity through trade and travel, providing oppor-

tunities for the movement of hosts, vectors, and pathogens into and 

between cities (Padayachee et al., 2017; Reed et al., 2020). Ports of 
entry in HUCs are particularly vulnerable to invasion given the daily 
flow of people, goods, and biota moving through them. Pathogen 
prevalence and diversity in urban rats is often higher around ports, 

suggesting periodic introductions (Rothenburger et al., 2017). In 
some scenarios, ecological priority effects may buffer the threat of 

new invasions if niches are filled such that increased competition 

limits the successful establishment of additional species or popula-

tions (Fraser et al., 2014). However, high propagule pressure (a com-

posite measure of the number of non- native individuals dispersing 

into a region), continued anthropogenic disturbance, and increased 

resource availability may allow invasion despite high occupancy and 

competition with established populations. Additionally, elevated 

frequency and intensity of human– wildlife interactions due to high 
human density in HUCs may allow spillover to occur rapidly upon ar-
rival such that population establishment is not always necessary for 

introduced species to act as important zoonotic hazards. Prioritizing 
targeted screening for introductions where zoonotic potential is 

high (e.g., where high propagule pressure and high human density 

overlap; Little et al., 2017) as well as protocols for rapid identifica-

tion of potential threats, can provide crucial and cost- effective strat-

egies for limiting zoonotic hazards in HUCs.
The role of biodiversity and abundance of hosts in habitat 

patches has become an increasingly important and debated factor 

in the study of zoonotic hazards (Randolph & Dobson, 2012; Wood 
& Lafferty, 2013). The dilution effect hypothesis posits that in-

creased vertebrate diversity begets an increasing proportion of low- 

competence hosts that reduce overall environmental prevalence of 

specific pathogens and thus the hazard or risk to humans (Keesing 
et al., 2010; LoGiudice et al., 2003). Direct population regulation of 
zoonotic hosts or vectors through competition or predation is also 

possible through increases in diversity (e.g., predator reduction of 

vector mosquito abundance; Dambach, 2020), though this differs 
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from canonical dilution effects based on indirect interactions. The 

dilution effect has spurred a strong public health impetus for man-

aging urban environments to maximize biodiversity. However, sev-

eral arguments suggest these effects are not experienced in many 

temperate HUCs.
First, we must note that the diversity– risk relationship is often 

depicted as nonlinear, whereby risk increases in low diversity sys-

tems and only decreases after a diversity threshold is met (Diuk- 
Wasser et al., 2021; Kilpatrick et al., 2017; Rohr et al., 2020; Wood 
& Lafferty, 2013). Across most small and isolated habitat patches 
in HUCs, host diversity often remains too low to reach a dilution 
threshold (Diuk- Wasser et al., 2021). Second, while the classic dilu-

tion hypothesis predicts higher diversity systems results in an abun-

dance of “dilution” hosts, a recent meta- analysis revealed that the 

increased diversity in cities is composed of a large proportion of zoo-

notic hosts, resulting in pathogen amplification rather than dilution 

(Gibb et al., 2020). Indeed, species experiencing global abundance 
increases by adapting to human- dominated landscapes pose the 

greatest risk of viral spillover (Johnson et al., 2020). Furthermore, 

while re- greening through de- urbanization in HUCs may create 
natural experiments by increasing urban diversity, recent work indi-

cates hosts in these environments harbor increased pathogen loads 

and infection prevalence (Peterson et al., 2020). Third, transmission 
mode (i.e., frequency dependent vs. density dependent) can dra-

matically impact infection rates, suggesting changes in diversity in 

HUCs will lead to different pathogen- specific outcomes depending 
on underlying biology (Dobson, 2004; Faust et al., 2017). Finally, di-
versity increases in HUCs are associated with greater beta diversity 
through increased number of unique niche types rather than alpha 
diversity from species sharing common habitats (Mckinney, 2008). 
Given trends of reduced movement and concentrated resources 
in cities (Tucker et al., 2018), this suggests many urban species do 

not co- occur or interact with the same suite of vectors and patho-

gens, which is an assumption of the dilution effect. Thus, increases 

in biodiversity, either through natural dispersal or human- assisted 

colonization into these areas, may be more likely to increase human 

disease risk by increasing abundance of competent zoonotic hosts 

and facilitating greater diversity of pathogenic hazards.

Practical guidance for public health stakeholders in HUCs re-

garding biodiversity will require a local perspective and context, 
as outcomes for human disease may be idiosyncratic (Salkeld et al., 

2013). Rather than blanket promotion of biodiversity as a buffer 

against infectious disease (Randolph & Dobson, 2012), each HUC 
should seek to understand the unique suite of species and ecological 
processes driving hazards locally and then balance the value of eco-

system services provided by increasing biodiversity against costs of 

species- specific zoonotic risks.

Urban areas often exhibit increased availability of anthropogenic 

food resources, either from household and commercial trash or in-

tentionally provided food subsidies, with clear consequences for zoo-

notic hazards (Altizer et al., 2018; Becker et al., 2018). These ample 
and clumped resource distributions directly influence zoonotic haz-

ards by increasing host density (Becker & Hall, 2014; Murray et al., 

2016), affecting host immune response and thus pathogen suscepti-
bility (Murray et al., 2016), increasing host aggregation, and altering 
host movement patterns (either increasing dispersal to, or decreas-

ing dispersal from, high- resource sites) (Becker et al., 2018). High- 
resource density can drive local pathogen load and prevalence in 

hosts indirectly by altering behavior and interspecific and intraspe-

cific interactions among species (Becker et al., 2018; Moyers et al., 
2018). For example, raccoons feeding at clumped resources exhib-

ited higher endoparasite prevalence and parasite diversity (Wright & 

Gompper, 2005). The dynamics of pathogen– host interactions and 
resultant zoonotic hazards will depend on specific host immune re-

sponses and changes in dispersal (Becker & Hall, 2014; Becker et al., 
2018), suggesting a need for further research across local contexts in 

HUCs. Ultimately, human activity drives the distribution of clumped 
anthropogenic resources in HUCs, suggesting policy decisions and 
cultural attitudes around trash containment and wildlife feeding re-

main important levers in the toolbox of public health stakeholders. 

Ideally, waste and wildlife managers can develop plans to reduce ac-

cess to supplemental anthropogenic resources because it increases 

the likelihood of spatial overlap among hosts and humans, but effec-

tive economical waste management remains a major challenge for 

cities globally.

5  |  C A SE STUDY: NE W YORK CIT Y,  NE W 
YORK , UNITED STATES

New York City (NYC) supports the largest human population (8.4 M) 
and highest density (28k people/mi2) of any city in the United States. 

NYC has also been a hub for international travel and trade for centu-

ries, serving as an entry point for the invasion of zoonotic reservoirs, 

such as brown rats (Armitage, 1993), and pathogenic agents such 
as West Nile Virus (Sejvar, 2003). The five boroughs of NYC exhibit 
strong socioeconomic disparities and differences in land use history 

that drive differential hazard presence (Figure 2). NYC supports a 
spectrum of green and gray space connectivity, from the large, con-

nected forest patches of Staten Island and Bronx to the intensely de-

veloped urban core of Manhattan (Figure 2a). Furthermore, a wealth 
of research by academic institutions and municipal agencies actively 

document the distribution and pathogenicity of several zoonotic 

hazards across NYC (Figure 2c– f) (Bajwa, 2018; Johnson et al., 2016; 
Little et al., 2017; Vanacker et al., 2019; Walsh, 2014). These attrib-

utes make NYC a useful case study to understand how urban eco- 
epidemiological processes influence zoonotic disease emergence 

and the roles of diverse stakeholders in surveillance, research, and 

identification of relevant ecological drivers.

5.1  |  Rodent- borne zoonoses

Brown rats and house mice host a diverse community of zoonotic 
pathogens (Table 2). While city agencies track disease outbreaks, 

genetic and observational studies by academics provide detailed 
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characterization of pathogen and ectoparasite threats (Firth et al., 

2014; Frye et al., 2015; Williams et al., 2018). Of most concern 
in NYC is Leptospira interrogans, which is shed through rodent 

urine and environmentally transmitted, with 58 local cases of 

Leptospirosis reported between 2006 and 2021 (Bassett, 2017; 
Chokshi, 2021).

Modeling efforts led by city agencies and various academic 
groups help identify drivers of rodent habitat and exposure (Childs 
et al., 1998; Johnson et al., 2016; Walsh, 2014), informed by public 
datasets of approximately 1.8 million city inspections and 23 million 

reported complaints between 2010 and 2020, highlighting the role 

of government and community engagement. Lower socioeconomic 
wealth is consistently identified as driving rat abundance, as are the 

characteristics of abiotic structures including building age, vacancy 

rates, and sewer and subway infrastructure (Johnson et al., 2016; 
Walsh, 2014). NYC recently began neighborhood- based manage-

ment approaches (i.e., vs property- level treatments) to match the 

spatial scale of rodent activity (Mayor, 2017). Studies outside of NYC 
clearly identify biotic factors such as anthropogenic food and vege-

tated areas as key sources of rodent resources and habitat (Feng & 

Himsworth, 2014; Traweger et al., 2006; van Adrichem et al., 2013), 

though rats in HUCs do not require green space and regularly live at 
high densities in gray space environments.

5.2  |  Aedes- borne zoonoses

Surveys led by city and state agencies and academics help track the 

diverse community of Aedes spp. mosquitos and their associated 
pathogens in the NYC area (Table 2), where Ae. albopictus is the 

most epidemiologically- significant vector (Bajwa, 2018; Little et al., 
2017; McMillan et al., 2020). While most Aedes- borne zoonoses in 

NYC are imported, laboratory studies reveal Ae. albopictus from NY 

State are competent for Zika virus transmission (Chouin- Carneiro 
et al., 2016) and in a European HUC a researchers from non- profit, 
for profit, and government researchers reported local chikungunya 

transmission (Grandadam et al., 2011), suggesting potential spillover 
and transmission risks in NYC.

Surveys reveal widespread Aedes spp. distribution across Staten 

Island with localized hotpots in other NYC boroughs with both 
green and gray spaces. While standing water availability provides 

necessary larval habitat, modeling efforts suggest Ae. albopictus 

F I G U R E  2  Eco- epidemiology of zoonotic hazards in New York City described by: distribution of green and gray land cover (a), median 
household income (b), density of Aedes albopictus (c) and Culex pipiens (d) mosquitos interpolated from citywide sampling points, Ixodes 

scapularis density and infection prevalence with Borrelia burgdorferi (e), and predicted abundance of Rattus norvegicus (f). Land cover data 
sourced from https://opend ata.cityo fnewy ork.us/. Income data mapped by zip code, sourced from the American Community Survey. 
Aedes and Culex density adapted from Bajwa (2018) reproduced with permission from the American Mosquito Control Association. Ixodes 

and Borrelia data provided by authors of Vanacker et al. (2019). Rattus data adapted from Walsh (2014) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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TA B L E  2  Major zoonotic hazards of New York City

Host or vector Zoonotic pathogens Socio- ecological drivers in NYC

Rodents Rattus norvegicus

Mus musculus

Bartonella spp., Leptospira interrogans, Clostridium difficile, 

Seoul Hantavirus, others

Shigella spp., Salmonella spp., Clostridium difficile, and 

Leptospira interrogans, others

L: High- poverty areas linked to 
increased host abundance 

and pathogen prevalence; 

neighborhood- scale treatments 

match spatial scale of rodent 

activity

A: Built structures and underground 
infrastructure constitutes major 

habitat. Older buildings and higher 
vacancy rates increase abundance

B: Human food waste is major and 
abundant resource. Reducing trash 

limits local carrying capacity

Aedes spp. 

mosquitos
Aedes albopictus

Ae. canadensis,

Ae. vexans,

Ae. trivittatus

Zika virus, dengue virus, chikungunya viruses

Eastern equine encephalitis virus, Jamestown Canyon 
virus, La Crosse virus

L: Aedes found across all urbanization 

levels; abundance increases in low-  

to medium- intensity development

A: Standing water availability limits 

larval habitat (natural and artificial 

containers). Macroclimate variation 
influences population survival, 

microclimate variation influences 

individual behavior and survival

B: Vegetation offers sugar meals, 
resting habitat, and habitat for 

animal host

Culex spp. 

mosquitos
Culex pipiens f. pipiens

Culex pipiens f. molestus

West Nile Virus (WNV), St. Louis encephalitis L: WNV incidence higher in high- 
poverty areas. Neighborhood- 

scale management targets known 

disease hotspots (e.g., northern 

Queens). Stronger association with 

green space habitat than Aedes 

spp., especially for aboveground 

inhabiting C.p. pipiens; C.p. molestus 

preferentially inhabits underground 

habitats

A: Temperature influences vectorial 

capacity. Macroclimate variation 
influences population survival, 

microclimate variation influences 

individual behavior and survival

B: Canopy and vegetation offer habitat 
for avian hosts, resting habitat, 

and useful targets for preventative 

insecticide treatments

Mesomammals Felis catus

Procyon lotor

Bartonella spp. and Toxoplasma gondii

Baylisascaris procyonis, rabies lyssavirus, T. gondii

L: Use green- space habitat but survive 
across gradient of connectivity. 

Cats survive in smaller patches 
in mix of green and gray space. 

High poverty linked to higher cat 

density and Toxoplasma gondii 

contamination

A: Mesomammals are robust to normal 
range of climate variation

B: Clumped food resources from 
intentional feeding or human 

food waste increase local density, 

increase pathogen transmission 

within/between co- feeding species
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abundance correlates with increasing low-  and medium- intensity 

urban development (Kache et al., 2020) as well as seasonal meteo-

rological conditions (Little et al., 2017), highlighting both landscape 
and abiotic drivers of this hazard. Critical biotic factors include pres-

ence of vegetation for sugar meals and resting habitat (Fikrig et al., 

2020; Samson et al., 2013), as well as distributions of mammalian 

hosts that are themselves structured by the socio- ecological land-

scape (Faraji et al., 2014; Goodman et al., 2018).

5.3  |  Culex- borne zoonoses

In NYC, the most important and prevalent Culex spp. mosquito- 
borne pathogen is West Nile Virus (WNV), which is vectored locally 
by the Culex pipiens complex. City agencies lead vector surveillance 
and track human cases. Across the five boroughs, 381 WNV cases 
have been reported between 2000 and 2019, with the highest case 
counts in Queens where WNV was first detected in 1999 (NYC 
Department of Health and Mental Hygiene, 2019).

Both Culex pipiens f. pipiens and Culex pipiens f. molestus are lo-

cally abundant (Bajwa, 2018) but exhibit diverse activity patterns, 
physiology, and spatial distribution across subterranean and abo-

veground environments (Vinogradova, 2000), allowing them to in-

habit a wide range of conditions across NYC’s green and gray spaces. 
Academic studies continue to reveal cryptic biological variation in 

Culex species, which helps inform municipal surveillance, identifica-

tion, and management efforts (Kilpatrick et al., 2010).
Despite few studies describing ecological drivers of Culex- borne 

hazards in NYC, others have identified a correlation between WNV 
cases and urbanization and poverty (Andreadis et al., 2004; Poh 
et al., 2020), though the causal mechanisms remain poorly charac-

terized. Temperature is the key abiotic driver of Culex spp. popula-

tions and vectoral capacity (Ciota et al., 2014; Reisen, 2013). In NYC, 

passerine birds are the major WNV reservoir and pathogen prev-

alence may be linked to host- specific competency and preference 

by vectors (Bernard et al., 2001; Kilpatrick et al., 2006; Kramer & 
Bernard, 2001; Nasci et al., 2002). The role of increasing avian di-
versity for WNV hazard is debated; it appears negatively correlated 
at broad scales (Allan et al., 2009), but found to be uncorrelated for 
passerine birds and at fine spatial scales in Chicago, USA (Ezenwa 
et al., 2006; Loss et al., 2009).

5.4  |  Mesomammal- borne zoonoses

NYC supports a community of native and introduced mesomammals 
(WildlifeNYC, 2021). While few mesomammal- borne zoonoses are 
reported in NYC, local studies of raccoons and feral cats conducted 
by city agencies and academics have identified a diverse group of 

zoonotic pathogens and vectors from hosts and their environment 

(Table 2; Bassett, 2018; Rainwater et al., 2017; Tufts et al., 2021; 
Tyungu et al., 2020). These hosts are under- surveyed and associated 

zoonotic spillover events are underreported, but recent but unre-

viewed estimates suggest NYC supports tens of thousands of free 
roaming cats, and Central Park alone supports around 500 raccoons 
(Slavinski et al., 2012).

Supplemental feeding by local residents appears to be the 

main biotic driver of mesomammal populations, causing dense and 

clumped populations that may allow increased transmission within 

and between co- feeding species (Bozek et al., 2007; Rainwater et al., 
2017). They are robust to most climactic conditions, suggesting lit-

tle role for abiotic variation. Their capacity for long- distance move-

ments enables mesomammals to survive across a gradient of green 

connectivity, from networks of forested patches to small and isolated 

parks or gardens surrounded by the gray spaces. Socio- ecological 

landscape characteristics are useful predictors of mesomammal 

Host or vector Zoonotic pathogens Socio- ecological drivers in NYC

Ticks Ixodes scapularis

Dermacentor variabilis

Amblyomma americanum

Borrelia burgdorferi, Babesia microti, Anaplasma 

phagocytophilum, Powassan virus
Rickettsia rickettsii

Ehrlichia chaffeensis, Ehrlichiia ewingii

L: Ticks restricted to green land cover. 
Ixodes more limited to forest with 

leaf litter, Amblyomma survives on 

mowed lawns. Increasing green 
space connectivity increases 

Borrelia prevalence and tick 

density. Broad scale required for 
hazard assessment

A: Temperature influences tick activity. 

Microclimate variation influences 
fine- scale distribution during 

questing and resting.
B: Influence of host community 

on vector and pathogen. Deer 
required for tick reproduction; 
small mammal reservoir diversity 

may influence pathogen 

prevalence.

Note: Hazards are separated by taxa groups and include relevant host or vector species, zoonotic pathogens of importance, and ecological drivers of 

hazard intensity broken up by type (L: landscape characteristics, A: abiotic conditions, B: biotic interactions).

TA B L E  2  (Continued)
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zoonotic hazard, given studies of Toxocara cati, a cat- borne parasite, 

reveal higher levels of egg contamination in soils of lower- income 

NYC neighborhoods (Tyungu et al., 2020).

5.5  |  Tick- borne zoonoses

NYC supports four major Ixodid tick species including the black-

legged tick (Ixodes scapularis), the American dog tick (Dermacentor 

variabilis), the lone star tick (Amblyomma americanum), and the re-

cently introduced Asian longhorned tick (Haemaphysalis longicornis) 

(Barbot, 2020; Tufts et al., 2021). Their distributions, densities, and 
pathogen communities are surveyed by city and state agencies as 

well as academic researchers through yearly observational sampling 

(e.g., tick dragging, carbon dioxide traps, microscopy) and molecular 

approaches (e.g., qPCR). LD remains the most common tick- borne 
disease in NYC with 812 cases between 2010 and 2019, though 
human babesiosis is becoming increasingly prevalent (average 62 
cases/year; Barbot, 2020).

Sampling indicates tick populations are largely restricted to 

urban green spaces and adjacent neighborhoods in Staten Island 
and Bronx in NYC. Modeling efforts further emphasize the critical 
role of biotic factors for urban tick- borne hazards, revealing positive 

associations between NYC canopy cover connectivity and both I. 

scapularis density and prevalence of Borrelia burgdorferi, the etiolog-

ical agent of LD (Vanacker et al., 2019). Evidence for dilution effects 
in HUCs like NYC remains mixed (Salkeld et al., 2013) and an area of 
active research. Neighborhood greenness and biodiversity are cor-

related with economic wealth in HUCs and linked to racist develop-

ment policies (i.e., the luxury effect) (Schell et al., 2020), illustrating 

strong links between tick- borne hazards socio- ecological landscape 

drivers. Community science reporting further enables research of 
human behavior and demographics on tick- borne hazard exposure 

(Bron et al., 2020). Abiotic factors ultimately govern survival of in-

dividual ticks via species- specific tolerances for humidity and tem-

perature in HUCs (Diuk- Wasser et al., 2021), where microclimate 
conditions are often linked to fragmentation and land use patterns 

(Tuff et al., 2016).

6  |  CONCLUSION

The COVID- 19 pandemic put a spotlight on the potential devastating 
human health impacts of zoonotic pathogen emergence, reinforcing 

the importance of identifying local hazards and understanding their 

ecological relationships with diverse environments to prevent future 

spillover events. The persistent risk of known and novel zoonotic 

diseases in close proximity to high- density human settlements in 

HUCs should be a call to action to reassess the ecological factors 
that influence both the distribution of hazards and their varying 

pathogen prevalence to improve active assessment and mitigation 

of potential human zoonoses. In this article, we have provided an as-

sessment of how factors relating to the socio- ecological landscape, 

abiotic conditions, and biotic interactions influence multiple zo-

onotic hazards in HUCs and provided examples of these how these 
patterns and processes play out in NYC.

Each city has its unique suite of hazards and socio- ecological 
landscape patterns to consider, as well as its own practical limita-

tions in available budget, labor, and political support for wildlife 

management and spillover mitigation. Effective zoonotic spillover 
prevention requires key collaborations among public health stake-

holders, a strategy suggested by a chorus of zoonoses research 

groups (Eskew & Olival, 2018; Gottdenker et al., 2014; Hansen et al., 
2017; Hassell et al., 2017; Magle et al., 2019; Plowright et al., 2021; 
Vanwambeke et al., 2019). Municipal departments of health and city 
biologists can work with disease ecologists and modelers to improve 

surveillance networks and better understand local host/vector dis-

tributions, connectivity networks, and interactions with heteroge-

neous landscapes. Social scientists and community leaders provide 

necessary context to socio- ecological frameworks, help prioritize 

programs toward high- risk communities, and promote local en-

gagement for community- based surveillance and reporting efforts. 

Urban planners, non- profit public health advocates, and policy spe-

cialists will also be key partners for developing feasible mitigation 

goals and securing political support and funding. Establishing these 
multi- sectoral partnerships and promoting a common understanding 

of the ecological drivers of local zoonotic hazards are crucial steps 

toward pre- spillover prevention in HUCs.
We recommend several steps for surveillance that can inform 

city- specific hazard assessment and response plans. First, it is crit-

ical to establish baseline information on the geographic distribu-

tion of hazards through field surveys, community reporting, and 

local expertise. Multi- city information networks can bolster these 
efforts by promoting methodological standardization and enabling 

comparative research that informs local efforts (Magle et al., 2019). 
Given that exhaustive surveys are often unfeasible, sub- sampling 
areas of interest and leveraging predictive models of habitat distri-

bution can provide valuable information on hazard intensity across 

complex urban landscapes. Second, this information must be paired 

with molecular approaches to identify variable pathogen prevalence 

and eco- epidemiological modeling approaches to predict how they 

might change over time (Fountain- Jones et al., 2018; Lloyd- Smith 
et al., 2009). Incorporating community science in aspects of surveil-
lance (e.g., reporting wildlife sightings and encounters with vectors) 

would also supplement efforts where resources are limited.

While this article does not focus on variable zoonotic exposure 

(i.e., the likelihood of human– pathogen contact from human inter-

action with the environment) or risk factors (i.e., the likelihood of 

adverse effects, given exposure and vulnerability) across HUCs, we 
recommend management plans also assess these metrics to focus 

efforts and limited resources on the most at- risk communities. 

Together, data on hazards, exposure and vulnerability allows for a 

comprehensive assessment of risk and the creation of quantitative 
risk maps, which are key tools to facilitate public education of local 

hazards and develop actionable and targeted management plans 

(Beard et al., 2018; Morandeira et al., 2019; Ostfeld et al., 2005; 
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vonHedemann et al., 2015). Finally, management plans should seek 

to implement integrated pest management approaches when pos-

sible, to reduce local densities and sustainably limit hazard inten-

sity but may often require rapid and/or cost- effective measures to 
directly reduce hazards, especially when faced with urgent needs 

(Witmer, 2007).

Reducing zoonotic risk across HUCs is challenging for many 
reasons. Urban landscapes have dynamic demographic, environ-

mental, cultural, and political conditions, suggesting risk maps 

along with public health programs should be frequently updated to 
reflect changes over time. Additionally, the basic biology of many 

hosts, vectors, and pathogens remains understudied, particularly 

in the context of hyper- local and novel conditions presented within 

each city, indicating a continued need for collaborative research. 

Given the continued growth in the number, density, and geographic 
footprint of HUCs globally, ensuring prevention and preparedness 
through biologically informed strategies to surveille, research, and 

manage zoonoses is key to reducing the burden of these preventable 

human diseases.
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