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We consider the Cauchy problem for the defocusing power-type nonlinear wave equation in .1C3/-dimensions
for energy subcritical powers p in the superconformal range 3 < p < 5. We prove that any solution is
global-in-time and scatters to free waves in both time directions as long as its critical Sobolev norm stays
bounded on the maximal interval of existence.
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1. Introduction

We study the Cauchy problem for the power-type nonlinear wave equation in R1C3,�
�uD˙ujujp�1;
Eu.0/D .u0; u1/; uD u.t; x/; .t; x/ 2 R1C3t;x :

(1-1)

Here �D �@2t C� so the “C” above yields the defocusing equation and the “�” yields the focusing
equation. The equation has the following scaling symmetry: if Eu.t; x/D .u; @tu/.t; x/ is a solution, then
so is
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The conserved energy, or Hamiltonian, is
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which scales like
E.Eu�/D �

3�2pC1
p�1E.Eu/:
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The energy is invariant under the scaling of the equation only when pD5, which is referred to as the energy-
critical exponent. The range p<5 is called energy subcritical, since concentration of a solution by rescaling
requires divergent energy; i.e., �! 0 implies E.Eu�/!1. Conversely, the range p > 5 is called energy
supercritical, and here E.Eu�/! 0 as �! 0; i.e., concentration by rescaling is energetically favorable.

Fixing p, the critical Sobolev exponent sp WD 3
2
�

2
p�1

is defined to be the unique sp 2 R so that
PH sp � PH sp�1.R3/ is invariant under the scaling (1-2). We will often use the shorthand notation

PHs WD PH s
� PH s�1.R3/:

The power-type wave equation on R1C3t;x has been extensively studied. In the defocusing setting, the
positivity of the conserved energy can be used to extend a local existence result to a global one for
sufficiently regular initial data. Jörgens [1961] showed global existence for the defocusing equation
for smooth compactly supported data. Strauss [1968] proved global existence for smooth solutions and
moreover that these solutions decay in time and scatter to free waves — this remarkable paper was the
first work that proved scattering for any nonlinear wave equation. There are many works extending the
local well-posedness theorem of Lindblad and Sogge [1995] in PHs for s > sp to an unconditional global
well-posedness statement and we refer the reader to [Kenig et al. 2000; Gallagher and Planchon 2003;
Bahouri and Chemin 2006; Roy 2009]. These works do not address global dynamics of the solution, in
particular scattering. In the radial setting the first author has made significant advances in this direction,
proving in [Dodson 2018b; 2019] an unconditional global well-posedness and scattering result for the
defocusing cubic equation for data in a Besov space with the same scaling as PH1=2. In very recent work
Dodson [2018a] has proved unconditional scattering for the defocusing equation for radial data in the
critical Sobolev space in the entire range 3� p < 5.

The goal of this paper is to address global dynamics for (1-1) in the nonradial setting. Our main result
is the following theorem.

Theorem 1.1 (main theorem). Consider (1-1) for energy subcritical exponents 3 < p < 5 and with the
defocusing sign. Let Eu.t/ 2 PHsp .R3/ be a solution to (1-1) on its maximal interval of existence Imax.
Suppose that

sup
t2Imax

kEu.t/k PHsp .R3/ <1: (1-3)

Then, Eu.t/ is defined globally in time, i.e., Imax D R. In addition, we have

kuk
L
2.p�1/
t;x .R1C3/

<1;

which implies that Eu.t/ scatters to a free wave in both time directions; i.e., there exist solutions Ev˙L .t/ 2
PHsp .R3/ to the free wave equation,�v˙L D 0, so that

kEu.t/� Ev˙L .t/k PHsp .R3/! 0 as t !˙1:

A version of Theorem 1.1 restricted to radially symmetric data was established in [Shen 2013]; see also
[Dodson and Lawrie 2015b] for the cubic power. This type of conditional scattering result first appeared
in [Kenig and Merle 2010] in the setting of the 3-dimensional cubic NLS and has since attracted a great
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deal of research activity; see, e.g., [Kenig and Merle 2011a; 2011b; Killip and Visan 2011a; 2011b; Bulut
2012a; 2012b; Dodson and Lawrie 2015a; Rodriguez 2017; Duyckaerts et al. 2014; Duyckaerts and Roy
2017] for this type of result for the nonlinear wave equation.

In the energy-critical regime, the bound (1-3) is guaranteed by energy conservation, and the analogue
of Theorem 1.1 was proved in the seminal works [Shatah and Struwe 1993; 1994; Bahouri and Shatah
1998; Bahouri and Gérard 1999]. In the energy-supercritical regime, the analogue of Theorem 1.1 was
obtained in [Killip and Visan 2011a].

The regime treated in this work, namely energy-subcritical with nonradial data, necessitates several
new technical developments, which may prove useful in contexts beyond the scope of Theorem 1.1.

Remark 1.2. It is conjectured that for the defocusing equation all solutions with data in PHsp scatter in
both time directions as in the energy-critical case p D 5. Theorem 1.1 is a conditional result; specifically
we do not determine a priori which data satisfy (1-3). It is perhaps useful to think of the theorem in its
contrapositive formulation: if initial data in the critical space PHsp were to lead to an evolution that does
not scatter in forward time, then the PHsp norm of the solution must diverge along at least one sequence of
times tending to the maximal forward time of existence.

Remark 1.3. The dynamics are much different in the case of the energy subcritical focusing equation.
In remarkable works, Merle and Zaag [2003; 2005] classified the blow up dynamics by showing that
all blow-up solutions must develop the singularity at the self-similar rate. In the radial case, an infinite
family of smooth self-similar solutions is constructed in [Bizoń et al. 2010]. Donninger and Schörkhuber
[2012; 2017] address the stability of the self-similar blow up.

1A. Comments about the proof. The proof of Theorem 1.1 follows the fundamental concentration
compactness/rigidity method which first appeared in [Kenig and Merle 2006; 2008]. The proof is by
contradiction — if Theorem 1.1 were to fail, the profile decomposition of [Bahouri and Gérard 1999] would
yield a minimal nontrivial solution to (1-1), referred to as a critical element and denoted by Euc , that does
not scatter. Here “minimal” refers to the size of the norm in (1-3). This standard construction is outlined
in Section 3. The key feature of a critical element is that its trajectory is precompact modulo symmetries
in the space PHsp ; see Proposition 3.3. The proof is completed by showing that this compactness property
is too rigid for a nontrivial solution and thus the critical element cannot exist.

The major obstacle to rule out a critical element Euc.t/ in this energy subcritical setting is the fact
that Euc.t/ is a priori at best an PHsp solution, while all known global monotonicity formulae, e.g., the
conserved energy, virial and Morawetz-type inequalities require more regularity. In general, solutions to
a semilinear wave equation are only as regular as their initial data because of the free propagator S.t/ in
the Duhamel representation of a solution

Euc.t0/D S.t0� t /Euc.t/C

Z t0

t

S.t0� �/.0;˙juj
p�1u.�// d�: (1-4)

However, for a critical element the precompactness of its trajectory is at odds with the dispersion of the
free part, S.t0 � t /Eu.t/, which means the first term on the right-hand-side above must vanish weakly
as t ! sup Imax or as t ! inf Imax, where Imax is as in Theorem 1.1. Thus, the Duhamel integral on
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the right-hand-side of (1-4) encodes the regularity of a critical element and additional regularity can be
expected due to the nonlinearity. As in [Dodson and Lawrie 2015b] the gain in regularity at a fixed time t0
is observed via the so-called “double Duhamel trick”, which refers to the analysis of the pairing� Z t0

T1

S.t0� t /.0;˙juj
p�1u/ dt;

Z T2

t0

S.t0� �/.0;˙juj
p�1u/ d�

�
; (1-5)

where we take T1 < t0 and T2 > t0. The basic outline of this technique was introduced in [Tao 2007] and
was used within the Kenig–Merle framework for nonlinear Schrödinger equations in [Killip and Visan
2010a; 2010b; 2013], and for nonlinear wave equations in, e.g., [Killip and Visan 2011a; Shen 2013].
This method is also closely related to the in/out decomposition used by Killip, Tao, and Visan [Killip
et al. 2009, Section 6].

Here we employ several novel interpretations of the double Duhamel trick, substantially building on
the simple implementation developed by the first two authors in the radial setting in [Dodson and Lawrie
2015a; 2015b] for pD 3, which exploited the sharp Huygens principle to overcome the difficulties arising
from the both the slow hti�1 decay of S.t/ in dimension 3 and the small power p D 3 that precluded
this case from being treated by techniques introduced in earlier works. The general case (nonradial data)
considered here requires several new ideas.

We briefly describe the set-up and several key components of the proof. A critical element has compact
trajectory up to action by one-parameter families (indexed by t 2 Imax.Euc/) of translations x.t/ that mark
the spatial center of the bulk of Euc.t/, and rescalings N.t/ that record the frequency scale at which Euc.t/
is concentrated. In Section 3 we perform a reduction to four distinct behaviors of the parameters x.t/
and N.t/. First, following the language of [Killip and Visan 2011a] we distinguish between x.t/ that are
subluminal, roughly that jx.t/�x.�/j � .1�ı/jt�� j for some ı > 0, and those that fail to be subluminal,
i.e., if x.t/ forever moves at the speed of light, or more precisely, jx.t/j ' jt j (in a certain sense) for all t .
The latter case is quite delicate in this energy-subcritical setting and we introduce several new ideas to
treat it; see Section 7. We elaborate further on these two cases.

Subluminal critical elements. When x.t/ is subluminal, we distinguish between what we call a soliton-like
critical element where N.t/ D 1, a self-similar-like critical element where N.t/ D t�1, t > 0, and a
global concentrating critical element where lim supt!1N.t/D1. These distinct cases are treated in
Sections 4, 5, and 6 respectively.

In Section 4, we set out to show as in [Dodson and Lawrie 2015b] that soliton-like critical elements
must be uniformly bounded in PH1C� \ PHsp and hence the trajectory is precompact in PH1. Once this
is accomplished we can access nonlinear monotonicity formulae to show that such critical elements
cannot exist. In this latter step we employ a version of a standard argument based on virial identity, after
shifting the spatial center of the solution to x D 0 by the Lorentz group, which is compactified by the
bound in PH1. The heart of the argument in Section 4 is thus establishing the additional regularity of
a soliton-like critical element. The goal, roughly, is to show that the pairing (1-5) can be estimated in
PH1. In [Dodson and Lawrie 2015b] the proof relied crucially on radial Sobolev embedding. As this is
no longer at our disposal in the current, nonradial setting, we have introduced a substantial reworking
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of the argument from [Dodson and Lawrie 2015b] that both simplifies it and removes the reliance on
radial Sobolev embedding. Examining the pairing (1-5) at time t0 D 0 we divide space-time into three
types of regions; see Figure 1. The first region is a fixed time interval of the form Œt0�R; t0CR�, where
R > 0 is chosen so that the bulk of Euc.t/ is captured by the light cone emanating from .t0; 0/ in both
time directions. In this region (1-5) is estimated using an argument based on Strichartz estimates, using
crucially that R> 0 is finite and can be chosen independently of t0 by compactness. The second region is
the region of space-time exterior to this time interval and exterior to the cone. Here the PHsp norm of the
solution is small on any fixed time slice and hence an argument based on the small-data theory can be
used to absorb the time integrations in (1-5). Lastly, the heart of the double Duhamel trick is employed to
note the interaction between the two regions in the interior of the light cone, one for times t < �R and
the other for times t > R is identically D 0 by the sharp Huygens principle!

In Section 5 we show that a self-similar-like critical element cannot exist. Here we again use a double
Duhamel argument centered at t0 2 .0;1/, but with T1 D inf Imax D 0 and T2 D sup Imax D1 in (1-5).
The argument-exploiting Huygens principle given in Section 4 no longer applies since the forward and
backwards cones emanating from time, say, t0 D 1 can never capture the bulk of the solution since
N.T /D T �1 is an expression of the fact that the solution is localized to the physical scale T at time T ;
see Remark 3.6. However, here we use a different argument based on a version of the long-time Strichartz
estimates introduced in [Dodson 2012; 2016], which allow us to control Strichartz norms of the projection
of Euc to high frequencies k� 1 on time intervals J which are long in the sense that jJ j ' 2˛k for ˛ � 1.

In Section 6, N.t/ is no longer a given fixed function. We establish a dichotomy which we refer
to colloquially as the sword or the shield: either additional regularity for the critical element can be
established using essentially the same argument used in Section 4A, or a self-similar-like critical element
can be extracted by passing to a suitable limit. To apply the argument from Section 4 the following must be
true — fixing any time t0, the amount of time (but where now time is measured relative to the scale N.t/)
that one has to wait until the bulk of the solution is absorbed by the cone emanating from time t0 must be
uniform in t0. We define functions C˙.t0/ whose boundedness (or unboundedness) measures whether or
not this criteria is satisfied; see the introduction to Section 6. The rest of the section is devoted to showing
how to apply the arguments from Section 4 in the case where C˙.t0/ are uniformly bounded, and how
to extract a self-similar solution-like critical element in the case that one of C˙.t0/ are not bounded.

Critical elements that are not subluminal. In Section 7 we show that critical elements with spatial center
x.t/ traveling at the speed of light cannot exist. The technique in this section is novel and may be useful
in other settings. First we note that such critical elements are easily ruled out for solutions with finite
energy, as is shown in [Kenig and Merle 2008; Tao 2008a; 2008b; 2008c; 2009a; 2009b; Nakanishi and
Schlag 2011] using an argument based on the conserved momentum, and even in the energy-supercritical
setting; see [Killip and Visan 2011a] using the energy/flux identity. None of these techniques (which
provide an a priori limit on the speed of x.t/) apply in our setting so we must rule out this critical element
by other means, namely, by first showing that such critical elements have additional regularity.

In Section 3A we lay the necessary groundwork and show, using finite speed of propagation, that
any such critical element must have a fixed scale; i.e., N.t/D 1 and x.t/ must choose a fixed preferred
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direction up to deviation in angle by 1=
p
t . The model case one should consider is x.t/D .t; 0; 0/ for

all t 2 R, which means that the bulk of Euc.t/ travels along the x1-axis at speed t . We are able to show
that such critical elements have up to 1� � derivatives in the x2- and x3-directions for any � > 0. This is
enough to show that such critical elements cannot exist via a Morawetz estimate adapted to the direction
of x.t/— this is the only place in the paper where the arguments are limited to the defocusing equation.

The technical heart of this section is the proof of extra regularity (1� � derivatives) in the x2- and
x3-directions. We again divide space-time into three regions. For a solution projected to a fixed frequency
N � 1, we call region A the strip Œ0; N 1����R3 for � > 0 sufficiently small relative to �. On this region
we can control the solution by a version of the long-time Strichartz estimates proved in Section 7A. At time
t DN 1�� we then divide the remaining part of space-time for positive times into two regions. Region B

is the set including all times t �N 1�� exterior to the light cone of initial width R.�0/ emanating from the
point .t; x/D .N 1��; x.N 1��//whereR.�0/ is chosen large enough so that Euv.N 1��/ has PHsp norm less
than �0 exterior to the ball of radius R.�0/ centered at x.N 1��/. The solution is then controlled on region
B using small-data theory. Estimating the interaction of the two terms in the pair (1-5) on the remaining
region C (the region fjx � x.N 1��/j � R.�0/C t �N

1��; t � N 1��g) and the analogous region C 0

for negative times � � �N 1�� provides the most delicate challenge. Any naive implementation of the
double Duhamel trick based on Huygens principle is doomed to fail here since the left- and right-hand
components of the pair (1-5) restricted to C, C 0 interact in the wave zone jxj ' jt j. Furthermore, since
we are in dimension d D 3, the hti�1 decay from the wave propagator S.t/ in (1-5) is not sufficient
for integration in time. For this reason we introduce an auxiliary frequency localization to frequencies
j.�2; �3/j 'M in the �2- and �3-directions after first localizing in all directions to frequencies j�j 'N.
We call this angular frequency localization yPN;M . The key observation is that the intersection of the
wave zone fjxj ' jt jg with region C requires the spatial variable x D .x1; x2;3/ to satisfy

jx2;3j

jxj
�
M

N

for all M � N sp=.1��/ as long as � > 0 is chosen small enough relative to �, whereas application of
yPN;M restricts to frequencies � D .�1; �2;3/ with

j�2;3j

j�j
'
M

N
:

This yields angular separation in the kernel of yPN;MS.t/ and allows us to deduce arbitrary time decay
for the worst interactions in (1-5); see Lemma 7.11. The remaining interactions in (1-5) are dealt with
using an argument based on the sharp Huygens principle, which is complicated due to the blurring of
supports caused by yPN;M .

Remark 1.4. The proof of Theorem 1.1 serves as the foundation for the more complicated case of the
cubic equation, p D 3, as well as for the analogous result for the focusing equation; see for example
[Dodson and Lawrie 2015b], where the focusing and defocusing equations are treated in the same
framework in the radial setting.
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Much of the argument given here carries over to the defocusing equation when p D 3. However,
in this case we have sp D 1

2
and the critical space PH1=2 is the unique Sobolev space that is invariant

under Lorentz transforms. This introduces several additional difficulties, described more in detail in
Remark 3.14. Additionally, certain estimates in Section 7 fail at the p D 3 endpoint and would require
modification.

Similarly the argument in Sections 4–6 applies equally well to the focusing equation. However the
argument in Section 7 used to rule out the traveling-wave critical element is specific to the defocusing
equation as it relies on a Morawetz-type estimate only valid in that setting.

2. Preliminaries

2A. Notation, definitions, inequalities. We write A. B or B & A to denote A� CB for some C > 0.
Dependence of implicit constants will be denoted with subscripts. If A. B . A, we write A' B . We
will use the notation a˙ to denote the quantity a˙ � for some sufficiently small � > 0.

We will denote by PN the Littlewood–Paley projections onto frequencies of size j�j 'N and by P�N
the projections onto frequencies of size j�j.N. Often we will consider the case when N D 2k, k 2 Z, is
a dyadic number and in this case we will employ the following notation: when write Pk with a lowercase
subscript k this will mean projection onto frequencies j�j ' 2k. We will often write uN for PNu, and
similarly for P�N , P>N , Pk , and so on.

These projections satisfy Bernstein’s inequalities, which we state here.

Lemma 2.1 (Bernstein’s inequalities [Tao 2006, Appendix A]). Let 1 � p � q � 1 and s � 0. Let
f W Rd ! R. Then

kP�Nf kLp .N�skjrjsP�Nf kLp ;

kP�N jrj
sf kLp .N s

kP�Nf kLp ; kPN jrj
˙sf kLp 'N

˙s
kPNf kLp ;

kP�Nf kLq .N
d
p
�d
q kP�Nf kLp ; kPNf kLq .N

d
p
�d
q kPNf kLp :

We will write either

kukLqt L
r
x.I�R3/ or kukLqt .I ILrx.R3/

to denote the space-time norm �Z
I

�Z
R3
ju.t; x/jq;r dx

�q
r

dt

�1
q

;

with the usual modifications if q or r equals infinity.
Given s 2 R we define the space PHs by

PHs D PH s.R3/� PH s�1.R3/:

For example, we work with initial data in PHsp .
We also require the notion of a frequency envelope.
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Definition 2.2 [Tao 2001, Definition 1]. A frequency envelope is a sequence ˇDfˇkg of positive numbers
with ˇ 2 `2 satisfying the local constancy condition

2�� jj�kjˇk . ǰ . 2� jj�kjˇk;

where � > 0 is a small, fixed constant. If ˇ is a frequency envelope and .f; g/ 2 PH s � PH s�1 then we say
that .f; g/ lies underneath ˇ if

k.Pkf; Pkg/k PH s� PH s�1 � ˇk for all k 2 Z:

Note that if .f; g/ lies underneath ˇ then we have

k.f; g/k PH s� PH s�1 . kˇk`2.Z/:

In practice, we will need to choose the parameter � in the definition of frequency envelope sufficiently
small depending on the power p of the nonlinearity.

We next record a commutator estimate.

Lemma 2.3. Let �R be a smooth cutoff to jxj �R. For 0� s � 1 and N � 1,

kPN�Rf ��RPNf kL2 .N�s.NR/�.1�s/kf k PH s ;

kPN�Rf ��RPNf kL2 .R�s.NR/�.1�s/kf k PH�s :

Proof. We write the commutator as an integral operator in the form

ŒPN�Rf ��RPNf �.x/DN
d

Z
K.N.x�y//Œ�R.x/��R.y/�f .y/ dy:

Thus, using the pointwise bound

j�R.x/��R.y/j.N jx�yj �N�1R�1

and Schur’s test, we first find

kPN�Rf ��RPNf kL2 .N�1R�1kf kL2 :

Next, a crude estimate via the triangle inequality, Bernstein’s inequality, Hölder’s inequality, and Sobolev
embedding gives

kPN�Rf ��RPNf kL2 .N�1kr.�Rf /kL2 CN�1krf kL2 .N�1kf k PH1 :

The first bound now follows from interpolation. For the second bound, we write

ŒPN�Rf ��RPNf �.x/DN
d

Z
K.N.x�y//Œ�R.x/��R.y/�r �r�

�1f .y/ dy

and integrate by parts. Estimating as above via Schur’s test, we deduce

kPN�Rf ��RPNf kL2x .R
�1
kjrj

�1f kL2 ;

so that the second bound also follows from interpolation. �
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2B. Strichartz estimates. The main ingredients for the small-data theory are Strichartz estimates for the
linear wave equation in R1C3,

�v D F;

Ev.0/D .v0; v1/: (2-1)

A free wave means a solution to (2-1) with F D 0 and will be often denoted using the propagator notation
Ev.t/D S.t/Ev.0/. We define a pair .r; q/ to be wave-admissible in three dimensions if

q; r � 2;
1

q
C
1

r
�
1

2
; .q; r/¤ .2;1/:

The Strichartz estimates stated below are standard and we refer to [Keel and Tao 1998; Lindblad and
Sogge 1995; Sogge 2008].

Proposition 2.4 (Strichartz estimates [Keel and Tao 1998; Lindblad and Sogge 1995; Sogge 2008]). Let
Ev.t/ solve (2-1) with data Ev.0/ 2 PH s � PH s�1.R3/, with s > 0. Let .q; r/, and .a; b/ be admissible pairs
satisfying the gap condition

1

q
C
3

r
D
1

a0
C
3

b0
� 2D

3

2
� s;

where .a0; b0/ are the conjugate exponents of .a; b/. Then, for any time interval I 3 0 we have the bounds

kvkLqt .I IL
r
x/
. kEv.0/k PH s� PH s�1 CkF kLa0t .I IL

b0
x /
:

2C. Small data theoryW global existence, scattering, perturbative theory. A standard argument based
on Proposition 2.4 yields the scaling-critical small-data well-posedness and scattering theory. We define
the following notation for a collection of function spaces that we will make extensive use of. In this
subsection we fix p 2 Œ3; 5� (later we will fix p 2 .3; 5/) and let I � R be a time interval. We define

S.I / WD L
2.p�1/
t .I IL2.p�1/x .R3//:

For example, when p D 3, we have S D L4t;x , while for p D 5 we have S D L8t;x .

Remark 2.5. There are a few other function spaces related to

PHsp WD PH sp � PH sp�1.R3/

that will appear repeatedly in our analysis. First note the Sobolev embedding PH sp .R3/ ,!L.3=2/.p�1/.R3/,
which means

kf kL.3=2/.p�1/.R3/ . kf k PH sp .R3/
:

Proposition 2.6 (small-data theory). Let 3�p<5 and suppose that Eu.0/D .u0; u1/2 PH sp� PH sp�1.R3/.
Then there is a unique solution Eu.t/ 2 PHsp with maximal interval of existence Imax.Eu/D .T�.Eu/; TC.Eu//.
Moreover, for any compact interval J � Imax,

kukS.J / <1:
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Additionally, a globally defined solution Eu.t/ on t 2 Œ0;1/ scatters as t!1 to a free wave if and only if
kukS.Œ0;1// <1. In particular, there exists a constant ı0 > 0 so that

kEu.0/k PH sp� PH sp�1 < ı0 D) kukS.R/ . kEu.0/k PH sp� PH sp�1 . ı0

and thus Eu.t/ scatters to free waves as t ! ˙1. Finally, we have the standard finite time blow-up
criterion:

TC.Eu/ <1 D) kukS.Œ0;TC.Eu// DC1:

An analogous statement holds if �1< T�.Eu/.

The concentration compactness procedure in Section 3 requires the following nonlinear perturbation
lemma for approximate solutions to (1-1).

Lemma 2.7 (perturbation lemma [Kenig and Merle 2006; 2008]). There exist continuous functions
�0; C0 W .0;1/ ! .0;1/ so that the following holds true. Let I � R be an open interval (possibly
unbounded) and Eu; Ev 2 C.I I PH sp � PH sp�1/ satisfy for some A > 0

kEvk
L1.I I PH sp� PH sp�1/

CkvkS.I/ � A;

kjrj
sp�

1
2 eq.u/k

L
4=3
t .I IL

4=3
x /
Ckjrj

sp�
1
2 eq.v/k

L
4=3
t .I IL

4=3
x /
Ckw0kS.I/ � � � �0.A/;

where eq.u/ WD�u˙jujp�1u in the sense of distributions, and Ew0.t/ WD S.t � t0/.Eu� Ev/.t0/ with t0 2 I
fixed, but arbitrary. Then

kEu� Ev� Ew0kL1.I I PH sp� PH sp�1/
Cku� vkS.I/ � C0.A/�:

In particular, kukS.I/ <1.

3. Concentration compactness and the reduction of Theorem 1.1

We begin the proof of Theorem 1.1 using the concentration compactness and rigidity method of [Kenig
and Merle 2006; 2008]. The concentration compactness aspect of the argument is by now standard and
we follow the scheme from [Kenig and Merle 2010], which is a refinement of the scheme in [Kenig and
Merle 2006; 2008]. The main conclusion of this section is the following: if Theorem 1.1 fails, there exists
a minimal, nontrivial, nonscattering solution to (1-1), which we call a critical element.

We follow the notation from [Kenig and Merle 2010] for convenience. Given initial data .u0; u1/ 2
PH sp � PH sp�1, we let Eu.t/ 2 PH sp � PH sp�1 be the unique solution to (1-1) with data Eu.0/D .u0; u1/ and

maximal interval of existence Imax.Eu/ WD .T�.Eu/; TC.Eu//.
Given A > 0, set

B.A/ WD f.u0; u1/ 2 PH sp � PH sp�1 W kEu.t/k
L1t .Imax.Eu/I PH

sp� PH sp�1/
� Ag:

Definition 3.1. We say that SC.AI Eu.0// holds if Eu.0/2B.A/, Imax.Eu/DR and kukS.I/<1. In addition,
we will say that SC.A/ holds if, for every .u0; u1/ 2 B.A/, one has Imax.Eu/D R and kukS.I/ <1.
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Remark 3.2. Recall from Proposition 2.6 that kukS.I/ <1 if and only if Eu.t/ scatters to a free waves
as t !˙1. Thus, Theorem 1.1 is equivalent to the statement that SC.A/ holds for all A > 0.

Now suppose that Theorem 1.1 fails to be true. By Proposition 2.6, there exists an A0 > 0 small
enough so that SC.A0/ holds. Since we are assuming that Theorem 1.1 fails, we can find a threshold
value AC so that for A < AC , SC.A/ holds, and for A > AC , SC.A/ fails. Note that we must have
0 < A0 < AC . The Kenig–Merle concentration compactness argument is now used to produce a critical
element, namely a minimal nonscattering solution Euc.t/ to (1-1) so that SC.AC ; Euc/ fails, and which
enjoys certain compactness properties.

We state a refined version of this result below, and we refer the reader to [Kenig and Merle 2010;
Shen 2013; Tao et al. 2007; 2008] for the details. As usual, the deep foundations of the concentration
compactness part of the Kenig–Merle framework are profile decompositions of [Bahouri and Gérard
1999] used in conjunction with the nonlinear perturbation theory in Lemma 2.7.

Proposition 3.3. Suppose Theorem 1.1 fails to be true. Then, there exists a solution Eu.t/ such that
SC.AC I Eu/ fails, which we call a critical element. We can assume that Eu.t/ does not scatter in either time
direction, i.e.,

kukS..T�.Eu/;0�/ D kukS.Œ0;TC.Eu// D1;

and moreover, there exist continuous functions

N W Imax.Eu/! .0;1/; x W Imax.Eu/! R3

so that the set��
1

N.t/
2
p�1

u

�
t; x.t/C

�

N.t/

�
;

1

N.t/
2
p�1
C1
ut

�
t; x.t/C

�

N.t/

��
W t 2 Imax

�
(3-1)

is precompact in PHsp.

We make a few observations and reductions concerning the critical element found in Proposition 3.3.
It will be convenient to proceed slightly more generally, starting by giving a name to the compactness
property (3-1) satisfied by a critical element.

Definition 3.4. Let I 3 0 be an interval and let Eu.t/ be a nonzero solution to (1-1) on I. We will say Eu.t/
has the compactness property on I if there are continuous functions N W I ! .0;1/ and x W I ! R3 so
that the set

KI WD

��
1

N
2
p�1 .t/

u

�
t; x.t/C

�

N.t/

�
;

1

N
2
p�1
C1.t/

ut

�
t; x.t/C

�

N.t/

��
W t 2 I

�
is precompact in PHsp.

We make the following standard remarks about solutions with the compactness property. We begin
with a local constancy property for the modulation parameters.
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Lemma 3.5 [Killip and Visan 2013, Lemma 5.18]. Let Eu.t/ have the compactness property on a time
interval I � R with parameters N.t/ and x.t/. Then there exist constants �0 > 0 and C0 > 0 so that for
every t0 2 I we have �

t0�
�0

N.t0/
; t0C

�0

N.t0/

�
� I;

1

C0
�
N.t/

N.t0/
� C0 if jt � t0j �

�0

N.t0/
;

jx.t/� x.t0/j �
C0

N.t0/
if jt � t0j �

�0

N.t0/
:

Remark 3.6. For a solution with the compactness property on an interval I, we can, after modulation,
control the PHsp tails uniformly in t 2 I. Indeed, for any � > 0 there exists R.�/ <1 such thatZ

jx�x.t/j�R.�/
N.t/

jjrj
spu.t; x/j2 dxC

Z
j�j�R.�/N.t/

j�j2sp j Ou.t; �/j2 d� � �;Z
jx�x.t/j�R.�/

N.t/

jjrj
sp�1ut .t; x/j

2 dxC
Z
j�j�R.�/N.t/

j�j2.sp�1/j Out .t; �/j
2 d� � �

for all t 2 I. We call R. � / the compactness modulus.

We also remark that any Strichartz norm of the linear part of the evolution of a solution with the
compactness property on Imax vanishes as t! T� and as t! TC. A concentration compactness argument
then implies that the linear part of the evolution vanishes weakly in PHsp, that is, for each t0 2 Imax,

S.t0� t /u.t/ * 0

weakly in PHsp as t % sup I and t & inf I ; see [Tao et al. 2008, Section 6; Shen 2013, Proposition 3.6].
This implies the following lemma, which we use crucially in the proof of Theorem 1.1.

Lemma 3.7 [Tao et al. 2008, Section 6; Shen 2013, Proposition 3.6]. Let Eu.t/ be a solution to (1-1) with
the compactness property on its maximal interval of existence I D .T�; TC/. Then for any t0 2 I we can
write Z T

t0

S.t0� s/.0; juj
p�1u/ ds * Eu.t0/ as T % TCweakly in PHsp ;

�

Z t0

T

S.t0� s/.0; juj
p�1u/ ds * Eu.t0/ as T & T�weakly in PHsp :

Remark 3.6 indicates that solutions Eu.t/ with the compactness property have uniformly small tails
in PHsp, where “tails” are taken to be centered at x.t/, and relative to the frequency scale N.t/ at which
the solutions are concentrating. We would like to use this fact to obtain lower bounds for norms of the
solution u.t/. The immediate issue that arises is that the object that obeys compactness properties is
the pair Eu.t; x/D .u.t; x/; ut .t; x// and, a priori, the solution could satisfy u.t; x/D 0 a fixed time t .
Nonetheless, by averaging in time, such a lower bound still holds for the solution itself, u.t/. We can
quantify this bound in several ways, starting with a result proved in [Killip and Visan 2011a].
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Lemma 3.8 [Killip and Visan 2011a, Lemma 3.4]. Let Eu.t/ be a solution with the compactness property
on Imax D R. Then, for any A > 0, there exists �D �.A/ such thatˇ̌̌̌�

t 2

�
t0; t0C

A

N.t0/

�
W ku.t/k

L
3=2.p�1/
x

� �

�ˇ̌̌̌
�

�

N.t0/

for all t0 2 R.

Lemma 3.8 means that theL.3=2/.p�1/x norm of u.t/ is nontrivial when averaged over intervals around t0
of length comparable to N.t0/�1 uniformly in t0. By combining this lemma with Remark 3.6 and Sobolev
embedding we obtain the following as an immediate consequence.

Corollary 3.9 (averaged concentration around x.t/). Fix any ı0 > 0. Let Eu.t/ be a solution with the
compactness property on Imax D R. There exists a constant C > 0 so that

N.t0/

Z t0C
ı0
N.t0/

t0

Z
jx�x.t/j� C

N.t/

ju.t; x/j
3
2
.p�1/ dx dt & 1

for all t0 2 R.

One can also deduce the following corollary, also proved in [Killip and Visan 2011a], which gives a
lower bound on the localized S norm of u.t/.

Corollary 3.10 (S -norm concentration around x.t/). Let Eu.t/ be a solution with the compactness property
on Imax D R. Then there exist constants c; C > 0 so thatZ t2

t1

Z
jx�x.t/j� C

N.t/

ju.t; x/j2.p�1/ dx dt � c
Z t2

t1

N.t/ dt

for any t1; t2 such that

t2� t1 �
1

N.t1/
:

Proof. The proof runs completely parallel to the argument in [Killip and Visan 2011a, proof of Corollary 3.5]
given for the averaged potential energy. �

The fact that we have only averaged lower bounds on, e.g., the L.3=2/.p�1/ norm of a critical element
will not be too much trouble. We will often pair the above with the fact that the compactness parameters
N.t/; x.t/ are approximately locally constant; see Lemma 3.5.

Lastly, we also need the following estimate proved in [Dodson and Lawrie 2015b, Lemma 4.5].

Lemma 3.11 [Dodson and Lawrie 2015b, Lemma 4.5]. Let Eu.t/ have the compactness property on a
time interval I � R with scaling parameter N.t/. Let � > 0. Then there exists ı > 0 such that

kuk
L
2.p�1/
t;x .Œt0� ı

N.t0/
;t0C

ı
N.t0/

��R3/ � �

uniformly in t0 2 I.
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3A. Analysis of solutions with the compactness property. In the next subsection, we will prove a clas-
sification result for solutions with the compactness property. Our goal is to gather together a list of
possibilities for the compactness parameters N.t/ and x.t/ that is exhaustive in the sense that if we rule
out the existence of all members of the list, then Theorem 1.1 is true. Before stating these cases, we need
to distinguish between two scenarios based on how fast x.t/ is moving relative to the speed of light. To
make this distinction precise, we have the following definition.

Definition 3.12. Let Eu.t/ be a solution to (1-1) with the compactness property on I DR with parameters
x.t/ and N.t/ � 1. We will say that x.t/ is subluminal if there exists a constant A > 1 so that for all
t0 2 R there exists t 2 Œt0; t0CA=N.t0/� such that

jx.t/� x.t0/j � jt � t0j �
1

AN.t0/
:

Proposition 3.13. Suppose Eu.t/ is a solution to (1-1) with the compactness property on its maximal
interval of existence Imax with compactness parameters N.t/ and x.t/. We can assume without loss
of generality in the arguments that follow that Imax, N.t/ and x.t/ fall into one of the following four
scenarios:

(I) Soliton-like critical element: Imax D R, N.t/� 1 for all t 2 R and x.t/ is subluminal in the sense
of Definition 3.12.

(II) Two-sided concentrating critical element: ImaxDR, N.t/�1 for all t 2R, limsupt!˙1N.t/D1,
and x.t/ is subluminal.

(III) Self-similar-like critical element: Imax D .0;1/, N.t/D 1
t
, and x.t/� 0.

(IV) Traveling-wave critical element: Imax D R, N.t/� 1 for all t 2 R and jx.t/� .t; 0; 0/j.
p
jt j for

all t 2 R.

Remark 3.14. In the case p D 3, one must take into account the action of the Lorentz group, which will
introduce additional cases to the list of critical elements in Proposition 3.13. For p¤3, the hypothesis (1-3)
compactifies the action of the Lorentz group in the Bahouri–Gérard profile decomposition at regularity PHsp,
which is why only a translation x.t/ and scaling N.t/ appear in the descriptions of critical elements.
However, because PH1=2 is invariant under action of the Lorentz group, one must confront critical elements
with velocity `.t/ that approaches the speed of light. See [Ramos 2012; 2018] for Bahouri–Gérard-type
profile decompositions in this setting.

Before proving Proposition 3.13, we note that ruling out cases (I)–(IV) in the statement of the proposition
will prove our main result, Theorem 1.1. Hence we will now focus on establishing Proposition 3.13 and
proving that such critical elements cannot exist.

We will prove this proposition in several steps. First, we will reduce the frequency parameter N.t/
to one of three possible cases. We state these reductions for N.t/, but we omit the proof as it follows
readily from arguments similar to those in [Killip and Visan 2013, Theorem 5.25].
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Proposition 3.15. Let Eu.t/ denote the critical element found in Proposition 3.3. Passing to subsequences,
taking limits, using scaling considerations and time reversal, we can assume, without loss of generality,
that TC.Eu/DC1, and that the frequency scale N.t/ and maximal interval of existence Imax D Imax.Eu/

satisfy one of the following three possibilities:

� Soliton-like scale: Imax D R and

N.t/� 1 for all t 2 R:

� Doubly concentrating scale: Imax D .�1;1/ and

lim sup
t!T�

N.t/D1; lim sup
t!1

N.t/D1; and N.t/� 1 for all t 2 R:

� Self-similar scale: Imax D .0;1/ and N.t/D t�1.

We will now make a few further reductions, mostly concerning the spatial center x.t/ of a critical
element that is global in time.

We will show that in all cases where we have a solution with the compactness property with translation
parameter x.t/ that fails to be subluminal, we may extract a traveling-wave solution. To prove this, we
will need to analyze the properties of solutions with the compactness property and more specifically,
properties of their spatial centers, x.t/. We turn to this analysis now. First, we note that in the case that
x.t/ is subluminal (see Definition 3.12) we can derive the following consequence.

Lemma 3.16 [Killip and Visan 2011a, Proposition 4.3]. Let Eu.t/ be a solution to (1-1) with the compact-
ness property on I DR with parameters x.t/ andN.t/� 1. Suppose x.0/D 0 and that x.t/ is subluminal
in the sense of Definition 3.12. Then there exists a ı0 > 0 so that

jx.t/� x.�/j � .1� ı0/jt � � j

for all t; � with

jt � � j �
1

ı0Nt;�
;

where Nt;� WD infs2Œt;��N.s/.

Proof. See the proof of Proposition 4.3 in [Killip and Visan 2011a]. �

Using Lemma 3.5 together with Lemma 3.8 and a domain-of-dependence argument based on the finite
speed of propagation, we obtain a preliminary bound on how fast x.t/ can grow. (See, e.g., [Killip and
Visan 2011a, Proposition 4.1].)

Lemma 3.17. Let Eu.t/ have the compactness property on a time interval I � R with parameters N.t/
and x.t/. Then there exists a constant C > 0 so that for any t1; t2 2 I we have

jx.t1/� x.t2/j � jt1� t2jC
C

N.t1/
C

C

N.t2/
: (3-2)
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In fact, if Eu.t/ is global in time, we have N.t/jt j !1 as jt j !1 and we normalize so that x.0/D 0,
from which the above yields

lim
t!˙1

jx.t/j

jt j
� 1: (3-3)

Remark 3.18. We remark that by finite speed of propagation and compactness, we can assume that

lim inf
t!T˙.Eu/

jt jN.t/ 2 Œ1;1�:

Note that according to the definition of the compactness property, the function x.t/ is not uniquely
defined; indeed, one can always modify x.t/ up to a radius of O.N.t/�1/, provided one also modifies
the compactness modulus appropriately. Note, however, that the compactness property, together with
monotone convergence, prevents Eu from concentrating on very narrow strips, as measured in units
of N.t/�1. See [Killip and Visan 2011a, Lemma 4.2].

Lemma 3.19. Let Eu be a solution to (1-1) with the compactness property on an interval I. Then for any
� > 0, there exists c.�/ > 0 so that

sup
!2S2

Z
j!�Œx�x.t/�j�c.�/N.t/�1

jjrj
spuj2Cjjrjsp�1ut j

2 dx < �:

To deal with ambiguity in the definition of x.t/, we use the notion of a “centered” spatial center as in
[Killip and Visan 2011a], that is, a choice of x.t/ such that each plane through x.t/ partitions Eu.t/ into
two nontrivial pieces.

Definition 3.20. Let Eu be a solution to (1-1) with the compactness property on an interval I with spatial
center x.t/. We call x.t/ centered if there exists C.u/ > 0 such that, for all ! 2 S2 and t 2 I,Z

!�Œx�x.t/�>0

jjrj
spu.t; x/j2Cjjrjsp�1ut .t; x/j

2 dx � C.u/:

Proposition 3.21. Let Eu be a global solution to (1-1) with the compactness property. Then there exists a
centered spatial center for Eu.

Proof. The argument is similar to the proof of [Killip and Visan 2011a, Proposition 4.1]. Let x.t/ be any
spatial center for Eu. To shorten formulas, we introduce the notation

'.t; x/D jjrjspu.t; x/j2Cjjrjsp�1ut .t; x/j
2:

By compactness, there exists C D C.u/ large enough that

inf
t2R

Z
B.t/

'.t; x/ dx &u 1; where B.t/ WD fx W jx� x.t/j � CN.t/�1g:

Now set

Qx.t/D x.t/C

R
B.t/Œx� x.t/�'.t; x/ dxR

B.t/ '.t; x/ dx
:
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By definition, jx.t/� Qx.t/j � CN.t/�1, and hence Qx.t/ is a valid spatial center for Eu (one only needs
to add C to the compactness modulus). We now claim that Qx.t/ is centered. To see this, first note that by
construction one has Z

B.t/

! � Œx� Qx.t/�'.t; x/ dx D 0:

On the other hand, combining nontriviality on B.t/ together with Lemma 3.19, we haveZ
B.t/\j!�Œx�Qx.t/�j>cN.t/�1

'.t; x/ dx &u 1

for some c D c.u/ > 0. Thus Z
B.t/

j! � Œx� Qx.t/�j'.t; x/ dx &u N.t/�1;

and so Z
B.t/

f! � Œx� Qx.t/�gC'.t; x/ dx &u N.t/�1;

where “C” denotes the positive part. As jx� Qx.t/j � 2CN.t/�1 for x 2 B.t/, we finally deduce

1.u
Z
B.t/

f! � Œx� Qx.t/�gC

2CN.t/�1
'.t; x/ dx .u

Z
!�Œx�Qx.t/�>0

'.t; x/ dx

for all ! 2 S2, as needed. �

Proposition 3.22. Suppose that Eu.t/ is a solution with the compactness property on R with parameters
N.t/ and x.t/. Suppose in addition that N.t/ D 1 for all t 2 R, and that x.t/ fails to be subluminal
in the sense of Definition 3.12. Then there exists a (possibly different) solution Ew.s/ to (1-1) with the
compactness property on R with parameters N.s/ and x.s/ satisfying

N.s/� 1; jx.s/� .s; 0; 0/j.
p
jsj for all s 2 R:

Proof. Let Eu.t/ be a solution to (1-1) with the compactness property on R with parameters N.t/� 1 and
x.t/ failing to be subluminal. This means we can find a sequence tm and intervals

Im WD Œtm; tmCm�

such that
jx.tm/� x.t/j � jtm� t j �

1

m
for all t 2 Im: (3-4)

We construct a sequence as follows. Set

Eum.0/ WD Eu.tm; � � x.tm//:

Using the precompactness of the trajectory of Eu modulo the translations by x.t/ we can (passing to a
subsequence) extract a strong limit

Eum.0/! Eu1.0/ 2 PHsp as m!1:
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Let Eu1.�/ be the solution to (1-1) with initial data Eu1.0/. One can show that we must have Œ0;1/�
Imax.Eu1/ and that Eu1 satisfies the following compactness property on Œ0;1/: the set

K1 WD fEu1.�; � � x1.�// W � 2 Œ0;1/g

is precompact in PHsp .R3/, where for each � > 0 the function x1.�/ is defined by

x1.�/ WD lim
m!1

.x.tmC �/� x.tm//:

Note that for each � > 0 and for all � 2 Œ0;1/ we can choose M > 0 large enough so that for all m�M
we have

jx.tmC �/� x.tm/j � j� j �
1

m
;

where the last inequality follows from (3-4). Letting m!1 above, we conclude that in fact

jx1.�/j � � for all � 2 Œ0;1/:

By finite speed of propagation (see (3-3)) we can conclude that in fact

lim
�!1

jx1.�/j

�
D 1:

We now refine our solution again, this time constructing a suitable limit from Eu1.�/. First choose a
sequence 0 < �m!1 such that, for � � �m, we have

jx1.�/j

�
� 1C 2�m

and set �m D �mCm. Then by the previous two lines, it holds that

� � jx1.�/j � �.1C 2
�m/ for all � 2 Jm WD Œ�m�m; �mCm�:

From (3-4) and the definition of x1 we have

jx1.�/� x1.t/j � jt � � j for all t; � 2 Jm: (3-5)

As before we extract a limit from the sequence

Eu1;m.0/ WD Eu1.�m; � � x1.�m//! Ev.0/ 2Hsp

and we note that the solution Ev.s/ to (1-1) with data Ev.0/ has the compactness property on R with
parameters zN.s/� 1 and Qx.s/ defined by

Qx.s/ WD lim
m!1

.x1.�mC s/� x1.�m//:

Using (3-5) along with (3-2) we see that for all s1; s2 2 R we have

js1� s2j � j Qx.s1/� Qx.s2/j � js1� s2jC zC
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for some absolute constant zC > 0 and consequently

lim
s!˙1

j Qx.s/j

jsj
D 1: (3-6)

Now we express Qx.s/ in polar coordinates, finding r.s/� 0 and !.s/ 2 S2 so that

Qx.s/D r.s/!.s/ for all s 2 Œ0;1/:

Note that by (3-6) we have
r.s/

s
! 1 as s!1:

Since !.s/ 2 S2 we can find a sequence sm!1 and we can (up to passing to a subsequence) find a
limit !0 so that

!.sm/! !0 as m!1:

To prove the claim, it suffices to verify that

j Qx.s/� s!0j � C
p
s;

since then we obtain the desired result applying a fixed spatial rotation. Note that

js2!.s2/� s1!.s1/j
2
D js1� s2j

2
C s1s2j!.s2/�!.s1/j

2:

By finite speed of propagation

js2!.s2/� s1!.s1/j
2
� .js1� s2jCC/

2
D js1� s2j

2
C 2C js1� s2jCC

2;

and hence substituting this bound into the above equations we solve to obtain

j!.s2/�!.s1/j �

s
2C js1� s2jCC 2

s1s2
:

Then

j.snC s/!.snC s/� sn!.sn/� s!0j � jsnC sjj!.snC s/�!.sn/jC sj!.sn/�!0j

�

r
.2C sCC 2/

�
1C

s

sn

�
C sj!.sn/�!0j;

which implies
j Qx.s/� s!0j �

p
2CsCC 2;

as required. �

In the case that N.t/� 1 and x.t/ is not subluminal, we will now show that we can also reduce to the
case when N.t/D 1 for all t 2 R and x.t/D .t; 0; 0/CO.

p
jt j/. We will need the following lemma.

Lemma 3.23. Let Eu.t/ have the compactness property on I � R with parameters N.t/ and x.t/. Then
there exists a constant c 2 .0; 1/ such that for any t1; t2 2 I with N.t1/�N.t2/ it holds that

jx.t1/� x.t2/j � jt1� t2j �
c

N.t1/
D) N.t2/�

1

c2
N.t1/:
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Proof of Lemma 3.23. The argument adapts readily from [Killip and Visan 2011a, Lemma 4.4], using the
arguments from Section 3A. Exploiting time-reversal symmetry, space-translation symmetry, and rotation
symmetry, we may assume t1 < t2, x.t1/D 0, and x.t2/D .x1.t2/; 0; 0/ with x1.t2/ � 0. Further, we
may choose x.t/ to be centered by Proposition 3.21.

Suppose for contradiction that for times t1; t2 as in the statement of the lemma,

jx.t1/� x.t2/j � jt1� t2j �
c

N.t1/

but cN.t1/�1 � c�1N.t2/�1, where c D c.u/ will be chosen sufficiently small below.
Let  W R! Œ0;1/ be a cutoff so that  D 1 for x � �1 and  D 0 for x � �1

2
. Set

 2.x1/D  

�
x1� x1.t2/

cN.t1/�1

�
:

Then, given � > 0 and choosing c D c.�/ sufficiently small, we have

k. 2u.t2/;  2ut .t2//kHsp < �:

Choosing � small enough, the small-data theory and finite speed of propagation for (1-1) implyZ
�

jjrj
spu.t1; x/j

2
Cjjrj

sp�1ut .t1; x/j
2 dx . �2;

where

�D fx W x1 � x1.t2/� .t2� t1/� cN.t1/
�1
g:

Using the assumption on jx.t2/� x.t1/j and the normalizations above, one finds

�� fx W �e1 � Œx� x.t1/�� 2cN.t1/
�1
g;

so that Z
�e1�Œx�x.t1/��2cN.t1/�1

jjrj
spu.t1; x/j

2
Cjjrj

sp�1ut .t1; x/j
2 dx . �2:

On the other hand, choosing c D c.�/ sufficiently small, Lemma 3.19 impliesZ
0<�e1�Œx�x.t1/�<2cN.t1/�1

jjrj
spu.t1; x/j

2
Cjjrj

sp�1ut .t1; x/j
2 dx < �2:

We now choose �2�C.u/, whereC.u/ is as in Definition 3.20, to reach a contradiction to Proposition 3.21.
�

We are now in a position to prove that we can extract a traveling-wave solution from any solution with
compactness property with translation parameter x.t/ that fails to be subluminal.

Proposition 3.24. Suppose that Eu.t/ is a solution with the compactness property on R with parame-
ters N.t/ and x.t/. Suppose that either N.t/ is soliton-like or doubly concentrating in the sense of
Proposition 3.15 and that x.t/ fails to be subluminal in the sense of Definition 3.12. Then there exists a
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(possibly different) solution Ew.s/ to (1-1) with the compactness property on R with parameters N.s/ and
x.s/ satisfying

N.s/� 1; jx.s/� .s; 0; 0/j.
p
s for all s 2 R:

Proof of Proposition 3.24. Note that by Proposition 3.22 it suffices to show that we can extract a solution
with the compactness property on R with parameters N.t/D 1 and x.t/ failing to be subluminal. By our
assumption that x.t/ fails to be subluminal, for each m 2 N there exists tm 2 R so that

jx.tm/� x.t/j � jt � tmj �
1

mN.tm/
for all t 2 Im WD

�
tm; tmC

m

N.tm/

�
: (3-7)

We will show that N.t/'N.tm/ for all t 2 Im with constants independent of m. First assume that

N.tm/�N.t/:

Then by Lemma 3.23 we can find a constant c > 0 so that

c2N.t/�N.tm/�N.t/ for all t 2 Im:

Next assume that
N.t/�N.tm/:

This means that

�
1

N.tm/
� �

1

N.t/

and thus from (3-7) we see that

jx.tm/� x.t/j � jt � tmj �
1

mN.tm/
� jt � tmj �

1

MN.t/
:

Another application of Lemma 3.23 then gives

N.t/�N.tm/�
1

c2
N.t/:

As we can assume in Lemma 3.23 that c < 1, we deduce that

c2N.t/�N.tm/�
1

c2
N.t/ for all t 2 Im: (3-8)

We can then extract, in the usual manner a new solution Ew.s/ with the compactness property on Œ0;1/
with

zN.s/ WD lim
m!1

N
�
tmC

s
N.tm/

�
N.tm/

;

Qx.s/ WD lim
m!1

N.tm/

�
x

�
tmC

s

N.tm/

�
� x.tm/

�
:

Note that by (3-8) we must have

c1 � zN.s/� C1 for all s 2 Œ0;1/:
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Moreover, using (3-7), for each � > 0 we can find M > 0 large enough so that for each m�M we have

j Qx.s/jC � �

ˇ̌̌̌
N.tm/

�
x

�
tmC

s

N.tm/

�
� x.tm/

�ˇ̌̌̌
�N.tm/

ˇ̌̌̌
s

N.tm/
�

1

mN.tm//

ˇ̌̌̌
� s�

1

m
:

Letting m!1 we obtain
j Qx.s/j � s for all s 2 Œ0;1/:

Noting that Qx.0/D 0 and combining the above with (3-3), we conclude that

1�
j Qx.s/j

s
! 1 as s!1:

From here it is straightforward to obtain a new solution Ew.s/ with the compactness property on all of R

with parameters N.s/� 1 and x.s/ failing to be subluminal in the sense of Definition 3.12, and we apply
Proposition 3.22 to conclude. �

Finally, we now have the ingredients necessary to prove Proposition 3.13.

Proof of Proposition 3.13. Suppose Eu.t/ is a solution to (1-1) with the compactness property on its
maximal interval of existence Imax with compactness parameters N.t/ and x.t/. By Proposition 3.15, if
the solution has the compactness property with N.t/D t�1, then we may also assume without loss of
generality that it has the compactness property with translation parameter x.t/D 0: by finite speed of
propagation, x.t/ must remain bounded, and hence we may, up to passing to a subsequence, obtain a
precompact solution with x.t/D 0 by applying a fixed translation. Thus, in the case that N.t/D t�1 we
obtain a self-similar solution; i.e., we have reduced to case (III).

In the remaining cases we must address different scenarios depending on whether or not x.t/ is
subluminal in the sense of Definition 3.12. If x.t/ is subluminal, then we have reduced ourselves to
cases (I) and (II). If x.t/ fails to be subluminal, then by Proposition 3.24 we can find a critical element as
in the traveling-wave scenario, i.e., case (IV). �

4. The soliton-like critical element

In this section we show that the soliton-like critical element, that is, case (I) from Proposition 3.13, cannot
exist. The main result is the following proposition:

Proposition 4.1. There are no soliton-like critical elements for (1-1), in the sense of case (I) of
Proposition 3.13.

We recall that soliton-like means that Eu.t/ is a global solution to (1-1) with the compactness property
on R as defined in Definition 3.4 with parameters N.t/ � 1, and x.t/ subluminal in the sense of
Definition 3.12. We will show that any such solution with the compactness property is necessarily � 0.

The proof will be accomplished in two main steps. We are ultimately aiming to employ a rigidity
argument based on a virial identity, which will show that any such critical element must then be identically 0.
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The key point here is that in order to access the virial identity, which is at PH1 regularity, and to use it to
prove Proposition 4.1, we first must prove that our critical element actually lies in a precompact subset
of PH1. Thus, we must first show that a soliton-like critical element must be more regular than expected.
In fact, we will prove that the trajectory K of any soliton-like critical element (see Definition 3.4) must
be precompact in PH1\ PHsp.

Throughout this section, we assume towards a contradiction that Eu.t/ is a critical element with x.t/
subluminal in the sense of Definition 3.12 and N.t/� 1. In particular, by Lemma 3.16 there exists ı0 > 0
so that

jx.t/� x.�/j< .1� ı0/jt � � j for all jt � � j> 1

ı0
:

4A. Additional regularity. We first prove that if the soliton-like critical element Eu has some additional
regularity to begin with, then we can achieve PH1 regularity. The key ingredient in our proof will be a
double Duhamel argument, which will enable us to gain the requisite regularity for critical elements,
while our main technical tool will be the use of a frequency envelope which controls the PH1 norm (see
Definition 2.2). In order to exploit the sharp Huygens principle, we will use the following modified
frequency projection operators: let  � 0 be a smooth function supported on jxj � 2 satisfying  D 1 on
jxj � 1. For k � 0, let

Q<kf .x/D

Z
R3
23k .2k.x�y//f .y/ dy: (4-1)

These satisfy the same estimates as the usual Littlewood–Paley projections (which instead use sharp
cutoffs in frequency space), e.g., the Bernstein estimates in Lemma 2.1.

We summarize the main ingredient in Proposition 4.1, the aforementioned additional regularity result,
in the following proposition.

Proposition 4.2. Suppose Eu is a soliton-like critical element. Then

Eu 2 L1t PH
sp D) Eu 2 L1t PH

s

for some s > 1. In particular, the set

K WD fEu.t; � � x.t// W t 2 Rg � PHsp \ PH1

is precompact in PHsp \ PH1.

We will prove Proposition 4.2 in several steps. To make this precise, we define the parameter

s0 D spC
5�p

2p.p� 1/
D
3

2
�
5

2p
: (4-2)

This exponent is chosen so that PHs0 has the same scaling as Lpt L
2p
x , and we note that crucially sp <s0<1.

4B. The jump from PHs0.R3/ regularity to PH1.R3/ regularity. We begin with the first, easier gain in
regularity, namely passing from PHs0.R3/ to PH1.R3/.

Proposition 4.3. Suppose Eu is a soliton-like critical element. Let s0 > sp be defined as in (4-2). Then

Eu 2 L1t PH
s0 D) Eu 2 L1t PH

1:
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Proof. By time-translation symmetry, it suffices to estimate the PH1-norm at time t D 0. We complexify
the solution, letting

w D uC
i
p
��

ut :

Then

kw.t/k PH1 ' kEu.t/k PH1�L2
;

and if Eu.t/ solves (1-1), then w.t/ is a solution to

wt D�i
p
��w˙

i
p
��
jujp�1u:

By Duhamel’s principle, for any T, we have

w.0/D eiT
p
��w.T /˙

i
p
��

Z 0

T

ei�
p
��F.u/.�/ d�;

where F.u/D jujp�1u. By compactness (see Lemma 3.7),

lim
T!1

Q<ke
�iT
p
��w.T /D lim

T!1
Q<ke

iT
p
��w.�T /D 0 (4-3)

as weak limits in PH 1 for any k � 0. We next write

Q<kw.0/D e
�iT
p
��Q<kw.T /�

1
p
��

Z T

0

e�it
p
��Q<kF.u.t// dt

D eiT
p
��Q<kw.�T /�

1
p
��

Z 0

�T

e�it
p
��Q<kF.u.t// dt:

Using (4-3), and arguing as in [Dodson and Lawrie 2015b, Section 4] we can deduce

hQ<kw.0/;Q<kw.0/i PH1

D lim
T!1

�Z T

0

e�it
p
��Q<kF.u.t// dt;

Z 0

�T

e�i�
p
��Q<kF.u.s// dt

�
L2
: (4-4)

We fix a large parameter R > 0 to be determined below. Let ı0 be as in the statement of Lemma 3.16
and take T D 2Rı�10 . We define

region A WD f.t; x/ W 0� t � T g;

region B WD f.t; x/ W jx� x.T /j �RCjt �T jg;

region C WD f.t; x/ W jx� x.T /j<RCjt �T jg:

(4-5)

See Figure 1.
We will treat these regions separately. Our goal is to bound u on region A using that we are estimating

the solution on a compact time interval, and on region B using the small-data theory and finite speed of
propagation. We will then use the double Duhamel trick, together with the sharp Huygens principle on
region C, to conclude the proof.
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�
x
D
t

t D T

t

C

B

A

A0

B 0

C 0

x

Figure 1. A depiction of the space-time regions A, A0, B, B 0 and C, C 0 in the
case x.t/� 0.

Let �R denote a smooth cutoff to the set

fjx� x.T /j>Rg � R3:

Now fix a small parameter � > 0. By compactness of Eu, if RDR.�/ is sufficiently large then we have

k�R Eu.T /kHsp � �: (4-6)

We let Ev D .v; vt / be the solution to (1-1) with initial data

Ev.T /D �R Eu.T /:

By finite speed of propagation, we have

u� v for jx� x.T /j �RCjt �T j:

We now rewrite (4-4), and abusing notation slightly, we defineZ 1
0

e�it
p
��Q<kF.u.t// dt D ACBCC;

AD

Z T

0

e�it
p
��Q<kF.u.t// dt;

B D

Z 1
T

e�it
p
��Q<kF.v.t// dt;

C D

Z 1
T

e�it
p
��Q<kŒF .u.t//�F.v.t//� dt:

(4-7)

Note that the notation in (4-7) is such that each term relates to an estimate for the solution on the
correspondingly named region from (4-5).
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We can carry out a similar construction at time �T, yielding a small solution Qv that agrees with u
whenever jx� x.�T /j �RCjt CT j, and we obtain three terms in the negative time directionZ 0

�1

e�i�
p
��Q<kF.u.�// d� D A0CB 0CC 0;

A0 D

Z 0

�T

e�i�
p
��Q<kF.u.�// d�;

B 0 D

Z �T
�1

e�i�
p
��Q<kF. Qv.�// d�;

C 0 D

Z �T
�1

e�i�
p
��Q<kŒF .u.�//�F. Qv.�//� d�:

(4-8)

Using the elementary Hilbert space estimate

jhACBCC;A0CB 0CC 0ij. jAj2CjA0j2CjBj2CjB 0j2CjhC;C 0ij

whenever ACB CC D A0CB 0CC 0, where the j � j2 denotes the square of the norm induced by the
inner product, we may estimate

hQ<kw.0/;Q<kw.0/i PH1

by obtaining bounds for A;A0 and B;B 0 and hC;C 0i.

Region A. To estimate the A and A0 terms, first we establish the bound

kuk
L
2.p�1/
t;x .Œ�T;T ��R3/

.
�
T

�

� 1
2.p�1/

(4-9)

for some suitably small � > 0. To prove this, we rely on the fact that Eu is a soliton-like critical element.
Fix �> 0. Since N.t/D 1, there exists � > 0 small enough that the L2.p�1/t;x -norm is bounded by � on any
interval of length �; see Lemma 3.11. Thus to obtain the desired bound, we divide Œ�T; T � into � dT=�e
intervals Jk of length �, and

kuk
2.p�1/

L
2.p�1/
t;x .Œ�T;T ��R3/

'

dT=�eX
kD1

kuk
2.p�1/

L
2.p�1/
t;x .Jk�R3/

.
T

�
:

Using a similar argument together with Strichartz estimates and the hypothesis

kukL1t Hs0 . 1;
we obtain

kuk
L
p
t L

2p
x .Œ�T;T ��R3/

.
�
T

�

�1
p

kukL1t Hs0 : (4-10)

Thus, using (4-9), (4-10) and Strichartz estimates, we can estimate

jAj2CjA0j2 . kukp
L
p
t L

2p
x .Œ�T;T ��R3/

.
�
T

�

�
kuk

p

L1t Hs0 :
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Region B. For the estimates of B and B 0, we use the small-data theory to bound the solutions v and Qv.
We argue only for v as the estimates for Qv are identical. By the small-data theory, for � chosen sufficiently
small in (4-6), we have

kvk
L
2.p�1/
t;x .R1C3/

. �:

Using Strichartz estimates, we bound

kjrj
3.p�3/
2p vk

L
p
t L

2p=.p�2/
x

. kv.T /kHs0 Ckjrj
3.p�3/
2p .jvjp�1v/k

L
2p=.pC2/
t L

p=.p�1/
x

. ku.T /kHs0 Ckvk
p�1

L
2.p�1/
t;x

kjrj
3.p�3/
2p vk

L
p
t L

2p=.p�2/
x

;

with all space-time norms over R1C3. Note that
�
p; 2p

p�2

�
is wave-admissible. Thus, for � sufficiently

small, we deduce

kjrj
3.p�3/
2p vk

L
p
t L

2p=.p�2/
x

. kukL1t Hs0 .R1C3/;

and hence it follows from Sobolev embedding that

kvk
L
p
t L

2p
x .R1C3/

. kukL1t Hs0 :

Thus, we have shown that

jBj2CjB 0j2 . kvkp
L
p
t L

2p
x .R1C3/

. kukp
L1t Hs0 :

Region C. Finally, we claim that
hC;C 0i � 0: (4-11)

To see this, write

hC;C 0i D

Z 1
T

Z �T
�1

˝
ei.��t/

p
��Q<kŒF .u.t//�F.v.t//�;Q<kŒF .u.�//�F. Qv.�//�

˛
d� dt;

and note that by subluminality and the fact that x.0/D 0, we have for T D 2Rı�10 the inclusion

fjx� x.˙T /j �Rg � fjxj � .1� 2�1ı0/T g:

We recall that the operator Q<k defined in (4-1) is given by convolution with the function 23k .2kx/
for a fixed function  2 C10 .R

3/. Hence, for k � k0, a sufficiently large, fixed constant depending on
the support of  , ı0 and T, we can ensure

supp
�
Q<kŒF .u.�//�F. Qv.�//�

�
�

˚
jxj � j� j � 4�1ı0T

	
:

Similarly, using the properties of the Q<k and the sharp Huygens principle, we can ensure that for k
sufficiently large,

supp
�
ei.��t/

p
��Q<kŒF .u.t//�F.v.t//�

�
� fjxj> jt � � j � 4�1ı0T g:

Since t > 0 and � < 0, we have jt � � j> j� j, this yields (4-11), as required.



2022 BENJAMIN DODSON, ANDREW LAWRIE, DANA MENDELSON AND JASON MURPHY

Collecting these estimates, we obtain that

kQ<kw.0/k
2
PH1
D hQ<kw.0/;Q<kw.0/i PH1 . 1

uniformly in k � 0. The desired result then follows. �

4C. The jump from PHsp .R3/ regularity to PHs0.R3/ regularity. Now we turn to the more difficult
estimates. Here, we will need a finer analysis based on frequency envelope machinery. We prove the
following.

Proposition 4.4. Suppose Eu is a soliton-like critical element. Then

Eu 2 L1t PH
sp D) Eu 2 L1t PH

s

for any sp � s < 1.

Proof. Once again, we define

region A WD f.t; x/ W jt j � T g;

region B WD f.t; x/ W jx� x.T /j �RCjt �T jg;

region C WD f.t; x/ W jx� x.T /j<RCjt �T jg;

with corresponding regions A0, B 0, C 0 in the negative time direction. We further introduce

Qk DQ<2k �Q<k for k > 0; Q0 DQ<0:

By Schur’s test, we can conclude that these frequency projections are a good partition of frequency space,
in the sense that

kf k2
PH s
� kQ0f k

2
PH s
C

X
k�0

2kskQkf k
2
L2
:

We will also need to introduce an exponent q satisfying

2 < q <
2

sp
:

Region A. We begin by defining suitable frequency envelopes with a parameter � > 0 to be determined
shortly. We set


k.t0/D
X
j

2�� jj�kj
�
2spj kQju.t0/kL2C2

j.sp�1/kQj @tu.t0/kL2
�
;

˛k.J /D
X
j

2�� jj�kj
�
2�j.

2
q
�sp/kQjukLqt L

2q=.q�2/
x .J�R3/

C2j.
2
q
�1Csp/kQjukL2q=.q�2/t L

q
x.J�R3/

� (4-12)

for k � 0. Note
�
q; 2q
q�2

�
is sharp admissible and that each of the quantities appearing in the definition of

ˇk has the same scaling as PHsp. We will choose

0 < � <
2

q
� sp:
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Our goal is to prove that

˛k.Œ�T; T �/. 
k.0/CC02�k�; (4-13)

where C0 D C0.T /.
We begin by recording the some space-time estimates for Eu that are consequences of the precompactness

of the set K; see Definition 3.4. We fix � > 0. Since N.t/D 1, there exists � > 0 small enough that the
L
2.p�1/
t;x norm is < � on any interval of length �; see Lemma 3.11. Furthermore, we can find k0 D k0.�/

such that, for any k > k0,

kQ>kukL2.p�1/t;x .Œ�T;T ��R3/
< �T

1
2.p�1/ :

With these bounds in hand, we turn to the proof of (4-13). In the following, all space-time norms will be
taken over Œ�T; T ��R3. For any j, we decompose the nonlinearity as follows. Writing u�j DQ�ju
(and similarly for u>j ), we write

F.u/D F.u>k0/CF.u/�F.u>k0/;

where k0.�/ is as above. By Taylor’s theorem, we have

F.u/D F.u>k0/Cu�k0

Z 1

0

F 0.�u�k0 Cu>k0/ d�;

and hence to estimate the nonlinearity, it suffices to estimate three types of terms

u
p�1

>k0
u>j ; u

p�1

>k0
u�j ; u�k0u

p�1:

Using the inhomogeneous Strichartz estimates, we obtain

2�j.
2
q
�sp/





Z t

0

ei.t�s/
p
��QjF.u.s// ds






L
q
t L
2q=.q�2/
x

C 2j.
2
q
�1Csp/





Z t

0

ei.t�s/
p
��QjF.u.s// ds






L
2q=.q�2/
t L

q
x

.minf2j.
2
q
�1Csp/kF.u/k

L
q=.q�1/
t L

2q=.qC2/
x

; 2�j.
2
q
�sp/kF.u/k

L
2q=.qC2/
t L

q=.q�1/
x

g: (4-14)

Now let J be an interval with jJ j< �, and let t0 D infJ. In the next estimates, all norms will be taken
over J �R3. Using Strichartz estimates, we estimate

2�j.
2
q
�sp/kQjukLqt L

2q=.q�2/
x .J�R3/

C 2j.
2
q
�1Csp/kQjukL2q=.q�2/t L

q
x.J�R3/

. 2jspkuj .t0/kL2x C 2
j.sp�1/k@tuj .t0/kL2x C 2

j. 2
q
�1Csp/ku

p�1

>k0
u>j kLq=.q�1/t L

2q=.qC2/
x

C 2�j.
2
q
�sp/ku

p�1

>k0
u�j kL2q=.qC2/t L

q=.q�1/
x

C 2�j.
2
q
�sp/ku�k0u

p�1
k
L
2q=.qC2/
t L

q=.q�1/
x

. 2jspkuj .t0/kL2x C 2
j.sp�1/k@tuj .t0/kL2x C I C II C III:
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We first estimate term I. We obtain

2j.
2
q
�1Csp/ku

p�1

>k0
u>j kLq=.q�1/t L

2q=.qC2/
x

. 2j.
2
q
�1Csp/ku>k0k

p�1

L
2.p�1/
t;x

ku>j kL2q=.q�2/t L
q
x

. �.p�1/T 1=22j.
2
q
�1Csp/

X
`>j

2�`.
2
q
�1Csp/Œ2`.

2
q
�1Csp/kQ`ukL2q=.q�2/t L

q
x
�:

Similarly, for term II we obtain

2�j.
2
q
�sp/ku

p�1

>k0
u�j kL2q=.qC2/t L

q=.q�1/
x

. 2�j.
2
q
�sp/ku>k0k

p�1

L
2.p�1/
t;x

ku�j kLqt L
2q=.q�2/
x

. 2�j.
2
q
�sp/ku>k0k

p�1

L
2.p�1/
t;x

X
`�j

2`.
2
q
�sp/Œ2�`.

2
q
�sp/ku`kLqt L

2q=.q�2/
x

�:

Finally, for term III, using smallness of the interval and we obtain

2�j.
2
q
�sp/ku�k0u

p�1
k
L
2q=.qC2/
t L

q=.q�1/
x

. 2�j.
2
q
�sp/kuk

p�1

L
2.p�1/
t;x

ku�k0kLqt L
2q=.q�2/
x

. 2�j.
2
q
�sp/2k0.

2
q
�sp/�p�1T

1
2 :

Multiplying by 2�� jj�kj and summing in the above bounds, recalling that � < 2
q
� sp in our definition of

the frequency envelopes in (4-12), it follows that (for t0 D infJ ) we have


k.t1/C˛k.J /. 
k.t0/CT
1
2�p�1˛k.J /CC0.T /2

�k� :

For �� �.T / small enough so that

C�p�1T
1
2 < 1

2

with C the implicit constant in Strichartz estimates, this implies

˛k.J /. 
k.t0/CC02�k� :

Iterating this procedure dT=�e times on Œ�T; T �, we may also conclude that


k.t0/. 
k.0/;

from which (4-13) follows by summing up these estimates.

Region B. To implement the double Duhamel argument, we will again consider the solution v to (1-1)
with data Ev.T /D �R Eu.T /. To control this solution, we define the frequency envelopes

Q
k.t0/ and ˇk
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analogously to (4-12), but with space-time norms over R1C3. We will prove

ˇk . 
k.0/CC02�k� : (4-15)

First observe that

kvk
L
2.p�1/
t;x .R1C3/

. �:

Thus

kjrj
�. 2

q
�sp/vk

L
q
t L
2q=.q�2/
x

Ckjrj
2
q
�1Cspvk

L
2q=.q�2/
t L

q
x

. kv.T /kHsp Ckjrj
2
q
�1Csp .vjvjp�1/k

L
q=.q�1/
t L

2q=.qC2/
x

. �Ckvkp�1
L
2.p�1/
t;x

kjrj
2
q
�1Cspvk

L
2q=.q�2/
t L

q
x

. �C �p�1jjrj
2
q
�1Cspvk

L
2q=.q�2/
t L

q
x
;

which implies in particular that

kv�1kLqt L
2q=.q�2/
x .R1C3/

. �: (4-16)

We now estimate ˇk in essentially the same manner as ˛k . The main difference is that we split at
frequency 1 instead of at frequency k0 as above. Estimating as above, but using (4-16), we deduce

ˇk . Q
k.T /C �p�1ˇkCC02�k� ;

which implies

ˇk . Q
k.T /CC02�k� : (4-17)

In order to prove (4-15), we need to relate Q
k.T / to 
k.0/. Similar arguments as in (4-15) yield


k.T /. 
k.0/C �p�1ˇkCC02�k� . 
k.0/CC02�k� ;

so it therefore suffices to relate Q
k.T / to 
k.T /. Using that Ev.T /D �R Eu.T /, we apply the commutator
estimate Lemma 2.3 to deduce

2kspkQkv.T /kL2 . 2kspkQku.T /kL2 C .2kR/�.1�sp/kukL1t PH sp ;

2k.sp�1/kQk@tv.T /kL2 . 2k.sp�1/kQk@tu.T /kL2 C 2�kR�1k@tukL1t PH sp�1 :

In particular, since � < 2
q
� sp < 1� sp, we deduce that

Q
k.T /. 
k.T /CC02�k� :

Putting this together with (4-17) above, we conclude

ˇk . 
k.0/CC02�k� ;

which completes the proof of (4-15).
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We will now carry out the double Duhamel argument with the complexified solutions w. We write

hQjw.0/;Qjw.0/i PH1 D lim
s!1

�Z s

0

e�it
p
��QjF.u.t// dt;

Z 0

�s

e�i�
p
��QjF.u.�// d�

�
PH1

(4-18)

and (as before) take the decompositionZ 1
0

e�it
p
��QjF.u.t// dt D ACBCC

D A0CB 0CC 0 D

Z 0

�1

e�i�
p
��QjF.u.�// d�

for components as in (4-7) and (4-8). Once again, we rely on the algebraic inequality

hQjw.0/;Qjw.0/
˛
PH1. jAj2CjA0j2CjBj2CjB 0j2CjhC;C 0ij (4-19)

and we note that by construction and the argument above relying on the sharp Huygens principle,
hC;C 0i PH1 � 0.

To treat the other terms, we recall the definition of the frequency envelope ˛k in (4-12), and we use
(4-13) and (4-15). To this end, we multiply the left-hand side of (4-18) by 2�� jj�kj and we sum over
j � 0 to obtain


k.0/. �p�1
k.0/CC02�k� ;

which, choosing � sufficiently small depending only on the implicit constant, implies


k.0/. C02�k� ;

which yields Eu 2 PHs for any sp � s < spC� . Since that we may choose any � < 2
q
� sp and q arbitrarily

close to 2, we deduce Eu 2 L1t PHs for any sp � s < 1. This completes the proof of Proposition 4.4. �

Propositions 4.3 and 4.4 immediately yield the following corollary.

Corollary 4.5. Suppose Eu is a soliton-like critical element. Then

Eu 2 L1t PH
sp D) Eu 2 L1t PH

1:

4D. The jump from PH1.R3/ regularity to PHs.R3/ regularity. As mentioned above, in order to employ
the rigidity argument based on a certain virial identity, we also need to prove that the trajectory of a
critical element in fact lies in a precompact subset of PH1. We will achieve this by proving that in fact we
can gain a bit more regularity; specifically we can place the solution in PHs for some s > 1. The key idea
here is that we actually have a bit of room in the previous estimates given the additional assumption of PH1

regularity, and this will provide some extra decay which we can use to establish the additional regularity.

Proposition 4.6. Suppose Eu is a soliton-like critical element. Then Eu 2 L1t PHs for some s > 1.

Proof. Let v and Qv be the solutions to the small-data Cauchy problems defined above. By small-data
arguments v.T / 2 PH1.R3/ and kv.T /k PHsp small implies that

kvk
L
2q=.q�2/
t L

q
x.R�R3/

Ckjrj
1�spvk

L
2.p�1/
t;x .R�R3/

.T 1;

k Qvk
L
2q=.q�2/
t L

q
x.R�R3/

Ckjrj
1�sp Qvk

L
2.p�1/
t;x .R�R3/

.T 1:
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Furthermore, arguing as above and partitioning Œ�T; T � into sufficiently small intervals, we obtain

kuk
L
2q=.q�2/
t L

q
x.Œ�T;T ��R3/

Ckjrj
1�spuk

L
2.p�1/
t;x .Œ�T;T ��R3/

.T 1:

These inequalities, together with the argument used to prove Proposition 4.4, as well as (4-19) and (4-14),
establish that

kQku.0/k
2
H1 .T 2

�k�2�k.
2
q
�1Csp/:

Since we may choose any

� <
2

q
� sp;

and q arbitrarily close to 2, we have then shown thatX
k

22˛kkQku.0/k
2
H1 <1

for any ˛ < 1
2

, which concludes the proof. �

4E. Rigidity for the soliton-like critical element. Now we may prove that the soliton-like critical element
is identically zero. We summarize this in the following proposition.

Proposition 4.7. Let Eu.t/ 2 PH1 be a global-in-time solution to (1-1) such that for subluminal x.t/ the set

K D fu.t; � � x.t//; @tu.t; � � x.t// W t 2 Rg � PH1\ PHsp

is a precompact subset of PH1\ PHsp . Then Eu.t/� 0.

As mentioned in the Introduction, we include a proof of rigidity for the soliton-like critical element in
the focusing setting as well. The arguments that we use are similar to the ones given in [Côte et al. 2015,
Section 3; Dodson and Lawrie 2015b; Rodriguez 2017] but with a modification. The key new ingredient
here is that the subluminality of x.t/ compactifies the subset of the Lorentz group taking .t; x.t// to
.t 0; 0/; see also [Kenig and Merle 2006; Nakanishi and Schlag 2011] for a somewhat different approach
that uses the Lorentz transform to show that critical elements must have zero momentum. The main
ingredients in the proof are the following virial identities.

In what follows we let r D jxj and set @ruDru � .x=jxj/.

Lemma 4.8 (virial identities). Let � 2 C10 be a smooth radial function such that �.r/D 1 if r � 1 and
supp� 2 fr � 2g. For any R > 0 we define �R.r/D �

�
r
R

�
and let Eu.t/ be a solution to (1-1). Defining

�u.t/.R/ WD

Z
jxj�R

jruj2Cj@tuj
2
C
juj2

jxj2
CjujpC1 dx; (4-20)

we have
d
dt
h@tu j �R.r@ruCu/i D �E.Eu/˙

�
p�3

pC1

�
kuk

pC1

LpC1
CO.�u.t/.R//; (4-21)

where the “C” above corresponds to the focusing equation and the “�” corresponds to the defocusing
equation.
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If Eu.t/ solves the focusing equation, we have

d
dt

D
@tu W �R

�
r@ruC

1

2
u
�E
D�

1

2

Z
j@tuj

2
� 3

�
1

pC1
�
1

6

� Z
jujpC1CO.�u.t/.R//: (4-22)

Proof of Proposition 4.7 for the focusing equation. We may assume that x.0/D0. Since x.t/ is subluminal
we can find ı > 0 so that

jx.t/� x.�/j � .1� ı/jt � � j; jx.t/j � .1� ı/jt j (4-23)

for all t; � 2 R.
For convenience, we consider only the special case where

x.t/D .x1.t/; 0; 0/ for all t > 0;

as this contains the essential difficulties and the general argument is an easy modification of the one
presented below. Recall that for each � 2 .�1; 1/ we have a Lorentz transform L� defined by

L�.t; x1; x1; x3/D

�
t � �x1
p
1� �2

;
x1� �t
p
1� �2

; x2; x3

�
DW .t 0; x0/:

For any T > 0, set

�.T / WD
x1.T /

T
:

Then
�.1� ı/� �.T /� 1� ı (4-24)

and the Lorentz transform L�.T / gives

L�.T /.T; x1.T /; 0; 0/D .T
0; 0; 0; 0/;

where
T 0 D

p
T 2� x1.T /

2: (4-25)

Since x.t/ satisfies (4-23), we have the bounds

cıT � T
0
� T

for cı WD
p
1� .1� ı/2 > 0, which means that T 0 is comparable to T. For each T > 0 define

v�.T /.t
0; x0/ WD u ıL�.T /.t; x/:

Then, since K above is precompact for x.t/ subluminal and since Ev�.T /.t 0/ as above is a fixed Lorentz
transform of Eu.t; x/, we can explicitly obtain a subluminal translation parameter x0.t 0/ with

x0.T 0/D 0;

by the choice of �.T / above, such that the trajectory

K 0 WD fEv�.T /.t
0; x� x0.t 0// W t 0 2 Rg (4-26)
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is precompact in PH1\ PHsp ; see for example [Duyckaerts et al. 2016, Section 6] or [Nakanishi and Schlag
2011, Chapter 2] where such claims are carefully justified. We will now establish the following.

Claim 4.9. Consider a critical element for the focusing equation with 3� p < 5. For each n there exists
a time Tn > 0 such that for T 0n as in (4-25) we have

1

T 0n

Z T 0n

0

Z
R3
j@tv�.Tn/.t; x/j

2
Cjv�.Tn/.t; x/j

pC1 dx dt < 1

4n
:

Proof of Claim 4.9. Let T > 0. Since Ev�.T / solves the focusing equation we average (4-22) with RDCıT
over the time interval Œ0; T 0� for some constant Cı to be specified below, yielding

1

T 0

Z T 0

0

Z
R3
j@tv�.T /.t;x/j

2
Cjv�.T /.t;x/j

pC1 dx dt

. 1

T 0

ˇ̌
h@tv�.T /.t/j�2T r@rv�.T /ij

T 0

0

ˇ̌
C
1

T 0

ˇ̌
h@tv�.T /.t/j�2T v�.T /ij

T 0

0

ˇ̌
C
1

T 0

Z T 0

0

�v�.T /.t/.CıT /dt; (4-27)

where �v�.T /.CıT / is defined as in (4-20). Given n > 0, by (4-26), the subluminality of x0.t 0/, and the
fact that

x0.0/D 0; x0.T 0/D 0;

we can choose Cı and T D Tn large enough so that

1

T 0n

Z T 0n

0

�v�.Tn/.t/.CıT / dt � 1

n
:

Note that Cı can be chosen independently of n. Next we estimate the first term on the right-hand side
of (4-27). We treat only the case where the inner product is evaluated at t D T 0, as the case when it is
evaluated at t D 0 is similar. We have

1

T 0
jh@tv�.T /.T

0/ j �2T � r @rv�.T /.T
0/ij.

T
1
2

T 0
k@tv�.T /.T

0/kL2krv�.T /.T
0/kL2.jxj�T 1=2/

C
Cı

cı
k@tv�.T /.T

0/kL2krv�.T /.T
0/kL2.T 1=2�jxj�CıT /:

Since T 0 'ı T, the first term on the right-hand side above can be made as small as we like by choosing
Tn large enough so that

T
1
2
n

T 0n
�
1

n
:

Similarly, for the second term on the right, we rely on the precompactness of K 0 in PH1\ PHsp and the
fact that x0.T 0n/D 0, which yields

krv�.Tn/.T
0
n/kL2.jxj�T 1=2n /

�
1

n

for Tn large enough. The second term on the right-hand-side of (4-27) is estimated in a similar fashion.
This completes the proof of Claim 4.9. �
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Now, given this sequence of times Tn guaranteed by Claim 4.9 consider the sequence �.Tn/ WD
x1.Tn/=Tn. By (4-24) we can, passing to subsequence that we still denote by �.Tn/, find a fixed
� 2 Œ�1� ı; 1� ı� with

�.Tn/! �0 as n!1: (4-28)

Define

v�0.t
0; x0/ WD u ıL�0.t; x/

and note that this is a fixed Lorentz transform of u. It follows from Claim 4.9, (4-28), and a continuity
argument that in fact

1

T 0n

Z T 0n

0

Z
R3
j@tv�0.t; x/j

2
Cjv�0.t; x/j

pC1 dx dt < 1

2n

after passing to a further subsequence. Using yet another continuity argument we can assume without
loss of generality that T 0n DMn 2 N; i.e.,

1

Mn

Z Mn

0

Z
R3
j@tv�0.t; x/j

2
Cjv�0.t; x/j

pC1 dx dt < 1

n
(4-29)

for some sequence fMng � N with Mn!1. Now we claim that there exists a sequence of positive
integers mn!1 such thatZ mnC1

mn

Z
R3
j@tv�0.t; x/j

2
Cjv�0.t; x/j

pC1 dx dt ! 0 as n!1: (4-30)

If not, we could find �0 > 0 such that for all n 2 Z we haveZ mC1

m

Z
R3
j@tv�0.t; x/j

2
Cjv�0.t; x/j

pC1 dx dt � �0:

However, summing up from 0 to Mn� 1 we would then haveZ Mn

0

Z
R3
j@tv�0.t; x/j

2
Cjv�0.t; x/j

pC1 dx dt � �0Mn;

which contradicts (4-29). Now, by (4-30) we haveZ 1

0

Z
R3
j@tv�0.mnC t; x/j

2
Cjv�0.mnC t; x/j

pC1 dx dt ! 0 (4-31)

as n!1. On the other hand, passing to a further subsequence, we can find .V0; V1/ 2 PH1\ PHsp such
that

Ev�0.mn; � � x
0.mn//! .V0; V1/ 2 PH1\ PHsp as n!1:

Let EV .t/ be the solution to (1-1) with data .V0; V1/. Then for some t0 > 0 sufficiently small we have

lim
n!1

sup
t2Œ0;t0�

kEv�0.mnC t; � � x
0.mn//� EV .t/k PH1\ PHsp D 0: (4-32)
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However, from (4-31) we can then conclude that

EV � 0;

from which we conclude from (4-32) and small-data arguments that

Ev�0 � 0:

This means Eu� 0 as well, which finishes the proof. �

Proof of Proposition 4.7 for the defocusing equation. The argument is much easier if either p D 3 or if
the equation is defocusing since (4-21) gives us coercive control over the energy. Indeed, arguing as in
the proof of Claim 4.9, but using (4-21) instead of (4-22) we see that

E.Ev�.T //D
1

T 0

Z T 0

0

E.Ev�.T // dt D o.1/ as T !1

since, for each fixed T, the energy of v�.T /.t/ is constant in time. However, since

v�.T /.t
0; x0/D u ıL�.T /.t; x/;

we must have either lim supT!1j�.T /j D 1, or E.Eu/D 0. The former is impossible by (4-24). Hence
E.Eu/D 0. Therefore Eu� 0. �

Remark 4.10. Note the argument given above for the defocusing equation also works for the cubic
focusing equation since (4-21) yields control of the full energy for p D 3. Arguing as above one can
conclude that E.u/D 0. Since the only nonzero solutions with zero energy must blow up in both time
directions [Killip et al. 2014] we conclude that the global-in-time solution satisfies Eu� 0; see [Dodson
and Lawrie 2015b], where a version of this argument was carried out in detail.

5. The self-similar critical element

In this section, we assume towards a contradiction that Eu is a self-similar-like critical element as in
Proposition 3.13, case (III). We will prove that any such Eu has finite energy, and in fact that E.Eu/D 0.
Since we are treating the defocusing equation, this implies Eu� 0. The arguments in this section can be
readily adapted to the focusing setting as well.

More precisely, we will prove the following result.

Proposition 5.1. There are no self-similar-like critical elements in the sense of case (II) of Proposition 3.13.

As in Section 4, we will prove this proposition via two additional regularity arguments. We fix the
following notation: let

s0 D spC
5�p

2p.p� 1/
D
3

2
�
5

2p
: (5-1)

Proposition 5.2. Let Eu be a self-similar-like critical element as in Proposition 3.13. Then,

kEu.T /k PHs0 . T
�.s0�sp/

uniformly in T > 0.
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Proposition 5.3. Let Eu be a self-similar-like critical element as in Proposition 3.13. Let s0 be as in (5-1)
and suppose that

kEu.T /k PHs0 . T
�.s0�sp/ (5-2)

uniformly in T > 0. Then
kEu.T /k PH1 . T

�p.s0�sp/

uniformly in T > 0.

Proposition 5.3 will immediately imply Proposition 5.1.

Proof of Proposition 5.1 assuming Proposition 5.3. Note that the nonlinear component of the energy is
controlled by the PH 3=2�3=.pC1/.R3/ norm by Sobolev embedding, and by interpolation we have

PH
3
2
� 3
pC1 .R3/� PH sp \ PH 1:

Thus the conserved energy E.Eu/ must be zero by sending T !1 in Proposition 5.3. Then EŒEu�� 0,
which implies that Eu� 0, which is impossible. �

Proposition 5.3 is the easier of the two additional regularity arguments, so we turn to this first.

5A. The jump from PHs0.R3/ to PH1.R3/ regularity. We first prove that if Eu has some additional regu-
larity, then we can achieve PH1 regularity, and hence reach the desired contradiction.

Proof of Proposition 5.3. Using N.t/D t�1, we have

kuk
L
2.p�1/
t;x .Œ2k ;2kC1��R3/

. 1

uniformly in k. Thus for any 0 < �� 1, we can partition Œ2k; 2kC1� into C.�/ intervals Ij so that

kuk
L
2.p�1/
t;x .Ij�R3/

< �:

On each such interval, we may argue using Strichartz estimates and a continuity argument together with
(5-2) to deduce that

kuk
L
p
t L

2p
x .Ij�R3/

. 2�k.s0�sp/

for each j. This implies
kuk

L
p
t L

2p
x .Œ2k ;2kC1��R3/

. 2�k.s0�sp/

uniformly in k. We once again complexify the solution. We let

w D uC
i
p
��

ut :

Once again, if Eu.t/ solves (1-1), then w.t/ is a solution to

wt D�i
p
��w˙

i
p
��
jujp�1u:

By compactness,
lim
T!1

P�ke
iT
p
��w.�T /D 0
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as weak limits in PH s0 for any k � 0. By Strichartz estimates, we have

kP�kw.T /k PH1 . kujujp�1kL1tL2x.ŒT;1/�R3/

.
X
2k�T

2

kujujp�1kL1tL
2
x.Œ2k ;2kC1��R3/ .

X
2k�T

2

2�kp.s0�sp/ . T �p.s0�sp/;

which completes the proof. �

The jump from PHsp to PHs0 regularity. It remains to prove Proposition 5.2. The main technical ingredient
in the proof of Proposition 5.2 is a long-time Strichartz estimate.

Proposition 5.4 (long-time Strichartz estimate). Let ˛ � 1 and

2 < q <
2

sp
:

Suppose Eu is a self-similar-like critical element as in Proposition 3.13 with compactness modulus function
R. � /. For any �0 > 0, there exists k0 D k0.R.�0/; ˛/ so that, for every k > k0,

kjrj
3.p�3/
2.p�1/u>kkL2.p�1/t L

2.p�1/=.p�2/
x .Œ1;2˛.k�k0/��R3/

Ckjrj
�. 2

q
�sp/u>kkLqtL

2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

<�0:

Proof. We proceed by induction on k > k0. Let �0 > 0. Using compactness and the fact that N.t/D t�1,
we may find k0 large enough that

kjrj
3.p�3/
2.p�1/u>k0kL2.p�1/t L

2.p�1/=.p�2/
x .Œ1;23˛��R3/

Ckjrj
�. 2

q
�sp/u>k0kLqt L

2q=.q�2/
x .Œ1;23˛��R3/

< 1
2
�0:

This implies the result for k0 � k � 8k0.
To establish the induction step, by Taylor’s theorem, we may take the decomposition

F.u/D F.u>k�3/Cu�k�3

Z 1

0

F 0.�u�k�3Cu>k�3/

D F.u>k�3/Cu�k�3F
0.u>k�3/Cu

2
�k�3

Z 1

0

Z 1

0

F 00.�1�2u<k�3Cu>k�3/ d�1 d�2:

Hence, we can write the nonlinearity F.u/ as a sum of terms

P>kF.u/D jP>k�3uj
p�1P>k�3uCP>k.u�k�3F

0.u>k�3//CP>k.u
2
�k�3P>k�3F2/;

where

F2 D

Z 1

0

Z 1

0

F 00.�1�2u<k�3Cu>k�3/ d�1 d�2;

and we have used in the last term that

P>k.u
2
�k�3F2/D P>k.u

2
�k�3P>k�3F2/:

Note that jF 0.u>k�3/j . ju>k�3jp�1 and jF2j . ju<k�3jp�2C ju>k�3jp�2, and since the frequency
projections are bounded on Lp, we will replace these terms with jujp�1 and jujp�2 respectively once we
have a chosen a dual space in order to simplify the exposition of our estimates.
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Fix exponents


 D
q

2
; �D

6.�qCpq/

12� 12p� 21qC 13pq
;

and note that 
 2 .1; 2/ for q 2 .2; 4/, while for q D 2, we have

�D
6.p� 1/

7p� 15
2

�
6

5
; 2

�
:

In particular, by choosing q close to 2 we can guarantee that 
; � 2 .1; 2/. Furthermore,

1



C
1

�
�
3

2
D
2.p� 3/

3.p� 1/
� 0;

which guarantees that the conjugate exponent pair .
 0; �0/ is wave-admissible.
By Strichartz estimates,

kjrj
3.p�3/
2.p�1/u>kkL2.p�1/t L

2.p�1/=.p�2/
x

Ckjrj
�. 2

q
�sp/u>kkLqt L

2q=.q�2/
x

. ku>k.1/kHsp Ckjrj
3.p�3/
2.p�1/ Œu>k�3�

p
k
L
2.p�1/=p
t L

2.p�1/=.2p�3/
x

Ckjrj
�. 2

q
�sp/P>k.u�k�3u

p�1

>k�3
/k
L
2q=.qC2/
t L

q=.q�1/
x

Ckjrj
� 4
q
C3spP>k.u

2
�k�3P>k.u

p�2//kL
t L
�
x

WD I C II C III;

where all space-time norms are over Œ1; 2˛.k�k0/��R3. We estimate term I as follows:

kjrj
3.p�3/
2.p�1/ Œu>k�3�

p
k
L
2.p�1/=p
t L

2.p�1/=.2p�3/
x

. ku>k�3k
p�1

L
2.p�1/
t;x

kjrj
3.p�3/
2.p�1/u>k�3kL2.p�1/t L

2.p�1/=.p�2/
x

. kjrj
3.p�3/
2.p�1/u>k�3k

p

L
2.p�1/
t L

2.p�1/=.p�2/
x

:

By induction, we have

kjrj
3.p�3/
2.p�1/u>k�3kL2.p�1/t L

2.p�1/=.p�2/
x .Œ1;2˛.k�k0/=8��R3/

� �0:

Thus, using N.t/D t�1 and that Z 2˛.k�k0/

2˛.k�k0/=8

t�1 dt D log 23˛ � 1;

and the fact that N.t/� 1 on Œ2˛.k�k0/=8; 2˛.k�k0/� for k > k0� 1, we can deduce

kjrj
3.p�3/
2.p�1/u>k�3kL2.p�1/t L

2.p�1/=.p�2/
x .Œ2˛.k�k0/=8; 2˛.k�k0/��R3/

� �0:

In particular, using (5-3), we obtain that

kjrj
3.p�3/
2.p�1/ Œu>k�3�

p
k
L
2.p�1/=p
t L

2.p�1/=.2p�3/
x .Œ1;2˛.k�k0/��R3/

. �p0 :
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For term II, we estimate

2�k.
2
q
�sp/ku�k�3kLqt L

2q=.q�2/
x

ku>k�3k
p�1

L
2.p�1/
t;x

. �p�10 2�k.
2
q
�sp/ku�k�3kLqt L

2q=.q�2/
x

:

Fix C0 � 1 to be determined below. We write

ku�k�3kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

. ku�C0kLqt L2q=.q�2/x .Œ1;2˛.k�k0/��R3/

CkuC0< � �k0kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

(5-3)

C

X
k0�j�k�3

kuj kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

: (5-4)

For (5-3), we have

kuC0< � �k0kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

. C
2
q
�sp

0 log.2k�k0/:

On the other hand, for C0 D C0.�0/ large enough, we can estimate (5-4) byX
k0�j�k�3

kuj kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

. �02k0.
2
q
�sp/ log.2k�k0/:

Finally, for k0 � j � k� 3 we first use the inductive hypothesis to write

kPjukLqt L
2q=.q�2/
x .Œ1;2˛.j�k0/��R3/

. 2j.
2
q
�sp/�0:

Arguing as we did for the high-frequency piece,

kPMukLqt L
2q=.q�2/
x .Œ2˛.j�k0/;2˛.k�k0/��R3/

. 2j.
2
q
�sp/�0 log.2k�j /:

Thus X
k0�j�k�3

kuj kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

.
X

k0�j�k�3

�02
j. 2
q
�sp/Œ1C log.2k�j /�. �02k.

2
q
�sp/;

where we have used X
L>1

L�.
2
q
�sp/ log.L/. 1:

Collecting these estimates, we find

ku�k�3kLqt L
2q=.q�2/
x .Œ1;2˛.k�k0/��R3/

. ŒC0C �02k0.
2
q
�sp/� log.2k�k0/C �02

k. 2
q
�sp/; (5-5)

which yields

kjrj
�. 2
q
�sp/P>k.u�k�3u

p�1

>k�3
/k
L
2q=.qC2/
t L

q=.q�1/
x

. �p�10 2�k.
2
q
�sp/ŒC

2
q
�sp

0 C �02
k0. 2q�sp/� log.2k�k0/C �p0 :

Choosing k0 possibly even larger, we deduce

kjrj
�. 2

q
�sp/P>k.u�k�3u

p�1

>k�3
/k
L
2q=.qC2/
t L

q=.q�1/
x

. �p0 :
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Finally, we estimate term III. Since �2
q
C sp < 0, we use the fractional chain rule and Bernstein

estimates to obtain

kjrj
� 4
q
C3spP>k.u

2
�k�3P>k.u

p�2//kL
t L
�
x

. 2�k
4
q
C2spku�k�3k

2

L
q
t L
2q=.q�2/
x

kjrj
sp .up�2/k

L1t L
6.p�1/=.7p�15/
x

. 2�2k.
2
q
�sp/ku�k�3k

2

L
q
t L
2q=.q�2/
x

kuk
p�3

L1t L
3.p�1/=2
x

kjrj
scukL1t L

2
x
:

Using (5-5) (and the conditions on k0; C0 given above), we conclude

kjrj
� 4
q
C3spP>k.u

2
�k�3P>k.u

p�2//kL
t L
�
x
. �20:

Combining our estimates for terms I, II and III and choosing �0 small, we conclude that

kjrj
3.p�3/
2.p�1/u>kkL2.p�1/t L

2.p�1/=.p�2/
x

Ckjrj
�. 2

q
�sp/u>kkLqt L

2q=.q�2/
x

� �0

on Œ1; 2˛.k�k0/��R3, thus closing the induction and completing the proof. �

Finally, we arrive at the proof of the additional regularity Proposition 5.2.

Proof of Proposition 5.2. We compute

kEu.1/k2
PHs0 ' kw.1/k

2
PH s0
.

X
k�1

22ks0hPkw.1/; Pkw.1/i:

We use the double Duhamel argument based at t D 1. For some k� 1, we write

hPkw.1/; Pkw.1/i D

Z 1

0

Z 1
1

hei.1�t/
p
��PkF.u.t//; e

i.1��/
p
��PkF.u.�//i d� dt:

We fix ˛ � 1, to be determined below, and splitZ 1
1

ei.1�t/
p
��PkF.u.t// dt D AkCBk;

where

Ak D

Z 2k˛

1

ei.1�t/
p
��PkF.u.t// dt; Bk D

Z 1
2k˛

ei.1�t/
p
��PkF.u.t// dt:

We also write Z 1

0

ei.1��/
p
��PkF.u.s// ds DZk :

We will use the estimate
jhAkCBk; Zkij � jAkj

2
C 2jhBk; Zkij;

which follows from the fact that AkCBk DZk .

We first estimate the hBk; Zki term. We expand

jhBk; Zkij �
X
`�0

X
j�k˛

Z 2`C1

2`

Z 2jC1

2j

ˇ̌
he�i.t��/

p
��PkF.u.t//; PkF.u.s//i

ˇ̌
d� dt:



SCATTERING FOR DEFOCUSING ENERGY SUBCRITICAL NONLINEAR WAVE EQUATIONS 2037

We claim that
kPk.ujuj

p�1/kL2tL
1
x.Œ2`;2`C1��R3/ . 2

�ksp

uniformly in `� 0. Indeed, arguing as above, we can decompose the nonlinearity into two types of terms

u>k�1u
p�1 and uP>k�1.u

p�1/;

since if both u and jujp�1 are projected to low frequencies, the product vanishes when projected to high
frequencies.

We thus have by Bernstein’s inequality, Hölder’s inequality, and the fractional chain rule that

kPk.ujuj
p�1/kL2tL

1
x
. kukp�1

L
2.p�1/
t;x

ku>k�1kL1t L
2
x
Ckuk

L
2.p�1/
t;x

kP>k�1.u
p�1/k

L
2.p�1/=.p�2/
t L

2.p�1/=.2p�3/
x

. 2�kspkukp�1
L
2.p�1/
t;x

kjrj
spukL1t L

2
x
. 2�ksp ;

where all space-time norms are over Œ2`; 2`C1��R3.
Using dispersive estimates, we have, for any j � k˛ and `� 0,Z 2`C1

2`

Z 2jC1

2j
jhe�i.t��/

p
��PkF.u.t//; PkF.u.s//ij d� dt

.
Z 2`C1

2`

Z 2jC1

2j
t�12kkPk.ujuj

p�1/.t/kL1xkPk.ujuj
p�1/.�/kL1x d� dt

. 2
`
2 2�

j
2 kPk.ujuj

p�1/kL2tL
1
x.Œ2`;2`C1��R3/kPk.ujuj

p�1/kL2tL
1
x.Œ2k ;2kC1��R3/

. 2
`
2 2�

j
2 2k.1�2sp/:

Summing over `� 0 and j � k˛, we deduce that

jhBk; Zki PH sp
x
j. 2k.1�

˛
2
/: (5-6)

We now turn to estimating the jAkj2 term. We will use a frequency envelope argument to establish the
required bounds. Once again, we fix an exponent q satisfying

2 < q <
sp

2
:

Let
� <min

n
sp;

2

q
� sp;

4

q
� 1� sp

o
: (5-7)

and define

k D

X
j

2�� jj�kjkwj kL1t PH sp .Œ1;1/�R3/
:

We will establish the following: Let �0 > 0 and let R. � / denote the compactness modulus function of Eu.
Then there exists k0 � k0.�0; R.�0// sufficiently large that

kAkk PH sp
x
. C.k0/2�k.

2
q
�sp/CC �0

X
j

2�� jj�kjkuj kL1t PH
sp
x .Œ1;1/�R3/

(5-8)
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for all k � k0. For p > 3, we write the nonlinearity as F.u/ D jujp�3u3 and then decompose u3 by
writing uD u�kCu>k . By further decomposing u�k D u�k0 Cuk0< � �k , we are led to terms of the
form

F.u/D jujp�3u3>k (5-9)

C 3jujp�3u2>ku�k0 (5-10)

C 3jujp�3u2>kuk0< � �k (5-11)

Cjujp�3u�k0F3 (5-12)

Cjujp�3u3k0< � �k (5-13)

C 3jujp�3u>ku�ku�k0 (5-14)

C 3jujp�3u>ku�kuk0< � �k; (5-15)

where we have written
F3 D u

2
�k0
C 2u�k0uk0< � �kCu

2
k0< � �k

:

By Proposition 5.4, for any ˇ � 1 there exists k0 � k0.R.�0/; ˇ/ so that for every k > k0 we have

kjrj
3.p�3/
2.p�1/u>kkL2.p�1/t L

2.p�1/=.p�2/
x .Œ1;2ˇ.k�k0/��R3/

Ckjrj
�. 2

q
�sp/u>kkLqt L

2q=.q�2/
x .Œ1;2ˇ.k�k0/��R3/

<�0:

Fix ˇ > ˛ and k1 D k1.R.�0/; ˛; ˇ/� k0, which satisfies

2k1.ˇ�˛/ � 2k0ˇ :

Then 2ˇ.k�k0/ � 2k˛ for k � k1, and hence, for every k � k1, we have

kjrj
3.p�3/
2.p�1/u>kkL2.p�1/t L

2.p�1/=.p�2/
x .Œ1;2˛k��R3/

Ckjrj
�. 2

q
�sp/u>kkLqt L

2q=.q�2/
x .Œ1;2˛k��R3/

< �0:

We will use this estimate repeatedly below. Furthermore, we may also establish identical long-time
Strichartz estimates for

kjrj
sp�

2
r u>kkLrtL

2r=.r�2/
x

;

where 2=sp < r < 4.
To estimate (5-9), we use the dual Strichartz pair�

r

2
;

6r.p� 1/

12� 12p� 21r C 13pr

�
;

with 2=sp < r < 4. We note that this pair is dual admissible: writing the pair as .A;B/, we have

1

A
C
1

B
D
13p� 21

6p� 6
�
3

2

for p � 3. Note that A 2 .1; 2/ since r 2 .2; 4/ and B > 1 for

r <
12.p� 1/

7p� 15
:
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This is compatible with r > 2
sp

when p 2 Œ3; 5/. We can thus bound

2k.3sp�
4
r
/
kuk

p�3

L1t L
3.p�1/=2
x

ku>kk
2

LrtL
2r=.r�2/
x

X
k�j

kuj kL1t L
2
x

. kjrjsp�
2
r u>kk

2

LrtL
2r=.r�2/
x

X
k�j

2.k�j /spkuj kL1t PH
sp
x

. �0
X
j>k

2.k�j /spkuj kL1t PH
sp
x
:

For (5-10), we use the dual Strichartz pair�
2q.p� 1/

2pC q� 2
;

6q.p� 1/

6� 15qC 2p.5q� 3/

�
: (5-16)

We bound the contribution of this term by

2k.2sp�
2
q
/
kuk

p�3

L1t L
3.p�1/=2
x

ku>kkL2.p�1/t;x
ku�k0kLqt L

2q=.q�2/
x

ku>kkL1t L
2
x

. �02�k.
2
q
�sp/2k0.

2
q
�sp/ log 2kkuk

L1t
PH
sp
x

. �02�k.
2
q
�sp/2k0.

2
q
�sp/ log 2k :

For (5-11), we use the same dual pair as in (5-16), and we obtain

2k.2sp�
2
q
/
kuk

p�3

L1t L
3.p�1/=2
x

ku>kkL2.p�1/t;x

X
k0�j1�k�j2

kuj1kLqt L
2q=.q�2/
x

kuj2kL1t L
2
x

. �0
X

k0�j1�k�j2

2j1.
2
q
�sp/ log.2k�j1/2�j2spkuj2kL1t PH

sp
x

. �0
X
k�j

2.k�j /spkuj kL1t PH
sp
x
:

To estimate (5-12), we use the admissible dual pair
�q
2
; 6q
7q�8
C

�
. We choose � so that

3

�
D
2

q
C

4

p� 1
�
3

2
:

We bound the contribution of this term by

2�k.
2
q
�sp/kuk

p�3

L1t L
3.p�1/=2
x

ku�k0kLqt L
2q=.q�2/
x

X
j1�j2�k

kuj1kLqt L
2q=.q�2/
x

kuj2kL1t L
�C
x

. 2�k.
2
q
�sp/2k0.

2
q
�sp/ log 2k

X
j1�j2�k

2j1.
2
q
�sp/2j2.sp�

2
q
C/ log.2k�j1/

. 2�k.
2
q
�sp/C:
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Now we estimate (5-13) as follows: we apply Strichartz estimates with the dual (sharp) admissible
pair

�q
2
; 2q
3q�4

�
. Then we obtain

2k.1�
4
q
Csp/kuk

p�3

L1t L
3.p�1/=2
x

X
kuj1kLqt L

2q=.q�2/
x

kuj2kLqt L
2q=.q�2/
x

kuj3kL1t L
6.p�1/=.9�p/
x

;

where the sum is over k0 � j1 � j2 � j3 � k.
Now, for k0 � j � k, we can estimate

kuj kLqt L
2q=.q�2/
x .Œ1;2˛k��R3/

. kuj kLqt L2q=.q�2/x .Œ1;2˛j ��R3/
Ckuj kLqt L

2q=.q�2/
x .Œ2˛k ;2˛k��R3/

. �0 log.2k�j /2j.
2
q
�sp/;

using the long-time Strichartz estimate of Proposition 5.4 and we note the log comes from the second
term. We also have

kuj kL1t L
6.p�1/=.9�p/
x

. 2�j.1�sp/kuj kL1t PH sp
x
:

This yields

�02
k.1� 4

q
Csp/

X
k0�j1�j2�j3�k

2j1.
2
q
�sp/ log.2k�j1/2j2.

2
q
�sp/ log.2k�j2/2�j3.1�sp/

. �0
X

k0�j�k

log.2j�k/2.j�k/.
4
q
�1�sp/kuj kL1t PH

sp
x
:

Note that for this estimate, we need

q <
4

1C sp
D
8.p� 1/

5p� 9
;

which is compatible with q > 2 for p 2 Œ3; 5/.
For (5-14), we use the dual Strichartz pair�

q

2
;

6.pq� q/

12� 12p� 21qC 13pq

�
: (5-17)

We bound the contribution of this term by

2k.3sp�
4
q
/
ku�k0kLqt L

2q=.q�2/
x

X
j1�k�j2

kuj1kLqt L
2q=.q�2/
x

kuj2kL1t L
2
x

. 2k.3sp�
4
q
/2k0.

2
q
�sp/

X
j1�k�j2

2j1.
2
q
�sp/ log.2k�j1/2�j2spkuj2kL1t PH

sp
x

. 2�k.
2
q
�sp/2k0.

2
q
�sp/:
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Finally, for (5-15), using the same dual pair as in (5-17), and we estimate the contribution of this
term by

2k.3sp�
4
q
/
kuk

p�3

L1t L
3.p�1/=2
x

X
j1;k0�j2�k�j3

kuj1kLqt L
2q=.q�2/
x

kuj2kLqt L
2q=.q�2/
x

kuj3kL1t L
2
x

. �02k.3sp�
4
q
/

X
j1�j2�k�j3

2k1.
2
q
�sp/ log.22k�j1�j2/2j2.

2
q
�sp/2�j3spkuj3kL1t PH

sp
x

. �0
X
k�j

2.k�j /spkuj kL1t PH
sp
x
:

Putting together all the estimates, we establish (5-8), which, together with (5-6) and the conditions
on � from (5-7), yields

kwk.1/k PH sp
x
. 2k.

1
2
�˛
4
/
C 2�k.

2
q
�sp/CC �0

X
j

2�� jj�kjkwj kL1t PH
sp
x .Œ1;1/�R3/

for all k� 1. For ˛ large enough, we can guarantee that the second term dominates the first, and hence

kwk.1/k PH sp
x
. 2�k.

2
q
�sp/CC �0

X
j

2�� jj�kjkwj kL1t PH
sp
x .Œ1;1/�R3/

for all k� 1. We now rescale the solution u and use the fact that the rescaled solution T u.T t; T x/ is
also a self-similar solution for any T > 1 (with the same compactness modulus function as u). This yields

kwkkL1t PH sp .Œ1;1/�R3/
. 2�k.

2
q
�sp/CC �0

X
j

2�� jj�kjkwj kL1t PH
sp
x .Œ1;1/�R3/

: (5-18)

Let 0 < � < � . Then (5-18) implies that for k� k0,


k . 2�k�C �0˛k;
and hence, we may conclude that

kw.1/k PH spC� . 1 for any 0 < � < �:

Using the same rescaling argument as above, and the relation between w and u, we ultimately deduce that

ku.T /kHspCı . T
��;

which yields (5-2) provided we can choose

�D
5�p

2p.p� 1/
:

Combining with the constraint � < 2
q
� sp, this requires that we choose

2 < q <
4p

3p� 5
;
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which is possible whenever p 2 Œ3; 5/. For the other term appearing in the definition of � , we find that
we can choose

�D
5�p

2p.p� 1/

provided we take

q <
8p

5.p� 1/
;

which is similarly allowable by the requirement that q > 2 for p 2 Œ3; 5/. This completes the proof of
Proposition 5.2 and hence completes our treatment of the self-similar scenario. �

6. Doubly concentrating critical element: the sword and shield

We now consider the case of the doubly concentrating critical element, that is, N.t/� 1 on RD Imax and

lim sup
t!˙1

N.t/D1:

By Proposition 3.13 we may assume in this case that x.t/ is subluminal in the sense of Definition 3.12.
By Lemma 3.16 there exists ı0 > 0 so that

jx.t/� x.�/j � .1� ı0/jt � � j (6-1)

for all t; � with

jt � � j �
1

ı0 infs2Œt;��N.s/
:

The goal of this section is to prove the following proposition:

Proposition 6.1. There are no doubly concentrating critical elements in the sense of case (III) of
Proposition 3.13.

To prove this proposition, we establish the following dichotomy: either additional regularity for the
critical element can be established using essentially the same arguments used in Section 4, or a self-
similar-like critical element can be extracted by passing to a suitable limit. To this end we define function
� W R! R by

�.t/D

Z t

0

N.s/ ds:

Since N.t/ > 0 and limt!˙1 �.t/D˙1, the function � W Œ0;1/! Œ0;1/ is bijective. Hence for any
t0 > 0 and any CC > 0, there exists a unique �C D �C.t0; CC/ > 0 such that

t0C
�C.t0; CC/

N.t0/
D ��1.�.t0/CCC/:

Similarly, for t0 < 0 and any C� > 0, we can define

t0�
��.t0; C�/

N.t0/
D ��1.�.t0/�C�/:
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Fix � > 0 as in the small-data theory of Proposition 2.6, and let RDR.�/ be such that, for all t 2 R,Z
jx�x.t/j�R.�/

N.t/

jjrj
spu.t; x/j2 dxC

Z
jx�x.t/j�R.�/

N.t/

jjrj
sp�1ut .t; x/j

2 dx � �I (6-2)

see Remark 3.6. Now let �.t/D �R;N .t/ be a smooth cutoff to the set�
jx� x.t/j �

R.�/

N.t/

�
:

By our choice of R.�/ we have
k�.t/Euk2

PHsp . �:

Since N.t/� 1 and by (6-1), for any t0, there exists CC.t0/� 1 sufficiently large so thatˇ̌̌̌
x

�
t0C

�C.t0; CC.t0//

N.t0/

�
� x.t0/

ˇ̌̌̌
�

ˇ̌̌̌
�C.t0; CC.t0//

N.t0/

ˇ̌̌̌
�

R.�/

N.t0C �C.t0; CC.t0//N.t0/�1/
;

and similarly for C�.t0/. By continuity we may assume that C˙.t0/ are minimal with this property.
Furthermore, for every t0 there exists C.t0/ such that, for some t1 2 R satisfying

�.t1/� �.t0/� C.t0/;

there exist t� < t1 < tC with

�.t1/� �.t�/� 2C.t0/; �.tC/� �.t1/� 2C.t0/;

which satisfies

jx.t�/� x.t1/j � jt�� t1j �
R.�/

N.t�/
and jx.tC/� x.t1/j � jtC� t1j �

R.�/

N.tC/
:

We note that we define C.t0/ instead of working directly with C˙.t0/ so as to split the � integral evenly
forward and backward in time. Moreover, if one tries to work directly with t0 instead of t1, one runs into
issues with Case 2 below.

It is clear from the definition that C.t0/� sup.CC.t0/; C�.t0//, and thus is finite. However, C˙.t0/
need not be uniformly bounded for t0 2 R, and hence neither does C.t0/. We will now analyze several
cases based on whether C.t0/ are uniformly bounded for t0 2 R.

6A. Case 1W C.t0/ are uniformly bounded. Here we work under the assumption that there exists a
constant C > 0 such that C.t0/� C for all t0 2 R.

We show that essentially the same argument used in Section 4A can be used to show that such a critical
element necessarily has the compactness property in PHsp \ PH1.

Proposition 6.2 (additional regularity). Let Eu.t/ 2 PHsp be a solution with the compactness property that
is subluminal and doubly concentrating, as in case (III) of Proposition 3.13. Assume in addition that C.t/
is uniformly bounded as a function of t 2 R. Then Eu.t/ 2 PH1 and satisfies the bound

kEu.t/k PH1 .N.t/
5�p
2.p�1/ (6-3)

uniformly in t 2 R.
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For the moment, we will assume Proposition 6.2, and we will use it to prove the following corollary.

Corollary 6.3. Let Eu.t/ satisfy the hypotheses of Proposition 6.2. Then Eu.t/� 0.

Proof of Corollary 6.3 assuming Proposition 6.2. We begin by extracting from Eu.t/ another solution with
the compactness property on a half-infinite time interval Œ0;1/ but with new scaling parameter zN.s/! 0

as s!1. Let Qtm be any sequence of times with

Qtm!�1; N.Qtm/!1 as m!1:

Next choose another sequence tm!�1 by choosing tm such that

N.tm/ WD max
t2ŒQtm;0�

N.t/:

Now define a sequence as follows: set

wm.s; y/ WD
1

N.tm/
2
p�1

u

�
tmC

s

N.tm/
; x.tm/C

y

N.tm/

�
;

@twm.s; y/ WD
1

N.tm/
2
p�1
C1
@tu

�
tmC

s

N.tm/
; x.tm/C

y

N.tm/

�
;

and set
Ewm WD .wm.0; y/; @twm.0; y//:

Then by the precompactness in PHsp, there exists (after passing to a subsequence) Ew1.y/¤ 0 so that

Ewm! Ew1 2 PHsp :

It is standard to show that Ew.s/ (the evolution of Ew1D Ew.0/) has the compactness property on I D Œ0;1/
with frequency parameter zN.s/ defined by

zN.s/ WD lim
m!1

N
�
tmC

s
N.tm/

�
N.tm/

;

and moreover that

zN.s/� 1 for all s 2 Œ0;1/;

lim inf
s!˙1

zN.s/D 0:

By the uniform bounds of (6-3), we see that

k Ew.s/k PH1 . zN.s/
5�p
2.p�1/ for all s 2 Œ0;1/;

and hence there exists a sequence of times sn!1 along which

k Ew.sn/k PH1 . zN.sn/
5�p
2.p�1/ ! 0 as n!1:

Using the above, Sobolev embedding, and interpolation, along the same sequence of times we have

kw.sn/kLpC1 . kw.sn/k PH3.p�1/=.2.pC1// ! 0 as n!1:
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x

Figure 2. A depiction of the regions A, B and C.

But then, since the energy of Ew.s/ is well-defined and conserved, we must have

E. Ew/D 0:

For the defocusing equation we may immediately conclude that Ew.s/� 0. �

Remark 6.4. As in Section 4, these arguments readily adapt to the focusing setting.

Sketch of the proof of Proposition 6.2. The argument is nearly identical to the proof of Proposition 4.2 in
Section 4; hence rather than repeat the entire proof, we instead summarize how the uniform boundedness
of the numbers C.t0/ allow us to proceed as in Section 4A. The main idea is that the boundedness of these
constants means that for each t0 2 R we only have to wait a uniformly bounded amount of time, where
time is measured relative to the scale N.t/, for the forward and backwards light cones based at .t0; x.t0//
to capture the bulk of the solution. Consequently, we can apply the same techniques that were developed
in Section 4A directly and implement a double Duhamel argument. In order to estimate the norm at a
time t D t0, we recall the definitions of t1; t˙ above and decompose space-time into three regions:

(A) Region A: Œt�; tC��R3.

(B) Region B: the forward (resp. backward) light-cones from

ftCg � fx W jx� x.t1/j � jtC� t1jg;

and
ft�g � fx W jx� x.t1/j � jt�� t1jg:

(C) Region C : R�R4 n (region A [ region B).

On region A, we control the solution by dividing the time interval Œt�; tC� into finitely many sufficiently
small time strips on which we can use Lemma 3.11.
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The main difficulty is that we need to ensure that we can uniformly control the number of small strips
we will need to accomplish this (this type of uniform control was guaranteed in the Section 4 because we
had N.t/� 1 there). Here, the boundedness of the constants C is used to achieve this uniformity.

From Lemma 3.11 we know that for each � > 0 there exists ı > 0 such that for all t 2 R

kuk
L
2.p�1/
t;x .Œt� ı

N.t/
;tC ı

N.t/
��R3/ � � for all t 2 R:

Fix this ı > 0. Examining the proof of the estimates used to control the solution on region A in Section 4,
see (4-5), we need to show that there exists a uniformly (in t0) bounded number M > 0 of times tm,
�M �m�M with t� � tm � tC, and such that the corresponding intervals I�M ; : : : ; IM with

IM WD

�
tm�

ı

N.tm/
; tmC

ı

N.tm/

�
satisfy

Œt�; tC��

M[
mD�M

Im:

In this case we obtain

kuk
2.p�1/

L
2.p�1/
t;x .Œt�;tC��R3/

.
MX
iD1

kuk
2.p�1/

L
2.p�1/
t;x .Ii�R3/

.
Z tC

t�

N.t/ dt;

and, since Z tC

t�

N.t/ dt D �.tC/� �.t�/� 4C (6-4)

by construction, this would yield the desired upper bound.
Hence, we now turn to the argument that intervals on which we can control the L2.p�1/t;x will exhaust

the time interval Œt�; tC� after finitely many steps. Since jN 0.t/j.N.t/2 on an interval of length ı=N.t/,
for any t1; t2 2 Œt�; tC�, which satisfy jt1� t2j � ı=N.t1/, we have

N.t1/� ıN.t1/.N.t2/.N.t1/C ıN.t1/:

Consequently, for any t1 2 Œt�; tC� we must haveZ t1Cı=N.t1/

t1�ı=N.t1/

N.t/ dt � .2ı� 2ı2/;

which for any 0 < ı < 1
2

yields Z t1Cı=N.t1/

t1�ı=N.t1/

N.t/ dt � ı: (6-5)

By (6-4) and (6-5),

4C �

Z tC

t�

N.t/ dt D
Z t�Cı=N.t�/

t�

N.t/ dt C
Z tC

t�Cı=N.t�/

N.t/ dt D
Z tC�ı=N.tC/

t�Cı=N.t�/

N.t/ dt C ıI
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hence the positivity of N.t/ implies that by iterating this procedure, we will be able to cover the whole
interval Œt�; tC� in at most 4C=ı many intervals of length ı=N.t/, where we can control the L2.p�1/t;x

norm of the critical element.
On region B, we use (6-2) to apply the small-data theory at times t˙, which, together with finite speed

of propagation, yields a uniform bound on the solution. Finally, on region C, we may use the sharp
Huygens principle exactly as in Section 4A.

All together, using arguments from Section 4, this will yield that

ku.t1/k PH1 .N.t1/
5�p
2.p�1/ :

For more details, we refer the reader to [Dodson and Lawrie 2015a]. By continuation of regularity and
(6-5), this implies

ku.t0/k PH1 .N.t1/
5�p
2.p�1/ ;

where the implicit constant again depends on C. Finally, since jN 0.t/j.N.t/2,

N.t0/�C N.t1/;

which completes the proof. �

6B. Case 2W C.t/ is not uniformly bounded. In this case we will show how to extract a self-similar-like
critical element by taking an appropriate limit. The arguments from Section 5, specifically Proposition 5.3,
then allow us to conclude that any such solution must be � 0, which is a contradiction.

By assumption, there exist sequences ftng such that

C.tn/� 2n:

Now define

In D Œtn� ��.tn; n/N.tn/
�1; tnC �C.tn; n/N.tn/

�1�:

Borrowing language from [Tao et al. 2007], since C.tn/ � 2n, we show that all sufficiently late times
t 2 In are future-focusing, that is,

for all � 2 In such that � > t; jx.�/� x.t/j � j� � t j �
R.�/

N.�/
;

or all sufficiently early times t 2 In are past-focusing, that is,

for all � 2 In such that � < t; jx.t/� x.�/j � jt � � j �
R.�/

N.�/
:

Indeed, suppose that there exist tn�; t
n
C
2 In such that �.tn

C
/� �.tn�/� Cn for some Cn%1 as n%1,

tn� is future-focusing, tn
C

is past-focusing, and tn� < t
n
C

. In that case,

N.t/�N.�/ for all t; � 2 Œtn�; t
n
C�;

with constant independent of n. For n sufficiently large this violates subluminality.
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Therefore, suppose without loss of generality that for n sufficiently large, all sufficiently late times,
say all

t 2
h
tnC �C

�
tn;
n

2

�
N.tn/

�1; tnC �C.tn; n/N.tn/
�1

i
D I 0n;

are future-focusing. First, we note that if t 2 In is future-focusing, then for any � 2 In, � > t ,

N.�/�
R.�/

c
inf
t<s<�

N.s/: (6-6)

Indeed, for any � 2 I, � > t ,

jx.�/� x.t/j � j� � t j �
R.�/

N.�/
:

Then if N.t/� cN.�/=R.�/,
jx.t/� x.�/j � jt � � j �

c

N.t/
;

and therefore, we conclude that

N.�/�
1

c2
N.t/�

N.�/

cR.�/
;

which is a contradiction for R.�/sufficiently large. Note that in the case of past-focusing times, a similar
argument yields a lower bound in place of (6-6).

Consequently, for any t 2 I 0n,
N.t/� inf

�<t W�2I 0n

N.�/:

In particular, modifying by a constant, N.t/ may be replaced by zN.t/ on I 0n, where

zN.t/ WD zNn.t/D inf
tnC�C.tn;n2 /N.tn/

�1<�<t

N.�/:

Clearly, zN.t/ is monotone decreasing. Furthermore, extracting appropriate limits, we may assume that
zN.t/ must converge to t�1 as n!1. The main idea is that forward in time, on longer and longer time

intervals, the precompact solution expands to fill the light cone. This observation will enable us to extract
a solution which “looks self-similar” on Œ1;1/ and we can then rescale that solution to extract a true
self-similar solution on Œ0;1/. We proceed with this argument now.

We begin by simplifying our notation, setting

tn� D tnC �C

�
tn;
n

2

�
N.tn/

�1;

tnC D tnC �C.tn; n/N.tn/
�1:

By definition of subluminality (see Definition 3.12), it holds that uniformly for all t 2 I 0n,

zN.t/.t � tn�/. 1;
independent of n. We further have that

zN.t/.t � tn�/& 1

is also uniformly bounded for all t 2 I 0n such that t � tn� � ı=N.t
n
�/ by finite propagation speed.
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Now set
Kn WD

h
�C.tn; n/� �C

�
tn;
n

2

�i
N.tn/

�1
�N.tn�/:

Since Z tn
C

tn�

zN.t/ dt � n
2
!1; (6-7)

and zN.t/� zN.tn�/ for all t 2 I 0n, we see that if Kn � C for all n 2 N, thenZ tn
C

tn�

zN.t/. 1;

which contradicts (6-7). Hence we may conclude that Kn is unbounded. We can then define a rescaled
sequence as follows: set

un.0; x/D
1

zN.tn�/
2
p�1

u

�
tn�; x.t

n
�/C

x

zN.tn�/

�
;

@tun.0; x/D
1

zN.tn�/
2
p�1
C1
u

�
tn�; x.t

n
�/C

x

zN.tn�/

�
and let

Ewn.1/D .un.0; x/; @tun.0; x//:

By precompactness of the trajectory of Eu in PHsp (modulo symmetries), the rescaled initial data converges;
that is, Ewn.1/!w1 in PHsp. We let Ew.s/ be the evolution of Ew1DW Ew.1/; then Ew1 has the compactness
property with a new scaling parameter yN.s/, given by

yN.s/D lim
n!1

zN
�
tn�C

s
zN.tn�/

�
zN.tn�/

:

Hence we have
cs �

1

yN.s/
� s for all s > 1:

We may also assume without loss of generality that Ew1 has the compactness property with translation
parameter Qx.s/D 0: by finite speed of propagation, Qx.s/ must remain bounded, and hence we may, up to
passing to a subsequence, obtain a precompact solution with Qx.s/D 0 by applying a fixed translation.
Finally, we consider one last sequence of times fsng with sn!1 and we define

wn.1; x/D
1

.sn/
2
p�1

w

�
sn;

x

sn

�
; @tun.1; x/D

1

.sn/
2
p�1
C1
w

�
sn;

x

sn

�
:

We set
Evn.1/D .wn.1; x/; @twn.1; x//;

which gives rise to a corresponding solution Evn.Qs/ with yN.Qs/D Qs�1 on Œ1=sn;1/. We then can take the
limit n!1, which yields convergence Evn! Ev1 in PHsp, and a solution Ev with initial data Ev1 which is
self-similar on Œ0;1/.
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7. The traveling-wave critical element

In this section we preclude the possibility of the existence of a “traveling-wave” critical element.
Recall the definition of a traveling-wave critical element.

Definition 7.1 (traveling wave). We say Eu.t/¤ 0 is a traveling-wave critical element if Eu.t/ is a global-
in-time solution to (1-1) such that the set

K WD f.u.t; x.t/C � /; @tu.t; x.t/C � // W t 2 Rg

is precompact in PH sp � PH sp�1.R3/, where the function x W R! R3 satisfies

x.0/D 0;

jt j �C1 � jx.t/j � jt jCC1; (7-1)

jx.t/� .t; 0; 0/j � C1jt j
1
2 (7-2)

for some uniform constant C1 > 0.

The main result of this section is the following theorem.

Proposition 7.2. There are no traveling-wave critical elements in the sense of case (IV) of Proposition 3.13.

To prove Proposition 7.2, we will show that any traveling-wave critical element would enjoy additional
regularity in the x2- and x3-directions. This will allow us to utilize a direction-specific Morawetz-type
estimate to reach a contradiction. We will require an additional technical ingredient, namely, a long-time
Strichartz estimate in the spirit of [Dodson 2012; 2016].

7.1. Main ingredients in the proof. The long-time Strichartz estimates take the following form:
Suppose Eu.t/ is a traveling-wave critical element for (1-1). Let � > 0 and 0 < � < 2

3
�. For any �0 > 0,

there exists N0 DN0.�0/ large enough such that for all N �N0 and for all t0 2 R, we have:

Proposition 7.3 (long-time Strichartz estimate). Suppose Eu.t/ is a traveling-wave critical element for
(1-1). Let � 2 .0; 1/ be arbitrary. Then,

ku>N kS.Œt0;t0CN 1���/ D oN .1/ as N !1;

where S.I / denotes any admissible, non-endpoint Strichartz norm at Sobolev regularity s D sp on the
time interval I.

With the help of Proposition 7.3, we will also prove the following additional regularity result.

Proposition 7.4 (additional regularity). Suppose Eu.t/ is a traveling-wave critical element for (1-1). For
any 0 < � < 1

2
,

kj@2j
1��ukL1t L

2
x.R�R3/Ckj@3j

1��ukL1t L
2
x.R�R3/ <1:

Using Propositions 7.3 and 7.4, we can then prove the following Morawetz-type estimate. In the sequel,
we use the notation

x D .x1; x2;3/:
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Proposition 7.5 (Morawetz-type estimate). Suppose Eu.t/ is a traveling-wave critical element for (1-1).
Then there exists ı > 0 and � > 0 such that

lim
T!1

1

T 1��

Z T 1��

0

Z
jx2;3j�T ı

ju�T .t; x/j
pC1 dx dt D 0:

Combining Proposition 7.5 with the nontriviality of critical elements will yield a contradiction and
complete the proof of Proposition 7.2.

We turn to the proofs of the three preceding propositions. In Section 7B we also give the proof of
Proposition 7.2.

7A. Long-time Strichartz estimates. In this subsection we prove the long-time Strichartz estimate,
Proposition 7.3, and then deduce a few technical corollaries.

Proof of Proposition 7.3. For technical reasons we fix a small parameter 0 < � � 1 and introduce the
following norm: given a time interval I,

kukS� .I / D kukL2.p�1/t;x
Ckjrj

� 2�3�
2.p�1/uk

L
p�1
t L

2.p�1/=�
x

Ckjrj
� 1��
p�1uk

L
2.p�1/=.2��/
t L

2.p�1/=�
x

Ckjrj
sp��uk

L
2=�
t L

2=.1��/
x

Ckjrj
2sp
3
� 1
3uk

L
6=.1Csp/

t L
6=.2�sp/
x

Ckjrj
3
4
� 3
2.p�1/uk

L
2.p�1/
t L4x

; (7-3)

where all space-time norms are over I �R3. Restrictions will be put on � below. One can check that each
of these norms correspond to wave-admissible exponent pairs at PH sp regularity; this already requires
0 < � < p� 3. We will prove Proposition 7.3 for the space S� and note here that the same estimates then
easily follow for the whole family of admissible Strichartz norms. We also note that a nearly identical
(but simpler) argument works in the case p D 3, with the caveat that we need to perturb away from the
inadmissible .2;1/ endpoint.

Let �0 > 0 and � > 0. We will actually prove that there exists N0� 1 such that for N �N0, we have

ku>N k
S�.Œt0;t0C. NN0 /

1��
�/
< �0

for any t0 2 R and � < 2
3
�. This implies the estimate appearing in the statement of Proposition 7.3 upon

enlarging � and N0; indeed,

N 1��0
�

�
N

N0

�1��
provided N �N .1��/=.�0��/

0 .
By compactness and N.t/� 1, there exists N0 sufficiently large such that

ku>N0kS� .Œt0;t0C91���/ <
1
2
�0

for any t0 2R. This implies the desired estimate for N0 �N � 9N0. We will prove the result for larger N
by induction.
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Note that by choosing N0 possibly even larger, we can guarantee

kP>N EukL1t Hsp .R�R3/ <
1
2
�0 (7-4)

for any N �N0.
Before completing the inductive step, we make a few simplifications. First, by time-translation

invariance, it suffices to consider t0 D 0. Next, to keep formulas within the margins, we will assume all
space-time norms are over

�
0;

�
N
N0

�1���
�R3 unless otherwise stated.

By Taylor’s theorem, we can write

F.u/D F.u�N /Cu>N

Z 1

0

F 0.u<N C �u>N /

D F.u�N /Cu>NF
0.u<N /Cu

2
>N

“ 1

0

F 00.u<N C �1�2u>N /

D F.u�N /Cu>NF
0.u<N /Cu

2
>NF

00.u<N /Cu
3
>N

• 1

0

F 000.u<N C �1�2�3u>N /

for any N. Thus (ignoring absolute values and constants) we need to estimate four types of terms

u>N
8
u
p�1

�N
8

Cu2
>N
8

u
p�2

<N
8

Cu
p

�N
8

Cu3
>N
8

F2 DW I C II C III C IV;

where

F2 D

• 1

0

F 000.u<N
8
C �1�2�3u>N

8
/:

We will estimate the contribution of each term using Strichartz estimates.

Term I. We let 0� � < p� 3 as in (7-3) and further impose � < 2
3
�. We estimate

kjrj
sp�1P>N .u

p�1

�N
8

u
�N
8
/kL1tL

2
x
.N sp�1ku

�N
8
k
p�1

L
p�1
t L

2.p�1/=�
x

ku>N
8
k
L1t L

2=.1��/
x

.N�1C
3�
2 ku

�N
8
k
p�1

L
p�1
t L

2.p�1/=�
x

kjrj
sp�

3�
2 u>N

8
k
L1t L

2=.1��/
x

.
�
N�

2�3�
2.p�1/ ku

�N
8
k
L
p�1
t L

2.p�1/=�
x

�p�1
kjrj

spu>N
8
kL1t L

2
x
:

Recalling (7-4), it remains to prove

N�
2�3�
2.p�1/ ku

�N
8
k
L
p�1
t L

2.p�1/=�
x

. �0:

We let C0� 1, to be determined shortly, and begin by splitting

N�
2�3�
2.p�1/ ku

�N
8
k
L
p�1
t L

2.p�1/=�
x

.N�
2�3�
2.p�1/ ku�C0kLp�1t L

2.p�1/=�
x

CN�
2�3�
2.p�1/ kuC0� � �N0kLp�1t L

2.p�1/=�
x

CN�
2�3�
2.p�1/

X
N0�M�

N
8

kuMkLp�1t L
2.p�1/=�
x

:
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By Bernstein’s inequality and N.t/� 1, we can estimate

N�
2�3�
2.p�1/ ku�C0kLp�1t L

2.p�1/=�
x

.N�
2�3�
2.p�1/C

2�3�
2.p�1/

0

�
N

N0

�.1��/
p�1

on
�
0;

�
N
N0

�1���
�R3. To guarantee that the overall power of N is negative, we need

3�

2
< �:

Thus, for N0 sufficiently large depending on C0, we may guarantee that

N�
2�3�
2.p�1/ ku�C0kLp�1t L

2.p�1/=�
x

. �0:

Next, choosing C0 D C0.�0/ large enough and using N.t/� 1, we estimate

N�
2�3�
2.p�1/ kuC0� � �N0kLp�1t L

2.p�1/=�
x

.N�
2�3�
2.p�1/N

2�3�
2.p�1/

0 kjrj
� 2�3�
2.p�1/u>C0kLp�1t L

2.p�1/=�
x

. �0
�
N

N0

�� 2�3�
2.p�1/

C
.1��/
p�1

. �0:

For the final term, we begin by estimating

N�
2�3�
2.p�1/

X
N0�M�

N
8

kuMkLp�1t L
2.p�1/=�
x

.
X

N0�M�
N
8

�
M

N

� 2�3�
2.p�1/

kjrj
� 2�3�
2.p�1/uMkLp�1t L

2.p�1/=�
x

:

We now apply the inductive hypothesis to the last term. To do so, we divide the interval
�
0;

�
N
N0

�1���
into �

�
N
M

�1�� intervals of length
�
M
N0

�1��. Continuing from above, this leads to

N�
2�3�
2.p�1/

X
N0�M�

N
8

kuMkLp�1t L
2.p�1/=�
x

.
X

N0�M�
N
8

�
M

N

� 2�3�
2.p�1/

�
.1��/
p�1

�0 . �0;

where we have used that the exponent appearing is, in this case, positive. This completes the estimation
of term I.

Term II. We estimate

kjrj
sp�1P>N .u

p�2

�N
8

u2
�N
8

/kL1tL
2
x
.N sp�1ku>N

8
k
2

L
2.p�1/
t L4x

ku
�N
8
k
p�2

L
p�1
t L1x

.N sp�1C1�
1
p�1 ku>N

8
k
2

L
2.p�1/
t L4x

N�
p�2
.p�1/ ku

�N
8
k
p�2

L
p�1
t L1x

.
�
N
3
4
� 3
2.p�1/ ku>N

8
k
L
2.p�1/
t L4x

�2
N�

p�2
.p�1/ ku

�N
8
k
p�2

L
p�1
t L1x

:

We can argue as above (now with � D 0) for the low-frequency term, and we note that .2.p� 1/; 4/ is a
wave-admissible pair at regularity

3

2
�

1

2.p� 1/
�
3

4
D sp �

�
3

4
�

3

2.p� 1/

�
;
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and we conclude using the inductive hypothesis on

kjrj
3
4
� 3
2.p�1/u>N

8
k
L
2.p�1/
t L4x

:

Term III. Next using the fractional chain rule we estimate

kjrj
sp�1P>N .u

p

�N
8

/kL1tL
2
x
.N sp�2ku

�N
8
k
p�1

L
2.p�1/=.2��/
t L

2.p�1/=�
x

kjrju
�N
8
k
L
2=�
t L

2=.1��/
x

.N�1C�ku
�N
8
k
p�1

L
2.p�1/=.2��/
t L

2.p�1/=�
x

N��Csp�1kjrju
�N
8
k
L
2=�
t L

2=.1��/
x

:

To complete the estimation of term III, we need to prove

N�
1��
p�1 ku

�N
8
k
L
2.p�1/=.2��/
t L

2.p�1/=�
x

CN��Csp�1kjrju�N kL2=�t L
2=.1��/
x

. �0:

For this, we argue as in term I; that is, we split u
�N
8

into

u
�N
8
D u�C0 CuC0� � �N0 C

X
N0�M�

N
8

uM :

and estimate each term separately, relying on the inductive hypothesis (and a splitting of the time interval)
for the final sum. Comparing with those estimates, we see that this requires

1� �

p� 1
�
1� �

p� 1
> 0

to deal with the first term and

� C 1� sp �
�.1� �/

2
> 0

to deal with the second term. These conditions are satisfied provided 0 < � < �.

Term IV. We estimate

ku3
>N
8

F2k
L
2=.1Csp/

t L
2=.2�sp/
x

. kup
>N
8

k
L
2=.1Csp/

t L
2=.2�sp/
x

Cku3
>N
8

u
p�3

�N
8

k
L
2=.1Csp/

t L
2=.2�sp/
x

:

For the first expression we estimate

ku
p

>N
8

k
L
2=.1Csp/

t L
2=.2�sp/
x

D ku>N
8
k
p

L
2p=.1Csp/

t L
2p=.2�sp/
x

. �p0 ;

while for the second expression we have

ku3
>N
8

u
p�3

�N
8

k
L
2=.1Csp/

t L
2=.2�sp/
x

. ku>N
8
k
3

L
6=.1Csp/

t L
6=.2�sp/
x

ku
�N
8
k
p�3

L1t;x
:

Now,
ku
�N
8
k
p�3

L1t;x
.N

2.p�3/
p�1 ku<N

8
k
p�3

L1t L
3.p�1/=2 .N

2.p�3/
p�1 :

For the first term, we see that
�

6
1Csp

; 6
2�sp

�
is an admissible Strichartz pair at regularity

spC
1

3
�
2sp

3
< sp;

and hence

ku3
>N
8

u
p�3

�N
8

k
L
2=.1Csp/

t L
2=.2�sp/
x

.N 1�2spkjrj
2sp
3
� 1
3u>N

8
k
3

L
6=.1Csp/

t L
6=.2�sp/
x

N
2.p�3/
p�1 ku<N

8
k
p�3

L1t L
3.p�1/=2 :
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Finally, note that

�2spC 1C
2.p� 3/

p� 1
D�3C 1C

4

p� 1
C
2p� 6

p� 1
D 0:

Hence, by the inductive hypothesis, putting all the pieces of the argument together, we obtain

ku>N k
S�.Œ0;. NN0 /

1��
�/
�
1
2
�0CC�

3
0;

which suffices to complete the induction for �0 sufficiently small. �

We will need the following corollary of Proposition 7.3, which provides some control over the low
frequencies as well.

Corollary 7.6 (control of low frequencies). Suppose Eu is a traveling-wave critical element for (1-1). Let
� > 0 and 0 < � < 2

3
�. For any �0 there exists N sufficiently large such that

ku�N kLp�1t L
2.p�1/=�
x .Œt0;t0CN 1���/�R3/

. �0N
2�3�
2.p�1/ ;

ku�N kL2.p�1/=.2��/t L
2.p�1/=�
x .Œt0;t0CN 1����R3/

. �0N
1��
p�1 ;

kjrju�N kL2=�t L
2=.1��/
x .Œt0;t0CN 1����R3/

. �0N ��spC1

(7-5)

uniformly over t0 2 R.

Proof. We let �0 and choose N0 DN0.�0/� 1 as in Proposition 7.3. By time-translation invariance, it
suffices to consider t0 D 0. We focus our attention on (7-5), as the other estimates follow similarly. For
N �N0, we estimate

ku�N kLp�1t L
2.p�1/=�
x .Œ0;N 1����R3/

. ku�N0kLp�1t L
2.p�1/=�
x .Œ0;N 1����R3/

C

X
N0�M�N

kuMkLp�1t L
2.p�1/=�
x .Œ0;M1����R3/

C

X
N0�M�N

ku�N kLp�1t L
2.p�1/=�
x .ŒM1��;N 1����R3/

:

For the first term, we use Bernstein’s inequality and N.t/� 1 to get

ku�N0kLp�1t L
2.p�1/=�
x .Œ0;N 1����R3/

.N
2�3�
2.p�1/

0 N
1��
p�1 :

Recalling that
1� �

p� 1
<

2� 3�

2.p� 1/
;

we see that this term is acceptable provided we choose N sufficiently large.
Next, we use Proposition 7.3 to estimateX

N0�M�N

kuMkLp�1t L
2.p�1/=�
x .Œ0;M1����R3/

. �0
X

N0�M�N

M
2�3�
2.p�1/ . �0N

2�3�
2.p�1/ ;

which is also acceptable.
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For the remaining term, we split ŒM 1��; N 1��� into �
�
N
M

�1�� intervals of length M 1��. Applying
Proposition 7.3 once more, we haveX

N0�M�N

kuMkLp�1t L
2.p�1/=�
x .ŒM1��;N 1����R3/

. �0
X

N0�M�N

M
2�3�
2.p�1/

�
N

M

�1��
p�1

. �0N
2�3�
2.p�1/ ;

where we recall 0 < � < 2
3
� in order to sum. This term is also acceptable, and so we complete the proof

of (7-5) and Corollary 7.6. �

Finally, we will need certain long-time Strichartz estimates with regularity in the x2- and x3-directions.

Corollary 7.7 (long-time Strichartz estimates for rx2;x3u). Suppose that Proposition 7.4 holds with
� > 0. Then, for any �0 > �,

kjrx2;3 j
1��0uN kL2=.1�sp/t L

2=sp
x .Œt0;t0CN 1���/

.N 1�sp :

Proof. We only sketch this argument as it follows in the same manner as the standard long-time Strichartz
estimate with some additional technical details. First we note that

�
2

1�sp
; 2
sp

�
is an admissible Strichartz

pair at regularity 1� sp . By compactness, it suffices to argue with t0 D 0. Let S.I / denote any collection
of Strichartz pairs at regularity s D 0. We will show that

kjrx2;3 j
1��0uN kS.Œt0;t0CN 1���/ . 1 (7-6)

for �0 > �, from which the result follows.
Let Eu be a solution with the compactness property on R with N.t/D 1. By the Gagliardo–Nirenberg

inequality
kjr2;3j

1��0ukL2x2;x3
� Ckjr2;3j

1��uk˛
L2x2;x3

kuk1�˛
L
2=.1�sp/
x2;x3

(7-7)

for

˛ D
1� sp � �0

1� sp � �
:

Next, we observe the Sobolev embedding

PH
sp
x ,! L2x1L

2
1�sp

x2;3 ; (7-8)

which follows from Sobolev embedding in R2 and Plancherel:Z �Z
ju.x1;x2;3/j

2
1�sp dx2;3

�1�sp
dx1.

Z ˇ̌
jrx2;3 j

spu
ˇ̌2 dx�

Z ˇ̌
j�2;3j

sp Ou.�/
ˇ̌2 d�.

Z ˇ̌
j�jsp Ou.�/

ˇ̌2 d�:

Thus we may take the L2x1 norm of both sides of (7-7) and use Hölder’s inequality on the right to conclude
that the trajectory jr2;3j1��0u has the compactness property in L2x , and hence there exists N0 DN0.�0/
such that, for all N >N0,

kP>N jr2;3j
1��0ukS.Œ0;91���/ � �0 for all N �N0.�0/;

which proves the base case, that is, (7-6) holds for N0 �N � 9N0.
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We now proceed to the inductive step. Suppose that (7-6) holds up to frequency N1 for N1 � 9N0. We
will show that (7-6) holds for N D 2N1. The argument we employ is similar to a persistence of regularity
argument. Note that jr2;3j1��0u solves the equation

@t jr2;3j
1��0u��jr2;3j

1��0uD jr2;3j
1��0F.u/:

By the Strichartz estimates we have

kP>N jr2;3j
1��0ukS.Œ0;.N=N0/1���/

. kP>N jr2;3j1��0 EukL1t PH0x.Œ0;.N=N0/1���/CkP>N jr2;3j
1��0F.u/kN .Œ0;.N=N0/1���/;

where N is the dual space to S. Let yPM denote a Fourier projection in the �2; �3 variables. The first term
can be bounded using compactness, so we focus on the second term. We again write

F.u/D F.u�N /Cu>N

Z 1

0

F 0.u<N C �u>N /

D F.u�N /Cu>NF
0.u<N /Cu
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2
>NF

00.u<N /Cu
3
>N

• 1

0

F 000.u<N C �1�2�3u>N /:

We will estimate the first term as an example, since the other terms will be similar generalizations of the
proof of Proposition 7.3. We have
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N�1��Cspkjrju
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8
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L
2=�
t L

2=.1��/
x

;

and all four terms can be treated analogously to the low-frequency component in term I in Proposition 7.3.
�

7B. Proof of Propositions 7.5 and 7.2, assuming Proposition 7.4. As mentioned above, the long-
time Strichartz estimate (Proposition 7.3) will be a key ingredient to proving additional regularity
(Proposition 7.4). Before turning to the rather technical proof, let us use Proposition 7.4 (together with
Proposition 7.3 and Corollary 7.6) to prove the Morawetz estimate, Proposition 7.5. With the Morawetz
estimate in hand, we can then quickly rule out the possibility of traveling waves and hence complete the
proof of the main result, Proposition 7.2.

We recall the notation x D .x1; x2;3/ and similarly write � D .�1; �2;3/.
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Proof of Proposition 7.5. Let  W Œ0;1/! R be a smooth cutoff satisfying�
 .�/D 1; � � 1;

 .�/D 0; r > 2:

We fix R > 0 to be determined below and let  R.�/D  
� �
R

�
. Next, let

�R.r/D
1

r

Z r

0

 R.s/ ds:

We collect a few useful identities,

@kŒx
k�R�D �RC R; r@r�R D��RC R; (7-9)

and we recall the Sobolev embedding (7-8).
In the following, we consider �R as a function of jx2;3j. For T > 0 and

I WD P�T ;

we define the Morawetz quantity

M.t/D

Z
R3
�RIut x

k@kIu dxC 1
2

Z
R3
.�RC R/IutIu dx;

where repeated indices are summed over k 2 f2; 3g.
We first compute the derivative of M.t/:

M 0.t/D

Z
�RIut .x

k@kIut /C
1

2

Z
.�RC R/.Iut /

2
C

Z
�RŒx

k@kIu�Iut tC
1

2

Z
.�RC R/IuIut t :

By (7-9) and integration by parts, we haveZ
Œxk�R�@k

1

2
.Iut /

2
D�

1

2

Z
.�RC R/.Iut /

2;

so we are left to estimate Z
�RŒx

k@kIu�Iut t C
1

2

Z
.�RC R/IuIut t : (7-10)

Using the equation for u yields

Iut t D�Iu�F.Iu/C ŒF .Iu/� IF.u/�; where F.z/D jzjp�1z:

We first consider the contribution of �Iu to (7-10). We claimZ
xk�RŒ@kIu��IuC

1

2
.�RC R/Iu�Iu dx � 1

2

Z
�.�RC R/.Iu/

2 dx: (7-11)

In the proof of (7-11) we will simplify notation by suppressing the operator I, suppressing the dependence
on R, and writing uk D @ku. We turn to the proof.

We begin by considering the first term on the left-hand side of (7-11). Integrating by parts yieldsZ
xk�ukujj D�

Z
@j Œx

k��ukuj C
1

2
xk�@k.u

2
j /;
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where k 2 f2; 3g and j 2 f1; 2; 3g. Writing r D jx2;3j and using (7-9), we haveZ
@j Œx

k��ukuj D

Z
ıjk�ujukC

xkxj

r2
r�0ujuk

D

Z
ıjk�ujukC

xkxj

r2
 ujuk �

xkxj

r2
�ujuk;

where we may now restrict to j 2 f2; 3g. Using the other identity in (7-9), we also have

1

2

Z
xk�@k.uj /

2
D�

1

2

Z
.�C /u2j :

As for the second term on the left-hand side of (7-11), we have

1

2

Z
.�C /uujj D

1

2

Z
@jj .�C /u

2
�
1

2
.�C /u2j :

Collecting the computations above, we findZ �
xk�RŒ@kIu��IuC

1

2
.�RC R/Iu�Iu

�
dx

D
1

2

Z
�.�C /u2�

Z �
ıjk �

xjxk

r2

�
�ujuk �

Z
 
�x2;3
r
� rx2;3u

�2 dx;

which yields (7-11).
We next consider the contribution of �F.Iu/ to (7-10). Using (7-9) and integration by parts,

�

Z h
xk�R@kIuC

1

2
.�RC R/Iu

i
F.Iu/dxD�

Z
.xk�R/

1

pC1
@kjIuj

pC1
C
1

2
.�RC R/jIuj

pC1 dx

D

Z �
1

pC1
�
1

2

�
.�RC R/jIuj

pC1 dx: (7-12)

Hence, by (7-10), (7-11), and (7-12) and the fundamental theorem of calculus, we deduce“
jx2;3j�R

jIujpC1 dx dt . sup
t2J

jM.t/jC

“
�.�RC R/jIuj

2 dx dt

C

ˇ̌̌̌“
Œxk�R@kIuC .�RC R/Iu�ŒF.Iu/� IF.u/� dx dt

ˇ̌̌̌
for any interval J. In the following, we choose J D Œ0; T 1���, where � > 0 will be chosen below and T
is large enough that Proposition 7.3 and Corollary 7.6 hold.

We need to estimate the terms on the right-hand side of this inequality. We first bound jM.t/j. By
Bernstein’s inequality, the Sobolev embedding (7-8), and Proposition 7.4, we have

sup
t
jM.t/j. kIutkL1t L2x

�
Rkrx2;3IukL1t L

2
x
CkIuk

L1t L
2
x1
L
2=.1�sp/
x2;3

k�RC RkL2=.1Csp/x2;3

�
. T 1�sp .RT � CR1Cspkuk

L1t
PH
sp
x
/

. T 1�sp .RT � CR1Csp /; (7-13)

for � > 0 to be chosen sufficiently small below.
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For the next term, we have“
�.�RC R/jIuj

2 dx dt . T 1��kIuk2
L1t L

2
x1
L
2=.1�sp/
x2;3

k�.�RC R/kL2=.1Csp/x2;3

. T 1��kuk2
L1t

PH
sp
x

R�.2�2sp/

. T 1��R�.2�2sp/: (7-14)

Now we turn to the final term. Arguing as in the long-time Strichartz estimates, we need to estimate
terms of the form

u
p
�T Cu>T u

p�1
�T Cu

2
>T u

p�2
�T Cu

3
>TF2;

where F2 involves both high and low frequencies. Thus we estimate“
Œxk�R@kIuC .�RC R/Iu�ŒF.Iu/� IF.u/� dx dt

.
“

xk�R@ku�TP>T Œu
p
�T � dx dt (7-15)

C

“
xk�R@ku�TP>T Œju>T jju�T j

p�1� dxdt (7-16)

C

“
xk�R@ku�TP>T Œju>T j

2
ju�T j

p�2� dxdt (7-17)

C

“
xk�R@ku�TP>T Œju>T j

3F2� dxdt (7-18)

C

“
.�RC R/u�TP>T Œu

p
�T � dx dt (7-19)

C

“
.�RC R/u�TP>T Œju>T jju�T j

p�1� dx dt (7-20)

C

“
.�RC R/u�TP>T Œju>T j

2
ju�T j

p�2� dx dt (7-21)

C

“
.�RC R/u�TP>T Œju>T j

3F2� dx dt; (7-22)

where all the integrals are taken over Œ0; T 1����R3. We treat each of these terms separately.
We first consider (7-15). Estimating as in the long-time Strichartz estimates and using Corollary 7.6,

we obtainˇ̌̌̌“
xk�R@ku�TP>T Œu

p
�T �dx dt

ˇ̌̌̌
.RT 1�spkrx2;3u�T kL1t L2xT

sp�2kjrjP>T .u�T /
p
kL1tL

2
x

.RT 1�spC�T sp�2ku�T kp�1
L
2.p�1/=.2��/
t L

2.p�1/=�
x

kru�T kL2=�t L
2=.1��/
x

.RT 1�spC� :
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We next consider (7-16). We let 0 < � < 2
3
�. By Bernstein’s inequality, Proposition 7.4, and

Corollary 7.6, we obtainˇ̌̌̌“
xk�R@ku�T Œju>T jju�T j

p�1� dx dt
ˇ̌̌̌

.Rkrx2;3u�T kL1t L2xku�T k
p�1

L
p�1
t L

2.p�1/=�
x

ku>T kL1t L
2=.1��/
x

.RT 1�spkrx2;3u�T kL1t L2xT
sp�1ku�T k

p�1

L
p�1
t L2x.p�1/=�

ku>T kL1t L
2=.1��/
x

.RT 1�spC� :
For (7-17) we again argue as in the proof of the long-time Strichartz estimates, and using Corollary 7.6,

we obtainˇ̌̌̌“
xk�R@ku�T Œju>T j

2
ju�T j

p�2� dx dt
ˇ̌̌̌

.Rkrx2;3u�T kL1t L2xku�T k
p�2

L
p�1
t L1x

ku>T kL2.p�1/t L4x

.RT �Csp�1kjrx2;3 j
1��u�T kL1t L

2
x
N 1�spku�T k

p�2

L
p�1
t L1x

ku>T kL2.p�1/t L4x

.RT 1�spC� :
For (7-18), we once again use the bounds from the proof of the long-time Strichartz estimates as well

as Corollary 7.7, and we obtainˇ̌̌̌“
xk�R@ku�TP>T Œju>T j

3F2�dx dt
ˇ̌̌̌
.Rkrx2;3u�TkL2=.1�sp/t L

2=sp
x

kP>T Œju>T j
3F2�k

L
2=.1Csp/

t L
2=.2�sp/
x

.R
X
N�T

N �0

�
T

N

�.1��/.1�sp/
2

kjrx2;3 j
1��0uN kL2=.1�sp/t L

2=sp
x

.RT �0
X
N�T

�
T

N

�.1��/.1�sp/
2

N 1�sp

.RT 1�spC�0
X
N�T

�
N

T

�1�sp� .1��/.1�sp/2

.RT 1�spC�0

for any �0 > �, where � > 0 is as in Proposition 7.4.
Arguing analogously for the remaining terms, the estimates are almost identical, up to noting that by

Hölder’s inequality in the x2- and x3-variables we have

k.�RC R/u�T kL1t L
2
x
.Rspku�T kL1t L2x1L

2=.1�sp/
x2;x3

;

which is controlled by the PH sp norm by the Sobolev embedding (7-8). Thus we obtain for (7-19)–(7-21) the
estimates

(7-19).RspT 1�spku�T kL1t L2x1L
2=.1�sp/
x2;x3

T sp�2kjrjP>T Œu
p
�T �kL1tL

2
x
.Rsp ;

(7-20).RspT 1�spku�T kL1t L2x1L
2=.1�sp/
x2;x3

T sp�1kP>T Œu>T u
p�1
�T �kL1tL

2
x
.Rsp ;

(7-21).RspT 1�spku�T kL1t L2x1L
2=.1�sp/
x2;x3

T sp�1kP>T Œu
2
>T u

p�2
�T �kL1tL

2
x
.Rsp :
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For the last term (7-22), we note that
2

sp
�

2

1� sp
;

and we use Hölder’s inequality in the x2;3-variables to estimate

(7-22). k.�RC R/u�T kL2=.1�sp/t L
2=sp
x

kP>T Œu
3
>TF2�kL2=.1Csp/t L

2=.2�sp/
x

. T
.1��/.1�sp/

2 T
1�sp
2 R2sp�1k.�RC R/u�T kL1t L

2
x1
L
2=.1�sp/
x2;3

. T 1�spR2sp�1k.�RC R/u�T kL1t L2x1L
2=.1�sp/
x2;3

:

Now, using (7-13), (7-14), and our estimates for (7-15)–(7-22), we have established that“
jx2;3j�R

ju�T j
pC1 dx dt .RT 1C��sp CRsp CR2sp�1T 1�sp :

We now choose RD T .1=2/C to obtain that the right-hand side is o.T 1��/. This can be achieved provided
�C � < sp �

1
2

, and hence we complete the proof. �

As mentioned above, with the Morawetz estimate Proposition 7.5 in hand, we can quickly rule out
traveling waves. The final ingredient we will need is the nontriviality for compact solutions appearing in
Corollary 3.9. Combining this corollary with Proposition 7.5, we can now prove Proposition 7.2.

Proof of Proposition 7.2. Suppose toward a contradiction that Eu is a traveling-wave critical element for
(1-1). It suffices to prove thatZ T 1��

0

Z
jx2;3j�T .1=2/C

ju�T .t; x/j
pC1 dx dt & T 1�� (7-23)

for T sufficiently large, as this contradicts Proposition 7.5. By Corollary 3.9, the definition of the critical
element, and the fact that N.t/� 1, there exists C � 1 and T � 1 large enough thatZ t0C1

t0

Z
jx�x.t/j�C

ju�T .t; x/j
3.p�1/
2 dx dt &u 1 (7-24)

for all t0 2 R. Recalling jx.t/� .t; 0; 0/j.
p
t we see that for T > C 2 we have

fjx� x.t/j � C g � fjx2;3j � T
1
2
C
g

for all t 2 Œ0; T 1���. Thus (7-24) implies (7-23), as desired. �

7C. Additional regularityW proof of Proposition 7.4. Our final task is to prove Proposition 7.4, namely,
additional regularity for traveling waves. More precisely, we can establish additional regularity in the
directions orthogonal to the direction of travel.

Recall the notation x D .x1; x2;3/. We similarly use � D .�1; �2;3/ for the frequency variable. We also
introduce the following modified Littlewood–Paley operators:

For N;M 2 2Z, we let yPN;>M be the Fourier multiplier operator that is equal to 1 where

j�j 'N and j�2;3j&M:

We let yPN;M D yPN;>2M � yPN;>M , and we let PN D yPN;�M C yPN;>M .
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We will occasionally abuse notation slightly and apply these multipliers to a vector, where this should
be taken to mean applying these multipliers componentwise. We note that this notation differs from that
of the previous sections; however, we would like to make explicit that N corresponds to �-frequencies,
while M corresponds to those of �2;3.

We fix � > 0. We begin with the observation that

kP�N0ukL1t PH
1
x
.N0 1: (7-25)

We will choose the precise value of N0� 1 in the course of the proof. On the other hand, we haveX
N>N0

kjrx2;3 j
1�� yPN;�N sp=.1��/u.t/k

2
L2x
.

X
N>N0

N 2Œ sp
1��

.1��/�sp�kjrjspuN .t/k
2
L2x

. kjrjspu.t/k2
L2x
: (7-26)

Therefore, we are left to show thatX
N�N0

X
C0N

sp=.1��/�M�N

M 2.1��/
k yPN;�Mu.t/k

2
L2x
. 1

for some fixed C0 > 0 (uniformly in t ).
We will use a double Duhamel argument together with a frequency envelope to estimate this expression.

We will estimate

k yPN;�Mu.t0/k
2
L2.R3/

'N�2spk yPN;�Mu.t0/k
2
PH sp .R3/

DN�2sph yPN;�Mu.t0/; yPN;�Mu.t0/i PH sp .R3/
:

We will show that there exists a frequency envelope 
M;N such that

k yPN;�Mu.t0/k PH sp .R3/
. 
N;M .t0/

and such that X
N�N0

� X
C0N

sp=.1��/�M�N

M 2.1��/N�2sp
N;M .t0/
2

�
. 1:

Consequently, this will show thatX
N�N0

X
C0N

sp=.1��/�M�N

M 2.1��/
k yPN;�Mu.t0/k

2
L2x

.
X
N�N0

X
C0N

sp=.1��/�M�N

M 2.1��/N�2spk yPN;�Mu.t0/k
2
PH
sp
x

. 1:

Together with (7-25) and (7-26) (and time-translation invariance), this will imply

kj@2j
1��ukL1t L

2
x
Ckj@3j

1��ukL1t L
2
x
<1;

and hence prove Proposition 7.4. Thus, we let

�N;M .t0/DN
spk yPN;�Mu.t0/kL2.R3/;
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and we fix some � > 0 to be specified later. We define the frequency envelope


M;N .t0/D
X
N 0

X
M 0�M

min
�
N

N 0
;
N 0

N

��
�

�
M 0

M

��
�N 0;M 0.t0/:

By time-translation symmetry, it suffices to consider the case t0 D 0. Once again, we complexify the
solution, letting

w D uC
i
p
��

ut :

Then

kw.t/k PH1 ' kEu.t/k PH1�L2
;

and if Eu.t/ solves (1-1), then w.t/ is a solution to

wt D�i
p
��w˙

i
p
��
jujp�1u:

By Duhamel’s principle, for any T, we have

w.0/D eiT
p
��w.T /˙

i
p
��

Z 0

T

ei�
p
��F.u/.�/ d�;

where F.u/D jujp�1u. To estimate 
N;M , we write

yPN;�Mw.0/D yPN;�M e
�iT
p
��w.T /�

1
p
��

Z T

0

e�it
p
�� yPN;�MF.u/ dt

D yPN;�M e
�iT
p
��w.�T /�

1
p
��

Z 0

�T

e�i�
p
�� yPN;�MF.u/ d�:

When we pair these expressions and take T !1, we use the facts that

e�iT
p
�� yPN;�Mw.T /* 0 and eiT

p
�� yPN;�Mw.�T /* 0;

and ultimately we are left to estimate�Z 1
0

S.�t / yPN;�MF.u/ dt;
Z 0

�1

S.��/ yPN;�MF.u/ d�
�
PH
sp
x

:

where we have introduced the notation

S.t/ WD
1
p
��

eit
p
��

above.
As we have done in previous sections, we will estimate this expression by dividing space-time into

three regions: a compact time interval, an outer region, and a region inside the light-cone. We note,
however, that the arguments on the compact time interval and the region inside the light cone will be
considerably different than in previous sections.
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Thus, we let �0 > 0 and � > 0 be sufficiently small parameters and define the smooth cut-off

�0.t; x/D 1fjx�x.N 1��/j�R.�0/C.t�N 1��/; t�N 1��g;

where R.�0/ is such that

k�0.N
1��; x/u.N 1��; x/k PH sp Ck�0.N

1��; x/@tu.N
1��; x/k PH sp�1 � �0:

By the small-data theory, we may solve the Cauchy problem�
vt t ��vCF.v/D 0 on R�R3;

.v; @tv/jtD0 D
�
�0.N

1��; x/u.N 1��; x/; �0.N
1��; x/ut .N

1��; x/
�
2 PHsp .R3/:

Note that by finite propagation speed, v D u on the set

f.t; x/ W jx� x.N 1��/j �R.�0/C .t �N
1��/; t �N 1��

g:

We now write Z 1
0

S.�t / yPN;�MF.u/ dt D ACBCC;

where

AD

Z 1
N 1��

S.�t / yPN;�MF.v/ dt;

B D

Z N 1��

0

S.�t / yPN;�MF.u/ dt;

C D

Z 1
N 1��

S.�t / yPN;�M ŒF .u/�F.v/� dt

(7-27)

and perform a similar decomposition in the negative time direction, yielding quantities A0; B 0; C 0. We
will use the estimate

jhACBCC;A0CB 0CC 0ij. kAk2
PH
sp
x

CkA0k2
PH
sp
x

CkBk2
PH
sp
x

CkB 0k2
PH
sp
x

CjhC;C 0i PH sp
x
j (7-28)

whenever ACBCC D A0CB 0CC 0.

Term A. We first estimate hA;Ai PH sp
x

and hA0; A0i PH sp
x

, where

AD

Z 1
N 1��

S.�t / yPN;�MF.v/ dt and A0 D

Z �N 1��
�1

S.��/ yPN;�MF.v/ d�:

We introduce two parameters q and r satisfying

2 < q <min
�
p� 1;

2

sp
;
5p� 9

3p� 7

�
and

2

sp
� r �min

�
2p.p� 1/

2p� 3
; 4C

�
;

and let I D ŒN 1��;1/. We fix � > 0 to be specified later, and we define

aN 0;M D Œ.N
0/�.

2
q
�sp/k yPN 0;�MvkLqt L

2q=.q�2/
x

C .N 0/
2
r
�1Cspk yPN 0;�MvkL2r=.r�2/t Lrx

�;
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and let

˛N;M D
X
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
aN 0;M 0 :

All space-time norms are taken over I �R3. Our goal is to prove the following result.

Lemma 7.8. Let A;A0 and 
N;M be as above, thenX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
.kAk PH sp

x
CkA0k PH sp

x
/. �p�10 ˛N;M ;

and we also have
˛N;M . 
N;M .N 1��/C �

p�1
0 ˛N;M : (7-29)

Proof. On this region, we will use the small-data theory, which implies, in particular, that

kvk
L
2.p�1/
t;x .R�R3/

. �0:

By Strichartz estimates, we may write

N�.
2
q
�sp/k yPN;�MvkLqt L

2q=.q�2/
x

CN
2
r
�1Cspk yPN;�MvkL2r=.r�2/t Lrx

. k yPN;�M .v; vt /.N 1��/k PHsp CkPN;�MF.v/kN.R/; (7-30)

and recall that, by definition, we have

k yPN;�M .v; vt /.N
1��/k PH sp . �N;M .N 1��/: (7-31)

Here, we let the norm kF kN.R/ denote any finite combination
P
j kFj kNj .R/, with F D

P
j Fj and each

Nj .R/ being a dual admissible Strichartz space with the appropriate scaling and number of derivatives.
It will be useful to introduce the quantities

vlo D
X
N 0

yPN 0;�Mv and vhi D
X
N 0

yPN 0;>Mv;

where “lo” and “hi” are meant to refer to the �2;3-frequency component. We decompose the nonlinearity via

F.v/D F.vlo/C vhi

Z 1

0

F 0.vloC �vhi/ d�;

which we write schematically as
F.v/D F.vlo/C vhiv

p�1:

For the high-frequency (in M ) component, we write

vhiv
p�1
D .P�N vhi/v

p�1
C .P�N vhi/v

p�1;

and to estimate these terms we may use the dual Strichartz spaces

L
2q
qC2

t
PH
�. 2

q
�sp/; qq�1

x and L
r
r�1

t
PH
2
r
�1Csp;

2r
rC2

x
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respectively. This yields

kPN 0;�Mvhiv
p�1
kN.R/ . .N 0/�.

2
q
�sp/

X
N 00�N 0

k yPN 00;�MvkLqt L
2q=.q�2/
x .I�R3/

kvk
p�1

L
2.p�1/
t;x

C .N 0/
2
r
�1Csp

X
N 00�N 0

k yPN 00;�MvkL2r=.r�2/t Lrx.I�R3/
kvk

p�1

L
2.p�1/
t;x

WDN1CN2I

hence we conclude thatX
N 0

min
�
N

N 0
;
N 0

N

��
kPN 0;�Mvhiv

p�1
kN.R/ .

X
N 0

min
�
N

N 0
;
N 0

N

��
.N1CN2/:

Thus, we argue in order to bound the N1 and N2 terms. We only treat the first term as an example since
the other term follows analogously. We obtainX
N 0�N

X
N 00�N 0

�
N 0

N

��
.N 0/�.

2
q
�sp/k yPN 00;�MvkLqt L

2q=.q�2/
x

.
X
N 0�N

X
N 00�N 0

�
N 0

N

���N 00
N 0

�2
q
�sp

.N 00/�.
2
q
�sp/k yPN 00;�MvkLqt L

2q=.q�2/
x

.
X
N 00�N

�
N 00

N

��
aN 00;M

X
N 0�N 00

�
N 0

N 00

��. 2
q
�sp/C�

:

Hence this term can be bounded by ˛N;M provided � < 2
q
� sp.

We also haveX
N 0�N

�
N

N 0

��
.N 0/�.

2
q
�sp/

X
N 00�N 0

k yPN 00;�MvkLqt L
2q=.q�2/
x .I�R3/

.
X
N 00�N

�
N 00

N

��
aN 00;M

X
N 00�N 0;N�N 0

�
N 2

N 0N 00

���N 0
N 00

��. 2
q
�sp/

C

X
N 00�N

�
N

N 00

��
aN 00;M

X
N 00�N 0

�
N 00

N 0

���N 0
N 00

��. 2
q
�sp/

:

Using that in the first term �
N 2

N 0N 00

��
�

�
.N 0/2

N 0N 00

��
D

�
N 0

N 00

��
;

we can bound this expression by 
N;M providedX
N 00�N 0

�
N 0

N 00

���N 0
N 00

��. 2
q
�sp/
. 1 () � <

2

q
� sp;

and so we obtainX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
kPN 0;�M 0vhiv

p�1
kN.R/ . �

p�1
0 ˛N;M : (7-32)
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Next we estimate the contribution of the low-frequency piece. We can write

kPN;�MF.vlo/kN.R/ �M
�2
kPN;�M�x2;x3F.vlo/kN.R/:

Applying the chain rule and taking the decomposition v D P�N vCP�N v, we obtain for j D 2; 3 that

@xjF.vlo/D @xj vloF
0.vlo/

D @xjP�N vloF
0.vlo/C @xjP�N vloF

0.vlo/;

and hence

kPN;�M�x2;x3F.vlo/kN.R/ �

2X
jD1

k@xjPN;�M .@xj vlo/F
0.vlo/kN.R/

�

2X
jD1

MkPN;�M .@xj vlo/F
0.vlo/kN.R/:

Estimating as above, using the dual Strichartz spaces

L
2q
qC2

t
PH
�. 2

q
�sp/; qq�1

x and L
r
r�1

t
PH
2
r
�1Csp;

2r
rC2

x ;

we conclude that

kPN;�MF.vlo/kN.R/ .N�.
2
q
�sp/

X
N 0�N

X
M 0�M

M�1krx2;x3
yPN 0;M 0vlokLqt L

2q=.q�2/
x .I�R3/

kvk
p�1

L
2.p�1/
t;x

CN
2
r
�1Csp

X
N 0�N

X
M 0�M

M�1krx2;x3
yPN 0;M 0vlokL2r=.r�2/t Lrx.I�R3/

kvk
p�1

L
2.p�1/
t;x

.N�.
2
q
�sp/

X
N 0�N

X
M 0�M

�
M 0

M

�
k yPN 0;M 0vlokLqt L

2q=.q�2/
x .I�R3/

kvk
p�1

L
2.p�1/
t;x

CN
2
r
�1Csp

X
N 0�N

X
M 0�M

�
M 0

M

�
k yPN 0;M 0vlokL2r=.r�2/t Lrx.I�R3/

kvk
p�1

L
2.p�1/
t;x

:

To establish a bound for this expression, it is useful to introduce the notation

QaN;M 0 D
X
N 0

min
�
N

N 0
;
N 0

N

��
aN 0;M 0 :

Thus summing over N and M 0 �M, we can again argue exactly as above to bound this expression by

�
p�1
0

X
M 0�M

�
M 0

M

�� X
M 00�M 0

�
M 00

M 0

�
QaN;M 00 � �

p�1
0

X
M 00�M

�
M 00

M

�� X
M 00�M 0

�
M 00

M 0

��
M 0

M 00

��
QaN;M 00

� �
p�1
0

X
M 00�M

�
M 00

M

��
QaN;M 00

X
M 00�M 0

�
M 00

M 0

��
M 0

M 00

��
. �p�10 ˛N;M

provided � < 1. Thus, we obtainX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
kPN;�MF.vlo/kN.R/ . �

p�1
0 ˛N;M : (7-33)
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By Strichartz estimates, we have

kA0k PH sp
x
CkAk PH sp

x
. kPN;�MF.v/kN.I/:

Hence, putting these bounds together with (7-32) and (7-33) we obtainX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
.kAk PH sp

x
CkA0k PH sp

x
/. �p�10 ˛N;M :

Together with (7-30) and (7-31), we also have

˛N;M . 
N;M .N 1��/C �
p�1
0 ˛N;M ;

as required. �

Term B. We next estimate the terms hB;Bi and hB 0; B 0i from (7-27). On this region, we use the long-time
Strichartz estimates (Proposition 7.3) and another frequency envelope argument for this contribution. In
the following we suppose, unless otherwise specified, that norms be taken over

I WD Œ0; N 1����R3:

We define

bN 0;M D
�
.N 0/�.

2
q
�sp/k yPN 0;�MukLqt L

2q=.q�2/
x

C .N 0/
3.p�3/
2.p�1/ kPN 0;�MukL2.p�1/t L

2.p�1/=.p�2/
x

C .N 0/�
1
p�1
C 3�
2.p�1/ kPN 0;�MukLp�1t L

2.p�1/=�
x

C .N 0/sp�
3�
2 kPN 0;�MukL1t L

2=.1��/
x

C .N 0/��CspkPN 0;�MukL2=�t L
2=.1��/
x

C .N 0/
`
2 kPN 0;�MukL2p=.1Csp�p`/t L

2p=.2�sp/
x

C .N 0/
2sp
3
� 1
3 kPN 0;�MkL6=.1Csp/t L

6=.2�sp/
x

�
;

where ` > 0 will be determined more precisely below and � is as in Proposition 7.3. These are just a
collection of admissible Strichartz pairs at regularity sp. We then define the frequency envelope

ˇN;M D
X
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
bN 0;M 0 :

Our goal in this section is to prove the following result.

Lemma 7.9. Let B;B 0 and ˇN;M be as above. ThenX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
.kBk PH sp

x
CkB 0k PH sp

x
/. �p�10 ˇN;M ;

and we also have

N;M .N

1��/CˇN;M . 
N;M .0/C �p�10 ˇN;M : (7-34)

Proof. Fix t0 D 0. Throughout, we will assume that N � N0 as in the statement of the long-time
Strichartz estimates. By Strichartz estimates

kPN 0;�M .u; ut /kL1t PHsp .Œ0;N 1���/
C bN 0;M . kPN 0;�M .u; ut /.0/kHsp CkPN 0;�MF kN.I/:
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Once again, it will be useful to introduce the quantities

ulo D
X
N 0

yPN 0;�Mu and uhi D
X
N 0

yPN 0;>Mu;

where “lo” and “hi” are meant to refer to the �2;3-frequency component. We decompose the nonlinearity via

F.u/D F.ulo/Cuhi

Z 1

0

F 0.uloC �uhi/ d�;

which we write schematically as

F.u/D F.ulo/Cuhiu
p�1:

These two expressions will be estimated almost identically, up to requiring additional exponential gains
for the low frequency (in M ) term, F.ulo/. We will only estimate this term since the other is easier.
Arguing as above via the chain rule with the Laplacian in the x2;3-directions, we have

kPN;�MF.ulo/kN.I/ �M
�1
kPN;�M .r2;3ulo/F

0.ulo/kN.I/:

We write

.r2;3ulo/F
0.ulo/D .r2;3P�Nulo/F

0.ulo/C .r2;3P�Nulo/F
0.ulo/ WD 1C 2 (7-35)

and we begin with term 1. We set

P�Nulo WD ulo;�N ; P�Nulo WD ulo;�N ;

and take the decomposition

.r2;3ulo;�N /F
0.vlo/D .r2;3ulo;�N /F

0.ulo;�N /C .r2;3ulo;�N /ulo;�N

Z 1

0

F 00.ulo;�N C �ulo;�N /

D .r2;3ulo;�N /F
0.ulo;�N /Cr2;3ulo;�Nulo;�NF

00.ulo;�N /

C .r2;3ulo;�N /u
2
lo;�N

“ 1

0

F 000.ulo;�N C �1�2ulo;�N /

WD 1:I C 1:II C 1:III:

Term 1.I. We estimate using Corollary 7.6 to get

M�1kjrjsp�1PNr2;3ulo;�NF
0.ulo;�N /kL1tL

2
x

�M�1N sp�1kr2;3ulo;�NF
0.ulo;�N /kL1tL

2
x

�M�1N sp�1kulo;�N k
p�1

L
p�1
t L

2.p�1/=�
x

kr2;3ulo;�N kL1t L
2=.1��/
x

�N sp�1kulo;�N k
p�1

L
p�1
t L2x.p�1/=�

X
M 0�M

X
N 0�N

�
M 0

M

�
kPN 0;M 0ukL1t L

2=.1��/
x

�N sp�1N�spC
3�
2 kulo;�N k

p�1

L
p�1
t L

2.p�1/=�
x

�

X
M 0�M

X
N 0�N

�
M 0

M

��
N 0

N

��spC 3�2
.N 0/sp�

3�
2 kPN 0;M 0ukL1t L

2=.1��/
x

� �
p�1
0

X
M 0�M

X
N 0�N

�
M 0

M

��
N 0

N

��spC 3�2
bN 0;M 0 :
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Term 1.II. We estimate

M�1kjrjsp�1PNr2;3ulo;�Nulo;�NF
00.ulo;�N /kL1tL

2
x

.M�1N sp�1kr2;3ulo;�N kL2.p�1/t L4x
kulo;�N kL2.p�1/t L4x

kulo;�N k
p�2

L
p�1
t L1x

.M�1N sp�1kr2;3ulo;�N kL2.p�1/t L4x
kulo;�N kL2.p�1/t L4x

kulo;�N k
p�2

L
p�1
t L1x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�3
4
� 3
2.p�1/

.N 0/
3
4
� 3
2.p�1/ kPN 0;M 0ukL2.p�1/t L4x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�3
4
� 3
2.p�1/

bN 0;M 0 :

Term 1.III. As in the proof of term IV in the long-time Strichartz estimates, there are two terms. For the
first we estimate

M�1kr2;3ulo;�Nu
2
lo;�Nu

p�3
lo;�N kL

2=.1Csp/

t L
2=.2�sp/
x

.M�1N
`
2 kr2;3ulo;�Nu

2
lo;�Nu

p�3
lo;�N kL

2=.1Csp�`/

t L
2=.2�sp/
x

.M�1N
`
2 ku>N

8
k
p�1

L
2p=.1Csp/

t L
2p=.2�sp/
x

kulo;�N kL
2p=.1Csp�p`/

t L
2p=.2�sp/
x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�`
2

.N 0/
`
2 kPN 0;M 0ukL2p=.1Csp�p`/t L

2p=.2�sp/
x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�`
2

bN 0;M 0 ;

where we have used that for p > 3 and ` > 0, the pair�
2p

1C sp �p`
;
2p

2� sp

�
is wave-admissible at regularity

3

2
�
1C sp �p`

2p
�
6� 3sp

2p
D sp �

`

2
:

For the second term, we have

M�1kr2;3ulo;�Nu
2
lo;�Nu

p�3
lo;�N kL

2=.1Csp/

t L
2=.2�sp/
x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�2sp
3
� 1
3

.N 0/
2sp
3
� 1
3 kPN 0;M 0ukL6=.1Csp/t L

6=.2�sp/
x

. �p�10

X
M 0�M

X
N 0�N

�
M 0

M

��
N

N 0

�2sp
3
� 1
3

bN 0;M 0 :

This completes the estimation of term 1 in (7-35).
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Now we turn to term 2 in (7-35), namely

r2;3P�NuloF
0.ulo/:

We take the decomposition

r2;3ulo;�NF
0.vlo/Dr2;3ulo;�NF

0.ulo;�N /Cr2;3ulo;�Nulo;�N

Z 1

0

F 00.ulo;�N C �ulo;�N /

Dr2;3ulo;�NF
0.ulo;�N /Cr2;3ulo;�Nulo;�NF

00.ulo;�N /

Cr2;3ulo;�Nu
2
lo;�N

“
F 000.ulo;�N C �1�2ulo;�N /

WD 2:I C 2:II C 2:III:

We omit the estimates for the first two terms since they follow as above, and we focus on

r2;3ulo;�Nu
2
lo;�N

“ 1

0

F 000.ulo;�N C �1�2ulo;�N /DW r2;3ulo;�Nu
2
lo;�NF3:

Here, we will need to introduce some new exponent pairs compared to the proof of the long-time Strichartz
estimates. We divide this expression into two parts:

kjrj
�

p�3
2.p�1/

CspPN .r2;3ulo;�Nu
2
lo;�NF /kL.p�1/=.p�2/t L1x

.N�
p�3
2.p�1/

Cspkr2;3ulo;�Nu
p�1
lo;�N kL.p�1/=.p�2/t L1x

CN�
p�3
2.p�1/

Cspkr2;3ulo;�Nu
2
lo;�Nu

p�3
lo;�N kL.p�1/=.p�2/t L1x

:

Note that
�p�1
p�2

; 1
�

is dual wave-admissible for p � 3.
For the first term, we have a bound of

N�
p�3
2.p�1/

�spkjrj
spu>N k

2
L1t L

2
x
ku�N k

p�3

L
p�1
t L1x

X
M 0�M

M 0kPM 0u�N kLp�1t L1x

. �p�10

X
M 0�M

X
N 0�N

M 0
�
N 0

N

� 1
p�1

.N 0/�
1
p�1 kPN 0;M 0ukLp�1t L1x

:

For the second term we estimate

N�
p�3
2.p�1/

Cspkr2;3ulo;�Nu
p�1
lo;�N kL.p�1/=.p�2/t L1x

.N�
p�3
2.p�1/

Cspku�N k
p�3

L
2.p�1/
t;x

ku�N k
2

L4tL
4.p�1/=.pC1/
x

�

X
M 0�M

X
N 0�N

M 0
�
N 0

N

� 2
p�1

.N 0/�
2
p�1 kPN 0;M 0ukL1t L

1
x
:

Now we note that the pair �
4;
4.p� 1/

pC 1

�
is wave-admissible at regularity

3

2
�
1

4
�
3pC 3

4.p� 1/
D spC

2

p� 1
�
1

4
�
3pC 3

4.p� 1/
:
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Noting that
3pC 3

4.p� 1/
D
3.pC 1/

4.p� 1/
>

3

.p� 1/
;

we see that this is number strictly less than sp. Thus we obtain a bound of

�
p�1
0

X
M 0�M

X
N 0�N

M 0
�
N 0

N

� 2
p�1

.N 0/�
2
p�1 kPN 0;M 0ukL1t L

1
x
:

Arguing as in the estimates for term A, we may determine the restrictions on � . First, we need to
assume that � < 1 so that we can perform the summation in M, and we further require that � be bounded
above by the power appearing on the N 0=N factor when N 0 � N and the N=N 0 factor when N � N 0.
Examining the exponents in the definition of SN;M , this amounts to requiring � smaller than the smallest
(in absolute values) exponent in that expression, and hence we may assume the most restrictive of these
will be taking � < `=2 in term 1.III.

Provided this is the case, we obtainX
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
kPN 0;�MF.u/kN.I/ . �

p�1
0 ˇN;M ;

and since, by Strichartz estimates

kBk PH sp
x
CkB 0k PH sp

x
. kPN 0;�MF kN.I/:

we have X
N 0

X
M 0�M

�
M 0

M

��
min

�
N

N 0
;
N 0

N

��
.kBk PH sp

x
CkB 0k PH sp

x
/. �p�10 ˇN;M ;

as well as the estimate


N;M .N
1��/CˇN;M . 
N;M .0/C �p�10 ˇN;M ;

as required. �

Term C. We turn to the hC;C 0i term (see (7-27) and (7-28)). In this section we prove the following
lemma.

Lemma 7.10. Let C;C 0 be defined as in (7-27), and letM �C0N sp=.1��/. Then, for any L2N we have

jhC;C 0i PH sp
x
j.L

1

ML
;

where the implicit constant above depends only on L.

Proof of Lemma 7.10. We introduce the notation

G.u; v/.t/D F.u.t//�F.v.t//;

which we may abbreviate as G.t/ or even G. We are faced with estimating

hC;C 0i PH sp
x
'N 2sphC;C 0iL2x ;
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where

hC;C 0iL2x D

Z �N 1��
�1

Z 1
N 1��
hS.�t / yPN;MG.u; v/.t/; S.��/ yPN;MG.u; v/.�/iL2x dt d�

D

Z �N 1��
�1

Z 1
N 1��
hG.u; v/.t/; S.t � �/ yP 2N;M

1

jrj
G.u; v/.�/iL2x dt d�: (7-36)

Since M � C0N sp=.1��/, it suffices to show that

jhC;C 0iL2x j.L
1

ML
;

and all inner products in this proof will be L2x inner products.
For each fixed t; � as above we estimate the pairing,

hG.u; v/.t/; S.t � �/ yP 2N;MG.u; v/.�/iL2x :

Recall that by the definition of Ev.�/, G.u; v/.�/ is supported in the region

G˙.�/ WD fx W jx� x.˙N 1��/j �R.�0/Cj� j �N
1�� for all ˙ � �N 1��

g: (7-37)

This points to an immediate problem in any naive implementation of the double Duhamel trick by way of
the Huygens principle as performed in previous sections. Namely, the support of the S.t � �/ evolution
of G.u; v/.�/ intersects with the support of G.u; v/.t/ in the “wave zone”, i.e., near the boundary of the
light cone where the kernel of S.t � �/ only yields ht � �i�1 decay, which is not sufficient for integration
in time. However, we are saved here by a gain in angular separation in the wave zone guaranteed
by our directional frequency localization yPN;M . Indeed, application of yPN;M restricts to frequencies
� D .�1; �2;3/ with

j�2;3j

j�j
'
M

N
;

whereas for any x D .x1; x2;3/ 2 G.t/\f.t; x/ W jxj � t �R.�0/g we claim that

jx2;3j

jxj
�
M

N

for all M �N sp=.1��/. We establish this fact in Lemma 7.11 below.
We introduce some additional notation. Let R. � / be the compactness modulus function. For given

t 2 R let
Cext.t/ WD fx W jxj � jt j �R.�0/g;

Cint.t/ WD fx W jxj � jt j �R.�0/g:
(7-38)

We decompose hC;C 0i as follows. First, we write

G.u; v/.t/DG.u; v/.t/1Cext.t/CG.u; v/.t/1Cint.t/ :
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Using this decomposition in (7-36) leads to four terms:“ �
S.t � �/

1

jrj
yPN;M1Cext.�/G.�/; 1Cext.t/G.t/

�
dt d�; (7-39)“ �

S.t � �/
1

jrj
yPN;M1Cext.�/G.�/; 1Cint.t/G.t/

�
dt d�; (7-40)“ �

S.t � �/
1

jrj
yPN;M1Cint.�/G.�/; 1Cext.t/G.t/

�
dt d�; (7-41)“ �

S.t � �/
1

jrj
yPN;M1Cint.�/G.�/; 1Cint.t/G.t/

�
dt d�; (7-42)

where the integrals are over Œ�1;�N 1����ŒN 1��;1�. We will refer to these terms as Cext� ext, Cext�int,
Cint�ext and Cint�int respectively, and we will handle these terms separately below. Were it not for the
frequency localization yPN;M all but the first term above would vanish using the support properties of
G.u; v/, together with the particular pairing of the cutoffs 1Cint and 1Cext , and the sharp Huygens principle.
On the other hand, whereas in previous scenarios (e.g., the subluminal soliton) the first term would vanish,
in the present setting there truly is an interaction between these two terms. This is the origin of the
essential technical difficulty faced in the present scenario, and indeed we will find that the first term (7-39)
requires the most careful analysis. The crucial observation is that in this setting we can rely on angular
separation to exhibit decay.

The term Cext � ext. We will rely crucially on the following two lemmas, which together make precise
the gain in decay from angular separation.

Lemma 7.11 (angular separation in the wave zone). For any c > 0 there exists N0 DN0.c/ > 0 with the
following property. Fix � 2 .0; 1/ and let � > 0 be any number with

� <
2sp

1� �
� 1:

Let .t; x/ satisfy
jt j �N 1��; x D .x1; x2;3/ 2 G.t/\ Cext.t/;

where G.t/ are defined in (7-37), (7-38). Then,

jx2;3j

jxj
.

1

N
1
2
� �
2

� c
M

N
(7-43)

for all N �N0 and M �N sp=.1��/.

See Figure 3 for a depiction of Lemma 7.11.
Next, we show that if we restrict to those x 2 R3 satisfying (7-43) then we get strong pointwise decay

for the kernel of the operator S.t/ 1
jrj
yP 2N;M .

To state the result, we define

SN WD
�
x 2 R3 W

jx2;3j

jxj
.

1

N
1
2
� �
2

�
: (7-44)
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x2; x3

� � cN
�
2
� 1
2

x1

Figure 3. The dark gray region above represents the region GC.t/\Cext in space at fixed
time t > N 1��.

Lemma 7.12 (kernel estimates via angular separation). Let KN;M .t; x/ denote the kernel of the operator
S.t/ 1

jrj
yP 2N;M . Let N �N0 where N0 is as in the hypothesis of Lemma 7.11. Then, for any L,

j1SN .x/KN;M .t; x/j.L N
NL

ML

1

hM jxjiL
for all t �N 1��; (7-45)

where SN is the set defined in (7-44) and where we have used the notation hzi WD .1Cjzj2/1=2 above.

Proof of Lemma 7.11. We assume that t � 0. Since we are assuming

0 < � <
2sp

1� �
� 1

and that M �N sp=.1��/, it suffices to show the first inequality in (7-43), i.e., that

jx2;3j

jxj
.

1

N
1
2
� �
2

(7-46)

for all x 2 G.t/\ Cext.t/ for some uniform constant.
First, we claim that (7-46) holds at time t DN 1��. Suppose

x 2 GC.N 1��/\ Cext.N
1��/:
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By the definition of traveling wave (i.e., (7-1) and (7-2)) we have

jxj 'N 1��; jx2;3j.N
1
2
� �
2

and thus,
jx2;3j

jxj
.N

�
2
� 1
2

as desired.
Now suppose t > N 1��. We introduce some notation. Let �x.N 1��/ denote the angle between the unit

vector Ee1 (the unit vector in the positive x1-direction) and the vector x.N 1��/, where we recall that x.t/
denotes the spatial center of Eu. Above, we have just shown that

jsin.�x.N 1��//j ' j�x.N 1��/j � A1N
�
2
� 1
2

for some uniform constant A1>0. To finish the proof it will suffice to show that for any x 2 G.t/\Cext.t/,
the angle �.x;x.N 1��// formed between the vectors x and x.N 1��/ satisfies

j�.x;x.N 1��//j � A2N
�
2
� 1
2

for some other uniform constant A2 > 0, as then the sine of the total angle between x and the x1-axis,
i.e., jx2;3j=jxj would satisfy (7-46). To get a hold of �.x;x.N 1��// we square both sides of the inequality
defining the set GC.t/. For x 2 G.t/ we have

jxj2� 2x � x.N 1��/Cjx.N /1��j2 � .R.�0/C t �N
1��/2:

Using that x � x.N 1��/D jxjjx.N 1��/j cos �.x;x.N 1��// the above yields the inequality

�2jxjjx.N 1��/j cos �.x;x.N 1��// � .R.�0/C t �N
1��/2� jxj2� jx.N 1��/j2:

Bootstrapping, we may assume that �.x;x.N 1��// is small enough to use the estimate

cos �.x;x.N 1��// � 1�
�2
.x;x.N 1��//

4
:

Plugging the above in we arrive at the inequality

�2
.x;x.N 1��//

2
� 2C

1

jxjjx.N 1��/j
..R.�0/C t �N

1��/2� jxj2� jx.N 1��/j2/

�
2jxjjx.N 1��/jC .R.�0/C t �N

1��/2� jxj2� jx.N /1��j2

jxjjx.N 1��/j
:

The requirement that x 2 Cext.t/, finite speed of propagation, and (7-1) imply that we have

t �R.�0/� jxj � t CR.�0/ and N 1��
�R.�0/� jx.N

1��/j �N 1��
CR.�0/:
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Plugging the above into the previous line gives

�2
.x;x.N 1��//

2
�
2.tCR.�0//.N

1��CR.�0//C.R.�0/Ct�N
1��/2

.t�R.�0//.N 1���R.�0//
�
.t�R.�0//

2�.N 1���R.�0//
2

.t�R.�0//.N 1���R.�0//

D
6tR.�0/C2N

1��R.�0/CR.�0/
2

.t�R.�0//.N 1���R.�0//

.
1

N 1��
C
1

t
:

Taking the square root and noting that t �N 1�� we arrive at

j�.x;x.N 1��//j.
1

N
1
2
� �
2

as desired. �

Next, we prove Lemma 7.12.

Proof of Lemma 7.12. The kernel KN;M of the operator S.t/ 1
jrj
yP 2N;M is given by

KN;M .t; x/ WD

Z
eix�� j�j�2eit j�j�2

�
j�j

N

�
�2

�
j.�2; �3/j

M

�
d�;

where � 2C10 .R/ is satisfies �.r/D 1 if 1� r � 2 and supp� 2
�
1
4
; 4

�
. Now, recall that we are restricting

to only those x 2 SN , as defined in (7-44). We express any such x in spherical coordinates

x D jxj.cos �x; sin �x cos!; sin �x sin!/;

where �x denotes the angle formed by x and the unit vector in the e1-direction. And recall that any
x 2 SN satisfies

jx2;3j

jxj
D sin �x ' j�xj.

1

N 1��
: (7-47)

Similarly, we change to the spherical variables

� D j�j.cos �� ; sin �� cos˛; sin �� sin˛/

in the integral defining KN;M and note that because of the frequency localization yPN;M we have

j�2;3j

j�j
D sin �� '

M

N
: (7-48)

This yields

KN;M .t; x/D

Z 2�

0

Z �

0

Z 4N

N
4

ei jxjj�jf .�x ;�� ;!;˛/j�j�2eit j�j�2
�
j�j

N

�
�2

�
j�j sin ��
M

�
j�j2 sin �� dj�j d�� d˛;

where the angular phase function f .�x; �� ; !; ˛/ is given by

f .�x; �� ; !; ˛/D cos �x cos �� C sin �x sin ��.cos! cos˛C sin! sin˛/:
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The idea is that the angular separation between x and � given by (7-47) and (7-48) allows us to integrate
by parts in �� . Indeed, using (7-47) and (7-48) we have the lower boundˇ̌̌̌

d
d��

Œjxjj�jf .�x; �� ; !; ˛/�

ˇ̌̌̌
D jxjj�j

ˇ̌
� cos �x sin �� C sin �x cos ��.cos! cos˛C sin! sin˛/

ˇ̌
� jxjj�j

�
M

N
�O

�
1

N
1
2
� �
2

��
& jxjM:

Moreover, note that for any L 2 N and M .Nˇ̌̌̌
dL

d�L
�

�
�2

�
j�j sin ��
M

�
sin ��

�ˇ̌̌̌
.
NL

ML
:

Thus, integration by parts L-times in �� yields the estimate

jKN;M .t; x/j.L N 2 N
L

ML

1

hM jxjiL
for all t �N 1��; x 2 G.t/\ Cext.t/;

as desired. �

We can now estimate (7-39). Here will rely crucially on Lemmas 7.11 and 7.12. First we write,�
S.t � �/

1

jrj
yPN;M1Cext.�/G.u; v/.�/; 1Cext.t/G.u; v/.t/

�
D hKN;M .t � �/� 1Cext.�/G.u; v/.�/; 1Cext.t/G.u; v/.t/i:

We claim that in fact the above can be expressed as

hKN;M .t � �/� 1Cext.�/G.�/; 1Cext.t/G.t/i

D
˝
.1SN . � /1fj � j� 1

2
jt�� jg. � /KN;M .t � �//� 1Cext.�/G.�/; 1Cext.t/G.t/

˛
; (7-49)

where the set SN is defined in (7-44). Indeed, note that above we have

x 2 GC.t/\ Cext.t/ and y 2 G�.�/\ Cext.�/; (7-50)

where G˙ are as in (7-37) and Cext is as in (7-38). Thus,

jx�yj � jt � � j � 2R.�0/�
1
2
jt � � j

as long as N is chosen large enough. Similarly by (7-50) we have jx � yj � jxj and jx � yj � jyj and
thus,

jx2;3�y2;3j

jx�yj
�
jx2;3j

jxj
C
jy2;3j

jyj
.

1

N
1
2
� �
2

;

where in the last inequality above we used Lemma 7.11. This proves the equality in (7-49).
Now, let qp denote the Sobolev embedding exponent for PH sp , i.e., qp D

3.p�1/
2

. Note that qp � p
for p � 3 and .qp=p/0 � 2 for p > 0 (where x0 denotes the Hölder dual of x). By Hölder’s and Young’s
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inequalities we then haveˇ̌˝
.1SN . � /1fj � j� 1

2
jt�� jg. � /KN;M .t � �//� 1Cext.�/G.�/; 1Cext.t/G.t/

˛ˇ̌
� k1SN . � /1fj � j� 1

2
jt�� jg. � /KN;M .t � �/kL.qp=p/

0=2
x

kG.u; v/.t/k
L
qp=p
x

kG.u; v/.�/k
L
qp=p
x

:

Using (7-45) we see that

k1SN . � /1fj � j� 1
2
jt�� jg. � /KN;M .t � �/kL.qp=p/

0=2
x

.
NLC1

M 2L

�Z
jxj� 1

2
jt�� j

1

jxj2L.
qp
p
/
0 dx

� 2

.qpp /
0

.
NLC1

M 2L

1

jt � � jL�1
: (7-51)

Since G.u; v/D F.u/�F.v/ we have

kG.u; v/.t/k
L
qp=p
x

. ku.t/kp
L
qp
x

Ckv.t/k
p

L
qp
x

. ku.t/kp
PH
sp
x

Ckv.t/k
p

PH sp
:

Putting this all together we arrive at the estimateˇ̌̌̌Z �N 1��
�1

Z 1
N 1��

˝
S.t � �/ yPN;M1Cext.�/G.u; v/.�/; 1Cext.t/G.u; v/.t/

˛
dt d�

ˇ̌̌̌
.L

Z �N 1��
�1

Z 1
N 1��

NLC1

M 2L

1

jt � � jL�1
.ku.t/k

p

PH
sp
x

Ckv.t/k
p

PH sp
/.ku.�/k

p

PH
sp
x

Ckv.�/k
p

PH sp
/ dt d�

.L NLC1C.1��/.2�L/M�2L.kuk
2p

L1t
PH sp
Ckvk

2p

L1t
PH sp
/

.LM�L;

where to obtain the last line we ensure that � > 0 is small enough so that when M �N sp=.1��/ we also
have ML �N 4C�L. We have proved that

(7-39).LM�L;

as desired. This completes the treatment of the Cext� ext term.

The term Cint�int. Here we will use a combination of arguments based on sharp Huygens principle and
the techniques developed to deal with the previous term Cext� ext.

First we record an estimate for the kernel of the modified frequency projection.

Lemma 7.13. Let p2N;M denote the kernel of the operator yP 2N;M . Then,

jp2N;M .x/j.L
N 3

hN jxjiL
C

N 3

hM jxjiL
: (7-52)

Next, consider the following decomposition of the forward cone centered at .t; x/D .N 1��; x.N 1��//

of width R.�0/, i.e., the set
GC WD

[
t�N 1��

GC.t/;

where G.t/ is defined as in (7-37). This decomposition is depicted in Figure 4.
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t

C3;C

C2;C

C1;C

B

A

G2;C

G1;C

G0;C

x
D
t

t D 8N 1��

t D 4N 1��

t D 2N 1��

t DN 1��

x1

Figure 4. A depiction of the first few regions Cj;C and GC;j within the region C.

We write

GC D
[
j�1

CC;j [
[
j�0

GC;j :

We define CC;j ; GC;j as follows. First, set

zCC;1 WD f.t; x/ W jx� x.2N 1��/j �R.�0/C t � 2N
1��; t � 2N 1��

g\GC

and for j � 1

zCC;j WD
˚
f.t; x/ W jx� x.2jN 1��/j �R.�0/C t � 2

jN 1��; t � 2jN 1��
g\GC

	
n CC;j�1:

For j � 0, define sets zGC;j to be the regions

zGC;j D f.t; x/ W jx� x.2jN 1��/j �R.�0/C t � 2
jN 1��; 2jN 1��

� t � 2jC1N 1��
g\GC:

Then we define
CC;j WD zCC;j \f.t; x/ W jxj � t � 2jN 1��; t � 2jN 1��

g;

GC;j WD zGC;j [ ŒzCC;jC1 n CC;jC1�:

The regions CC;j and GC;j are depicted in Figure 4.
Now, split the integrand of (7-42) in the four pieces,

(7-42)D
Z �N 1��
�1

Z 1
N 1��

.I C II C III C IV / dt d�;
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where

I D
X
j;k

�
yP 2N;M

1

jrj
S.t � �/Œ1C�;j 1CintG�.�/; Œ1CC;k1CintG�.t/

�
; (7-53)

II D
X
j;k

�
yP 2N;M

1

jrj
S.t � �/Œ1C�;j 1CintG�.�/; Œ1GC;k1CintG�.t/

�
; (7-54)

III D
X
j;k

�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j 1CintG�.�/; Œ1CC;k1CintG�.t/

�
; (7-55)

IV D
X
j;k

�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j 1CintG�.�/; Œ1GC;k1CintG�.t/

�
: (7-56)

First we estimate the term (7-53) above. The key points are the following. First, by the support
properties of 1CC;k1Cint.�; y/, 1C�;j 1Cint.t; y/ and the sharp Huygens principle, we must have

jx�yj& .2jC2k/N 1�� for all x2 supp.1CC;k1CintG.u; v//.t/; y2 suppŒS.t��/1C�;j 1CintG.u; v/�.�/:

(7-57)
Second, by the definitions of the space-time cutoffs 1C�;j and 1CC;k , the functions 1C�;ju.�/ and 1CC;ku.t/
are restricted to the exterior small-data regime and we thus have

k1C�;j 1CintG.u; v/kN ..�1;�2jN 1���/ . kEukL1t PHsp . 1;

k1CC;k1CintG.u; v/kN .Œ2jN 1��;1// . kEukL1t PHsp . 1;
(7-58)

where N denote suitable dual spaces.
We argue as follows. For any q � 2, and up to fattening the projection yPN;M , we haveˇ̌̌̌�
yP 2N;M

1

jrj
S.t � �/Œ1C�;j 1CintG.u; v/�.�/; Œ1CC;k1CintG.u; v/�.t/

�ˇ̌̌̌
. k1fj � j&.2jC2k/N 1��gpN;MkL1kPN jrj

�1�spC
2
q S.t � �/Œ1C�;j 1CintG.u; v/�.�/kLqx

�kjrj
sp�

2
q Œ1CC;k1CintG.u; v/�.t/kLq0 :

We estimate last line above as follows. Note that by (7-52) and (7-57) (and the lower bound on M ), we
have

k1fj�j&.2jC2k/N 1��gpN;MkL1 .L
N 3

Œ.2j C 2k/N 1���L�1
:

By the dispersive estimate for the wave equation and noting that jt � � j � 2N 1�� we have

kPN jrj
�1�spC

2
q S.t � �/Œ1C�;j 1CintG.u; v/�.�/kLqx

.
1

jt � � j1�
2
q

N 1� 4
q kPN jrj

�1�spC
2
q Œ1C�;j 1CintG.u; v/�.�/kLq

0

x

.
1

jt � � j1�
2
q

N�2spkPN jrj
sp�

2
q Œ1C�;j 1CintG.u; v/�.�/kLq

0

x
:
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Thus, using the above, Bernstein’s inequality, the Hardy–Littlewood–Sobolev inequality, and (7-58) in
the last line below we haveZ 1
N 1��

Z �N 1��
�1

(7-53) dt d�

.L
X
j;k�1

N 3N�2sp

Œ.2j C 2k/N 1���L�1

Z 1
N 1��

Z �N 1��
�1

�
1

jt � � j1�
2
q

kjrj
sp�

2
q Œ1C�;j 1CintG.u; v/�.�/kLq

0

x

�kjrj
sp�

2
q Œ1C�;k1CintG.u; v/�.t/kLq

0

x

�
dt d�

.L
X
j;k�1

N 3N�2sp

Œ.2j C 2k/N 1���L�1
kjrj

sp�
2
q Œ1CC;k1CintG.u; v/�kL2q=.qC2/t L

q0

x

�kjrj
sp�

2
q Œ1C�;j 1CintG.u; v/�kL2q=.qC2/t L

q0

x

.L
X
j;k�1

N 3N�2sp

Œ.2j C 2k/N 1���L�1
.L N�L=2;

where in the second-to-last line we have fixed q > 2 above and note that the norms above are dual sharp
admissible Strichartz pairs (e.g., one can take q D 4).

Next, consider the term (7-56). Here we cannot rely exclusively on separation of supports because the
S.t��/ evolution of the term localized to G�;j has some of its support within 2R.�0/ of the term localized
to GC;k for all j; k. The saving grace is that the pieces of the supports of S.t � �/Œ1G�;j 1CintG.u; v/�.�/

and Œ1GC;k1CintG.u; v/�.t/ that are close to each other (say within 2 j̨ C 2˛k for some small parameter
˛ > 0) come along with angular separation in the sense of Lemma 7.12. To make this precise we must
further subdivide G˙;k as follows.

Let ˛ > 0 be a small parameter to be fixed below. Let

GC;k;in WD GC;k \f.t; x/ W jxj � t � 2˛kN ˛.1��/
g;

GC;k;out WD GC;k \f.t; x/ W jxj � t � 2˛kN ˛.1��/
g:

We decompose (7-56) as follows, noting symmetry in j; k means it suffices to consider only the sum for
j � k. We write (7-56) in the formX�

yP 2N;M
1

jrj
S.t � �/Œ1G�;j;in1CintG�; Œ1GC;k;in1CintG�

�
(7-59)

C

X�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j;in1CintG�; Œ1GC;k;out1CintG�

�
(7-60)

C

X�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j;out1CintG�; Œ1GC;k;in1CintG�

�
(7-61)

C

X�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j;out1CintG�; Œ1GC;k;out1CintG�

�
; (7-62)

where the sums are over j; k � 0 with j � k, G DG.u; v/, and the pairings are evaluated at �; t .
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The key point will be that on the outer regions G�;j;out, GC;k;out we can recover the same angular
separation used to treat the term Cext� ext and on the inner regions G�;j;in and GC;k;in we obtain sufficient
separation in support between the two factors after evolution by S.t � �/ to get enough decay in j; k after
the application of yP 2N;M

1
jrj

.

Lemma 7.14 (angular separation in G˙;j;out). Let ˛ > 0 and let SN;˛ be the set

SN;˛ WD
�
x 2 R3 W

jx2;3j

jxj
.

1

N
.1�˛/.1��/

2

�
: (7-63)

Then, there exists ˛ > 0 small enough and N0 > 0 large enough so that for all x 2 G˙;j;out we have

x 2 SN;˛ and
1

N
.1�˛/.1��/

2

�
M

N

for all N �N0 and M �N sp=.1��/ and for all j � 0.

Proof. It suffices to consider x 2 GC;j;out. The proof is nearly identical to the proof of Lemma 7.11,
but here we have allowed the region GC;j;out to deviate farther from the boundary of the cone as j (and
hence t ) gets larger. As in Lemma 7.12 we have

jsin.�x.2jN 1��//j ' j�x.2jN 1��/j � A1N
�
2
� 1
2

independently of j � 0. To finish the proof it suffices to show that for any x 2 GC;j;out, the angle
�.x;x.2jN 1��// formed between the vectors x and x.2jN 1��/ satisfies

j�.x;x.2jN 1��//j � A2
1

N
.1�˛/.1��/

2

for some other uniform constant A2 > 0, as then the sine of the total angle between x and the x1-axis,
i.e., jx2;3j=jxj would satisfy (7-63). Note that for any .t; x/ 2 GC;j;out

2jN 1��
� 2 j̨N ˛.1��/

� jxj � 2jC1N 1��
C 2 j̨N ˛.1��/:

Arguing as in the proof of Lemma 7.11 we see that for any .t; x/ 2 GC;j;out

�2
.x;x.2jN 1��//

.
2t2 j̨N ˛.1��/

.t � 2 j̨N ˛.1��//.2jN 1��/
.

1

2.1�˛/jN .1�˛/.1��/
;

as desired. �

With Lemma 7.14 in hand, we can estimate the term (7-62) in an identical fashion as the term (7-39),
noting that applications of Lemma 7.12 are still valid in this new setting because for x 2GC;k;out and
y 2G�;j;out we have

jx2;3�y2;3j

jx�yj
.
jx2;3j

jxj
C
jy2;3j

jyj
.

1

N .1�˛/.1��/
�
M

N
;

i.e., sufficient angular separation since the Fourier variable � satisfies

j�2;3j

j�j
'
M

N
:
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Moreover we have

jx�yj ' .2j C 2k/N 1�� if x 2GC;k;out; y 2G�;j;out:

This means that we are free to write,�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j;out1CintG.u; v/�.�/; Œ1GC;k;out1CintG.u; v/�.t/

�
D

˝
Œ1SN;˛1fj � j'.2jC2k/N 1��gKN;M �� Œ1G�;j;out1CintG.u; v/�.�/; Œ1GC;k;out1CintG.u; v/�.t/

˛
: (7-64)

Mimicking the estimates of (7-62) we see that as in (7-51) we have

k1SN;˛ . � /1fj � j'.2jC2k/N 1��g. � /KN;M .t � �/kL.qp=p/
0=2

x
.L

NLC1

M 2L

1

Œ.2j C 2k/N 1���L
:

This allows us to sum in j; k, and we obtainZ �N 1��
�1

Z 1
N 1��

(7-62) dt d� .L
1

ML
:

To handle the term (7-59) we rely on the following observation: by the support properties of 1CC;k1Cint.�; y/,
1C�;j 1Cint.t; y/ and the sharp Huygens principle, we must have

jx�yj& .2j C 2k/N 1��

for all
x 2 supp.1GC;k;in1CintG.u; v//.t/

and
y 2 suppS.t � �/Œ1G�;j;in1CintG.u; v/�.�/:

Hence,ˇ̌̌̌�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j;in1CintG.u; v/�.�/; Œ1GC;k;in1CintG.u; v/�.t/

�ˇ̌̌̌
. k1fj � j&.2jC2k/N 1��gpN;MkL.qp=p/0=2x

N�1kPNS.t � �/Œ1C�;j 1CintG.u; v/�.�/kLqp=px

k

�Œ1CC;k1CintG.u; v/�.t/kLqp=px

.L
1

Œ.2j C 2k/N 1���L
.kuk

2p

L1t
PH sp
Ckvk

2p

L1t
PH sp
/:

Hence, Z �N 1��
�1

Z 1
N 1��

(7-59) dt d� .L
1

NL
:

Next, for the term (7-60) we note that the same argument used to treat (7-59) applies. However, we note
that here we only obtain spatial separation of 2jN 1��. Nonetheless, since j � k we have

2jN 1��
' .2j C 2k/N 1��
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and hence we are able to sum in j; k, obtainingZ �N 1��
�1

Z 1
N 1��

(7-60) dt d� .L
1

ML
:

Lastly, consider the term (7-61). Here we use a mix of the arguments used to control (7-59) and (7-62).
In particular we split the sum into two pieces noting that if j ' k then the same argument used to
estimate (7-59) applies since the spatial supports are separated by' 2kN 1�� ' .2j C2k/N 1��. If j � k,
we obtain enough angular separation argument to use the same argument used to bound (7-62), since in
this case we have

jx2;3�y2;3j

jx�yj
'
jy2;3j

jyj
.

1

N .1�˛/.1��/
�
M

N

for all x 2 GC;k;in and y 2 G�;j;out as long as j � k. We obtainZ �N 1��
�1

Z 1
N 1��

(7-59) dt d� .L
1

NL
C

1

ML
:

This completes the estimation of (7-56).
At this point, the mixed terms (7-54) and (7-55) (i.e., the remaining contributions to the Cint�int term),

as well as the Cint�ext and Cext�int terms ((7-40) and (7-41)) can be handled with a combination of the
techniques developed above. For example, after further subdividing G� in the regions C�;j and G�;j
consider the term of the form,X

j�0

Z �2jN 1��
�2jC2N 1��

Z 1
N 1��

�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j 1CintG.u; v/�.�/; 1CextG.u; v/�.t/

�
dt d�:

Fixing a large constant K1 > 0, we can divide the above into two further pieces, namelyX
j�0

Z �2jN 1��
�2jC2N 1��

Z K12
jN 1��

N 1��

�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j 1CintG.u; v/�.�/; 1CextG.u; v/�.t/

�
dt d�

C

X
j�0

Z �2jN 1��
�2jC2N 1��

Z 1
K12jN 1��

�
yP 2N;M

1

jrj
S.t � �/Œ1G�;j 1CintG.u; v/�.�/; 1CextG.u; v/�.t/

�
dt d�:

For the first term on the right-hand-side above we can copy the argument used to estimate (7-59). Indeed
by the sharp Huygens principle the spatial supports (before the application of PN;M ) are separated for
each fixed t; � by a distance of at least ' 2jN 1�� 'K1 jt � � j. For the second term above we can choose
K1� 1 large enough to guarantee enough angular separation between the spatial and Fourier variables
to mimic a combination of the arguments used to estimate (7-39) (where one integrates in t) and (7-62)
(where one sums in j ). The remaining interactions are handled similarly. We omit the details.

We have thus proved that

jhC;C 0ij.L
1

NL
C

1

ML
.L

1

ML
;

which finally completes the proof of Lemma 7.10. �
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We are now prepared to conclude the frequency envelope argument and the proof of Proposition 7.4.

Proof of Proposition 7.4. Recall that we are trying to prove thatX
N�N0

X
C0N

sp=.1��/�M�N

M 2.1��/
k yPN;�Mu.t/k

2
L2x
. 1;

for some fixed C0 > 0, for which it suffices to prove thatX
N�N0

X
C0N

sp=.1��/�M�N

M 2.1��/N�2spk yPN;�Mu.t/k
2
PH
sp
x

. 1:

Once again, by time-translation invariance, we argue for t D 0. Recall that

jh yPN;�Mu.0/; yPN;�Mu.0/i PH sp
x
j. kAk2

PH sp
CkA0k2

PH sp
CkBk2

PH sp
CkB 0k2

PH sp
CjhC;C 0i PH sp

x
j;

and hence by Lemmas 7.8, 7.9 and 7.10, we obtain


N;M .0/D
X

N 0;M 0�M

min
�
N

N 0
;
N 0

N

���M 0
M

��
k yPN;�Mu.0/k

2
PH
sp
x

. �p�10 ˛N;M C �
p�1
0 ˇN;M CM

�L: (7-65)

Furthermore by (7-29) and (7-34),

˛N;M . 
N;M .N 1��/C �
p�1
0 ˛N;M ;

and


N;M .N
1��/CˇN;M . 
N;M .0/C �p�10 ˇN;M :

Hence

ˇN;M . 
N;M .0/; ˛N;M . 
N;M .N 1��/. 
N;M .0/;

and we conclude from (7-65) that


N;M .0/. �p�10 
N;M .0/CM
�L;

which implies


N;M .0/.M�L

for any L� 1. Consequently, we have established thatX
N�N0

X
M�C0N

sp=.1��/

M 2.1��/N�2sp
N;M .0/
2 . 1;

which concludes the proof. �
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