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Abstract

The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences
of pathogen spillover from wildlife to human hosts, particularly in densely populated
urban centers. Prevention of future zoonotic disease is contingent on informed surveil-
lance for known and novel threats across diverse human-wildlife interfaces. Cities are a
key venue for potential spillover events because of the presence of zoonotic pathogens
transmitted by hosts and vectors living in close proximity to dense human settlements.
Effectively identifying and managing zoonotic hazards requires understanding the socio-
ecological processes driving hazard distribution and pathogen prevalence in dynamic and
heterogeneous urban landscapes. Despite increasing awareness of the human health
impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into
public health management plans remains limited. Here we discuss how landscape pat-
terns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly
urbanized cities (HUCs) in temperate climates to promote their efficient and effective
management by a multi-sectoral coalition of public health stakeholders. We describe
how to interpret both direct and indirect ecological processes, incorporate spatial scale,
and evaluate networks of connectivity specific to different zoonotic hazards to promote
biologically-informed and targeted decision-making. Using New York City, USA as a case
study, we identify major zoonotic threats, apply knowledge of relevant ecological fac-
tors, and highlight opportunities and challenges for research and intervention. We aim
to broaden the toolbox of urban public health stakeholders by providing ecologically-

informed, practical guidance for the evaluation and management of zoonotic hazards.
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interfaces where there is an increased likelihood of direct or indi-

rect contact between people and infectious hosts and/or vectors
(Hassell et al., 2017; Soulsbury & White, 2015). Urban landscapes

are increasingly recognized as habitat for wildlife across both green

Zoonotic diseases, caused by pathogens transmitted between human

and wildlife populations, most often emerge at human-wildlife
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Glob Change Biol. 2022;28:1705-1724. wileyonlinelibrary.com/journal/gcb 1705



COMBS ET AL.

1706
—I—Wl |l =A% Global Change Biology

spaces (e.g., vegetated or natural landcover) and gray spaces (e.g.,
built structures, impervious surface, and associated infrastructure)
leading to increased interactions with human populations (Deplazes
et al., 2004; Hansford et al., 2017; Mckinney, 2008; Rothenburger
et al., 2017). Globally, cities are growing both in their number of
inhabitants—with over 68% of the world's populations expected
to be urban-dwelling by 2080 (United Nations, 2018), and in their
geographic footprint—with urban land cover steadily increasing
(Seto et al., 2012). The process of urbanization contributes to bi-
otic homogenization (McKinney, 2006), invasive species introduc-
tions (Blair, 1996; Shochat et al., 2010), and results in a wealth of
exploitable resources, which promotes the increased richness and
abundance of zoonotic host species and their associated pathogens
(Gibb et al., 2020). The COVID-19 pandemic highlighted the risk of
zoonotic disease emergence and the unique vulnerability of cities
to emerging zoonotic pathogens, emphasizing concerns regarding
effective prevention and response to spillover events (Alirol et al.,
2011; Bradley & Altizer, 2007; Mackenstedt et al., 2015; Neiderud,
2015). However, there is a persistent need to understand how ur-
banization alters ecological processes that underlie human zoonotic
risk and spillover potential in cities (Karesh et al., 2012) (Figure 1).
Recent discussions of urban zoonoses have focused on factors
influencing spillover events (Hassell et al., 2017; Plowright et al.,
2017, 2021), pathogen-landscape interactions (Eisenberg et al.,
2007; Lambin et al., 2010), and the impacts of urbanization on ani-
mal health (Bengis et al., 2004; Bradley & Altizer, 2007; Mackenstedt
et al., 2015). The emphasis of these reviews is on the combined in-
fluence of environmental change, wildlife biology, and human risk
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factors (including exposure and vulnerability, see Table 1 for glos-
sary of terms) to broadly illustrate the drivers of zoonotic disease
emergence. However, a detailed assessment of the ecological driv-
ers of zoonotic hazards is needed to improve pre-spillover surveil-
lance, research, and management of hazards in cities. Such efforts
require collaboration between public health practitioners, wildlife
biologists, urban planners, community leaders and others invested
in the health of local human communities (hereafter “public health
stakeholders”) that often go beyond the scope of a single entity.
Multi-sectoral partnerships have shown promise for tackling chronic
physical and mental health issues and enabling action on climate
change adaptation and mitigation (Ramaswami et al., 2016). Similar
efforts are essential to prevent urban zoonotic disease, and begin
with a thorough understanding of the foundational biology and
socio-ecological interactions driving the presence and prevalence of
urban zoonotic hazards.

While drivers of urban zoonoses have been mostly studied in
tropical regions where health impacts are greatest (Gottdenker et al.,
2014; White & Razgour, 2020), the emergence and persistence of
these diseases has been overlooked in highly urbanized cities (HUCs)
in temperate climates, which also support a diverse suite of zoonotic
hazards. These often include human commensal rodents and me-
somammals (Feng & Himsworth, 2014; Plumer et al., 2014; Tufts
et al., 2021), Ixodidae ticks (Adalsteinsson et al., 2018; Mancini et al.,
2014, Steere, 1994), Aedes spp., and Culex spp. mosquitoes (Calhoun
et al., 2007; Goodman et al., 2018; Muir & Kay, 1998; Shragai &
Harrington, 2019), all of which can harbor and transmit zoonotic
pathogens. In our definition, HUCs are those with more than 500 k
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FIGURE 1 Socio-ecological drivers influencing zoonotic hazards in HUCs. (a) Individual drivers illustrated across a simplified urban
landscape and color coded based on whether they are predominantly related to landscape (blue), abiotic (purple), or biotic (green) factors. (b)
Thematic flow chart illustrating how socio-ecological processes drive the intensity of zoonotic hazard, a foundational component of zoonotic
risk, which ultimately impacts the likelihood of zoonotic spillover events [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Glossary of terms
Term

Zoonotic disease

Hazard

Exposure

Vulnerability

Risk

Spillover

Reservoir Host

Vector

Pathogen

Eco-epidemiology

Ecosystem
Disservice

Dilution Effect

residents, citywide sanitation infrastructure, life expectancy above
75 years, as well as a prolonged and pervasive historical conversion
of earthen land cover to impervious surfaces. Here, we focus on the
ecological conditions and emergent processes accompanying urban-
ization that drive differences in hazard intensity across HUCs in tem-
perate climates through (1) the distribution and abundance of hosts
and vectors and (2) patterns of pathogen prevalence across hosts,
vectors, and the environment.

Each HUC supports multiple zoonotic hosts and vectors that ex-
perience the heterogeneity of cities differently based on their bio-
logical traits and habitat requirements, creating divergent outcomes
for the pathogens they harbor and transmit across space, within or
among species. Understanding and managing these hazards requires
acknowledging several key concepts highlighted throughout this per-
spective article. (1) There is an inherent ecological tradeoff between
green or gray infrastructure and the presence of zoonotic hazards
(Diuk-Wasser et al., 2021; Jennings et al., 2019; Léhmus & Balbus,
2015; Soulsbury & White, 2015; Taguchi et al., 2020). While urban
green spaces provide ecosystem services, including climate mitiga-
tion and physical and mental health benefits (Gomez-Baggethun &
Barton, 2013; Gregory McPherson, 1992; Luederitz et al., 2015),
these same spaces produce ecosystem disservices when they in-
crease human exposure to pathogens and act as venues for zoonotic
spillover (Shackleton et al., 2016; Vanwambeke et al., 2019). Efforts
to increase urban biodiversity or human well-being through urban
greening (Fuller et al., 2007) may also alter disease risk, although

S ey

Any disease caused by a pathogen transmitted between non-human
animals and humans

Definition

Potential source of harm (e.g., infected host or vector, shed pathogens)
expected to contribute to zoonotic disease, at varying intensities
over space and time

Likelihood of human contact with hazards from interaction with the
environment

Human or societal condition altering the likelihood of harm, given
exposure

The likelihood of adverse outcomes caused by a hazard, given exposure
and vulnerability

Event in which zoonotic pathogen enters the human population

A species competent to harbor a particular pathogen, such that it
sustains the pathogen in the environment and serves as a source of
human or vector infection

An organism capable of transmitting a pathogen between non-human
animals and humans

An infectious agent (bacteria, virus, endoparasite, or microorganism)
capable of causing disease

The study of human disease that incorporates information from human
populations and societies as well as environmental and biological
factors

Any consequence of interacting ecological factors or agents that lead to
negative outcomes for human and economic well-being

Theory that increasing biodiversity results in decreased human disease
risk due to increased abundance of lower-competence hosts

biodiversity-disease relationships remain widely debated (Ogden &
Tsao, 2009; Randolph & Dobson, 2012; Rohr et al., 2020; Salkeld
et al., 2013). Similarly, while gray spaces provide human communities
and economies room to grow, these spaces support zoonotic haz-
ards that we experience with more direct spatial and temporal over-
lap. (2) Urban zoonotic hazards are a component of socio-ecological
systems; environmental conditions in cities (including the distribu-
tion and prevalence of hazards) are co-produced by the interaction
of biophysical and social processes (McGinlay et al., 2016). A city's
greening or graying process depends on its history, socio-cultural
values, and socio-economic drivers of land use (Des Roches et al.,
2020; Pickett et al., 2001). Thus, effective and equitable prevention
of urban zoonoses is facilitated by an integrated socio-ecological
framework for understanding disease emergence. (3) Plans to study
and manage hazards should be species-specific. Because of differ-
ences in their spatial scale of movement, each host and vector spe-
cies experiences a unique pattern of landscape connectivity, which
depends on traits such as migration propensity, dispersal distance,
resource needs, physiological constraints, and response to distur-
bance and fluctuating population densities (Jetz et al., 2004; Peters
et al., 2019; Tucker et al., 2014). Research and management strate-
gies should reflect the scale at which sampling is most informative
and management efforts are most effective.

In this article, we first describe how characteristics of urban
socio-ecological landscapes, in tandem with their unique abiotic
conditions and biotic interactions, determine zoonotic hazards
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distribution and prevalence. Then using New York City (NYC), USA
as a case study, we apply these concepts to evaluate different zoo-
notic hazards and spillover prevention strategies that incorporate
the city's ecological context. Throughout, we discuss implications
for pathogen surveillance, research, and mitigation to improve un-
derstanding and outcomes of urban zoonotic emergence and per-

sistence (Box 1).

2 | LANDSCAPE CHARACTERISTICS

The intensity of zoonotic hazards exhibits strong spatial heteroge-
neity across HUCs. Effectively evaluating and managing these haz-

ards requires an understanding of how landscape patterns influence

BOX 1 Priority areas for strategic surveillance,
research, and mitigation of urban zoonotic hazards

(1) Surveillance:

a. ldentify baseline distribution and abundance of zo-
onotic hosts and vectors across diverse urban sites
(i.e., land use, wildlife community, vegetation char-
acteristics, history, socioeconomic status); balance
financial limitations with long-term active samplings
of key sites and passive sampling through community
reporting.

b. Leverage molecular approaches to identify vari-
able pathogen prevalence in hosts, vectors, and
environment.

c. Monitor changes in hazard intensity linked to dynamic
urban landscape (i.e., greening or degreening of neigh-
borhoods, development).

(2) Research:

a. Establish multi-sectoral collaborations with diverse
public health stakeholders (municipal departments,
epidemiologists, community leaders, disease ecolo-
gists, social scientists, non-profit groups) to study
influence of socio-ecological landscape attributes, abi-
otic conditions, biotic interactions across local multi-
hazard suite.

b. Create and maintain public data repositories on host,
vector, and pathogen distribution, and fine-scale spa-
tial environmental data.

(3) Prevention:

a. Develop ecologically-informed management strate-
gies by mathematical modeling of habitat, pathogen
dynamics, and host/vector connectivity; prioritize
interventions on prevalence hotspots in conjunction
with societal risk factors.

b. Implement management strategies at spatial scale rel-
evant to species-specific biology and dispersal.

populations of hosts, vectors, and associated pathogens as they
interact with one another and the environment. In particular, it is
important to address the influence of landscape composition, con-
figuration, and connectivity on specific hazards, and identify the
spatial scale at which eco-epidemiological processes take place. But
understanding current landscape patterns and their influence on zo-
onotic hazards necessitates knowledge of their historical and ongo-
ing socio-ecological drivers.

Urban development is driven by natural ecological processes
and biophysical features such as topography, hydrology, and native
vegetation, in combination with pervasive social forces (Des Roches
et al., 2020; Keeler et al., 2019). Indeed, widespread land cover
conversion and patterns of fragmentation among HUCs are largely
driven by societal values informed by culture, economics, and local
history. During early stages of temperate HUC growth, the adop-
tion of Eurocentric ideals of nature and aesthetics promoted grid-
ded urban forms and open lawns, which greatly contributed to their
biotic homogenization (Ignatieva & Stewart, 2009; Loughran, 2020;
Shackleton & Gwedla, 2021). During post-industrial growth, system-
atic racism and classism was institutionalized in many cities through
land use policy, development projects, and lending decisions (Schell
et al., 2020), which was driven in large part by capitalist systems
that prioritized profit and exploited the a-spatiality of marginal-
ized communities (Bledsoe & Wright, 2019). These legacies drive
current patterns of habitat suitability for hazards through unequal
distribution of green space as well as investment in infrastructure
and services across racial- and class-based lines (Schell et al., 2020;
Venter et al., 2020). For example, brown rat habitat and elevated
pathogen prevalence among adult mosquitos are consistently cor-
related with low-income areas (Dowling et al., 2013; Harrigan et al.,
2010; Johnson et al., 2016; LaDeau et al., 2013; Masi et al., 2010;
Rothenburger et al., 2017). Social factors, such as income, education,
and employment, also affect people's interactions with the environ-
ment through their impact on personal exposure, vulnerability, and
coping capacity, but these risk factors are more fully described else-
where (Hosseini et al., 2017; Solar & Irwin, 2014). We focus here on
how public health stakeholders can account for socio-ecologically
complex landscape attributes such as composition, configuration,
connectivity, and scale in their study and management of zoonotic
hazards (Frank et al., 2017; Ostrom, 2018).

Landscape composition describes the identity of patch types
and their relative geographic coverage (Ostfeld et al., 2005). The
land cover attributes used to define composition and identify suit-
able niche space may differ for each reservoir host or vector spe-
cies. For instance, variation in the vegetative understory in patches
of urban green space impacts the presence of both mice and ticks
(Adalsteinsson et al., 2018), altering local Lyme disease (LD) hazard.
Thus, satellite data describing canopy cover may not be as informa-
tive as vegetative surveys that directly sample variation in relevant
tick and host habitat. Similarly, urban gray spaces differ dramatically
in their intensity and type of human use and maintenance, and these
characteristics can change between and within neighborhoods.
For instance, increasing abandonment rates within neighborhoods
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correlates to increases in the abundance of rodent hosts and fit-
ness of mosquito vectors (Katz et al., 2020; Peterson et al., 2020a).
Such responses impact public health outcomes for spatially adjacent
communities (Gulachenski et al., 2016), with homeless populations
often experiencing the highest exposure rates to hosts and vectors
(Leibler et al., 2018). Identifying zoonotic host habitat in gray spaces
may be possible through evaluation of easily recorded, physical at-
tributes like building age or land use; however, ephemeral qualities
should also be considered. For example, the likelihood of standing
water or solid waste buildup may influence mosquito-borne patho-
gens and leptospirosis transmission (Murray et al., 2020) by increas-
ing mosquito and commensal rodent presence (Krystosik et al.,
2020), respectively. Further, in evaluating when and where to per-
form surveillance or interventions it is important to consider tem-
poral changes due to seasonality, maintenance frequency, or longer
trends of de-urbanization and re-greening (Eskew & Olival, 2018), as
well as links between broad-scale habitat attributes and fine-scale
patterns of landscape composition.

Landscape configuration reflects the spatial arrangement of
patches and their proximity or isolation to one another. In HUCs,
patch configuration depend on land use and zoning policies, as well
as historical contingencies and natural topography or hydrology
that drive local decision making. The degree of landscape fragmen-
tation is metric of configuration that is sometimes used as a proxy
for biological community composition and increased potential for
zoonotic hazards (Allan et al., 2003; Brock et al., 2019; Diuk-Wasser
et al., 2021; Zolnik et al., 2015). Increased landscape fragmentation
is associated with increased edges between green and gray spaces
that influence hazard distribution and creates increased opportuni-
ties for human-wildlife interactions (Barding & Nelson, 2008). For
example, in gray spaces, adult mosquitos fly through the landscape
(Morlan & Hayes, 1958; Muir & Kay, 1998) and rodents migrate
within and between city blocks (Byers et al., 2019), putting residents
at risk simply by living within host and/or vector dispersal distance
of habitat supporting hazards. While evidence for the impact of
green space edges in forests, parks, or yards on vector abundance
or pathogen prevalence is mixed (Finch et al., 2014; Hansford et al.,
2017; Horobik et al., 2006), assessing the ecology of spillover events
at the transition zone between different land covers should be a re-
search priority.

Landscape connectivity results from the integration of compo-
sition and configuration and describes both the network of habit-
able patches available (structural connectivity) and the realized
movement of organisms and gene flow among those patches (func-
tional connectivity) (Brooks, 2003). Incorporating connectivity into
urban zoonoses mitigation is important because networks of con-
nected habitat permit the flow of pathogens as hosts and vectors
move through cities among suitable patches (Ostfeld et al., 2005).
For example, taking a species-specific view, habitat connectivity for
white-tailed deer based on green space coverage strongly predicts
the density and infection prevalence of ticks, and thus LD risk in
New York City (Vanacker et al., 2019). In HUCs, linear features like
railways, greenbelts, and riverbanks provide movement corridors
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allowing for rapid dissemination of pathogens across landscapes,
suggesting zoonotic disease emergence can occur rapidly via a small
number of linked habitat patches. Behaviorally-flexible species like
red foxes often use urban infrastructure in unintended ways, for
instance by dispersing along roadways (Kimmig et al., 2020), effec-
tively introducing parasitic infections and occasionally the rabies
virus to new areas (Mackenstedt et al., 2015; Plumer et al., 2014;
Smith et al., 2003). Given the idiosyncratic ways in which different
wildlife hosts and vectors navigate urban landscapes, a key research
priority should be to understand movement behavior and connec-
tivity for local zoonotic threats through observations, tracking, and
spatial modeling (Deplazes et al., 2004; Hemming-Schroeder et al.,
2018; Heylen et al., 2019; Richardson et al., 2017).

Networks of habitat connectivity may result in either spatial
concentration or spread of zoonotic hosts and their pathogens. This
outcome depends on species-specific responses to the distribu-
tion of landscape features and should be incorporated into models
of zoonotic risk and the development of hazard management pro-
grams. Movement barriers reduce connectivity by limiting species
movement through physiological limitations (e.g., inability to cross
waterways, impervious surface) or behavioral avoidance (e.g., road
traffic, noise) (Clark et al., 2010; Fusco et al., 2021; Munshi-South,
2012). Typically, habitat isolation reduces the invasion potential of
pathogens, but if pathogens generate immune-dependent responses
in host populations, patch isolation can increase future susceptibil-
ity. For example, fruit bats forming high-density groups in urban
Australia experienced large outbreaks of Hendra virus when de-
creased connectivity among patches reduced local population im-
munity (Plowright et al., 2011). Connectivity networks also influence
the formation of, and dispersal from, pathogen hotspots, where local
hazard intensity is significantly higher than baseline levels, increas-
ing spillover potential (Paull et al., 2012). Prevalence of Leptospira
interrogans and Bartonella tribocorum in urban rats is driven in part by
reduced movement among city blocks, leading to high contact rates
among high-density groups (Byers et al., 2020). This suggests that
zoonotic hazards can persist without widespread movement when
infections are endemic and contact rate is high among hosts.

The spatial scale at which the composition, configuration, and
connectivity of landscapes is assessed is central to understanding
and managing zoonotic hazards (Fischhoff et al., 2019; McGarigal
et al., 2016; Richardson et al., 2016). The spatial scale is composed
of the scope (i.e., spatial bounds) and grain (i.e., resolution of ob-
served detail) and it must match the resource needs and movement
patterns of the particular host(s) or vector(s) (Cushman et al., 2016).
For instance, larval mosquito habitat requires only small amounts
of standing water that may be perceptible only when composition
is characterized at very fine spatial grain, while large mammals or
mesomammal host habitat requires larger vegetated patches that
are observable at coarser spatial grain. In HUCs, the relevant scale
for effective management may differ from the scale at which spe-
cies sampling or treatments are most practical, creating additional
economic and policy hurdles for stakeholders. Brown rats, for exam-
ple, are often managed across individual properties despite ample
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evidence that block-level or neighborhood-level management is re-
quired to limit host and pathogen presence (Byers et al., 2019, 2020;
Combs et al., 2019). Dispersal distance is a key characteristic influ-
encing the potential for human-wildlife interactions, thus spatial
grain of analyses must be smaller than this distance to accurately
encompass movement dynamics into management approaches
(Cushman et al., 2016). A wealth of high-resolution spatial data de-
scribing human population, wildlife, and the environment is often
available for HUCs, creating tremendous opportunities to assess the
links between urban form, biodiversity, and zoonotic disease emer-

gence at appropriate spatial scales.

3 | ABIOTIC CONDITIONS

Landscape changes driven by urbanization significantly alter abiotic
conditions, including temperature, light, noise, heavy metal pol-
lution, and hydrology, each of which have downstream effects on
wildlife hosts, arthropod vectors, and their associated pathogens
(Alberti, 2005). The widespread presence of impervious surfaces
(e.g., roads, buildings, parking lots) is a defining characteristic of
HUCs. This graying of urban landscapes drastically alters abiotic
conditions and presents ecological tradeoffs regarding the pres-
ence and intensity of zoonotic hazards, and their impacts on human
health. While impervious surfaces may act as a buffer against path-
ogen transmission when hosts and vectors are restricted to green
space, these land cover types support the densification of human
settlements, which can increase hazard presence and opportunities
for zoonotic spillover by providing high-quality habitat for a suite
of urban-adapted commensal rodents and mosquito vectors (Bajwa,
2018; Feng & Himsworth, 2014).

High impervious surface coverage also leads to increased am-
bient temperatures in urban landscapes, known as the “heat is-
land” effect (Rizwan et al., 2008). Elevated temperature in cities
has a strong direct effect on populations of small ectothermic
arthropods (LaDeau et al., 2015; Youngsteadt et al., 2017), in-
cluding observed increases in Aedes spp. mosquitos (de Azevedo
et al., 2018) and increasing overwintering survival of Phlebotomus
sand flies, the vector for leishmaniasis (Trajer et al., 2014). Heat
island effects may have a strong impact in temperate HUCs spe-
cifically, by increasing the number of days above threshold activity
temperatures for vectors like Ixodes ticks, though this mechanism
requires further study (Duffy & Campbell, 1994; Gray, 2008).
Underground infrastructure in cities also provides a geothermally
stable environment that supports arthropod and rodent popu-
lations year-round (Bajomi et al., 2013; Byrne & Nichols, 1999;
Channon et al., 2006). Green infrastructure (e.g., parks, green
roofs, plantings) offers climate mitigation for humans while also
providing thermal refugia for vectors by buffering against extreme
temperatures (Venter et al., 2020), presenting a tradeoff between
ecosystem services and disservices. Cities should seek to better
characterize the thermal landscape at scales relevant to hosts and
vectors of concern, as well as integrate future warming conditions

due to climate change and expected consequences on species ac-
tivity and range shifts (Gray, 2008; Ryan et al., 2018).

Impervious surfaces can also drastically influence hydrol-
ogy by reducing drainage and restructuring watersheds (Pickett
et al., 2001; Shuster et al., 2005). At broad spatial scales, this
can increase the risk of flooding events, which is correlated with
Leptospira spp. infection in humans (Naing et al., 2019) and con-
taminated drinking water, though this phenomenon is more likely
in cities lacking robust sanitation systems (Ko et al., 1999; Lau
et al., 2010; Rydin et al., 2012). Impervious surfaces also cause
environmentally acquired pathogens to concentrate downstream
along urban watersheds, increasing hazard exposure (Mallin et al.,
2000; VanWormer et al., 2016). At fine spatial scales, impervious
surfaces increase opportunities for standing water, which pro-
vides breeding habitat for urban mosquitoes and has been cor-
related with increased Leptospira spp. infection in brown rats due
to environmental persistence of bacteria shed in urine of infected
hosts (Murray et al., 2020).

Urban environments can alter urban wildlife behavior and host-
parasite interactions through light and noise pollution (Francis et al.,
2011; Francis et al., 2015; Singh et al., 2014). Migrating birds are at-
tracted to regions with more artificial light at night, which may result
in increased deposition of bird-fed ticks and associated pathogens
around urban areas (Brinkerhoff et al., 2011; Ogden et al., 2008).
Light and noise have variable effects on arthropod activity in non-
temperate cities (McMahon et al.,, 2017; Pacheco-Tucuch et al.,
2012) and alter gene expression in Culex pipiens (Honnen et al.,
2016), though downstream consequences of these genomic effects
for zoonoses are currently unknown. Furthermore, artificial light at
night has been linked to increased West Nile Virus (WNV) exposure
in Florida (Kernbach et al., 2021), a pattern that may hold true in
temperate HUCs as well. These forms of pollution are pervasive in
HUCs and should be recognized for their potential impacts on zoo-
notic hazards.

Zoonotic systems in HUCs may be influenced by heavy metal
pollution, which has historically tainted cities and may have per-
sistent physiological and immune effects, despite ongoing cleanup
efforts (Perugini et al., 2011; Rodriguez Martin et al., 2015; Swaileh &
Sansur, 2006). Heavy metal contamination is spatially aggregated in
post-industrial sites, often positively correlated with neighborhood
poverty (Aelion et al., 2013), and can have varied downstream influ-
ences on reservoir host immunity and pathogen dynamics (Sdnchez
et al., 2020). For example, urban pigeons with higher lead concen-
trations suffered higher intensities of blood pathogens, but those
with increased zinc concentrations experienced protective effects
against Chlamydiaceae infection, a family of potentially human zoo-
notic bacteria (Gasparini et al., 2014). Lead exposure and cadmium
exposure have been found to increase susceptibility of brown rats
to bacterial challenge, suggesting that heavy metal pollution could
increase their capacity to host zoonotic agents (Cook et al., 1975).
In contrast, a recent study of white-footed mice on polluted sites
showed no evidence of reduced immunocompetence (Biser et al.,
2004). Further work is needed to elucidate how pollution-mediated
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variation in host susceptibility impacts zoonotic disease risk across

urban landscapes.

4 | BIOTIC INTERACTIONS

Species interactions in wildlife communities and their reactions to
abiotic factors and socio-ecological landscape features structure
the presence of zoonotic hazards in HUCs, their pathogen burden,
and human-wildlife interactions that may result in spillover events
(Plowright et al., 2017). Identifying and managing zoonotic hazards
is thus contingent on understanding (i) how species traits influence
their distribution, (ii) how intra- and inter-species interactions, in-
cluding indirect effects of community diversity, influence patho-
gen prevalence, and (iii) how resource availability modifies these
processes. With this knowledge, public health stakeholders can
better implement both direct interventions (e.g., species removal,
pathogen-targeted vaccinations) and indirect management solutions
(e.g., habitat modification, policy changes).

For reservoir hosts in HUCs, behavioral traits, particularly flex-
ibility to resource shifts and human disturbance, allow colonization
and population persistence in habitable patches of either green and/
or gray space (Lowry et al., 2012). Generalist species often domi-
nate urban wildlife communities, and typically exhibit a dependence
on humans for resources (i.e., human commensal ecology) and high
spatial overlap with urban residents (Pickett et al., 2011). Intense
urbanization can also filter for individuals with increased boldness
and reduced stress responses, possibly increasing opportunities
for human-wildlife interaction (Atwell et al., 2012; Carrete & Tella,
2017; Lowry et al., 2012). Additionally, behavioral and phenotypi-
cally plastic traits interact with landscape heterogeneity to deter-
mine species-specific dispersal success and home ranges (Baguette
et al., 2013). Generally, host movement is restricted in cities com-
pared to non-urban habitats due to patchy distribution of suitable
habitat (Tucker et al., 2018); however, those species capable of sur-
viving within and traversing the urban matrix can play a major role in
the presence and prevalence of zoonotic pathogens across the land-
scape (Firth et al., 2014; Vanacker et al., 2019). By modeling both
habitat suitability and dispersal pathways of hosts in HUCs, public
health stakeholders can better understand the ecological determi-
nants of their distribution and incorporate these findings into tar-
geted management solutions that reflect the spatial scale relevant
to the target species.

Arthropod vectors usually require bloodmeals, providing direct
links between the distribution of habitat, hosts, and the patchy dis-
tribution of mosquitos and ticks across green and gray space (Bajwa,
2018). For example, Culex mosquitoes are attracted to breeding hab-
itats high in organic matter and bacteria (Burkett-Cadena & Mullen,
2007), and preferentially feed on avian hosts (Bernard et al., 2001).
This limits them to avian habitats, which may consist of relatively
small patches of green space compared to mammal habitat and is
often interspersed across human-populated areas, creating oppor-
tunities for host shifts from avian to human populations (Kilpatrick
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etal., 2006). In contrast, Ae. aegypti and Ae. albopictus, important vec-
tors of arboviruses, exploit small artificial container habitats in cities
(e.g., rainwater in tires, tree holes, etc.) (Hawley, 1988), and blood
feed largely on mammals (Faraji et al., 2014; Valerio et al., 2008), in-
cluding humans (Rose et al., 2020). As a result, these mosquitoes are
typically distributed across a broader range of green and gray spaces
(Pless et al., 2021). Ticks are an increasingly important vectors of
bacterial, viral, and parasitic pathogens in cities globally (Dautel &
Kahl, 1999; Hansford et al., 2017; Heylen et al., 2019; LaDeau et al.,
2015; Lydecker et al., 2019; Steere, 1994; Vanacker et al., 2019).
Pathogen prevalence in urban ticks has been linked to green space
structure, including understory composition (Adalsteinsson et al.,
2018), and its influence on the movement and community dynamics
of hosts (see discussion of dilution effect below).

Though available niche space for zoonotic hazards in urban land-
scapes may remain unoccupied when landscape barriers and species
traits limit successful colonization, urbanization often facilitates in-
troductions (Reed et al., 2020). HUCs are often global and regional
hubs of interconnectivity through trade and travel, providing oppor-
tunities for the movement of hosts, vectors, and pathogens into and
between cities (Padayachee et al., 2017; Reed et al., 2020). Ports of
entry in HUCs are particularly vulnerable to invasion given the daily
flow of people, goods, and biota moving through them. Pathogen
prevalence and diversity in urban rats is often higher around ports,
suggesting periodic introductions (Rothenburger et al., 2017). In
some scenarios, ecological priority effects may buffer the threat of
new invasions if niches are filled such that increased competition
limits the successful establishment of additional species or popula-
tions (Fraser et al., 2014). However, high propagule pressure (a com-
posite measure of the number of non-native individuals dispersing
into a region), continued anthropogenic disturbance, and increased
resource availability may allow invasion despite high occupancy and
competition with established populations. Additionally, elevated
frequency and intensity of human-wildlife interactions due to high
human density in HUCs may allow spillover to occur rapidly upon ar-
rival such that population establishment is not always necessary for
introduced species to act as important zoonotic hazards. Prioritizing
targeted screening for introductions where zoonotic potential is
high (e.g., where high propagule pressure and high human density
overlap; Little et al., 2017) as well as protocols for rapid identifica-
tion of potential threats, can provide crucial and cost-effective strat-
egies for limiting zoonotic hazards in HUCs.

The role of biodiversity and abundance of hosts in habitat
patches has become an increasingly important and debated factor
in the study of zoonotic hazards (Randolph & Dobson, 2012; Wood
& Lafferty, 2013). The dilution effect hypothesis posits that in-
creased vertebrate diversity begets an increasing proportion of low-
competence hosts that reduce overall environmental prevalence of
specific pathogens and thus the hazard or risk to humans (Keesing
et al., 2010; LoGiudice et al., 2003). Direct population regulation of
zoonotic hosts or vectors through competition or predation is also
possible through increases in diversity (e.g., predator reduction of
vector mosquito abundance; Dambach, 2020), though this differs
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from canonical dilution effects based on indirect interactions. The
dilution effect has spurred a strong public health impetus for man-
aging urban environments to maximize biodiversity. However, sev-
eral arguments suggest these effects are not experienced in many
temperate HUCs.

First, we must note that the diversity-risk relationship is often
depicted as nonlinear, whereby risk increases in low diversity sys-
tems and only decreases after a diversity threshold is met (Diuk-
Wasser et al., 2021; Kilpatrick et al., 2017; Rohr et al., 2020; Wood
& Lafferty, 2013). Across most small and isolated habitat patches
in HUCs, host diversity often remains too low to reach a dilution
threshold (Diuk-Wasser et al., 2021). Second, while the classic dilu-
tion hypothesis predicts higher diversity systems results in an abun-
dance of “dilution” hosts, a recent meta-analysis revealed that the
increased diversity in cities is composed of a large proportion of zoo-
notic hosts, resulting in pathogen amplification rather than dilution
(Gibb et al., 2020). Indeed, species experiencing global abundance
increases by adapting to human-dominated landscapes pose the
greatest risk of viral spillover (Johnson et al., 2020). Furthermore,
while re-greening through de-urbanization in HUCs may create
natural experiments by increasing urban diversity, recent work indi-
cates hosts in these environments harbor increased pathogen loads
and infection prevalence (Peterson et al., 2020). Third, transmission
mode (i.e., frequency dependent vs. density dependent) can dra-
matically impact infection rates, suggesting changes in diversity in
HUCs will lead to different pathogen-specific outcomes depending
on underlying biology (Dobson, 2004; Faust et al., 2017). Finally, di-
versity increases in HUCs are associated with greater beta diversity
through increased number of unique niche types rather than alpha
diversity from species sharing common habitats (Mckinney, 2008).
Given trends of reduced movement and concentrated resources
in cities (Tucker et al., 2018), this suggests many urban species do
not co-occur or interact with the same suite of vectors and patho-
gens, which is an assumption of the dilution effect. Thus, increases
in biodiversity, either through natural dispersal or human-assisted
colonization into these areas, may be more likely to increase human
disease risk by increasing abundance of competent zoonotic hosts
and facilitating greater diversity of pathogenic hazards.

Practical guidance for public health stakeholders in HUCs re-
garding biodiversity will require a local perspective and context,
as outcomes for human disease may be idiosyncratic (Salkeld et al.,
2013). Rather than blanket promotion of biodiversity as a buffer
against infectious disease (Randolph & Dobson, 2012), each HUC
should seek to understand the unique suite of species and ecological
processes driving hazards locally and then balance the value of eco-
system services provided by increasing biodiversity against costs of
species-specific zoonotic risks.

Urban areas often exhibit increased availability of anthropogenic
food resources, either from household and commercial trash or in-
tentionally provided food subsidies, with clear consequences for zoo-
notic hazards (Altizer et al., 2018; Becker et al., 2018). These ample
and clumped resource distributions directly influence zoonotic haz-
ards by increasing host density (Becker & Hall, 2014; Murray et al.,

2016), affecting host immune response and thus pathogen suscepti-
bility (Murray et al., 2016), increasing host aggregation, and altering
host movement patterns (either increasing dispersal to, or decreas-
ing dispersal from, high-resource sites) (Becker et al., 2018). High-
resource density can drive local pathogen load and prevalence in
hosts indirectly by altering behavior and interspecific and intraspe-
cific interactions among species (Becker et al., 2018; Moyers et al.,
2018). For example, raccoons feeding at clumped resources exhib-
ited higher endoparasite prevalence and parasite diversity (Wright &
Gompper, 2005). The dynamics of pathogen-host interactions and
resultant zoonotic hazards will depend on specific host immune re-
sponses and changes in dispersal (Becker & Hall, 2014; Becker et al.,
2018), suggesting a need for further research across local contexts in
HUCs. Ultimately, human activity drives the distribution of clumped
anthropogenic resources in HUCs, suggesting policy decisions and
cultural attitudes around trash containment and wildlife feeding re-
main important levers in the toolbox of public health stakeholders.
Ideally, waste and wildlife managers can develop plans to reduce ac-
cess to supplemental anthropogenic resources because it increases
the likelihood of spatial overlap among hosts and humans, but effec-
tive economical waste management remains a major challenge for

cities globally.

5 | CASE STUDY: NEW YORK CITY, NEW
YORK, UNITED STATES

New York City (NYC) supports the largest human population (8.4 M)
and highest density (28k people/mi?) of any city in the United States.
NYC has also been a hub for international travel and trade for centu-
ries, serving as an entry point for the invasion of zoonotic reservoirs,
such as brown rats (Armitage, 1993), and pathogenic agents such
as West Nile Virus (Sejvar, 2003). The five boroughs of NYC exhibit
strong socioeconomic disparities and differences in land use history
that drive differential hazard presence (Figure 2). NYC supports a
spectrum of green and gray space connectivity, from the large, con-
nected forest patches of Staten Island and Bronx to the intensely de-
veloped urban core of Manhattan (Figure 2a). Furthermore, a wealth
of research by academic institutions and municipal agencies actively
document the distribution and pathogenicity of several zoonotic
hazards across NYC (Figure 2c-f) (Bajwa, 2018; Johnson et al., 2016;
Little et al., 2017; Vanacker et al., 2019; Walsh, 2014). These attrib-
utes make NYC a useful case study to understand how urban eco-
epidemiological processes influence zoonotic disease emergence
and the roles of diverse stakeholders in surveillance, research, and

identification of relevant ecological drivers.

5.1 | Rodent-borne zoonoses

Brown rats and house mice host a diverse community of zoonotic
pathogens (Table 2). While city agencies track disease outbreaks,
genetic and observational studies by academics provide detailed
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characterization of pathogen and ectoparasite threats (Firth et al.,
2014; Frye et al., 2015; Williams et al., 2018). Of most concern
in NYC is Leptospira interrogans, which is shed through rodent
urine and environmentally transmitted, with 58 local cases of
Leptospirosis reported between 2006 and 2021 (Bassett, 2017;
Chokshi, 2021).

Modeling efforts led by city agencies and various academic
groups help identify drivers of rodent habitat and exposure (Childs
et al., 1998; Johnson et al., 2016; Walsh, 2014), informed by public
datasets of approximately 1.8 million city inspections and 23 million
reported complaints between 2010 and 2020, highlighting the role
of government and community engagement. Lower socioeconomic
wealth is consistently identified as driving rat abundance, as are the
characteristics of abiotic structures including building age, vacancy
rates, and sewer and subway infrastructure (Johnson et al., 2016;
Walsh, 2014). NYC recently began neighborhood-based manage-
ment approaches (i.e., vs property-level treatments) to match the
spatial scale of rodent activity (Mayor, 2017). Studies outside of NYC
clearly identify biotic factors such as anthropogenic food and vege-
tated areas as key sources of rodent resources and habitat (Feng &
Himsworth, 2014; Traweger et al., 2006; van Adrichem et al., 2013),

though rats in HUCs do not require green space and regularly live at

high densities in gray space environments.

5.2 | Aedes-borne zoonoses

Surveys led by city and state agencies and academics help track the
diverse community of Aedes spp. mosquitos and their associated
pathogens in the NYC area (Table 2), where Ae. albopictus is the
most epidemiologically-significant vector (Bajwa, 2018; Little et al.,
2017; McMiillan et al., 2020). While most Aedes-borne zoonoses in
NYC are imported, laboratory studies reveal Ae. albopictus from NY
State are competent for Zika virus transmission (Chouin-Carneiro
et al., 2016) and in a European HUC a researchers from non-profit,
for profit, and government researchers reported local chikungunya
transmission (Grandadam et al., 2011), suggesting potential spillover
and transmission risks in NYC.

Surveys reveal widespread Aedes spp. distribution across Staten
Island with localized hotpots in other NYC boroughs with both
green and gray spaces. While standing water availability provides
necessary larval habitat, modeling efforts suggest Ae. albopictus
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TABLE 2 Major zoonotic hazards of New York City

Rodents

Aedes spp.
mosquitos

Culex spp.
mosquitos

Mesomammals

Host or vector

Rattus norvegicus
Mus musculus

Aedes albopictus
Ae. canadensis,
Ae. vexans,

Ae. trivittatus

Culex pipiens f. pipiens
Culex pipiens f. molestus

Felis catus
Procyon lotor

Zoonotic pathogens

Bartonella spp., Leptospira interrogans, Clostridium difficile,
Seoul Hantavirus, others

Shigella spp., Salmonella spp., Clostridium difficile, and
Leptospira interrogans, others

Zika virus, dengue virus, chikungunya viruses
Eastern equine encephalitis virus, Jamestown Canyon
virus, La Crosse virus

West Nile Virus (WNV), St. Louis encephalitis

Bartonella spp. and Toxoplasma gondii
Baylisascaris procyonis, rabies lyssavirus, T. gondii

Socio-ecological drivers in NYC

L: High-poverty areas linked to
increased host abundance
and pathogen prevalence;
neighborhood-scale treatments
match spatial scale of rodent
activity

A: Built structures and underground
infrastructure constitutes major
habitat. Older buildings and higher
vacancy rates increase abundance

B: Human food waste is major and
abundant resource. Reducing trash
limits local carrying capacity

L: Aedes found across all urbanization
levels; abundance increases in low-
to medium-intensity development

A: Standing water availability limits
larval habitat (natural and artificial
containers). Macroclimate variation
influences population survival,
microclimate variation influences
individual behavior and survival

B: Vegetation offers sugar meals,
resting habitat, and habitat for
animal host

L: WNV incidence higher in high-
poverty areas. Neighborhood-
scale management targets known
disease hotspots (e.g., northern
Queens). Stronger association with
green space habitat than Aedes
spp., especially for aboveground
inhabiting C.p. pipiens; C.p. molestus
preferentially inhabits underground
habitats

A: Temperature influences vectorial
capacity. Macroclimate variation
influences population survival,
microclimate variation influences
individual behavior and survival

B: Canopy and vegetation offer habitat
for avian hosts, resting habitat,
and useful targets for preventative
insecticide treatments

L: Use green-space habitat but survive
across gradient of connectivity.
Cats survive in smaller patches
in mix of green and gray space.
High poverty linked to higher cat
density and Toxoplasma gondii
contamination

A: Mesomammals are robust to normal
range of climate variation

B: Clumped food resources from
intentional feeding or human
food waste increase local density,
increase pathogen transmission
within/between co-feeding species
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TABLE 2 (Continued)

Host or vector Zoonotic pathogens

Ticks Ixodes scapularis
Dermacentor variabilis

Amblyomma americanum Rickettsia rickettsii

Ehrlichia chaffeensis, Ehrlichiia ewingii

Borrelia burgdorferi, Babesia microti, Anaplasma
phagocytophilum, Powassan virus

S ey

Socio-ecological drivers in NYC

L: Ticks restricted to green land cover.
Ixodes more limited to forest with
leaf litter, Amblyomma survives on
mowed lawns. Increasing green
space connectivity increases
Borrelia prevalence and tick
density. Broad scale required for
hazard assessment

A: Temperature influences tick activity.
Microclimate variation influences
fine-scale distribution during
questing and resting.

B: Influence of host community
on vector and pathogen. Deer
required for tick reproduction;
small mammal reservoir diversity
may influence pathogen
prevalence.

Note: Hazards are separated by taxa groups and include relevant host or vector species, zoonotic pathogens of importance, and ecological drivers of
hazard intensity broken up by type (L: landscape characteristics, A: abiotic conditions, B: biotic interactions).

abundance correlates with increasing low- and medium-intensity
urban development (Kache et al., 2020) as well as seasonal meteo-
rological conditions (Little et al., 2017), highlighting both landscape
and abiotic drivers of this hazard. Critical biotic factors include pres-
ence of vegetation for sugar meals and resting habitat (Fikrig et al.,
2020; Samson et al., 2013), as well as distributions of mammalian
hosts that are themselves structured by the socio-ecological land-
scape (Faraji et al., 2014; Goodman et al., 2018).

5.3 | Culex-borne zoonoses

In NYC, the most important and prevalent Culex spp. mosquito-
borne pathogen is West Nile Virus (WNV), which is vectored locally
by the Culex pipiens complex. City agencies lead vector surveillance
and track human cases. Across the five boroughs, 381 WNV cases
have been reported between 2000 and 2019, with the highest case
counts in Queens where WNV was first detected in 1999 (NYC
Department of Health and Mental Hygiene, 2019).

Both Culex pipiens f. pipiens and Culex pipiens f. molestus are lo-
cally abundant (Bajwa, 2018) but exhibit diverse activity patterns,
physiology, and spatial distribution across subterranean and abo-
veground environments (Vinogradova, 2000), allowing them to in-
habit a wide range of conditions across NYC's green and gray spaces.
Academic studies continue to reveal cryptic biological variation in
Culex species, which helps inform municipal surveillance, identifica-
tion, and management efforts (Kilpatrick et al., 2010).

Despite few studies describing ecological drivers of Culex-borne
hazards in NYC, others have identified a correlation between WNV
cases and urbanization and poverty (Andreadis et al., 2004; Poh
et al., 2020), though the causal mechanisms remain poorly charac-
terized. Temperature is the key abiotic driver of Culex spp. popula-
tions and vectoral capacity (Ciota et al., 2014; Reisen, 2013). In NYC,

passerine birds are the major WNV reservoir and pathogen prev-
alence may be linked to host-specific competency and preference
by vectors (Bernard et al., 2001; Kilpatrick et al., 2006; Kramer &
Bernard, 2001; Nasci et al., 2002). The role of increasing avian di-
versity for WNV hazard is debated; it appears negatively correlated
at broad scales (Allan et al., 2009), but found to be uncorrelated for
passerine birds and at fine spatial scales in Chicago, USA (Ezenwa
etal., 2006; Loss et al., 2009).

54 | Mesomammal-borne zoonoses

NYC supports a community of native and introduced mesomammals
(WildlifeNYC, 2021). While few mesomammal-borne zoonoses are
reported in NYC, local studies of raccoons and feral cats conducted
by city agencies and academics have identified a diverse group of
zoonotic pathogens and vectors from hosts and their environment
(Table 2; Bassett, 2018; Rainwater et al., 2017; Tufts et al., 2021;
Tyungu et al., 2020). These hosts are under-surveyed and associated
zoonotic spillover events are underreported, but recent but unre-
viewed estimates suggest NYC supports tens of thousands of free
roaming cats, and Central Park alone supports around 500 raccoons
(Slavinski et al., 2012).

Supplemental feeding by local residents appears to be the
main biotic driver of mesomammal populations, causing dense and
clumped populations that may allow increased transmission within
and between co-feeding species (Bozek et al., 2007; Rainwater et al.,
2017). They are robust to most climactic conditions, suggesting lit-
tle role for abiotic variation. Their capacity for long-distance move-
ments enables mesomammals to survive across a gradient of green
connectivity, from networks of forested patches to small and isolated
parks or gardens surrounded by the gray spaces. Socio-ecological
landscape characteristics are useful predictors of mesomammal



COMBS T AL.

zoonotic hazard, given studies of Toxocara cati, a cat-borne parasite,
reveal higher levels of egg contamination in soils of lower-income
NYC neighborhoods (Tyungu et al., 2020).

5.5 | Tick-borne zoonoses

NYC supports four major Ixodid tick species including the black-
legged tick (Ixodes scapularis), the American dog tick (Dermacentor
variabilis), the lone star tick (Amblyomma americanum), and the re-
cently introduced Asian longhorned tick (Haemaphysalis longicornis)
(Barbot, 2020; Tufts et al., 2021). Their distributions, densities, and
pathogen communities are surveyed by city and state agencies as
well as academic researchers through yearly observational sampling
(e.g., tick dragging, carbon dioxide traps, microscopy) and molecular
approaches (e.g., qPCR). LD remains the most common tick-borne
disease in NYC with 812 cases between 2010 and 2019, though
human babesiosis is becoming increasingly prevalent (average 62
cases/year; Barbot, 2020).

Sampling indicates tick populations are largely restricted to
urban green spaces and adjacent neighborhoods in Staten Island
and Bronx in NYC. Modeling efforts further emphasize the critical
role of biotic factors for urban tick-borne hazards, revealing positive
associations between NYC canopy cover connectivity and both I.
scapularis density and prevalence of Borrelia burgdorferi, the etiolog-
ical agent of LD (Vanacker et al., 2019). Evidence for dilution effects
in HUCs like NYC remains mixed (Salkeld et al., 2013) and an area of
active research. Neighborhood greenness and biodiversity are cor-
related with economic wealth in HUCs and linked to racist develop-
ment policies (i.e., the luxury effect) (Schell et al., 2020), illustrating
strong links between tick-borne hazards socio-ecological landscape
drivers. Community science reporting further enables research of
human behavior and demographics on tick-borne hazard exposure
(Bron et al., 2020). Abiotic factors ultimately govern survival of in-
dividual ticks via species-specific tolerances for humidity and tem-
perature in HUCs (Diuk-Wasser et al., 2021), where microclimate
conditions are often linked to fragmentation and land use patterns
(Tuff et al., 2016).

6 | CONCLUSION

The COVID-19 pandemic put a spotlight on the potential devastating
human health impacts of zoonotic pathogen emergence, reinforcing
the importance of identifying local hazards and understanding their
ecological relationships with diverse environments to prevent future
spillover events. The persistent risk of known and novel zoonotic
diseases in close proximity to high-density human settlements in
HUCs should be a call to action to reassess the ecological factors
that influence both the distribution of hazards and their varying
pathogen prevalence to improve active assessment and mitigation
of potential human zoonoses. In this article, we have provided an as-
sessment of how factors relating to the socio-ecological landscape,

abiotic conditions, and biotic interactions influence multiple zo-
onotic hazards in HUCs and provided examples of these how these
patterns and processes play out in NYC.

Each city has its unique suite of hazards and socio-ecological
landscape patterns to consider, as well as its own practical limita-
tions in available budget, labor, and political support for wildlife
management and spillover mitigation. Effective zoonotic spillover
prevention requires key collaborations among public health stake-
holders, a strategy suggested by a chorus of zoonoses research
groups (Eskew & Olival, 2018; Gottdenker et al., 2014; Hansen et al.,
2017; Hassell et al., 2017; Magle et al., 2019; Plowright et al., 2021;
Vanwambeke et al., 2019). Municipal departments of health and city
biologists can work with disease ecologists and modelers to improve
surveillance networks and better understand local host/vector dis-
tributions, connectivity networks, and interactions with heteroge-
neous landscapes. Social scientists and community leaders provide
necessary context to socio-ecological frameworks, help prioritize
programs toward high-risk communities, and promote local en-
gagement for community-based surveillance and reporting efforts.
Urban planners, non-profit public health advocates, and policy spe-
cialists will also be key partners for developing feasible mitigation
goals and securing political support and funding. Establishing these
multi-sectoral partnerships and promoting a common understanding
of the ecological drivers of local zoonotic hazards are crucial steps
toward pre-spillover prevention in HUCs.

We recommend several steps for surveillance that can inform
city-specific hazard assessment and response plans. First, it is crit-
ical to establish baseline information on the geographic distribu-
tion of hazards through field surveys, community reporting, and
local expertise. Multi-city information networks can bolster these
efforts by promoting methodological standardization and enabling
comparative research that informs local efforts (Magle et al., 2019).
Given that exhaustive surveys are often unfeasible, sub-sampling
areas of interest and leveraging predictive models of habitat distri-
bution can provide valuable information on hazard intensity across
complex urban landscapes. Second, this information must be paired
with molecular approaches to identify variable pathogen prevalence
and eco-epidemiological modeling approaches to predict how they
might change over time (Fountain-Jones et al., 2018; Lloyd-Smith
et al., 2009). Incorporating community science in aspects of surveil-
lance (e.g., reporting wildlife sightings and encounters with vectors)
would also supplement efforts where resources are limited.

While this article does not focus on variable zoonotic exposure
(i.e., the likelihood of human-pathogen contact from human inter-
action with the environment) or risk factors (i.e., the likelihood of
adverse effects, given exposure and vulnerability) across HUCs, we
recommend management plans also assess these metrics to focus
efforts and limited resources on the most at-risk communities.
Together, data on hazards, exposure and vulnerability allows for a
comprehensive assessment of risk and the creation of quantitative
risk maps, which are key tools to facilitate public education of local
hazards and develop actionable and targeted management plans
(Beard et al., 2018; Morandeira et al., 2019; Ostfeld et al., 2005;
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vonHedemann et al., 2015). Finally, management plans should seek
to implement integrated pest management approaches when pos-
sible, to reduce local densities and sustainably limit hazard inten-
sity but may often require rapid and/or cost-effective measures to
directly reduce hazards, especially when faced with urgent needs
(Witmer, 2007).

Reducing zoonotic risk across HUCs is challenging for many
reasons. Urban landscapes have dynamic demographic, environ-
mental, cultural, and political conditions, suggesting risk maps
along with public health programs should be frequently updated to
reflect changes over time. Additionally, the basic biology of many
hosts, vectors, and pathogens remains understudied, particularly
in the context of hyper-local and novel conditions presented within
each city, indicating a continued need for collaborative research.
Given the continued growth in the number, density, and geographic
footprint of HUCs globally, ensuring prevention and preparedness
through biologically informed strategies to surveille, research, and
manage zoonoses is key to reducing the burden of these preventable
human diseases.
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