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We consider the Cauchy problem for the defocusing power-type nonlinear wave equation in (1+3)-dimensions
for energy subcritical powers p in the superconformal range 3 < p < 5. We prove that any solution is
global-in-time and scatters to free waves in both time directions as long as its critical Sobolev norm stays
bounded on the maximal interval of existence.
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1. Introduction

We study the Cauchy problem for the power-type nonlinear wave equation in R!*3,
Ou = +ufu|?~t,

i 143 (1-1)

u(0) = (uo,u1), u=u(tx), (tx) R

Here [0 = —92 + A so the “+” above yields the defocusing equation and the “— yields the focusing
equation. The equation has the following scaling symmetry: if #(z, x) = (u, d,u)(z, x) is a solution, then

SO is
N 2 r x _7_1 I X
e p—1 -
uy(t,x) ()L p— lu(k )L) A 8,1,1()L /\)) (1-2)

The conserved energy, or Hamiltonian, is
E(ii(t))=/ —(Iut|2+|Vu| )i Iulp“dx—E(u(O))
{t}xR3
which scales like »
E(iiy) = A37251 E(i).
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The energy is invariant under the scaling of the equation only when p =5, which is referred to as the energy-

critical exponent. The range p < 5 is called energy subcritical, since concentration of a solution by rescaling

requires divergent energy; i.e., A — 0 implies E (1)) — oo. Conversely, the range p > 5 is called energy

supercritical, and here E(ii;) — 0 as A — 0; i.e., concentration by rescaling is energetically favorable.
3 2

Fixing p, the critical Sobolev exponent sp, := 5 — o1 is defined to be the unique s, € R so that

H*» x HS»~1(R?) is invariant under the scaling (1-2). We will often use the shorthand notation
A= B x SU(RY),

}}'3 has been extensively studied. In the defocusing setting, the

The power-type wave equation on R,
positivity of the conserved energy can be used to extend a local existence result to a global one for
sufficiently regular initial data. Jorgens [1961] showed global existence for the defocusing equation
for smooth compactly supported data. Strauss [1968] proved global existence for smooth solutions and
moreover that these solutions decay in time and scatter to free waves — this remarkable paper was the
first work that proved scattering for any nonlinear wave equation. There are many works extending the
local well-posedness theorem of Lindblad and Sogge [1995] in #* for s > sp to an unconditional global
well-posedness statement and we refer the reader to [Kenig et al. 2000; Gallagher and Planchon 2003;
Bahouri and Chemin 2006; Roy 2009]. These works do not address global dynamics of the solution, in
particular scattering. In the radial setting the first author has made significant advances in this direction,
proving in [Dodson 2018b; 2019] an unconditional global well-posedness and scattering result for the
defocusing cubic equation for data in a Besov space with the same scaling as #1/2 In very recent work
Dodson [2018a] has proved unconditional scattering for the defocusing equation for radial data in the
critical Sobolev space in the entire range 3 < p < 5.

The goal of this paper is to address global dynamics for (1-1) in the nonradial setting. Our main result
is the following theorem.

Theorem 1.1 (main theorem). Consider (1-1) for energy subcritical exponents 3 < p <5 and with the
defocusing sign. Let ii(t) € 17 (R3) be a solution to (1-1) on its maximal interval of existence Inax.
Suppose that

sup [ (1) [l 150 (m3y < 0©- (1-3)
IEImax

Then, u(t) is defined globally in time, i.e., In.x = R. In addition, we have
”u”L?’(XP*”(RH% <00,

which implies that u(t) scatters to a free wave in both time directions; i.e., there exist solutions 172: (r)
H52 (R3) to the free wave equation, DvLi =0, so that

J (t) — ﬁit(t)||¢[s,,(R3) -0 ast— xoo.

A version of Theorem 1.1 restricted to radially symmetric data was established in [Shen 2013]; see also
[Dodson and Lawrie 2015b] for the cubic power. This type of conditional scattering result first appeared
in [Kenig and Merle 2010] in the setting of the 3-dimensional cubic NLS and has since attracted a great
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deal of research activity; see, e.g., [Kenig and Merle 2011a; 2011b; Killip and Visan 2011a; 2011b; Bulut
2012a; 2012b; Dodson and Lawrie 2015a; Rodriguez 2017; Duyckaerts et al. 2014; Duyckaerts and Roy
2017] for this type of result for the nonlinear wave equation.

In the energy-critical regime, the bound (1-3) is guaranteed by energy conservation, and the analogue
of Theorem 1.1 was proved in the seminal works [Shatah and Struwe 1993; 1994; Bahouri and Shatah
1998; Bahouri and Gérard 1999]. In the energy-supercritical regime, the analogue of Theorem 1.1 was
obtained in [Killip and Visan 2011a].

The regime treated in this work, namely energy-subcritical with nonradial data, necessitates several
new technical developments, which may prove useful in contexts beyond the scope of Theorem 1.1.

Remark 1.2. It is conjectured that for the defocusing equation all solutions with data in 7(*» scatter in
both time directions as in the energy-critical case p = 5. Theorem 1.1 is a conditional result; specifically
we do not determine a priori which data satisfy (1-3). It is perhaps useful to think of the theorem in its
contrapositive formulation: if initial data in the critical space 7(*» were to lead to an evolution that does
not scatter in forward time, then the 7£°7 norm of the solution must diverge along at least one sequence of
times tending to the maximal forward time of existence.

Remark 1.3. The dynamics are much different in the case of the energy subcritical focusing equation.
In remarkable works, Merle and Zaag [2003; 2005] classified the blow up dynamics by showing that
all blow-up solutions must develop the singularity at the self-similar rate. In the radial case, an infinite
family of smooth self-similar solutions is constructed in [Bizon et al. 2010]. Donninger and Schérkhuber
[2012; 2017] address the stability of the self-similar blow up.

1A. Comments about the proof. The proof of Theorem 1.1 follows the fundamental concentration
compactness/rigidity method which first appeared in [Kenig and Merle 2006; 2008]. The proof is by
contradiction —if Theorem 1.1 were to fail, the profile decomposition of [Bahouri and Gérard 1999] would
yield a minimal nontrivial solution to (1-1), referred to as a critical element and denoted by i, that does
not scatter. Here “minimal” refers to the size of the norm in (1-3). This standard construction is outlined
in Section 3. The key feature of a critical element is that its trajectory is precompact modulo symmetries
in the space H*7; see Proposition 3.3. The proof is completed by showing that this compactness property
is too rigid for a nontrivial solution and thus the critical element cannot exist.

The major obstacle to rule out a critical element 1. (¢) in this energy subcritical setting is the fact
that 1. () is a priori at best an %7 solution, while all known global monotonicity formulae, e.g., the
conserved energy, virial and Morawetz-type inequalities require more regularity. In general, solutions to
a semilinear wave equation are only as regular as their initial data because of the free propagator S(¢) in
the Duhamel representation of a solution

uc(to) = S(to—t)uc(t) + fto S(to—1)(0, £|u|?tu(r)) dr. (1-4)
t

However, for a critical element the precompactness of its trajectory is at odds with the dispersion of the
free part, S(t9 — 1)1 (), which means the first term on the right-hand-side above must vanish weakly
as t — sup Imax or as t — inf Ijn,x, where Iy is as in Theorem 1.1. Thus, the Duhamel integral on
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the right-hand-side of (1-4) encodes the regularity of a critical element and additional regularity can be
expected due to the nonlinearity. As in [Dodson and Lawrie 2015b] the gain in regularity at a fixed time #g
is observed via the so-called “double Duhamel trick™, which refers to the analysis of the pairing

11 T:
< ’ S(to—1)(0, £|u|P~1u) dr, ’ S(to—1)(0, % |u|P~1u) d‘L’>, (1-5)
T to

where we take T < tg and T, > to. The basic outline of this technique was introduced in [Tao 2007] and
was used within the Kenig—Merle framework for nonlinear Schrédinger equations in [Killip and Visan
2010a; 2010b; 2013], and for nonlinear wave equations in, e.g., [Killip and Visan 2011a; Shen 2013].
This method is also closely related to the in/out decomposition used by Killip, Tao, and Visan [Killip
et al. 2009, Section 6].

Here we employ several novel interpretations of the double Duhamel trick, substantially building on
the simple implementation developed by the first two authors in the radial setting in [Dodson and Lawrie
2015a; 2015b] for p = 3, which exploited the sharp Huygens principle to overcome the difficulties arising
from the both the slow (¢)~! decay of S(¢) in dimension 3 and the small power p = 3 that precluded
this case from being treated by techniques introduced in earlier works. The general case (nonradial data)
considered here requires several new ideas.

We briefly describe the set-up and several key components of the proof. A critical element has compact
trajectory up to action by one-parameter families (indexed by ¢ € I1ax (i) of translations x (7) that mark
the spatial center of the bulk of . (¢), and rescalings N(¢) that record the frequency scale at which i, (t)
is concentrated. In Section 3 we perform a reduction to four distinct behaviors of the parameters x (¢)
and N (¢). First, following the language of [Killip and Visan 2011a] we distinguish between x (¢) that are
subluminal, roughly that |x (¢) —x (t)| < (1—35)|t — t| for some § > 0, and those that fail to be subluminal,
i.e., if x(¢) forever moves at the speed of light, or more precisely, |x(¢)| 2 |¢| (in a certain sense) for all ¢.
The latter case is quite delicate in this energy-subcritical setting and we introduce several new ideas to
treat it; see Section 7. We elaborate further on these two cases.

Subluminal critical elements. When x (¢) is subluminal, we distinguish between what we call a solifon-like
critical element where N(t) = 1, a self-similar-like critical element where N(t) =t~!, t > 0, and a
global concentrating critical element where limsup,_, ., N(t) = oco. These distinct cases are treated in
Sections 4, 5, and 6 respectively.

In Section 4, we set out to show as in [Dodson and Lawrie 2015b] that soliton-like critical elements
must be uniformly bounded in #'7€ N %% and hence the trajectory is precompact in A!. Once this
is accomplished we can access nonlinear monotonicity formulae to show that such critical elements
cannot exist. In this latter step we employ a version of a standard argument based on virial identity, after
shifting the spatial center of the solution to x = 0 by the Lorentz group, which is compactified by the
bound in #!. The heart of the argument in Section 4 is thus establishing the additional regularity of
a soliton-like critical element. The goal, roughly, is to show that the pairing (1-5) can be estimated in
#!. In [Dodson and Lawrie 2015b] the proof relied crucially on radial Sobolev embedding. As this is
no longer at our disposal in the current, nonradial setting, we have introduced a substantial reworking
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of the argument from [Dodson and Lawrie 2015b] that both simplifies it and removes the reliance on
radial Sobolev embedding. Examining the pairing (1-5) at time 79 = 0 we divide space-time into three
types of regions; see Figure 1. The first region is a fixed time interval of the form [tg — R, to + R], where
R > 0 is chosen so that the bulk of i, (t) is captured by the light cone emanating from (o, 0) in both
time directions. In this region (1-5) is estimated using an argument based on Strichartz estimates, using
crucially that R > 0 is finite and can be chosen independently of 7y by compactness. The second region is
the region of space-time exterior to this time interval and exterior to the cone. Here the 7*» norm of the
solution is small on any fixed time slice and hence an argument based on the small-data theory can be
used to absorb the time integrations in (1-5). Lastly, the heart of the double Duhamel trick is employed to
note the interaction between the two regions in the interior of the light cone, one for times ¢t < —R and
the other for times ¢ > R is identically = O by the sharp Huygens principle!

In Section 5 we show that a self-similar-like critical element cannot exist. Here we again use a double
Duhamel argument centered at ¢y € (0, 00), but with 77 = inf Ijj,x = 0 and T = sup Inax = oo in (1-5).
The argument-exploiting Huygens principle given in Section 4 no longer applies since the forward and
backwards cones emanating from time, say, fp = 1 can never capture the bulk of the solution since
N(T) = T~ is an expression of the fact that the solution is localized to the physical scale T at time T';
see Remark 3.6. However, here we use a different argument based on a version of the long-time Strichartz
estimates introduced in [Dodson 2012; 2016], which allow us to control Strichartz norms of the projection
of ii. to high frequencies k >> 1 on time intervals J which are long in the sense that |J| ~ 2% for o > 1.

In Section 6, N(¢) is no longer a given fixed function. We establish a dichotomy which we refer
to colloquially as the sword or the shield: either additional regularity for the critical element can be
established using essentially the same argument used in Section 4A, or a self-similar-like critical element
can be extracted by passing to a suitable limit. To apply the argument from Section 4 the following must be
true — fixing any time fg, the amount of time (but where now time is measured relative to the scale N(t))
that one has to wait until the bulk of the solution is absorbed by the cone emanating from time 7y must be
uniform in #y. We define functions C (z9) whose boundedness (or unboundedness) measures whether or
not this criteria is satisfied; see the introduction to Section 6. The rest of the section is devoted to showing
how to apply the arguments from Section 4 in the case where C4 (¢p) are uniformly bounded, and how
to extract a self-similar solution-like critical element in the case that one of Ci (¢p) are not bounded.

Critical elements that are not subluminal. In Section 7 we show that critical elements with spatial center
x () traveling at the speed of light cannot exist. The technique in this section is novel and may be useful
in other settings. First we note that such critical elements are easily ruled out for solutions with finite
energy, as is shown in [Kenig and Merle 2008; Tao 2008a; 2008b; 2008c; 2009a; 2009b; Nakanishi and
Schlag 2011] using an argument based on the conserved momentum, and even in the energy-supercritical
setting; see [Killip and Visan 2011a] using the energy/flux identity. None of these techniques (which
provide an a priori limit on the speed of x (¢)) apply in our setting so we must rule out this critical element
by other means, namely, by first showing that such critical elements have additional regularity.

In Section 3A we lay the necessary groundwork and show, using finite speed of propagation, that
any such critical element must have a fixed scale; i.e., N(¢) = 1 and x(¢) must choose a fixed preferred
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direction up to deviation in angle by 1/+/z. The model case one should consider is x () = (¢, 0, 0) for
all ¢ € R, which means that the bulk of 1. (¢) travels along the x;-axis at speed 7. We are able to show
that such critical elements have up to 1 — v derivatives in the x- and x3-directions for any v > 0. This is
enough to show that such critical elements cannot exist via a Morawetz estimate adapted to the direction
of x(t) —this is the only place in the paper where the arguments are limited to the defocusing equation.

The technical heart of this section is the proof of extra regularity (1 — v derivatives) in the x»- and
x3-directions. We again divide space-time into three regions. For a solution projected to a fixed frequency
N > 1, we call region A the strip [0, N 17¢] x R3 for € > 0 sufficiently small relative to v. On this region
we can control the solution by a version of the long-time Strichartz estimates proved in Section 7A. At time
t = N'17¢ we then divide the remaining part of space-time for positive times into two regions. Region B
is the set including all times ¢ > N ! 7€ exterior to the light cone of initial width R(79) emanating from the
point (¢, x) = (N 17€, x (N 17€)) where R (1) is chosen large enough so that i, (N 1 7€) has Z(*» norm less
than 79 exterior to the ball of radius R(7o) centered at x (N 1=¢). The solution is then controlled on region
B using small-data theory. Estimating the interaction of the two terms in the pair (1-5) on the remaining
region C (the region {|x —x(N17€)| < R(jo) +t — N'7¢,t > N'17€}) and the analogous region C’
for negative times T < —N 1€ provides the most delicate challenge. Any naive implementation of the
double Duhamel trick based on Huygens principle is doomed to fail here since the left- and right-hand
components of the pair (1-5) restricted to C, C’ interact in the wave zone |x| 2 |t|. Furthermore, since
we are in dimension d = 3, the (t)~! decay from the wave propagator S(¢) in (1-5) is not sufficient
for integration in time. For this reason we introduce an auxiliary frequency localization to frequencies
|(§2, &3)| = M in the &;- and £3-directions after first localizing in all directions to frequencies || >~ N.
We call this angular frequency localization ﬁN, M- The key observation is that the intersection of the
wave zone {|x| =~ |¢|} with region C requires the spatial variable x = (x1, x2,3) to satisfy

X231 M

x| <<N

for all M > N7/(0=") a5 long as € > 0 is chosen small enough relative to v, whereas application of
13N, M restricts to frequencies £ = (§1, £2,3) with

5231 M
& N

This yields angular separation in the kernel of ﬁN, M S(¢) and allows us to deduce arbitrary time decay
for the worst interactions in (1-5); see Lemma 7.11. The remaining interactions in (1-5) are dealt with
using an argument based on the sharp Huygens principle, which is complicated due to the blurring of
supports caused by ISN, M-

Remark 1.4. The proof of Theorem 1.1 serves as the foundation for the more complicated case of the
cubic equation, p = 3, as well as for the analogous result for the focusing equation; see for example
[Dodson and Lawrie 2015b], where the focusing and defocusing equations are treated in the same
framework in the radial setting.
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Much of the argument given here carries over to the defocusing equation when p = 3. However,
in this case we have s, = % and the critical space #H1/2 is the unique Sobolev space that is invariant
under Lorentz transforms. This introduces several additional difficulties, described more in detail in
Remark 3.14. Additionally, certain estimates in Section 7 fail at the p = 3 endpoint and would require
modification.

Similarly the argument in Sections 4—6 applies equally well to the focusing equation. However the
argument in Section 7 used to rule out the traveling-wave critical element is specific to the defocusing
equation as it relies on a Morawetz-type estimate only valid in that setting.

2. Preliminaries

2A. Notation, definitions, inequalities. We write A < B or B 2 A to denote A < CB for some C > 0.
Dependence of implicit constants will be denoted with subscripts. If A < B < A, we write A >~ B. We
will use the notation a=+ to denote the quantity a + € for some sufficiently small € > 0.

We will denote by Py the Littlewood—Paley projections onto frequencies of size |§| ~ N and by P<y
the projections onto frequencies of size |£| < N. Often we will consider the case when N = 2%, k € Z, is
a dyadic number and in this case we will employ the following notation: when write Py with a lowercase
subscript k this will mean projection onto frequencies |£| ~ 2K. We will often write uy for Pyu, and
similarly for P<y, P>y, Pk, and so on.

These projections satisfy Bernstein’s inequalities, which we state here.

Lemma 2.1 (Bernstein’s inequalities [Tao 2006, Appendix A]). Let 1 < p < g <ocoand s > 0. Let
f:R? > R. Then

IP=n fllLr S NTVEPan fllLe.
IP<nIVI* fllLr S N*IP<n fllLe, IPNIVIF fllLe = N**|| Py fllLe,

d d

d_d d_d
|P<nfllLa SN7? 4||P<n fllLr, |PnfllLa SN? 4||PyflLr.
‘We will write either

Il rrxmsy or lullLer.orm)

(/; (/m lu(t, x)|9" dx)? dz)}"

with the usual modifications if g or r equals infinity.
Given s € R we define the space 7° by

to denote the space-time norm

H = HS(R3) x HS7L(R3).

For example, we work with initial data in %7 .
We also require the notion of a frequency envelope.
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Definition 2.2 [Tao 2001, Definition 1]. A frequency envelope is a sequence 8 = {f } of positive numbers
with B € €2 satisfying the local constancy condition

270l kIg, < g 527Ky,

where o > 0 is a small, fixed constant. If f is a frequency envelope and (£, g) € H® x H*~! then we say
that ( f, g) lies underneath B if

(P fo Pr&|l sy pgs—1 <Bx forallk e Z.

Note that if (f, g) lies underneath § then we have

”(f; g)”stHs—l < ”13”(2(2)

In practice, we will need to choose the parameter o in the definition of frequency envelope sufficiently
small depending on the power p of the nonlinearity.
We next record a commutator estimate.

Lemma 2.3. Let y g be a smooth cutoff to |x| > R. For0 <s <1land N > 1,

IPy xRS = xrPN [l S N NRT) g

IPv xRS —xRPN fllL2 S R WNR)™O £l 4o
Proof. We write the commutator as an integral operator in the form

[PN xRS — XRPN f1(x) = N* / K(N(x=y)xr(x) = xrO)1f(y) dy.
Thus, using the pointwise bound
xR = xR S N|x—y[-N7'R7!
and Schur’s test, we first find
1PN xRS = xRPN [l SN TR f e

Next, a crude estimate via the triangle inequality, Bernstein’s inequality, Holder’s inequality, and Sobolev
embedding gives

IPN xRS = XRPN Fl2 S NTUVGR N2 + N f 2 SNl
The first bound now follows from interpolation. For the second bound, we write
(PN xRS — xR PN [1(x) = N¢ / K(N(x =) xr(x) = xrWMIV-VAT f(y) dy
and integrate by parts. Estimating as above via Schur’s test, we deduce

1PN xRS = xRPN fli2 S RTHIVIT S D2,

so that the second bound also follows from interpolation. O
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2B. Strichartz estimates. The main ingredients for the small-data theory are Strichartz estimates for the
linear wave equation in R!*3,

Ov =F,
(0) = (vo, v1). (2-1
A free wave means a solution to (2-1) with F' = 0 and will be often denoted using the propagator notation
v(t) = S(¢)v(0). We define a pair (r, ¢) to be wave-admissible in three dimensions if

TS5 @n#eoo).

N =

q,r>2,

The Strichartz estimates stated below are standard and we refer to [Keel and Tao 1998; Lindblad and
Sogge 1995; Sogge 2008].

Proposition 2.4 (Strichartz estimates [Keel and Tao 1998; Lindblad and Sogge 1995; Sogge 2008]). Let
(1) solve (2-1) with data ©(0) € HS x HS~Y(R?), with s > 0. Let (g, r), and (a, b) be admissible pairs
satisfying the gap condition

1,3_1,3 3
q r

STy AT

where (a’, b') are the conjugate exponents of (a, b). Then, for any time interval I > 0 we have the bounds
||U||L;’(I;L§C) N ”T)(O)”stl.'lsfl + ”F”L?/(I;L)bc/)'

2C. Small data theory: global existence, scattering, perturbative theory. A standard argument based
on Proposition 2.4 yields the scaling-critical small-data well-posedness and scattering theory. We define
the following notation for a collection of function spaces that we will make extensive use of. In this
subsection we fix p € [3, 5] (later we will fix p € (3,5)) and let / C R be a time interval. We define

S(I) = L2771, L2~V (R3Y).

4

For example, when p = 3, we have § = Lt’x,

while for p =5 we have § = L?’x.
Remark 2.5. There are a few other function spaces related to
Fi50 .= % x H = (R%)

that will appear repeatedly in our analysis. First note the Sobolev embedding H*» (R3)— LG/2(—1)(R3),
which means

| FlLermo-v@s) S 1 | gsm oy-
Proposition 2.6 (small-data theory). Let 3 < p <5 and suppose that ii(0) = (ug, u1) € H*? x H»~1(R3).

Then there is a unique solution i(t) € H*? with maximal interval of existence Ia (i) = (T— (), Ty (ii)).
Moreover, for any compact interval J C Iyx,

lullsr < oo.
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Additionally, a globally defined solution 1i(t) on t € [0, 00) scatters as t — o0 to a free wave if and only if
lulls((0,00)) < 00. In particular, there exists a constant §o > 0 so that

1O grspxgrso—1 <80 = lulls@ S 1O gspygrsp—1 < o

and thus 1 (t) scatters to free waves as t — +oo. Finally, we have the standard finite time blow-up

criterion:

Ti() <oo = |ullgqo,r, iy = 00
An analogous statement holds if —oo < T—(i0).

The concentration compactness procedure in Section 3 requires the following nonlinear perturbation
lemma for approximate solutions to (1-1).

Lemma 2.7 (perturbation lemma [Kenig and Merle 2006; 2008]). There exist continuous functions
€0, Co : (0,00) — (0, 00) so that the following holds true. Let I C R be an open interval (possibly
unbounded) and 1,V € C(I; H*» x HS»~Y) satisfy for some A > 0

||17||LOO([;HSpXHSp—1) +vlsuy < A4,
_1 1
VI =2eqQ)ll pars g, arsy + IVIP72eq(@)llars g a3y + [wollsa) < € < €0(A),

where eq(u) := Ou = |u|P~Yu in the sense of distributions, and Wo(t) 1= S(t —to) (i — V) (to) with tg € I
fixed, but arbitrary. Then

it =5 — ol oo o wegisn—1y + 1 = vlsry < ColA)e.

In particular, ||u| sy < oo.

3. Concentration compactness and the reduction of Theorem 1.1

We begin the proof of Theorem 1.1 using the concentration compactness and rigidity method of [Kenig
and Merle 2006; 2008]. The concentration compactness aspect of the argument is by now standard and
we follow the scheme from [Kenig and Merle 2010], which is a refinement of the scheme in [Kenig and
Merle 2006; 2008]. The main conclusion of this section is the following: if Theorem 1.1 fails, there exists
a minimal, nontrivial, nonscattering solution to (1-1), which we call a critical element.

We follow the notation from [Kenig and Merle 2010] for convenience. Given initial data (ug, u1) €
H*» x H*™1 we letii(r) € H* x H* ™! be the unique solution to (1-1) with data 1 (0) = (uo,u1) and
maximal interval of existence Iy (%) := (T—(u), T+ (1)).

Given A > 0, set

B(A) := {(ug,uy) € H x H1 . ”ﬁ([)HL?O(ImaX(ﬁ);HSpXHSP_]) < A}.

Definition 3.1. We say that SC(A;1i(0)) holds if 11(0) € B(A), I'max(1#) =R and |Ju|| g1y < co. In addition,
we will say that SC(A) holds if, for every (uq,u1) € B(A), one has Iy (1) = R and |Jul| sy < oo.
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Remark 3.2. Recall from Proposition 2.6 that ||u|| gy < oo if and only if u(r) scatters to a free waves
as t — Fo00. Thus, Theorem 1.1 is equivalent to the statement that SC(A) holds for all A > 0.

Now suppose that Theorem 1.1 fails to be true. By Proposition 2.6, there exists an Ag > 0 small
enough so that SC(Ap) holds. Since we are assuming that Theorem 1.1 fails, we can find a threshold
value A¢ so that for A < A¢, SC(A) holds, and for A > A¢, SC(A) fails. Note that we must have
0 < Ag < Ac. The Kenig—Merle concentration compactness argument is now used to produce a critical
element, namely a minimal nonscattering solution 1.(¢) to (1-1) so that SC(A¢, u.) fails, and which
enjoys certain compactness properties.

We state a refined version of this result below, and we refer the reader to [Kenig and Merle 2010;
Shen 2013; Tao et al. 2007; 2008] for the details. As usual, the deep foundations of the concentration
compactness part of the Kenig—Merle framework are profile decompositions of [Bahouri and Gérard
1999] used in conjunction with the nonlinear perturbation theory in Lemma 2.7.

Proposition 3.3. Suppose Theorem 1.1 fails to be true. Then, there exists a solution u(t) such that
SC(Ac;u) fails, which we call a critical element. We can assume that 1i(t) does not scatter in either time
direction, i.e.,

lullsr_aiy,on = lullsqo, 7o @) = o0
and moreover, there exist continuous functions
Nt Inax (i) = (0,00), X : I;max (1) — R3

so that the set

1 1 .
{(—N(;),ilu(t’X(t)Jr N(t))’ N(t)lil+lut(t,x(t)+m)) te Imax} (3-1)

is precompact in H*r.

We make a few observations and reductions concerning the critical element found in Proposition 3.3.
It will be convenient to proceed slightly more generally, starting by giving a name to the compactness
property (3-1) satisfied by a critical element.

Definition 3.4. Let / > 0 be an interval and let () be a nonzero solution to (1-1) on 7. We will say (r)
has the compactness property on I if there are continuous functions N : I — (0, 00) and x : I — R3 so
that the set

K —{(;u(t x(t)+ : ) ! u(t x(t)—i—;))‘tel}
= N#=T() \ N(1) ’N%“(;)t ’ N@)))

is precompact in H*».

We make the following standard remarks about solutions with the compactness property. We begin
with a local constancy property for the modulation parameters.
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Lemma 3.5 [Killip and Visan 2013, Lemma 5.18]. Let ii(t) have the compactness property on a time
interval I C R with parameters N(t) and x (t). Then there exist constants €9 > 0 and Co > 0 so that for
every tg € I we have

€0 €0
to — ,to + CI,
[" N(to) ° N(to)}

1 N(t) . €0
—<—=<C t—to] < :
Co = Ny = €0 Fli=tol =505
C
() —x(to)] < —> if |t —to] < —

~ N(o) ~ N(t)
Remark 3.6. For a solution with the compactness property on an interval I, we can, after modulation,
control the 7% tails uniformly in ¢ € I. Indeed, for any 5 > 0 there exists R(7) < oo such that

[ VP £ £)P ag <.
Ix—x (@)=~ E|=R(m)N ()

Ty | £ D, 0P dE <
lx—x ()= ¥t [€|=R(n)N (1)

N (1)

for all r € 1. We call R(-) the compactness modulus.

We also remark that any Strichartz norm of the linear part of the evolution of a solution with the
compactness property on I, vanishes as t — T_ and as t — T+. A concentration compactness argument
then implies that the linear part of the evolution vanishes weakly in #(5», that is, for each to € Imax,

S(to—tHu@) —0

weakly in 5P as t "sup I and ¢ N\ inf /; see [Tao et al. 2008, Section 6; Shen 2013, Proposition 3.6].
This implies the following lemma, which we use crucially in the proof of Theorem 1.1.

Lemma 3.7 [Tao et al. 2008, Section 6; Shen 2013, Proposition 3.6]. Let u(t) be a solution to (1-1) with
the compactness property on its maximal interval of existence I = (T—, T+). Then for any to € I we can
write

T
/ S(to—5)(0, |u|P" u)ds — ii(ty) asT / Tyweakly in H°?,
t

0

to .
—/ S(to— )0, [u|P"tu)ds —ii(tg) as T\ T_weakly in H° .
T

Remark 3.6 indicates that solutions 1 (z) with the compactness property have uniformly small tails
in %7, where “tails” are taken to be centered at x (¢), and relative to the frequency scale N(¢) at which
the solutions are concentrating. We would like to use this fact to obtain lower bounds for norms of the
solution u(¢). The immediate issue that arises is that the object that obeys compactness properties is
the pair u(z, x) = (u(t, x), us(t, x)) and, a priori, the solution could satisfy u(z, x) = 0 a fixed time 7.
Nonetheless, by averaging in time, such a lower bound still holds for the solution itself, u(¢). We can
quantify this bound in several ways, starting with a result proved in [Killip and Visan 2011a].
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Lemma 3.8 [Killip and Visan 2011a, Lemma 3.4]. Let ii(t) be a solution with the compactness property
on Inax = R. Then, for any A > 0, there exists 1 = n(A) such that

n
N (to)

Ht € [lo,to + %} [l 32— = ’7%

forallty € R.

Lemma 3.8 means that the L&/2®~1

norm of u () is nontrivial when averaged over intervals around #g
of length comparable to N(f)~! uniformly in 9. By combining this lemma with Remark 3.6 and Sobolev

embedding we obtain the following as an immediate consequence.

Corollary 3.9 (averaged concentration around x(¢)). Fix any 8¢ > 0. Let ii(t) be a solution with the
compactness property on In.,x = R. There exists a constant C > 0 so that

to+
Nao) | N(IO)/ Iu(t, VR Ddxdr > 1
(1)<

forall ty € R.

One can also deduce the following corollary, also proved in [Killip and Visan 2011a], which gives a
lower bound on the localized S norm of u(¢).

Corollary 3.10 (S-norm concentration around x(7)). Let 1(t) be a solution with the compactness property
on Inax = R. Then there exist constants ¢, C > 0 so that

153
// |u(t,x)|2(p_1)dxdtzc/ N(t)dt
[x—x(t)|< L 151

N(t

for any t1, tp such that
1
— >
2= Ny
Proof. The proof runs completely parallel to the argument in [Killip and Visan 201 1a, proof of Corollary 3.5]
given for the averaged potential energy. O

The fact that we have only averaged lower bounds on, e.g., the LB/2D(P=1 porm of a critical element
will not be too much trouble. We will often pair the above with the fact that the compactness parameters
N(t), x(t) are approximately locally constant; see Lemma 3.5.

Lastly, we also need the following estimate proved in [Dodson and Lawrie 2015b, Lemma 4.5].

Lemma 3.11 [Dodson and Lawrie 2015b, Lemma 4.5]. Let 1u(t) have the compactness property on a
time interval I C R with scaling parameter N(t). Let n > 0. Then there exists § > 0 such that

el (-

<
5 5 <
Mg ot N(to)]XR3) 1

uniformly in tg € I.
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3A. Analysis of solutions with the compactness property. In the next subsection, we will prove a clas-
sification result for solutions with the compactness property. Our goal is to gather together a list of
possibilities for the compactness parameters N(¢) and x (¢) that is exhaustive in the sense that if we rule
out the existence of all members of the list, then Theorem 1.1 is true. Before stating these cases, we need
to distinguish between two scenarios based on how fast x (¢) is moving relative to the speed of light. To
make this distinction precise, we have the following definition.

Definition 3.12. Let u(¢) be a solution to (1-1) with the compactness property on / = R with parameters
x(t) and N(¢) > 1. We will say that x(¢) is subluminal if there exists a constant A > 1 so that for all
to € R there exists ¢ € [tg, to + A/ N(tp)] such that

1
AN(to)

lx(2) = x(to)| < |t —to] —

Proposition 3.13. Suppose (1) is a solution to (1-1) with the compactness property on its maximal
interval of existence In,x with compactness parameters N(t) and x(t). We can assume without loss
of generality in the arguments that follow that Iy.x, N(t) and x(t) fall into one of the following four
scenarios:

(D) Soliton-like critical element: I.x =R, N(t) =1 forallt € R and x(t) is subluminal in the sense
of Definition 3.12.

(Il) Two-sided concentrating critical element: Inax =R, N(t)>1 forallt €eR, limsup,_, 4, N(t) =00,

and x(t) is subluminal.
(1) Self-similar-like critical element: I'n,x = (0,00), N(t) = %, and x(t) = 0.

(IV) Traveling-wave critical element: I, =R, N(t) =1 forallt € Rand |x(t) — (¢,0,0)| < \/m for
allt € R.

Remark 3.14. In the case p = 3, one must take into account the action of the Lorentz group, which will
introduce additional cases to the list of critical elements in Proposition 3.13. For p # 3, the hypothesis (1-3)
compactifies the action of the Lorentz group in the Bahouri—Gérard profile decomposition at regularity 757,
which is why only a translation x(¢) and scaling N(¢) appear in the descriptions of critical elements.

1/2 is invariant under action of the Lorentz group, one must confront critical elements

However, because #
with velocity £(¢) that approaches the speed of light. See [Ramos 2012; 2018] for Bahouri—Gérard-type

profile decompositions in this setting.

Before proving Proposition 3.13, we note that ruling out cases (I)~(IV) in the statement of the proposition
will prove our main result, Theorem 1.1. Hence we will now focus on establishing Proposition 3.13 and
proving that such critical elements cannot exist.

We will prove this proposition in several steps. First, we will reduce the frequency parameter N (¢)
to one of three possible cases. We state these reductions for N(¢), but we omit the proof as it follows
readily from arguments similar to those in [Killip and Visan 2013, Theorem 5.25].



SCATTERING FOR DEFOCUSING ENERGY SUBCRITICAL NONLINEAR WAVE EQUATIONS 2009

Proposition 3.15. Let ii(t) denote the critical element found in Proposition 3.3. Passing to subsequences,
taking limits, using scaling considerations and time reversal, we can assume, without loss of generality,
that T4 (U) = +o00, and that the frequency scale N(t) and maximal interval of existence Inax = Imax (1)
satisfy one of the following three possibilities:

o Soliton-like scale: Ih.x = R and

N(@)=1 forallt eR.

e Doubly concentrating scale: I,x = (—00, 00) and

limsup N(t) = o0, limsupN(t) =00, and N(t)>1 forallt €R.

t—>T— t—>00

o Self-similar scale: I = (0,00) and N(t) =1t~ 1.

We will now make a few further reductions, mostly concerning the spatial center x(¢) of a critical
element that is global in time.

We will show that in all cases where we have a solution with the compactness property with translation
parameter x () that fails to be subluminal, we may extract a traveling-wave solution. To prove this, we
will need to analyze the properties of solutions with the compactness property and more specifically,
properties of their spatial centers, x(¢). We turn to this analysis now. First, we note that in the case that
x(t) is subluminal (see Definition 3.12) we can derive the following consequence.

Lemma 3.16 [Killip and Visan 2011a, Proposition 4.3]. Let 1(t) be a solution to (1-1) with the compact-
ness property on I = R with parameters x(t) and N(t) > 1. Suppose x(0) = 0 and that x(t) is subluminal
in the sense of Definition 3.12. Then there exists a o > 0 so that

Ix(@) —x(®)| = (A =0t —7

forall t, T with

t—1|=

- 50Nt,r’
where Nt :=infgef; ;] N(s).

Proof. See the proof of Proposition 4.3 in [Killip and Visan 2011a]. O

Using Lemma 3.5 together with Lemma 3.8 and a domain-of-dependence argument based on the finite
speed of propagation, we obtain a preliminary bound on how fast x(¢) can grow. (See, e.g., [Killip and
Visan 201 1a, Proposition 4.1].)

Lemma 3.17. Let 1(t) have the compactness property on a time interval I C R with parameters N(t)
and x(t). Then there exists a constant C > 0 so that for any t1,t, € I we have

C C
() —x()] < In —tal + s+ o

(3-2)
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In fact, if u(t) is global in time, we have N(t)|t| — oo as |t| — oo and we normalize so that x(0) = 0,
from which the above yields
|x ()]

t—+oo |t}

<1. (3-3)

Remark 3.18. We remark that by finite speed of propagation and compactness, we can assume that

liminf [¢|N(¢) € [1, 00].
t—>T4 (i)

Note that according to the definition of the compactness property, the function x (¢) is not uniquely

defined; indeed, one can always modify x () up to a radius of O(N(¢)~1), provided one also modifies

the compactness modulus appropriately. Note, however, that the compactness property, together with

monotone convergence, prevents # from concentrating on very narrow strips, as measured in units
of N(¢)~L. See [Killip and Visan 2011a, Lemma 4.2].

Lemma 3.19. Let i be a solution to (1-1) with the compactness property on an interval 1. Then for any
n > 0, there exists ¢(n) > 0 so that

sup IV 2ul? + [V g |2 dx <.

weS? /Ico-[x—X(t)]Iﬁc(rz)N(t)—1

To deal with ambiguity in the definition of x(¢), we use the notion of a “centered” spatial center as in
[Killip and Visan 2011a], that is, a choice of x(¢) such that each plane through x(¢) partitions #(¢) into
two nontrivial pieces.

Definition 3.20. Let u be a solution to (1-1) with the compactness property on an interval / with spatial
center x (). We call x(¢) centered if there exists C(u) > 0 such that, for all w € S> and ¢ € I,

/ VU0 + 1VF e, 02 dx = ).
w-[x—x(t)]>0
Proposition 3.21. Let ui be a global solution to (1-1) with the compactness property. Then there exists a

centered spatial center for .

Proof. The argument is similar to the proof of [Killip and Visan 2011a, Proposition 4.1]. Let x(¢) be any
spatial center for 1. To shorten formulas, we introduce the notation

(2. x) = [|IVIPu(t. x)? + VI g () 2.

By compactness, there exists C = C(u) large enough that

inf/ @(t,x)dx =, 1, where B(t) :={x: |x —x(t)| < CN(t)~1}.
teR B(®)

Now set
fB(t) [x —x(0)]ep(t, x) dx

X(@)=x(t)+ fB(z) ot 1) dx
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By definition, |x(¢) — X(¢)| < CN(¢)~', and hence X(¢) is a valid spatial center for 1 (one only needs
to add C to the compactness modulus). We now claim that X(¢) is centered. To see this, first note that by
construction one has

/ w-[x—x(t)]e(t, x)dx =0.
B(z)

On the other hand, combining nontriviality on B(¢) together with Lemma 3.19, we have

/ go(ty x) dx Zu 1
B@®)N|w-[x—x@)]|>cN@)~!

for some ¢ = ¢(u) > 0. Thus

/ - [x — 5Ol (. x) dx 2y N,
B(t)

and so
/ {0 [x = B0, x) dx 20 N,
B()

where “+” denotes the positive part. As |x —X(t)| <2CN(t)~! for x € B(t), we finally deduce

{w-[x —X()]}+
1= / o(t,x)dx < / o(t,x)dx
“Jeey 2CN@)7! “ Jo—z0]>0

for all w € S?, as needed. O

Proposition 3.22. Suppose that Ui(t) is a solution with the compactness property on R with parameters
N(t) and x(t). Suppose in addition that N(t) = 1 for all t € R, and that x(t) fails to be subluminal
in the sense of Definition 3.12. Then there exists a (possibly different) solution w(s) to (1-1) with the
compactness property on R with parameters N(s) and x (s) satisfying

N@is)=1, |x(s)—(s5.0,0)| < V/|s| forallseR.

Proof- Let 1u(t) be a solution to (1-1) with the compactness property on R with parameters N(¢) = 1 and
x () failing to be subluminal. This means we can find a sequence ?,, and intervals

such that
|x(tm)—x(z)|z|tm—t|—% forall t € I;,. (3-4)

We construct a sequence as follows. Set

Using the precompactness of the trajectory of # modulo the translations by x () we can (passing to a
subsequence) extract a strong limit

Um(0) = oo (0) € H?  as m — oo.
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Let 1o (1) be the solution to (1-1) with initial data 1, (0). One can show that we must have [0, c0) C
I'max (Mioo) and that 10 satisfies the following compactness property on [0, 00): the set

KOO = {1’700(1” : _xOO(‘C)) ‘TE [Ov OO)}
is precompact in 7% (R3), where for each T > 0 the function xo0(7) is defined by
Xoo(T) :1= lim (x(ty +7) — x(tm)).
m—00

Note that for each € > 0 and for all T € [0, c0) we can choose M > 0 large enough so that for all m > M

we have

1
|x (tm + 7) —x(tm)| > |T] = m’

where the last inequality follows from (3-4). Letting m — oo above, we conclude that in fact
|[Xco(T)| = 7 forall T € [0, c0).
By finite speed of propagation (see (3-3)) we can conclude that in fact

L o]
m =
T—00 T

1.

We now refine our solution again, this time constructing a suitable limit from i~ (7). First choose a
sequence 0 < g, — oo such that, for T > g,,, we have

| X0 (T)]
T

<1427
and set 7, = 0, + m. Then by the previous two lines, it holds that
T < |Xeo(D)| <t(14+27") forall T € Jp, := [ty — M, Ty + m].
From (3-4) and the definition of xo, we have
[Xoo(T) = Xoo(t)| = |t —t| forallz,t € Jy. (3-5)
As before we extract a limit from the sequence
Uoo,m(0) := tioo(Tm, = — Xoo(tm)) = V(0) € H*?

and we note that the solution v(s) to (1-1) with data v(0) has the compactness property on R with
parameters N (s) =1 and X(s) defined by

X(s):= mli_r}loo(xoo(fm +5) — Xoo(Tm))-

Using (3-5) along with (3-2) we see that for all 51, s, € R we have

|51 — 52| < [%(s1) = (s2)| < |s1 — 52| + C
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for some absolute constant C > 0 and consequently

fim SO (3-6)

s—+o0 |S|

Now we express X(s) in polar coordinates, finding r(s) > 0 and w(s) € S? so that

X(s) =r(s)w(s) foralls e ][0,00).

Note that by (3-6) we have
r(s)

— —>1 ass— oo.
s

Since w(s) € S? we can find a sequence s, — oo and we can (up to passing to a subsequence) find a
limit wg so that
w(Sm) = wo asm — oo.

To prove the claim, it suffices to verify that
|X(s) —swo| < C /s,
since then we obtain the desired result applying a fixed spatial rotation. Note that
|s20(52) —s10(51)]* = [s1 — 52> + s152]@(s52) — w(s1) .
By finite speed of propagation
|s20(s2) —s10(s1)|* < (Is1 — 52| + C)? = [s1 — 82| +2Cs1 — 2| + C?,

and hence substituting this bound into the above equations we solve to obtain

2C|s1 — s3]+ C?
5152 '

lw(s2) —w(s1)| < \/
Then

[(sn + $) (s +5) — spw(sn) —swo| < [sn +5||w(sp +5) —w(sn)| + s|w(sn) — wol

< \/(2CS +C2)(l + Si) + slw(sn) — wol,

|X(s) —swo| < V2Cs + C2,

as required. O

which implies

In the case that N(¢) > 1 and x(¢) is not subluminal, we will now show that we can also reduce to the
case when N(¢) =1 forall t € Rand x(¢) = (¢,0,0) + O(+/|t]). We will need the following lemma.

Lemma 3.23. Let 1u(t) have the compactness property on I C R with parameters N(t) and x(t). Then
there exists a constant ¢ € (0, 1) such that for any t1,t; € I with N(t1) < N(t2) it holds that

|x(t1) —x(2)| = |t1 — 2| — = N(h) < C%N(tl).

C
N(t1)
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Proof of Lemma 3.23. The argument adapts readily from [Killip and Visan 2011a, Lemma 4.4], using the
arguments from Section 3A. Exploiting time-reversal symmetry, space-translation symmetry, and rotation
symmetry, we may assume t1 < f», x(t;) =0, and x(t2) = (x1(¢2), 0, 0) with x;(¢2) > 0. Further, we
may choose x(¢) to be centered by Proposition 3.21.

Suppose for contradiction that for times 71, #> as in the statement of the lemma,

C
N(t1)

|x(t1) — x(2)| = |ty — 12| =

but cN(t1)~! > ¢ N(t2) 71, where ¢ = c(u) will be chosen sufficiently small below.
Let ¢ : R — [0, 00) be a cutoff so that = 1 for x < —1 and ¥ = 0 for x 2—%. Set

xl_xl(tz))'

Va(xy) = E/f( eN()!

Then, given 1 > 0 and choosing ¢ = c¢(7) sufficiently small, we have

| (Y2u(t2), Yous (t2)l3sr < 1.

Choosing 1 small enough, the small-data theory and finite speed of propagation for (1-1) imply

J TRt 0P 4177 1,00 e 5 0P,
Q
where

Q={x:x1 <x1(t2) —(t2—11) —cN(t1) "'}

Using the assumption on |x(#3) — x(#1)| and the normalizations above, one finds

QDO{x:—er-[x—x(t1)] > 2cN(t1)_1},
so that

/ Le—x(11)]>2¢ N (1) 1||V|S”u(t1,X)|2+||V|s”_1u,(tl’x)|2dxsnz‘
—er-[x—x@1)]=2cN(t1)~

On the other hand, choosing ¢ = c¢(n) sufficiently small, Lemma 3.19 implies
/ VPt P + 1917 gy ) dx < o
0<—eq-[x—x(t1)]<2cN(t1) !

We now choose % < C(u), where C(u) is as in Definition 3.20, to reach a contradiction to Proposition 3.21.
O

We are now in a position to prove that we can extract a traveling-wave solution from any solution with
compactness property with translation parameter x (¢) that fails to be subluminal.

Proposition 3.24. Suppose that 1u(t) is a solution with the compactness property on R with parame-
ters N(t) and x(t). Suppose that either N(t) is soliton-like or doubly concentrating in the sense of
Proposition 3.15 and that x (t) fails to be subluminal in the sense of Definition 3.12. Then there exists a
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(possibly different) solution W(s) to (1-1) with the compactness property on R with parameters N(s) and
x(s) satisfying
NGs)=1, |x(s)—(s5,0,0)| < /s forallseR.

Proof of Proposition 3.24. Note that by Proposition 3.22 it suffices to show that we can extract a solution
with the compactness property on R with parameters N(¢) = 1 and x(¢) failing to be subluminal. By our
assumption that x (¢) fails to be subluminal, for each m € N there exists #,, € R so that

m
[x(tm) —x(@)| = |t —tm]| — forallt € I, .= |:tm,tm + W} (3-7)

mN (tm)
We will show that N(¢) >~ N(t,) for all ¢t € I,,, with constants independent of m. First assume that
N(tm) < N(2).
Then by Lemma 3.23 we can find a constant ¢ > 0 so that
¢2N(t) < N(tm) < N(t) forallt € I,,.

Next assume that
N(t) < N(tm).

This means that | .

— > _
N(tm) = N()

and thus from (3-7) we see that

£ =300 2 |t = ] = s = =l =
Another application of Lemma 3.23 then gives
N(E) = NGim) < 5N,
As we can assume in Lemma 3.23 that ¢ < 1, we deduce that
c2N(t) < N(tm) < clzN(t) for all 7 € I,,. (3-8)

We can then extract, in the usual manner a new solution w(s) with the compactness property on [0, 00)
with
5 N (tm + v
N(s):= lim —( " N(t'"))
m—00 N(tm)

- . S
x(s):= mh_r)réo N(tm) (x (tm + N(Zm)) — x(tm)).
Note that by (3-8) we must have

’

ci <N(s)<C; forallse [0, 00).
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Moreover, using (3-7), for each € > 0 we can find M > 0 large enough so that for each m > M we have

ol ) 0]

> N(tm)

[X(s)| +€=

N(zm) mN(rm)) ‘ E'
Letting m — oo we obtain

|X(s)| > s forall s €[0,00).

Noting that X(0) = 0 and combining the above with (3-3), we conclude that

0]
N

—1 ass— oo.

From here it is straightforward to obtain a new solution w(s) with the compactness property on all of R
with parameters N(s) = 1 and x(s) failing to be subluminal in the sense of Definition 3.12, and we apply
Proposition 3.22 to conclude. O

Finally, we now have the ingredients necessary to prove Proposition 3.13.

Proof of Proposition 3.13. Suppose 1(t) is a solution to (1-1) with the compactness property on its
maximal interval of existence I1,x With compactness parameters N(¢) and x(¢). By Proposition 3.15, if
the solution has the compactness property with N(¢) = ¢t~!, then we may also assume without loss of
generality that it has the compactness property with translation parameter x(z) = 0: by finite speed of
propagation, x (#) must remain bounded, and hence we may, up to passing to a subsequence, obtain a
precompact solution with x (¢) = 0 by applying a fixed translation. Thus, in the case that N(z) = ¢!
obtain a self-similar solution; i.e., we have reduced to case (III).

In the remaining cases we must address different scenarios depending on whether or not x () is
subluminal in the sense of Definition 3.12. If x(¢) is subluminal, then we have reduced ourselves to
cases (I) and (I). If x(¢) fails to be subluminal, then by Proposition 3.24 we can find a critical element as
in the traveling-wave scenario, i.e., case (IV). O

4. The soliton-like critical element

In this section we show that the soliton-like critical element, that is, case (I) from Proposition 3.13, cannot
exist. The main result is the following proposition:

Proposition 4.1. There are no soliton-like critical elements for (1-1), in the sense of case (1) of
Proposition 3.13.

We recall that soliton-like means that () is a global solution to (1-1) with the compactness property
on R as defined in Definition 3.4 with parameters N(¢) = 1, and x(¢) subluminal in the sense of
Definition 3.12. We will show that any such solution with the compactness property is necessarily = 0.

The proof will be accomplished in two main steps. We are ultimately aiming to employ a rigidity
argument based on a virial identity, which will show that any such critical element must then be identically 0.
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The key point here is that in order to access the virial identity, which is at ! regularity, and to use it to
prove Proposition 4.1, we first must prove that our critical element actually lies in a precompact subset
of #1. Thus, we must first show that a soliton-like critical element must be more regular than expected.
In fact, we will prove that the trajectory K of any soliton-like critical element (see Definition 3.4) must
be precompact in H! N 757

Throughout this section, we assume towards a contradiction that 1(z) is a critical element with x (¢)
subluminal in the sense of Definition 3.12 and N(¢) = 1. In particular, by Lemma 3.16 there exists §o > 0
so that

|x () —x(t)| < (1—=238p)|t —7| forall|t—1|> SL
0

4A. Additional regularity. We first prove that if the soliton-like critical element u has some additional
regularity to begin with, then we can achieve ! regularity. The key ingredient in our proof will be a
double Duhamel argument, which will enable us to gain the requisite regularity for critical elements,
while our main technical tool will be the use of a frequency envelope which controls the 7! norm (see
Definition 2.2). In order to exploit the sharp Huygens principle, we will use the following modified
frequency projection operators: let ¥ > 0 be a smooth function supported on |x| < 2 satisfying ¥ = 1 on
|x| < 1. For k >0, let

0 f(0)= [ 24y Q=) S dy. @)
These satisfy the same estimates as the usual Littlewood—Paley projections (which instead use sharp
cutoffs in frequency space), e.g., the Bernstein estimates in Lemma 2.1.

We summarize the main ingredient in Proposition 4.1, the aforementioned additional regularity result,
in the following proposition.

Proposition 4.2. Suppose u is a soliton-like critical element. Then
UeLPH? = ueLlPH'
for some s > 1. In particular, the set
K:={i(t, - —x(1)): 1t e Ry C Hs» N
is precompact in Hs» N L.
We will prove Proposition 4.2 in several steps. To make this precise, we define the parameter

5— 3 5

AT T

This exponent is chosen so that 70 has the same scaling as L? L,ch , and we note that crucially s, <s¢ < 1.

S0 = (4-2)

4B. The jump from H5 (R3) regularity to H1(R3) regularity. We begin with the first, easier gain in
regularity, namely passing from 7% (R3) to 7! (R?).

Proposition 4.3. Suppose i is a soliton-like critical element. Let so > s, be defined as in (4-2). Then

e LPH® = ueLlPH'.
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Proof. By time-translation symmetry, it suffices to estimate the 7 '-norm at time r = 0. We complexify
the solution, letting
i

V=A

w=u-+ Ug.

Then

lw®ll g1 = 14O g1 25

and if 1(¢) solves (1-1), then w(7) is a solution to

:—zﬂwi\/_A

Jul?~tu

By Duhamel’s principle, for any 7', we have
w(0) = ! TY=8y(T) + ¢+_A /TO VA F(u) (1) dr,
where F(u) = |u|?~'u. By compactness (see Lemma 3.7),
i 0 _re  TV=2y(T) = im 01l TY=By(=T)=0 (4-3)
as weak limits in H! for any k > 0. We next write
0w (0) = TV R (1) F—— / VR L F(u() di

TR0 _w(-T)F eTIVTAQ L Fu(t)) dr.

Al

Using (4-3), and arguing as in [Dodson and Lawrie 2015b, Section 4] we can deduce

(Q<kw(0), Q<fw(0)) g1 T 0
= 1im< eTIVAQ L Fu(t)) dt, / e—”ﬂQ<kF(u<s>)dt> @44
-T L2

T—o00\Jo

We fix a large parameter R > 0 to be determined below. Let §g be as in the statement of Lemma 3.16
and take T = 2R861. We define

region A :={(t,x):0 <t <T},
region B :={(t,x):|x—x(T)| >R+t —=T]|}, (4-5)
region C :={(t,x): |[x —x(T)|< R+t =T|}.
See Figure 1.
We will treat these regions separately. Our goal is to bound u on region A using that we are estimating
the solution on a compact time interval, and on region B using the small-data theory and finite speed of

propagation. We will then use the double Duhamel trick, together with the sharp Huygens principle on
region C, to conclude the proof.
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t

Figure 1. A depiction of the space-time regions A4, A’, B, B’ and C, C’ in the
case x(t) =0.
Let yr denote a smooth cutoff to the set
{lx=x(T)| > Ry S R>.
Now fix a small parameter 7 > 0. By compactness of i, if R = R(n) is sufficiently large then we have
lx RUE(T) 350 <. (4-6)
We let v = (v, v;) be the solution to (1-1) with initial data
u(T) = xru(T).
By finite speed of propagation, we have
u=v for|x—x(T)|=R+|t—T|.

We now rewrite (4-4), and abusing notation slightly, we define

/ e V=80 _ Fu(t)dt=A+B+C,
0

T
A= [ et Fu)
o @)
B= [ VR P
T
oo .
C= [ VB o LlPw) - P
T
Note that the notation in (4-7) is such that each term relates to an estimate for the solution on the
correspondingly named region from (4-5).
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We can carry out a similar construction at time —7, yielding a small solution ¢ that agrees with u
whenever |x —x(=T)| > R+ |t + T|, and we obtain three terms in the negative time direction

0
/ e VA L Fu(t))dt = A+ B+ C’,

0
A = [ VB O _ F(u(r)) dr,

—Z"T (4-8)
B = / VR0 L F(3(0)) dr,
= [ VRO L [Fu(0) — F(5(0)] de

—0o0

Using the elementary Hilbert space estimate
{A+B+C. A+ B +C)| < |AP+ |4 + B + B> +[(C.C")|

whenever A + B 4+ C = A’ + B’ + C’, where the |- |? denotes the square of the norm induced by the
inner product, we may estimate

(Q<kw(0), Q<w(0)) 1
by obtaining bounds for A, A’ and B, B’ and (C, C’).

Region A. To estimate the A and A’ terms, first we establish the bound

T \2(»—D

for some suitably small € > 0. To prove this, we rely on the fact that # is a soliton-like critical element.
Fix n > 0. Since N(¢) = 1, there exists € > 0 small enough that the Lz(p D
interval of length €; see Lemma 3.11. Thus to obtain the desired bound, we divide [T, T] into ~ [T /€]

-norm is bounded by 7 on any

intervals Jj of length €, and

[T/e€]

2(p—1) ~ 2(p—1)
||u||L2(p 1)([ TT] R3) Z ||u||L2(I) 1)(] R?) 6

I ~

Using a similar argument together with Strichartz estimates and the hypothesis

[l Loorgso < 1,

we obtain

S

T
Wl rpensy < (© ) Iiligreo. (@-10)

Thus, using (4-9), (4-10) and Strichartz estimates, we can estimate

2 72
AP+ AP S 1012y 20 ey = () W
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Region B. For the estimates of B and B’, we use the small-data theory to bound the solutions v and .
We argue only for v as the estimates for v are identical. By the small-data theory, for  chosen sufficiently
small in (4-6), we have

||U||L§.<;—1)(R1+3) <.
Using Strichartz estimates, we bound

3(p=3) 3p=3 g
22Vl p 2o SNV o + NIVE22 (WI70) 20r042 ppro-

V]

p—1 3(p=3)
S w0 + 10l 20— VI 270l 2 20002,
t.x 7

with all space-time norms over R!'*3, Note that ( D, %) is wave-admissible. Thus, for n sufficiently

small, we deduce
3(p=3)
2p v ||L{)L)2€P/(1)—2) < ”M ”L?OHSO (R1+3)>

VI
and hence it follows from Sobolev embedding that

Il 2 20 @143y < Nl Lgoreso.
Thus, we have shown that

2 2 p p
B+ 1B S 1017, 20 115y S Il er00

Region C. Finally, we claim that
(c.c’y=o. (4-11)

To see this, write

oo =T JoA
.= [ VB Q P @) - FOO). Qi Flu(e) — F(e)]) dr dr,
and note that by subluminality and the fact that x(0) = 0, we have for T = 2R§, ! the inclusion
{Ix =x(£T)| < R} C{lx| = (1-27180)T}.

We recall that the operator Q - defined in (4-1) is given by convolution with the function 23kw(2k X)
for a fixed function ¥ € C§° (R3). Hence, for k > ko, a sufficiently large, fixed constant depending on
the support of V¥, g and T, we can ensure

supp(Q <k [F(u(v)) = F((1))]) € {|x| < || =47 18T }.

Similarly, using the properties of the Q - and the sharp Huygens principle, we can ensure that for k
sufficiently large,

supp(e’ V=B Q L [F(u(t)) = Fo(0)]) € {|x| > |t — 7| = 4716 T}.

Since t > 0 and © < 0, we have |t — T| > ||, this yields (4-11), as required.



2022 BENJAMIN DODSON, ANDREW LAWRIE, DANA MENDELSON AND JASON MURPHY

Collecting these estimates, we obtain that

10 <kw(0)[1%, = (Q<xw(0), Q4w (0)) g1 S 1

uniformly in k > 0. The desired result then follows. O

4C. The jump from H*? (R3) regularity to H°(R3) regularity. Now we turn to the more difficult
estimates. Here, we will need a finer analysis based on frequency envelope machinery. We prove the
following.

Proposition 4.4. Suppose u is a soliton-like critical element. Then
UeLPH? = ueLlPH'
forany s, <s <1.
Proof. Once again, we define
region A :={(t,x):|t| <T},
region B :={(¢t,x): |x —x(T)|> R+t —T]|},
region C :={(t,x): |x —x(T)|< R+t —T|},

with corresponding regions A’, B’, C’ in the negative time direction. We further introduce

Or = Q2 — Q< fork>0, Qo = Q<o.

By Schur’s test, we can conclude that these frequency projections are a good partition of frequency space,
in the sense that

LA 1% ~ 1Q0 f 15, + Y 2% 10k £ 117
k>0
We will also need to introduce an exponent g satisfying
2<g< 2
Sp
Region A. We begin by defining suitable frequency envelopes with a parameter o > 0 to be determined
shortly. We set

vi(to) ="y 27V =KI[25 7|10 ju(t0) | 242777V Q; dsu(to) | 2]

J
i —i(2—
O{k(])=z2 olj k|[2 ](q s]))||qu||Lth)2cq/(q—2)(JXR3)

; i(2-1+
+2](q sp)”qu”L?q/(q_Z)LZ(JXRS)]

(4-12)

J

for k > 0. Note (q, quqz) is sharp admissible and that each of the quantities appearing in the definition of

B has the same scaling as H*». We will choose

2
O<o<=—s,.
q )4
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Our goal is to prove that
(=T, T]) < 7 (0) + Co2 7%, (4-13)

where Co = Co(T).
We begin by recording the some space-time estimates for # that are consequences of the precompactness

of the set K; see Definition 3.4. We fix n > 0. Since N(¢) = 1, there exists € > 0 small enough that the
L?,(f_l) norm is < 7 on any interval of length ¢; see Lemma 3.11. Furthermore, we can find ko = ko (1)
such that, for any k > ky,

1
|| Q>ku”L%,(f_l)([_T,T]XR:;) < )”Tz(pfl) .

With these bounds in hand, we turn to the proof of (4-13). In the following, all space-time norms will be
taken over [T, T] x R3. For any j, we decompose the nonlinearity as follows. Writing 1< j=0<ju
(and similarly for u- ;), we write

F(u) = Fusg,) + Fu) — Fusg,).
where ko(n) is as above. By Taylor’s theorem, we have
1
Fu) = F(“>k0) + U<k, / F/(9u§k0 + M>k0) de,
0
and hence to estimate the nonlinearity, it suffices to estimate three types of terms

p—1 ) p—1 .
M>k0u>], M>k0M§j, MSkO

uP~1,
Using the inhomogeneous Strichartz estimates, we obtain

2-i(3=s5) f VB Q) F(u(s)) ds
0

2 -2
L?qu/w )

. t /
2G| [V 0, Futs)as

L%q/(q—2)L)qC
. i(2— —i(2=
N mln{2j(" 2 IF @) para—1 207422 i(Gse) IF @) 20742 pasa=}- (4-14)

Now let J be an interval with |J| < €, and let 79 = inf J. In the next estimates, all norms will be taken
over J x R3. Using Strichartz estimates, we estimate

2 i(2-1+
RAG S”)IIQjMIIL;’Li"/“’—Z’(JxW)+2](q Sp)”Qf””L?"/("_Z)LZUXW)
‘ (so—1 i(2-1+ -1
<27y ) + 270D Wden o)l + 27 G L g 0
—i(2— -1 it B
+277G s”)||u’>’k0u5jIIL?q/<q+2)L§/C/(q—1)+2 iG s”)””sko”p 1||L$‘1/("+2)LZ/("_”

<277 |y (t0) || 2 + 277~ V0,1 (t0) | 2 + 1 + 1T + 111
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We first estimate term 1. We obtain

2/ 1-l_s”)llu ko U>J ||Lq/<q D7 2a/(@+2)

-1+
2 G g 1 I 2029

< y(p- 1)T1/22/(*—1+Sp) Z 2—5(’_1“1’)[26(7_1“”) ||Q€“||L
>

2q/(q— 2)Lq]-

Similarly, for term II we obtain

9~ J(Z- Sp)”u Ny ||L2q/(q+2)Lq/(q D

277G gz W g 20702

<2” —j(2-sp) ||u>k0||p2(,, N Z 2@(;—Sp)[2—€(a—Sp) “uz”Lj’L)zf’/("_Z)]‘
Y
Finally, for term III, using smallness of the interval and we obtain

_i(2— _
AT [t <gou? ||L§f1/<q+2>Lgc/<q n 27 ||“||pz<p b |4 <k ”L;IL%"/("_Z)
t X :
< 2=i(5=sp)yko(5—sp) P! T
Multiplying by 271/ =k| and summing in the above bounds, recalling that o < %1 — §p in our definition of
the frequency envelopes in (4-12), it follows that (for to = inf J) we have

Y (1) + ax (J) < yi(to) + T2nP Loy (J) + Co(T)275.
For n = n(T) small enough so that

11 1
CnP™'T2 <5

with C the implicit constant in Strichartz estimates, this implies
i (J) S v (to) + Co27%7.
Iterating this procedure [T /€] times on [T, T], we may also conclude that
Vi (10) < vk (0),

from which (4-13) follows by summing up these estimates.

Region B. To implement the double Duhamel argument, we will again consider the solution v to (1-1)
with data ¥(T) = ygu(T). To control this solution, we define the frequency envelopes

Yk(to) and B
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analogously to (4-12), but with space-time norms over R!*3, We will prove

Br < vi(0) + Co27*. (4-15)
First observe that
||U||L§.<;—1)(R1+3) <.
Thus
—(2— 2_
NVIGE0) g 2002 + 1917200 202
2_1 _
SN0 llaee + 11V @1 a1 20742
t X
p-1 21+
Sn+ ”v”LZ(p—l) [IV]4 SpU”LZq/(q*Z)Lq
t.x 4 *
—1|v |21+
§n+77p ||V|t[ SI)U”L?‘I/(‘]—Z)sz
which implies in particular that

lv<1 ||L§’L§‘1/<"—2>(R1+3) <. (4-16)

We now estimate S in essentially the same manner as . The main difference is that we split at
frequency 1 instead of at frequency k¢ as above. Estimating as above, but using (4-16), we deduce

Bi S 7k(T) +nP"" B+ Co2 7,
which implies
Bi < 7k (T) + Co2 7. (4-17)

In order to prove (4-15), we need to relate Y (T) to y4(0). Similar arguments as in (4-15) yield
Vi (T) S 7k(0) + 077" Br + Co27% < 4 (0) + Co27*7,

so it therefore suffices to relate Jx (T') to yx (T). Using that ¥(T) = ygu(T), we apply the commutator
estimate Lemma 2.3 to deduce

27 Qev(Mll2 £ 27 1 Qeu(T) 2 + @R ™™ utll oo gy
2K6r D048, 0(T) L2 £ 27 VN Qudu(T) L2 + 27 R3] oo sp—1-

In particular, since 0 < % —5p < 1—1s,, we deduce that
P (T) < yi(T) + Co27*°.
Putting this together with (4-17) above, we conclude

Br < vi(0) + Co27%,
which completes the proof of (4-15).
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We will now carry out the double Duhamel argument with the complexified solutions w. We write

s . 0 .
(0w (0), Qjw(O) g = lim </0 YR () dr, /_ e—”ﬂQjF<u(r))dr>H1 (4-18)

and (as before) take the decomposition

/ e VTAQ F(u(t))dt = A+ B +C
0 0 .
=A/+B/+C'=/ e_’“_AQjF(u(r))dr

—o0
for components as in (4-7) and (4-8). Once again, we rely on the algebraic inequality
(Qjw(0), Qjw(0)) y1 S |AI> + A2 + B> +|B'|> + |{C,C")| (4-19)
and we note that by construction and the argument above relying on the sharp Huygens principle,
(C, C/>7:£1 =0.
To treat the other terms, we recall the definition of the frequency envelope «j in (4-12), and we use
(4-13) and (4-15). To this end, we multiply the left-hand side of (4-18) by 27?1/ =*I and we sum over

Jj =0 to obtain
Vk(0) S 0?71y (0) + Co2 7k,

which, choosing 7 sufficiently small depending only on the implicit constant, implies
7 (0) < Co27%,

which yields i € H* for any sp <5 <sp+o0. Since that we may choose any o < (27 —sp and g arbitrarily

close to 2, we deduce u € Lt°°?'—ls for any s, < s < 1. This completes the proof of Proposition 4.4. [
Propositions 4.3 and 4.4 immediately yield the following corollary.

Corollary 4.5. Suppose U is a soliton-like critical element. Then
ieLPH? = iueLlP®H.

4D. The jump from H1 (R3) regularity to #5 (R3) regularity. As mentioned above, in order to employ
the rigidity argument based on a certain virial identity, we also need to prove that the trajectory of a
critical element in fact lies in a precompact subset of 7{!. We will achieve this by proving that in fact we
can gain a bit more regularity; specifically we can place the solution in #* for some s > 1. The key idea
here is that we actually have a bit of room in the previous estimates given the additional assumption of !
regularity, and this will provide some extra decay which we can use to establish the additional regularity.

Proposition 4.6. Suppose i is a soliton-like critical element. Then il € L‘;O?'-ls for some s > 1.

Proof. Let v and ¥ be the solutions to the small-data Cauchy problems defined above. By small-data
arguments v(7) € H'(R?) and [v(T)]| s, small implies that

|1—Sp

il 20721 L gy VIV 200-0 sy ST 1

~ 1—s5, ~
101l 2072 4 sy + V70l 2600 sy ST 1
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Furthermore, arguing as above and partitioning [—7, T'] into sufficiently small intervals, we obtain

|1—s

el 20ra=2 g (o rpsmey TNV 2l 200 (g ey ST 1

These inequalities, together with the argument used to prove Proposition 4.4, as well as (4-19) and (4-14),
establish that

1Qku(O)|2, S 27kr2 K G=1te),
Since we may choose any

o< 2_ s
q
and q arbitrarily close to 2, we have then shown that

> 22K 0u(0) )12, < o0
k

for any o < L, which concludes the proof. O

4E. Rigidity for the soliton-like critical element. Now we may prove that the soliton-like critical element
is identically zero. We summarize this in the following proposition.

Proposition 4.7. Let ii(t) € H' be a global-in-time solution to (1-1) such that for subluminal x (t) the set
K ={u(t, - —x@)),0:u(t, - —x()):t e Ry C H NFLP
is a precompact subset of H' NH*?. Then ii(t) = 0.

As mentioned in the Introduction, we include a proof of rigidity for the soliton-like critical element in
the focusing setting as well. The arguments that we use are similar to the ones given in [Cote et al. 2015,
Section 3; Dodson and Lawrie 2015b; Rodriguez 2017] but with a modification. The key new ingredient
here is that the subluminality of x(¢) compactifies the subset of the Lorentz group taking (z, x(¢)) to
(t',0); see also [Kenig and Merle 2006; Nakanishi and Schlag 2011] for a somewhat different approach
that uses the Lorentz transform to show that critical elements must have zero momentum. The main
ingredients in the proof are the following virial identities.

In what follows we let r = |x| and set d,u = Vu - (x/|x]).

Lemma 4.8 (virial identities). Let y € C§° be a smooth radial function such that y(r) = 1ifr <1 and
supp y € {r <2}. For any R > 0 we define yr(r) = X(%) and let u(t) be a solution to (1-1). Defining

2
u
Qu@r)(R) :=/ |V + |9,u)* + %+ u|P* 1 dx, (4-20)
x> R x|
we have
d o -3
g xR +0) = —EG) % (L3 ) Il7 L+ 0(@ua (R). (4-21)

“«

where the “+4 " above corresponds to the focusing equation and the “—" corresponds to the defocusing

equation.
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If u(t) solves the focusing equation, we have

<3tu XR(VarM—F u ——/|3t“|2 m—— /| 1P 4+ 0(Q2u() (R)). (4-22)

Proof of Proposition 4.7 for the focusing equation. We may assume that x (0) = 0. Since x (¢) is subluminal
we can find § > 0 so that

X)) —x(@)| = A =8t —z[. [x@®)] =1 -=5)t] (4-23)
forallt,7 € R.
For convenience, we consider only the special case where
x(t) = (x1(¢),0,0) forallt >0,
as this contains the essential difficulties and the general argument is an easy modification of the one
presented below. Recall that for each v € (—1, 1) we have a Lorentz transform L,, defined by

t—vx; x1—Vvt

VI=v2 102

Ly(t,x1,x1,Xx3) = ( ,xz,xs) =:(t',x").

For any T > 0, set

v(T):= xl;T).
Then
—(1=-6=<v(T)<1-§ (4-24)

and the Lorentz transform L, (7 gives

Ly (T.x1(T),0,0) = (T",0,0,0),

T'=VT?—x(T)% (4-25)

Since x(t) satisfies (4-23), we have the bounds

where

csT<T' <T
for c¢g := y/1—(1—268)% > 0, which means that 7’ is comparable to 7. For each T > 0 define
vyry (1, x") i=u o Ly (2, x).

Then, since K above is precompact for x () subluminal and since v,,(r)(t") as above is a fixed Lorentz
transform of (¢, x), we can explicitly obtain a subluminal translation parameter x’(¢") with

x'(T") =0,
by the choice of v(T') above, such that the trajectory

K :={U,q)(t' ,x—x'(t") 1 e R} (4-26)
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is precompact in 7! N 7{*7; see for example [Duyckaerts et al. 2016, Section 6] or [Nakanishi and Schlag
2011, Chapter 2] where such claims are carefully justified. We will now establish the following.

Claim 4.9. Consider a critical element for the focusing equation with 3 < p < 5. For each n there exists
a time Ty, > 0 such that for T, as in (4-25) we have

T/
L 1
T! /0 /Rawf”v(n)(f,x)lz + oo, ()P T dxdr < -

Proof of Claim 4.9. Let T > 0. Since v,,(r) solves the focusing equation we average (4-22) with R = CsT
over the time interval [0, T’] for some constant Cy to be specified below, yielding

T/
1
7 | [t oP o ara

T/
1 4 1 ’ 1
5Fkatvv(T)(t)|X2Trarvv(T))|g‘+F|<8tvv(T)(t)|X2TUv(T))|g|+F/(; Qv @) (CsT)dt, (4-27)

where Qy,,,,(CsT) is defined as in (4-20). Given n > 0, by (4-26), the subluminality of x’(¢), and the
fact that
X0) =0, x(T')=0,

we can choose Cg and T = T,, large enough so that
T/

n

1 1
7 A Qv,,(rn)(t)(CST) dr < pe

n
Note that Cs can be chosen independently of n. Next we estimate the first term on the right-hand side
of (4-27). We treat only the case where the inner product is evaluated at = T, as the case when it is

evaluated at ¢ = O is similar. We have
1

1 T2
Fuatvv(T)(T/) | x2r -7 901y (TH)| S F||8tvv(T)(T/)”L2”Vvv(T)(T/)||L2(|x|§T1/2)
Cs
+ g”alvv(T)(T/)”Lz”vvv(T)(T/)||L2(T1/25|x|5C3T)'

Since T’ ~; T, the first term on the right-hand side above can be made as small as we like by choosing
T, large enough so that

Similarly, for the second term on the right, we rely on the precompactness of K’ in ! N 77 and the
fact that x"(7,)) = 0, which yields
1
IVou @) (Tl 2 s 112y < o

for T;, large enough. The second term on the right-hand-side of (4-27) is estimated in a similar fashion.
This completes the proof of Claim 4.9. O
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Now, given this sequence of times 7, guaranteed by Claim 4.9 consider the sequence v(7;) :=
x1(Ty)/ T,. By (4-24) we can, passing to subsequence that we still denote by v(7}), find a fixed
ve[-1-4§,1—4] with

v(Ty) > vg asn— oo. (4-28)
Define

vvo(t/» X/) ‘=uo LVO(I’ x)
and note that this is a fixed Lorentz transform of u. It follows from Claim 4.9, (4-28), and a continuity
argument that in fact

T/
1 n 1
T_;ifo /mlarvvo(hx)lzwL oy (2, x) [Pt dx dr < 5

after passing to a further subsequence. Using yet another continuity argument we can assume without
loss of generality that 7, = M, € N; i.e.,

M
RN 2 p+1 1 ]
. /0 /RS|8,U\,O(t,x)| + vy (2, X)| dxdt<n (4-29)

for some sequence {M, } C N with M,, — co. Now we claim that there exists a sequence of positive
integers m, — oo such that

my+1
/ / |8,vv0(t,x)|2+|vvo(t,x)|p+1dxdt—>O as n — oo. (4-30)
R3

mn

If not, we could find € > 0 such that for all n € Z we have

m-+1
/ /3|8tvvo(t,x)|2 + |y (2, ) [P T dx dr > €.
R

m

However, summing up from 0 to M,, — 1 we would then have

My
[ v o017+ et = oy,
0 R-

which contradicts (4-29). Now, by (4-30) we have
1
/ / 107 Vv (M + 1, X) > 4 vy (mn + 1, x)[PT1dx dt — 0 (4-31)
0 JR3

as n — 0o. On the other hand, passing to a further subsequence, we can find (Vy, V1) € #! N'H*» such
that

Uyo My, - —x'(mp)) > (Vo, V1) € H' NP asn — oco.
Let 17(!) be the solution to (1-1) with data (Vp, V7). Then for some f¢ > 0 sufficiently small we have

lim  sup ||y, (mn +1, - —x'(mpn)) — V(t)llylmys,, =0. (4-32)

n=oo IG[O,IO]
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However, from (4-31) we can then conclude that

-

V=0,
from which we conclude from (4-32) and small-data arguments that
Uy, = 0.
This means # = 0 as well, which finishes the proof. O

Proof of Proposition 4.7 for the defocusing equation. The argument is much easier if either p = 3 or if
the equation is defocusing since (4-21) gives us coercive control over the energy. Indeed, arguing as in
the proof of Claim 4.9, but using (4-21) instead of (4-22) we see that
, (T
E(Wy(T)) = F/o E(@y))dt =0(1) asT — oo

since, for each fixed T, the energy of v, (r)() is constant in time. However, since

vyry (1, x") =uo Lyy(t, x),

we must have either limsupz_, o |v(T)| = 1, or E(1) = 0. The former is impossible by (4-24). Hence
E(u) = 0. Therefore 1 = 0. O

Remark 4.10. Note the argument given above for the defocusing equation also works for the cubic
focusing equation since (4-21) yields control of the full energy for p = 3. Arguing as above one can
conclude that £ (1) = 0. Since the only nonzero solutions with zero energy must blow up in both time
directions [Killip et al. 2014] we conclude that the global-in-time solution satisfies 1 = 0; see [Dodson
and Lawrie 2015b], where a version of this argument was carried out in detail.

5. The self-similar critical element

In this section, we assume towards a contradiction that # is a self-similar-like critical element as in
Proposition 3.13, case (III). We will prove that any such u has finite energy, and in fact that E (1) = 0.
Since we are treating the defocusing equation, this implies # = 0. The arguments in this section can be
readily adapted to the focusing setting as well.

More precisely, we will prove the following result.

Proposition 5.1. There are no self-similar-like critical elements in the sense of case (11) of Proposition 3.13.

As in Section 4, we will prove this proposition via two additional regularity arguments. We fix the
following notation: let
5—-p 3 5
S0=Sp+m=§—5. (5-1)
Proposition 5.2. Let il be a self-similar-like critical element as in Proposition 3.13. Then,

| (T) |50 S T~C072)

uniformly in T > 0.
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Proposition 5.3. Let ui be a self-similar-like critical element as in Proposition 3.13. Let s be as in (5-1)
and suppose that

|@(T) |50 < T (5-2)
uniformly in T > 0. Then

Ii(T) |11 5 TG00
uniformly in T > 0.

Proposition 5.3 will immediately imply Proposition 5.1.
Proof of Proposition 5.1 assuming Proposition 5.3. Note that the nonlinear component of the energy is
controlled by the H3/273/(r+1)(R3) norm by Sobolev embedding, and by interpolation we have
H2 (R c H»nH.
Thus the conserved energy E (i) must be zero by sending T — oo in Proposition 5.3. Then E[i] =0,
which implies that 1 = 0, which is impossible. O

Proposition 5.3 is the easier of the two additional regularity arguments, so we turn to this first.

5A. The jump from H5° (R3) to H1(R3) regularity. We first prove that if # has some additional regu-
larity, then we can achieve 7! regularity, and hence reach the desired contradiction.

Proof of Proposition 5.3. Using N(t) =t~!, we have
”u”L%(;—l)([zk’zk-i-l]x[RS) S 1
uniformly in k. Thus for any 0 < 5 < 1, we can partition [2¥, 2K+1] into C() intervals I ' so that

[|u ”L%’()f_l)(lj xR3) <.

On each such interval, we may argue using Strichartz estimates and a continuity argument together with

(5-2) to deduce that

—k(s0—
”M”L‘;’L%CP(IJ'XR3) s 2 (so S[))

for each j. This implies
—k(so—
||u||L§’L)ZCP([2k’2k+1]XR3) < 27K (so=sp)
uniformly in k. We once again complexify the solution. We let
i

Ny

Once again, if u(7) solves (1-1), then w(z) is a solution to

w=u-+

Uy,

i
w; =—iv—Aw =+ ulP~ly.
t M| |

By compactness,

ITV=8y(-T) =0

lim Pje
T—oo0 ~—
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as weak limits in H for any k > 0. By Strichartz estimates, we have

||P5kw(T)||1.'11 < ||u|u|p_l||L}L§C([T,OO)X[R3)

-1 —k — - —
< Z ot |u|? ||L}L§([2k,2k+1]xR3) < Z 9—kp(so—sp) <T p(so s;:)’
2k>T 2k>T
which completes the proof. O

The jump from H*? to H50 regularity. It remains to prove Proposition 5.2. The main technical ingredient
in the proof of Proposition 5.2 is a long-time Strichartz estimate.
Proposition 5.4 (long-time Strichartz estimate). Let o > 1 and
2<g< &
Sp
Suppose u is a self-similar-like critical element as in Proposition 3.13 with compactness modulus function
R(-). For any ng > 0, there exists ko = ko(R(no), @) so that, for every k > ky,

3(p—3) —_(2_
”lvl2(‘0_1)u>k”L?U’_l)szc(p_l)/(p_2)([lsza(k*ko)]xRﬂ+”lvl (q Sp)u>k||L?L)2C4/(tl—2)([1,za(kfko)]XR3)<770~

Proof. We proceed by induction on k > kg. Let 79 > 0. Using compactness and the fact that N(¢) = ¢,
we may find k¢ large enough that

3(p—3) 2
55— —(£— 1
|||v|2(p_l)u>k()||L%(P—I)L)zc(P—1)/(p—2)([1’23a]><R3) + |||V| (q Sp)u>k()||L;1L)2C¢I/((1—2)([1’23a]xR3) < 5770

This implies the result for ko < k < 8ky.
To establish the induction step, by Taylor’s theorem, we may take the decomposition

1
Fu) = Flusp_s) + t<k—s / F/(Ouap—s + np_s)
0

1,1
= F(usg—3) +u<p—3F (us—3)+ “2<k—3 / / F"(0102u <j—3 + usf—3) d6; d6s.
= 0 Jo
Hence, we can write the nonlinearity F(u) as a sum of terms

Poi F(u) = | Pog—aulP 7 Pog—gu + Pog(usp—3F (usg—3)) + Por(ul;_3Por—3F2),

where

1 p1
F= / / F"(0102u <f—3 + usk_3) dby db,,
0Jo
and we have used in the last term that
Pok (”ik—3 Fy) = Py (uik_3 Poy_3F2).

Note that | F/(us—3)| < [usk—3/P" 1 and |Fa| < |u<k—3]P "2 + |usx—3|P "2, and since the frequency
projections are bounded on L?, we will replace these terms with |u|?~! and |u|?~2 respectively once we
have a chosen a dual space in order to simplify the exposition of our estimates.
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Fix exponents
L 6(=q +rq)
’ 12—12p—21qg +13pq’

2
and note that y € (1,2) for g € (2, 4), while for ¢ = 2, we have

6(p—1 6
Tp—15 \5

In particular, by choosing g close to 2 we can guarantee that y, p € (1, 2). Furthermore,

1 1 3 2(p-3
_+___:M20’
y p 2 3(p-1

which guarantees that the conjugate exponent pair (y’, p’) is wave-admissible.

By Strichartz estimates,

=y v~ (G—s»)
VI Uskllp20-0 p20-070-2 +[||V] Uskllpap20r6-2

3(p=3)

S sl + VIR b1 | 200070 200072

—(2— -1
+ VI @ sP)P>k(“5k—3u£k_3)||L$q/(q+2>LZ/(q—1>
—443 2 -2
F VT2 Pog g3 Pokc WP )l y o
=141 4111,
where all space-time norms are over [1, ek _kO)] x R3. We estimate term I as follows:

3p=3) »
V2P0 [us k312 ||, 200-107/ 2001/ @0-3)
t X

p—1 3(p—3)
< s 12200 V27D s 2000 20002
1.x

- 3(p=3) »
pS |||V|2"’_”M>k—3||L2(p—1>L2(p—1)/(p—2)-
t X
By induction, we have
v s <
pP— — — —
||| | u>k—3”L?(P l)Li(P D/(p 2)([1’2“(k*k0)/8]><[R3) = TNo.

Thus, using N(¢) =t~ ! and that
ZOt(k—ko)
/ t~ldr =1log23* ~ 1,
2

Ct(k—ko)/g

and the fact that N(¢) < 1 on [2¢*k—k0) /g8 2a(k—ko)] for k > k¢ > 1, we can deduce

3(p=3)
IVIZE=D s3]l 201 2001/ 0-2 (peti—ko) /5, et~k |3y = T0-

In particular, using (5-3), we obtain that

3(p—3)
|V |2>=D [M>k_3]p”L%(ﬂ—1)/19L)2((19—1)/(2P—3)([1,2(x(k—k0)]XR3) < ng-
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For term 11, we estimate

k(2= -1 —1~—k(2—
2 (‘1 s”)||u5k_3||L;1L)2€q/(q—2> ||u>k—3||1’12(p—1) < 770p 2 (q sp)||u5k—3“L§1L,2cq/(‘1_2)'
r.x

Fix Cy > 1 to be determined below. We write

||u§k—3 ”L;’L)ZC"/("_Z)([l,za(k_ko)]x[R@) 5 ”L‘SCO ”L‘t’L)zC"/("_Z)([1,20‘(k_k0)]XR3)

+ ||MC0< - <ko ”thlLiQ/(‘I*Z)([l,2a(k—k0)]XR3) (5'3)
T Z Il ”L;fLiq/“’—”(u,2a(k—ko)]x[r«3)' -4
ko<j<k-3

For (5-3), we have

2_, B
luc,< - 5k0”Lj’Lfcq/(‘f_z)([l,za(k—ko)]xm) <Cy » 10g(2k k0)‘
On the other hand, for Cy = Cy(no) large enough, we can estimate (5-4) by
ko(2— —
Z ”uj||LttIL)2C61/(q—2)([1,Za(kfko)]XR3) < 102 o(G=s») log(2k ko).
ko<j<k-3
Finally, for kg < j <k — 3 we first use the inductive hypothesis to write

i(2—
”Pju”L;’L%CW(”_Z)([l,2“(f—k0)]XR3) < zl(q sp)no.

Arguing as we did for the high-frequency piece,

. g_ s
||PMu||L;IL§CI/(CI—2)([za(j—ko)’za(k—ko)]xRS) < 2](‘1 s‘")no 10g(2k 7).
Thus
i(2— i k(2—
D il 2 ety S 2o 102G (14 log(2k )] < g2k G ),
ko<j<k-3 ko<j<k-3

where we have used

S G log(L) 5 1.

L>1

Collecting these estimates, we find
2_ _ 2_

”“§k—3”L?Liq/‘q’z)([1,2“<k—k0)]xR3) < [Co + 7]02k°(q Sp)] log(2k—k0) 4 ﬂozk(q Sp)’ (5-5)

which yields
—(2— _
VI @ Sp)P>k(”sk—3”£kl3)||qu/(q+2)L§IC/<q—1>
2_
< P71k G0 (e T 4 po2ko(Gs0)]10g(2k o) 4+ P

Choosing k¢ possibly even larger, we deduce

—(2_— -1
V] (2-sp) P>k(u§k_37/l£k_3)||L%q/(q+2)L;1C/(q—l) <nb.
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Finally, we estimate term III. Since —% + s, < 0, we use the fractional chain rule and Bernstein
estimates to obtain

—443 2 -2
V17043 P u2 gy Por P 2) 7 10
k +2 -2
<2 7 lu< <k— 3”L"L2"/<" » IV (u? )||L§>0L§(p—l>/(7p—1s>

—2k(=—s .
S 2 a2y a0 s VUl o2

Using (5-5) (and the conditions on kg, Cq given above), we conclude

—443 2 -2 2
N4 SpP>k(u5k_3P>k(up ))“L}'LQ < Mo-
Combining our estimates for terms I, II and III and choosing 79 small, we conclude that
3(p=3) —(2-sp)
NVIEE=D sl 201 20102 + VIS gl o 2002 <m0
on [1,22¢%,=k0)] 5 R3, thus closing the induction and completing the proof. O

Finally, we arrive at the proof of the additional regularity Proposition 5.2.

Proof of Proposition 5.2. We compute

110 = w1, £ 3 22590 (Pew(1), Pw(D)).
k>1

We use the double Duhamel argument based at = 1. For some k > 1, we write
1 poo
(Prw(1), Prw(l)) = / [ (e A=DV=A P F(u(r)), ! IV P F(u())) dr dr.
0J1
We fix o > 1, to be determined below, and split

o0
/ S U=DV=Ap Fu(t))dt = Ay + By,
1

where
2k o

o0
A = / UDV=Ap Fu@t))dt, By = / ' A=DV=4p F(u(r)) dr.
1 2ka
We also write .
/ e =IV=Ap F(u(s))ds = Zj.
0

‘We will use the estimate
[(Ak + Bi. Zi)| < |Ak|* + 2(Bk. Zg)|.

which follows from the fact that Ay 4+ By = Zj.
We first estimate the (By, Zj) term. We expand

|(Bk. Zk|<ZZ/

{<0j>ka

2+l oj+1

/ —i(t—r)ﬂpkp(u(;)), P F(u(s)))| d dr.
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We claim that
||Pk(“|u|p_1)||L%L)1(([2e,22+1]xR3) <27k
uniformly in £ > 0. Indeed, arguing as above, we can decompose the nonlinearity into two types of terms
Usp_uP™l and  uPop_ (WP,

since if both u and |u|?~! are projected to low frequencies, the product vanishes when projected to high
frequencies.
We thus have by Bernstein’s inequality, Holder’s inequality, and the fractional chain rule that

|| Py (uefue| P~ 1)||L2L1 <||M||L2(p 1)||M>k—1||L;>oL§+|IMI|L§(5—1>||P>k—1(up_l)||L3<p—l)/<p—2>Lgc<p—1)/<2p—3>

<27 ul P 2 S270,

S
PVl ez

where all space-time norms are over [2¢, 26+1] x R3.
Using dispersive estimates, we have, for any j > ko and £ <0,
J.

26+1 5j+1

[ (e COV=ApLF(u(t)), P F(u(s)))| dr de

2["1‘
/;

<2572 1Pl P~ 2 11 e e 11y I P @l P~ D2 1 gk oh417xm3)

2J+1
/ (12K | Pyl (1) | Pl PP ) )1 de

< 2%2‘%2’6(1—2%)_
Summing over £ <0 and j > ka, we deduce that
By, Zy) gor | < 28017%). (5-6)

We now turn to estimating the | Az |? term. We will use a frequency envelope argument to establish the
required bounds. Once again, we fix an exponent ¢ satisfying

S
2<g<-L,
=5
Let

4

0<min{sp,§1—sp,——1—sp}. (5-7)

and define

_ —ol|j—k . .
Ve =22 7w e o ooy
j

We will establish the following: Let 9 > 0 and let R(-) denote the compactness modulus function of .
Then there exists ko = ko (170, R(10)) sufficiently large that

Ikl s S Cko)2 ™ 2% 1510 3 27 M g | o (4 sy (5-8)
J
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for all k > ko. For p > 3, we write the nonlinearity as F(u) = |u|?~3u3 and then decompose u> by
writing u = U<k + u>k. By further decomposing u<x = u<g, + Ug,< . <k, we are led to terms of the
form

Fu) = |ulPul, (5-9)
+ 3P Pu? u g, (5-10)
+3JulP Ul ugy< - <k (5-11)

+ [ulPPu gy F3 (5-12)

+ P PuR (5-13)

+ 3P s gu <geu < (5-14)

+ 3l PP us kU <g Uiy < - <k (5-15)

where we have written

;= uzsko + 2U<oUk< - <k T u,zc0< <k
By Proposition 5.4, for any 8 > 1 there exists ko = ko(R(70), B) so that for every k > k¢ we have

3(p—3) —(2_
HVIZP=Dusill 20— 20010102 (4 a0k g3y TV @ s”)u>k||Lngcq/<qu>([1,25<k_k0>]xR3)< n0-
Fix B >« and k1 = k1(R(no), o, B) > ko, which satisfies

yk1(B—a) > 2koB

Then 28k—ko) > oke for f > k1, and hence, for every k > ki, we have

3(p—3) —(2_—
|||V|2(”_”M>k||L§(p71>L§_<p71>/<pfz)([Lzak]st) + [V @ Sp)u>k”L‘IILJZCQ/((I*Z)([I’zak]XR3) <7o.

We will use this estimate repeatedly below. Furthermore, we may also establish identical long-time
Strichartz estimates for

—2
HEr il 2o,

where 2/s, <1 < 4.
To estimate (5-9), we use the dual Strichartz pair

r 6r(p—1)
27 12—12p—21r +13pr )’

with 2 /s, <r < 4. We note that this pair is dual admissible: writing the pair as (4, B), we have
1 1 13p —21
11 _1p-21
A B 6p—6

for p > 3. Note that A € (1,2) since r € (2,4) and B > 1 for

12(p —
- (p 1)_
Tp—15

3
> =
-2
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This is compatible with r > %when p € [3,5). We can thus bound
P

k(3sp—2) 1, 1 P=3 2
2k (3sp ’)““”L?OLi“’_WZ”u>k”L§L)2cr/(r_2) Z ltjll oo 2

k<j
-2 2 k—j
S VP Fusi| rp2r/(r=2) E 2 j)sp”MjHLooHSp
thx . oo
k<j
i
<10 26D | o o

j>k

For (5-10), we use the dual Strichartz pair

(Zq(p— 1) 6¢(p—1) ) (5-16)
2p+q—2"6—-15¢+2p(5¢—3) )
We bound the contribution of this term by
_2 -3
=D ulP 2 iyl 2 <o | o 2070 Nl o 2
: Lx t.x tbx t =X
< 7]02_k(%_S”)2k0(%_s”) log 2 |u o0 £rs7

< noz—k(%—sp)zk()(%—sp) log 7k
For (5-11), we use the same dual pair as in (5-16), and we obtain

k(2sp—2 -3
2k (25 ")||u||iooL3(p—1>/2””>k“L?(§’_” Z Bl aera=2 Mo llgerz
e | ko<ji1<k<j2
S (2 . .
<o Z 2/1((1 sp) log(zk J1)27 /2% ”ujz”L?OH;”
ko<ji<k<jz
S 10 Z 2(k—J)SD”uj ||L?°H;p
k<j

To estimate (5-12), we use the admissible dual pair (% 72—z8+). We choose p so that

3 2 4 3
p g p-1 2
We bound the contribution of this term by

—k(2—s p—3
KGNS s altkolg 2oas 20 Il ool e ot

J1<j2=k
< z—k(%—sp)zko(g—sp) log 7k Z zjl(g—sp)zjz(sp—%+) log(2k_j1)

5 J1=<j2<k
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Now we estimate (5-13) as follows: we apply Strichartz estimates with the dual (sharp) admissible

pair (£, 33—34). Then we obtain

k(1-2+s p—3
2015 p)||u||L<l>oL§ac(p—l)/2 Z i ll g p2ar@=2 ol o g 2ara—2 g5l oo p so=nrc0-,

where the sum is over kg < j; < j» < j3 <k.
Now, for kg < j <k, we can estimate

”uj ”L?L%q/("_z)([l,2“k]XR3) 5 ”uj “L?Liq/(q_Z)([1,2“j]xR3) + ||MJ ”L?L)Zcq/(q_z)([2‘1k,2“k]xR3)
. . ;_
< no log(2% /)27 (G=s7),
using the long-time Strichartz estimate of Proposition 5.4 and we note the log comes from the second
term. We also have
114511 0oy 6t-70—p < 2777w || oo s
Jlipeer$ ~ JlLoe fry

This yields

;702]‘(1_3"'513) Z 211(%—%) log(zk—jl)zjz(%—sp) log(2k—j2)2—js(1—sp)
ko<j1=j2=j3<k

i i—k)(4—-1—
S0 Y. log@ 0PGS0
ko<j=<k

Note that for this estimate, we need

4 _8(p-1)

< )
I+sp 5p—9

q

which is compatible with g > 2 for p € [3, 5).
For (5-14), we use the dual Strichartz pair

q 6(pq —q) (5-17)
2°12—12p—21g+13pq )’

We bound the contribution of this term by

2k(3s,,—i) . .
q HuskollLi’Li‘”(‘l—Z) Z [, ”L;’Li"/("_z) fluj, ||L?OL%

1<k<j>
szk(3sp—3)2ko(%—sp) Z 2]’1(%—%)10g(2k—j1)2—szp||uj2||LooHsp
t X
J1=<k<)j2

< z—k(é—sp)zko(%—sp).
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Finally, for (5-15), using the same dual pair as in (5-17), and we estimate the contribution of this
term by

k(3sp—2 p—3
S TP DN 71 S ey UM JRp e A P
Juko<j2<k=<j3
<2 Cr=i) 3 G og 2= G2 )
t X
J1=<2<k<J3

<o Z 2 (k=J)sp |l ||L?0H;p.
k=<j

Putting together all the estimates, we establish (5-8), which, together with (5-6) and the conditions
on o from (5-7), yields

s k(3—% —k(Z—sp)+ —olj=kl ||y, s
or ()l gz 5268 4 278G g 3727 K g e o e
J
for all k > 1. For « large enough, we can guarantee that the second term dominates the first, and hence
k(2= —oli—
lwe (Dl < 275G g 3 270U H g o 11y
J

for all k£ > 1. We now rescale the solution u and use the fact that the rescaled solution Tu(T't, T x) is
also a self-similar solution for any 7" > 1 (with the same compactness modulus function as u). This yields

—k(2— —oli—
lwell oo prso (11,00)xm3) =2 (Gmsnt gpg Y2 “wj ll e 3 (11,00)cm%)- (5-18)
j

Let 0 < n < . Then (5-18) implies that for k > ko,

vk S27% 4 ooy,

and hence, we may conclude that
[wD| gsp+n <1 forany 0 <n<o.
Using the same rescaling argument as above, and the relation between w and u, we ultimately deduce that
(T llyysp+s ST,
which yields (5-2) provided we can choose

_ 5P
2p(p—1)

Combining with the constraint n < % — §p, this requires that we choose

n

4p
3p—5’

2<qg<
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which is possible whenever p € [3,5). For the other term appearing in the definition of o, we find that
we can choose

5—-p
T’ =
2p(p—1)
provided we take
8
q < —p’
S5(p—1)

which is similarly allowable by the requirement that ¢ > 2 for p € [3, 5). This completes the proof of
Proposition 5.2 and hence completes our treatment of the self-similar scenario. O

6. Doubly concentrating critical element: the sword and shield
We now consider the case of the doubly concentrating critical element, that is, N(¢) > 1 on R = I ;5 and

limsup N(¢) = oo.

t—*to0

By Proposition 3.13 we may assume in this case that x(¢) is subluminal in the sense of Definition 3.12.
By Lemma 3.16 there exists §o > 0 so that

|x (@) —x(v)| = (1 =80)|t — 7| (6-1)

for all ¢, T with
1

o infse[t,t] N(s) .

|t — 7| >

The goal of this section is to prove the following proposition:

Proposition 6.1. There are no doubly concentrating critical elements in the sense of case (III) of
Proposition 3.13.

To prove this proposition, we establish the following dichotomy: either additional regularity for the
critical element can be established using essentially the same arguments used in Section 4, or a self-
similar-like critical element can be extracted by passing to a suitable limit. To this end we define function
7:R— Rby

(1) = /Ot N(s)ds.

Since N(t) > 0 and lim;_, 1 o T(¢) = 00, the function 7 : [0, 00) — [0, 00) is bijective. Hence for any
to > 0 and any C4+ > 0, there exists a unique K+ = k4 (f9, C4+) > 0 such that

Ki(t0.C1) 4
T Nw) T (t(to) + C4).

Similarly, for #9 < 0 and any C_ > 0, we can define

B Kk—(to, C-) _

R AR (ORI eaE
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Fix n > 0 as in the small-data theory of Proposition 2.6, and let R = R(7) be such that, for all € R,

/ 19Frut 0P ax + [ Ve Rdesy: 62)
lx—x()|> KD lx—x()|> %8
see Remark 3.6. Now let y(t) = yr,n(¢) be a smooth cutoff to the set
R
x—x(0)] = D]
N(1)

By our choice of R(n) we have
X3, <n.
Since N(t) > 1 and by (6-1), for any #g, there exists C4+(fg) > 1 sufficiently large so that

x(t N K+(IO,C+(10))) (o) K+ (10. C+(10)) | R(n)
0 N(to) 0 N(to) N(to + k+ (10, C1(t0))N(to) 1)’

and similarly for C_(#9). By continuity we may assume that C4 (¢p) are minimal with this property.

<

Furthermore, for every f¢ there exists C(#p) such that, for some #; € R satisfying

T(11) —(to) < C(t0),
there exist 7— < t; < 4+ with
t(t1) — (=) <2C(to), t(t4+)—1(t1) <2C(t0),

which satisfies

R R
5= x| = [~ 1] = s and [0~ =ty = 11|

We note that we define C(fg) instead of working directly with C1(¢p) so as to split the 7 integral evenly

forward and backward in time. Moreover, if one tries to work directly with #¢ instead of #;, one runs into
issues with Case 2 below.

It is clear from the definition that C(zg9) < sup(C4+(to), C—(?9)), and thus is finite. However, Cy (#¢)
need not be uniformly bounded for ¢y € R, and hence neither does C(f9). We will now analyze several
cases based on whether C(tp) are uniformly bounded for 79 € R.

6A. Case 1: C(ty) are uniformly bounded. Here we work under the assumption that there exists a
constant C > 0 such that C(f9) < C for all 7y € R.

We show that essentially the same argument used in Section 4A can be used to show that such a critical
element necessarily has the compactness property in 77 N 1.

Proposition 6.2 (additional regularity). Let u(t) € H? be a solution with the compactness property that
is subluminal and doubly concentrating, as in case (IIl) of Proposition 3.13. Assume in addition that C(t)
is uniformly bounded as a function of t € R. Then 1i(t) € H' and satisfies the bound

5

1 ()|, S N(t) 2D (6-3)

uniformly int € R.
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For the moment, we will assume Proposition 6.2, and we will use it to prove the following corollary.
Corollary 6.3. Let ii(t) satisfy the hypotheses of Proposition 6.2. Then i (t) = 0.

Proof of Corollary 6.3 assuming Proposition 6.2. We begin by extracting from (z) another solution with
the compactness property on a half-infinite time interval [0, co) but with new scaling parameter N (s)—0
as s — 00. Let 7,,, be any sequence of times with

tm — —00, N(fm)— 00 asm — oo.
Next choose another sequence ¢, — —o0 by choosing t,, such that
N(ty) := max N(1).

te[fm aO]
Now define a sequence as follows: set

- S S
W (s, y) 1= N(l‘m)pzlu(tm + N(zm)’x(tm) i N(l‘m))’

s y
a’”(t’" T N+ N(rm))’

Ot (5. ) i= ———
o N(tm) 721+

and set
J)m = (wm(ov y)’ alwm(ov )’))

Then by the precompactness in 77, there exists (after passing to a subsequence) Weo () 7 0 so that
Wy — Woo € H'P.

It is standard to show that w0 (s) (the evolution of We, = w(0)) has the compactness property on I = [0, c0)
with frequency parameter N (s) defined by

- N(tm + v
m—00 N(tm)
and moreover that

N(s)<1 forallse [0, 00),
liminf N (s) = 0.
s—>to00
By the uniform bounds of (6-3), we see that
~ 5—
lw(s)l51 < N(s)2(1)fl> for all s € [0, 00),
and hence there exists a sequence of times s, — oo along which
~ 5—
1B (sn)llip1 S N (52) 27D =0 asn — oo.

Using the above, Sobolev embedding, and interpolation, along the same sequence of times we have

lw(sa)llpr+1 < ||w(Sn)||Hs(p—1)/(2<p+1>) —0 asn— oo.
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t

B/

C/

Figure 2. A depiction of the regions A, B and C.

But then, since the energy of w(s) is well-defined and conserved, we must have
E(w) =0.
For the defocusing equation we may immediately conclude that w(s) = 0. O

Remark 6.4. As in Section 4, these arguments readily adapt to the focusing setting.

Sketch of the proof of Proposition 6.2. The argument is nearly identical to the proof of Proposition 4.2 in
Section 4; hence rather than repeat the entire proof, we instead summarize how the uniform boundedness
of the numbers C(¢y) allow us to proceed as in Section 4A. The main idea is that the boundedness of these
constants means that for each 7o € R we only have to wait a uniformly bounded amount of time, where
time is measured relative to the scale N (¢), for the forward and backwards light cones based at (#g, x(¢9))
to capture the bulk of the solution. Consequently, we can apply the same techniques that were developed
in Section 4A directly and implement a double Duhamel argument. In order to estimate the norm at a
time ¢ = tg, we recall the definitions of 71, 7+ above and decompose space-time into three regions:

(A) Region A: [t_,t4] x R3.
(B) Region B: the forward (resp. backward) light-cones from
{t) xdx tx —x ()| = [t — 1}
and
{t_yx{x:|x—x(t)| = |t—=—1l}-
(C) Region C: Rx R*\ (region A U region B).

On region A, we control the solution by dividing the time interval [f_, z4] into finitely many sufficiently
small time strips on which we can use Lemma 3.11.
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The main difficulty is that we need to ensure that we can uniformly control the number of small strips
we will need to accomplish this (this type of uniform control was guaranteed in the Section 4 because we
had N(¢) = 1 there). Here, the boundedness of the constants C is used to achieve this uniformity.

From Lemma 3.11 we know that for each n > 0 there exists § > 0 such that for all € R

”u”L%‘(ffl)([t—%,t—‘r%]xﬂ@) <n forallz eR.

Fix this § > 0. Examining the proof of the estimates used to control the solution on region A in Section 4,
see (4-5), we need to show that there exists a uniformly (in #9) bounded number M > 0 of times ?,,,

—M <m < M with t_ < t,, <t4, and such that the corresponding intervals I_y, ..., I3f with
Iy = |t 5 tm + 5
ML NG ™ N

satisfy

M
(il | Im
m=—M
In this case we obtain
M

It
2(p—1) < 2(p—-1) <
u u N(t)dt,
|| ||L%’(;_U([,_,,+]XR3)Ni§_lﬁ I3 gy 5 | NO

and, since
I+
N(t)dt = t(t4+)—t(t-) <4C (6-4)

r—
by construction, this would yield the desired upper bound.

Hence, we now turn to the argument that intervals on which we can control the Lf’(f_l) will exhaust

the time interval [f_, ¢, ] after finitely many steps. Since |N’(¢)| < N(¢)? on an interval of length §/ N(t),
for any 11, 1, € [t—, t+], which satisfy |t; — 2| < 8/N(t1), we have

N(t1) —8N(t1) < N(t2) S N(t1) +8N(11).

Consequently, for any #; € [f—, #4+] we must have
t1+8/N(t1)
[ N(t)dr > (286 —28?),
t1—8/N(t1)

which for any 0 < § < % yields

11 +8/N(t1)
/ N(t)dt > 6. (6-5)
t1—8/N (1)

By (6-4) and (6-5),

1+ I—+G8/N(@-) 4 t+—8/N(t+)
4C 3/ N(t)dt:/ N(t)dt+/ N(t)dtz/ N(t)dt +6;
t— t— t—+8/N(-) t—+8/N(t-)
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hence the positivity of N(¢) implies that by iterating this procedure, we will be able to cover the whole
interval [t_, z4] in at most 4C/§ many intervals of length 6/ N(¢), where we can control the Li(f_l)
norm of the critical element.

On region B, we use (6-2) to apply the small-data theory at times ¢4, which, together with finite speed
of propagation, yields a uniform bound on the solution. Finally, on region C, we may use the sharp
Huygens principle exactly as in Section 4A.

All together, using arguments from Section 4, this will yield that
5—p
@)l S N (1) 27D
For more details, we refer the reader to [Dodson and Lawrie 2015a]. By continuation of regularity and
(6-5), this implies
5—p
lu(to) ;1 < N(t1)2P=D,

where the implicit constant again depends on C. Finally, since |N'(¢)| < N(t)?,

N(l()) ~C N(ll),
which completes the proof. O

6B. Case 2: C(t) is not uniformly bounded. In this case we will show how to extract a self-similar-like
critical element by taking an appropriate limit. The arguments from Section 5, specifically Proposition 5.3,
then allow us to conclude that any such solution must be = 0, which is a contradiction.

By assumption, there exist sequences {f,} such that

C(tn) > 2n.
Now define
In = [tn — k—(tn, YN (tn) ™" tn + k4 (tn, )N (tn) 1]

Borrowing language from [Tao et al. 2007], since C(#,) > 2n, we show that all sufficiently late times
t € I, are future-focusing, that is,

R
forall t € I, such that t > ¢, |x(v)—x(t)| > |t —t¢|— ﬂ
N(7)
or all sufficiently early times ¢ € [, are past-focusing, that is,
R
forall T € Iy suchthat T <¢, |x(¢) —x(v)| > [t — 7| — ﬂ
N(7)

Indeed, suppose that there exist 1", 1%} € Iy such that (t}}) — 7 (¢2) > Cy for some C,, /" oo asn /" oo,
12 is future-focusing, ¢! is past-focusing, and t <7 . In that case,

N(t)~ N(r) forallt, v e[t 7],

with constant independent of n. For n sufficiently large this violates subluminality.
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Therefore, suppose without loss of generality that for n sufficiently large, all sufficiently late times,
say all

are future-focusing. First, we note that if ¢ € [}, is future-focusing, then for any 7 € I,, T > ¢,

RO ot Nes), (6-6)

C r<s<t

N(7) <

Indeed, forany t € I, © > ¢,

R
70 = (O] = e 1] - 2.
Then if N(t) <cN(t)/R(n),
c
|x () —x(v)| = |t — 7| N
and therefore, we conclude that | NG
T
N(r) < C—zN(f) =< R(D)’

which is a contradiction for R(n)sufficiently large. Note that in the case of past-focusing times, a similar
argument yields a lower bound in place of (6-6).
Consequently, for any 7 € 1,

N(t) < ipf CN(7).

<t:tely,
In particular, modifying by a constant, N(¢) may be replaced by N () on I, where

N@):=N,(t) = inf N(7).
tn+/c+(tn,%)N(tn)—1 <t<t

Clearly, N (#) is monotone decreasing. Furthermore, extracting appropriate limits, we may assume that
N (¢) must converge to ¢ ' as n — oco. The main idea is that forward in time, on longer and longer time
intervals, the precompact solution expands to fill the light cone. This observation will enable us to extract
a solution which “looks self-similar” on [1, co) and we can then rescale that solution to extract a true
self-similar solution on [0, 00). We proceed with this argument now.
We begin by simplifying our notation, setting
" =ty 4Ky (zn, %)N(tn)‘l,
t" =ty + k4 (tn, n)N(tn) "
By definition of subluminality (see Definition 3.12), it holds that uniformly for all ¢ € I,,
Noye—) <1,
independent of n. We further have that
Nt —t")z1

is also uniformly bounded for all ¢ € I, such that  —¢” > §/N (") by finite propagation speed.
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Now set
Kni= [K+(tn,n) — i+ (tn: %)]N(tn)_l N(@™).
Since o
T Nayde ~ Lo, 6-7)
n

and N (1) < N(¢") for all ¢ € I}, we see that if K,, < C for all n € N, then

.
o<,
2

which contradicts (6-7). Hence we may conclude that K, is unbounded. We can then define a rescaled
sequence as follows: set

uy (0, x) = %M(IE,X(IE) + ~x ),

N(n)r=T N(@2)
dsun (0, x) = ;u(t" x(t™)+ a )
T Ramyartt VT N

and let
Wn (1) = (un(0, x), drun (0, x)).

By precompactness of the trajectory of i in 4*» (modulo symmetries), the rescaled initial data converges;
that is, Wy (1) = Weo in 7. We let W (s) be the evolution of Wee =: W(1); then Weo has the compactness
property with a new scaling parameter N (s), given by

Hence we have

<gs foralls>1.

s < —=
N(s)

We may also assume without loss of generality that W, has the compactness property with translation
parameter X (s) = 0: by finite speed of propagation, X (s) must remain bounded, and hence we may, up to
passing to a subsequence, obtain a precompact solution with X(s) = 0 by applying a fixed translation.
Finally, we consider one last sequence of times {s;, } with s,, — oo and we define

1 X 1 X
( )Lw Sn,s— s atun(l’x)ZUTHw Sn,s— .
Sn p—1 n sn p—1 n

Un(1) = (wa (1, x), drwa(l, x)),

which gives rise to a corresponding solution vy, (§) with N (5) =51 on [1/s,, 00). We then can take the

wy (1, x) =

We set

limit n — oo, which yields convergence U, — oo in H*7, and a solution ¥ with initial data Do, which is
self-similar on [0, 00).
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7. The traveling-wave critical element

In this section we preclude the possibility of the existence of a “traveling-wave” critical element.
Recall the definition of a traveling-wave critical element.

Definition 7.1 (traveling wave). We say u(t) # 0 is a traveling-wave critical element if 1(t) is a global-
in-time solution to (1-1) such that the set

K:={u(,x@)+-),dult,x(t)+ ) :t eR}

is precompact in H5» x H*»~1(R3), where the function x : R — R? satisfies

x(0) =0,
[t] = C1 < [x(@)| < [t| + Cy, (7-1)
x() = (1,0,0)] < Cyt]2 (7-2)

for some uniform constant C; > 0.
The main result of this section is the following theorem.
Proposition 7.2. There are no traveling-wave critical elements in the sense of case (IV) of Proposition 3.13.

To prove Proposition 7.2, we will show that any traveling-wave critical element would enjoy additional
regularity in the x;- and x3-directions. This will allow us to utilize a direction-specific Morawetz-type
estimate to reach a contradiction. We will require an additional technical ingredient, namely, a long-time
Strichartz estimate in the spirit of [Dodson 2012; 2016].

7.1. Main ingredients in the proof. The long-time Strichartz estimates take the following form:
Suppose 1(7) is a traveling-wave critical element for (1-1). Lete >0and 0 < 6 < %e. For any 19 > 0,
there exists N9 = No(no) large enough such that for all N > Ny and for all ¢y € R, we have:

Proposition 7.3 (long-time Strichartz estimate). Suppose u(t) is a traveling-wave critical element for
(1-1). Let € € (0, 1) be arbitrary. Then,

>N s (ro.00+ N1—e) = 0N (1) as N — o0,

where S(I) denotes any admissible, non-endpoint Strichartz norm at Sobolev regularity s = s, on the
time interval 1.

With the help of Proposition 7.3, we will also prove the following additional regularity result.

Proposition 7.4 (additional regularity). Suppose 1(t) is a traveling-wave critical element for (1-1). For
any 0 <v < %
19212l 20 2 ey + 11031 2l oo 12 gy < -
Using Propositions 7.3 and 7.4, we can then prove the following Morawetz-type estimate. In the sequel,
we use the notation

x = (x1,x2,3).
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Proposition 7.5 (Morawetz-type estimate). Suppose 1(t) is a traveling-wave critical element for (1-1).
Then there exists § > 0 and € > 0 such that

1 T]fé
lim / [ u<r(t,x)|P dxdr =0.
T—oo T17¢ Jo |x2,3|<T? ez |

Combining Proposition 7.5 with the nontriviality of critical elements will yield a contradiction and

complete the proof of Proposition 7.2.
We turn to the proofs of the three preceding propositions. In Section 7B we also give the proof of
Proposition 7.2.

7A. Long-time Strichartz estimates. In this subsection we prove the long-time Strichartz estimate,
Proposition 7.3, and then deduce a few technical corollaries.

Proof of Proposition 7.3. For technical reasons we fix a small parameter 0 < 8 < 1 and introduce the
following norm: given a time interval 1,

__2—-36
lllszy = lull 200 + NIV 200Ul ot 201170
_1-6 _
+ [[V] T u||Lf(P—1)/<2—")L§(P—”/9 +[[[V[* 9u||L$/9L§/(1—9>

25p 1
+[IV]3 3M||L?/(1+sp>L

3__ 3
s/e—sp) + |[|V]* 2<P—1)u||Lz(p—1)L4, (7-3)
X t X

where all space-time norms are over I x R3. Restrictions will be put on & below. One can check that each
of these norms correspond to wave-admissible exponent pairs at H*» regularity; this already requires
0 < 6 < p—3. We will prove Proposition 7.3 for the space Sy and note here that the same estimates then
easily follow for the whole family of admissible Strichartz norms. We also note that a nearly identical
(but simpler) argument works in the case p = 3, with the caveat that we need to perturb away from the
inadmissible (2, co) endpoint.

Let no > 0 and € > 0. We will actually prove that there exists Ng > 1 such that for N > Ny, we have

—y <
”u>N”59([l‘0,to+(NL0)l ]) o

for any to € R and 6 < %e. This implies the estimate appearing in the statement of Proposition 7.3 upon

1—
Nl—él < i ¢
=N,
provided N > Nél_e)/ (=€),

By compactness and N(¢) = 1, there exists Ny sufficiently large such that

enlarging € and Np; indeed,

1
> No s, (120,20 +91—<1) < 270

for any 79 € R. This implies the desired estimate for No < N < 9Ny. We will prove the result for larger N
by induction.
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Note that by choosing Ng possibly even larger, we can guarantee

||P>Nﬁ||L;>°HSP (RxR3) < %770 (7-4)

for any N > Np.
Before completing the inductive step, we make a few simplifications. First, by time-translation

invariance, it suffices to consider fp = 0. Next, to keep formulas within the margins, we will assume all

. 1- .
space-time norms are over [0, (Nlo) “] x R unless otherwise stated.

By Taylor’s theorem, we can write

F(u) = F(u<ny) +usn [ F'(u<y + 0u=n)
= Fluen) +usn Flluey) + 12 y // F/(uon + 1621 x)
= F(usn) + sy F'uan) 422y Fuan) +1dy /// F" <y + 626310 )
for any N. Thus (ignoring absolute values and constants) we need to estimate four types of terms

>3

1
F2=/// F’”(M<ﬂ+91929314>ﬂ).
0 8 8

We will estimate the contribution of each term using Strichartz estimates.

uoyul 7y +u? Nu”N2+u1’N+ Sy Fa=t1+11+111+1V,
8 =% T <% <3

where

Term1. Welet0 <6 < p—3asin (7-3) and further impose 6 < %e. We estimate
-1 p—1 -1 p—
11V ]*7 P>N(u§% uz%)”L}Li < NP ”“51\’ | L~ 1L2<p e llus N ||L°°L2/(l —9
1+3¢ g 30
< N~ 2 ||u<N ”Lp lL)ZC([)—l)/G ”lvl 2 u>%”L‘tX’L§/(1_9)
_2-30 p—1
< [N7ZeD ““s%”Lf"‘Li“’—”/@] VU xllpeer2-
Recalling (7-4), it remains to prove
~3=D <
N 207D u nllpp-1p20-076 < T0-
We let Cyp > 1, to be determined shortly, and begin by splitting
—2=360_ _ 230
N7 gl et oo S N R ol pos oo
_2-36
+ N 2070 lucy< - <Nollpp-1 7200170

230
+ N~ 2-D Z luaellpp=1p20-076.-

No<M <%
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By Bernstein’s inequality and N(¢) = 1, we can estimate
30 7 N \PoT
30 = P

N 2(" 1)”“<Co”LP 1720-0/6 SN 2(,; UCZ(D l)( )

Ly NO
on [0, (Nlo)l_e] x R3. To guarantee that the overall power of N is negative, we need
30
3 :

Thus, for Ny sufficiently large depending on Cy, we may guarantee that
= <
N 207D lu<coll p=1 20-176 < 1o

Next, choosing Cy = Cq(n¢) large enough and using N(¢) = 1, we estimate

30 _2-—36 _
N2 ||uco<.<No||Lp 1p2e-n/e SN- 27 ”Nz(p YV 75 1)”‘>Co||L" tp3p=n/e

a—

N "zt 5T
< 770(70) < No-

For the final term, we begin by estimating

2—360

— 5D < M \2=D V_Z%_wl)
D N ] s D D & IIVI720=Dug ]| p1 2010

We now apply the inductive hypothesis to the last term. To do so, we divide the interval [0, (Nlo) 1_6]
N

. 1=e . 1- _— .
into ~ (H) € intervals of length (NMO) € Continuing from above, this leads to
2—30 _ (1—€)

230 M \2(»—D " p—1
N 2-D Z ||”M||L§’—1L§C(l’—1>/9 < Z N no < 1o,

No<M <X No<M <%

where we have used that the exponent appearing is, in this case, positive. This completes the estimation
of term I.

Term II. We estimate

-1 p—2 2 -1 2
VI Py 2202 )12 S N ey 0y I 17,20 o

1
< NPT |2

L%(p—l>L4N G ||”<N||

LP~ 1L°°

3__3 2
<[N? 2<P*1)|IM>%||L%<p—1>L§C] N~O= 1’||“ N”Lp Ige0"

We can argue as above (now with 6 = 0) for the low-frequency term, and we note that (2(p —1),4) is a
wave-admissible pair at regularity

3 1 3 3 3
()
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and we conclude using the inductive hypothesis on
%_2( > D
|||V| P u>%”L?(p_l)L§'
Term I1l. Next using the fractional chain rule we estimate
sp—1 Sp—2
V] P>N(“ N)”L 1712 = SN ”u N || 2(p—1)/(2 9)L2(p—l)/9|||V|u§%||L?/9L§/(1_9)
—146 - —0+sp—1
<N [ “L?(p—l)/(Z—B)L)ZC(p—l)/BN PV Iy llp2/0 2000,
To complete the estimation of term III, we need to prove
Ny | + NI V| S
5% Lg(pfn/(zfe)L)zc(pfl)/e <N L§/9L§/“*") ~ No-

For this, we argue as in term I; that is, we split u _ N into

U N =U<Cy T UCo=- <No T Y. um
No<M <%

and estimate each term separately, relying on the inductive hypothesis (and a splitting of the time interval)
for the final sum. Comparing with those estimates, we see that this requires

1-0 1—¢
_— >0
r—1 p—1
to deal with the first term and
(1 —¢)
9+1_SP_T>O

to deal with the second term. These conditions are satisfied provided 0 < 0 < €.

Term IV. We estimate

||M NF2|| L2/ 2/C=5p) S ||M ¥ I L2/ [ 2/Csp) +||M NM || L2/ +sp) [ 2/C=5p).
For the first expression we estimate
p _ p p
Iyl 2rasm 2= = ||u>%||L?p/(1+s,,)L§p/<z_sp) <o

while for the second expression we have

3 p—3 3 p—3
||u>%u§% ||L?/(1+SP)L)2C/(2—SP) < ||”>%||L?/<1+sp> 6/(2—Sp)||u§%”L?’°x'

Lx
Now,
2(p=3)
<y IILoo <N N IILOOLW n2 SN P
6 . . . . . .
For the first term, we see that (1 T5, 2= s,,) is an admissible Strichartz pair at regularity
n I 2sp
Sp+ - —— <sp,
P33

and hence

1 2(p 3)

lu? yu? 2N 245 2/(2—sp>5N1_2s"|||V|2%_§” NP 6/atsp) s 6/@spmN P71 |lu_ N|| 0o 3(p—1)/2"
>% =% L; L %L, 2L 4 L7 L P
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Finally, note that
2(p—-3 4 2p—6
g 14 2Py 2P0
p—1 p—1  p-1

Hence, by the inductive hypothesis, putting all the pieces of the argument together, we obtain
1 3
u —p = 5 + C ,
[ >N||S9([O’(NLO)1 D= 310 No
which suffices to complete the induction for ng sufficiently small. O

We will need the following corollary of Proposition 7.3, which provides some control over the low
frequencies as well.

Corollary 7.6 (control of low frequencies). Suppose U is a traveling-wave critical element for (1-1). Let
€>0and0 <6 < %e. For any ng there exists N sufficiently large such that

2—30
<l p=1 120-1070 (11 g N 1)y xmz) S TN 277D, (7-5)

1—6
_ _ _ < p—1
||u5N||L$<p D/@=0) [ 20=1/6 (10 101 13y S TON 77T,

6—sp+1
IV <Nl 270 12/0-0) (o 104 N1=clxcrzy S TN

uniformly over tg € R.

Proof. We let ng and choose No = No(no) > 1 as in Proposition 7.3. By time-translation invariance, it
suffices to consider 7o = 0. We focus our attention on (7-5), as the other estimates follow similarly. For
N > Ny, we estimate

”qu ”sz_lLi(p_l)/e([O,Nl—f]xﬂ@) < “uSNo ”Lf’_lL)zc(p_l)/e([o,Nl—é]x[R@)

+ Z ||MM||Lf)—lLi(p—l)/Q([O’Ml—e]XR3)
No<M <N

+ Z ”"‘SN”LfflL%{(P*I)W([Mlfe,lee]XR3)-
No<M<N

For the first term, we use Bernstein’s inequality and N(¢) = 1 to get

2-30 —e
< 2(p—1) |
”uSNo”L{)—lL)ZC(P—I)/Q([O’Nl—e]XRS) ~ NO N »=T.

Recalling that
l—e¢ 2-36

< ;
p—=1 2(p=1
we see that this term is acceptable provided we choose N sufficiently large.

Next, we use Proposition 7.3 to estimate

2—36 2—36
> gtz S0 3 M < g,
No<M <N No<M <N

which is also acceptable.



2056 BENJAMIN DODSON, ANDREW LAWRIE, DANA MENDELSON AND JASON MURPHY

For the remaining term, we split [M 7€, N17¢] into ~ (%)1_6 intervals of length M =€, Applying
Proposition 7.3 once more, we have

236 (N \»-1 2-30
Z ||uM”Lg’_lL)2€(P_1)/9([Ml—e,Nl—e]XR3) S No Z M 2(=D M 5 nONZ(p—l),
No<M<N No<M<N
where we recall 0 < 6 < %e in order to sum. This term is also acceptable, and so we complete the proof
of (7-5) and Corollary 7.6. O

Finally, we will need certain long-time Strichartz estimates with regularity in the x»- and x3-directions.

Corollary 7.7 (long-time Strichartz estimates for Vy, x,u). Suppose that Proposition 7.4 holds with
v > 0. Then, for any vo > v,

1—vg < 1—sp
1|V, 5| UN ||L?/(1—S[1)L)2C/Sp([to,to_i_lee]) <N )

Proof. We only sketch this argument as it follows in the same manner as the standard long-time Strichartz

; 2_ l) is an admissible Strichartz
—Sp " Sp

pair at regularity 1 —s,. By compactness, it suffices to argue with 7o = 0. Let S(I) denote any collection

estimate with some additional technical details. First we note that (

of Strichartz pairs at regularity s = 0. We will show that

11V2es 51" s g 0+ 31-e1) S 1 (7-6)

for vy > v, from which the result follows.
Let u be a solution with the compactness property on R with N(¢) = 1. By the Gagliardo—Nirenberg

inequality
Vs 3|17 vou < C|||V23]' " u|* ul 3%, 7-7
V23170l = CHIV2al ™ul Tl 2% (7-7)
for
1—s5,—v
a=—2 = 0.
I—sp—v

Next, we observe the Sobolev embedding

2
Hy” < L2 Ly,7 (7-8)

X2.3

which follows from Sobolev embedding in R? and Plancherel:

5 1-sp
/ ( / (x1,x2.3) |7 dx2,3) axi < / 1V 72 dx~ / 62317 2(8)| d < [ gl a) | de.

Thus we may take the LJZC] norm of both sides of (7-7) and use Holder’s inequality on the right to conclude
that the trajectory | V2 3|1 ™"°u has the compactness property in L2, and hence there exists No = No (7o)
such that, for all N > N,

1P~ N V23" " ullso,01-¢py <m0 forall N > No(no).
which proves the base case, that is, (7-6) holds for No < N < 9Njp.



SCATTERING FOR DEFOCUSING ENERGY SUBCRITICAL NONLINEAR WAVE EQUATIONS 2057

We now proceed to the inductive step. Suppose that (7-6) holds up to frequency Ny for N1 > 9Ny. We
will show that (7-6) holds for N = 2N;. The argument we employ is similar to a persistence of regularity
argument. Note that |V, 3|1 7"0u solves the equation

3¢ |Va3|' 0u — AV, 3

=1|Vy3

By the Strichartz estimates we have

I P> N1 V2,3 ™0ull s 0.3/ No)1—<])

< ||P>N|V2,3|l_voﬁ||L;>°7'.[96([0,(N/N0)1—e]) + ||P>N|V2,3

where N is the dual space to S. Let 13M denote a Fourier projection in the &5, €5 variables. The first term
can be bounded using compactness, so we focus on the second term. We again write

1
F(u)—F(u<N)+u>N/ F'(uey +0usp)
—F(M<N)+U>NF (u<N)+U>N// F' (u<N+9192u>N)

— F(uen) + sy Fuen) + 12y " Gien) +13 /f/ F” (uzy + 6162031 ).

We will estimate the first term as an example, since the other terms will be similar generalizations of the
proof of Proposition 7.3. We have

i~

MS%)”L}L%

SN

1_
vOP>NF(u<ﬂ)||L1L)2€

SN™

<N”L2(p D/@=6)  2(p=1)/6 |||V|“5%”Lf/9L3/“_9)
+N— 2““5%||L2(p—1)/(2—9>L§(p71)/9 |||V||V2,3|1_vou§%”L?/eLi/“_m
SN0 |V, 501 v0u<N”L2(p D/@=6)  2(0— 1)/9N_1_9+SP|||V|”s%”Lf/9L3/”_”
+N_1+9||u5%||L?(p—1)/(2—9)L)2((p—1)/9N_l_e|||V||V2,3|1_v°u§%||L%/9L)2€/(1—9>,

and all four terms can be treated analogously to the low-frequency component in term I in Proposition 7.3.
O

7B. Proof of Propositions 7.5 and 7.2, assuming Proposition 7.4. As mentioned above, the long-
time Strichartz estimate (Proposition 7.3) will be a key ingredient to proving additional regularity
(Proposition 7.4). Before turning to the rather technical proof, let us use Proposition 7.4 (together with
Proposition 7.3 and Corollary 7.6) to prove the Morawetz estimate, Proposition 7.5. With the Morawetz
estimate in hand, we can then quickly rule out the possibility of traveling waves and hence complete the
proof of the main result, Proposition 7.2.

We recall the notation x = (x1, x2,3) and similarly write £ = (1, &2,3).
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Proof of Proposition 7.5. Let ¥ : [0, 00) — R be a smooth cutoff satisfying

{1//(,0)=L p=1,
Y(p)=0, r>2.

We fix R > 0 to be determined below and let ¥z (p) = v (%). Next, let
1 r
) =1 [ v as
rJo
We collect a few useful identities,

X xrl= xR+ VR FOrfrR=—XR+ VR (7-9)

and we recall the Sobolev embedding (7-8).
In the following, we consider y g as a function of |x2 3|. For T > 0 and

I1:=P <T,
we define the Morawetz quantity

M(t)=/ XRIutxkakludx—l—l/ (xr+v¥r)usludx,
R3 2 R3

where repeated indices are summed over k € {2, 3}.
We first compute the derivative of M(t):

0= [ artuF o+ [+ [ ebtoctatiy [ Ga vt

By (7-9) and integration by parts, we have

[k atve e == [ G+ veoaun®
so we are left to estimate
/XR[xkaklu]lun + % /(XR + Y R) [uluyg;. (7-10)
Using the equation for u yields
Tug = ATu—F(Iu)+ [F(Tu)—IF(u)], where F(z) = |z|P7!z.
We first consider the contribution of A7u to (7-10). We claim
/xk)(R[akIu]AIu + %(XR +Yr)uATudx < % / A(xr + ¥r)(Tu)? dx. (7-11)

In the proof of (7-11) we will simplify notation by suppressing the operator I, suppressing the dependence
on R, and writing u; = d;u. We turn to the proof.
We begin by considering the first term on the left-hand side of (7-11). Integrating by parts yields

1
/xkxukujj = —/ 0 [x* yluguj + Exk)(ak(u,z),
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where k € {2,3} and j € {1,2,3}. Writing r = |x3 3| and using (7-9), we have

kxj
/8 [x xugu; = [SJk)(ujuk—i- ry'ujug

xkx/ xkx/
SJk)(uJuk—i- WMjuk— 2 XUjug,

where we may now restrict to j € {2, 3}. Using the other identity in (7-9), we also have

%/X"}(c’ik(w)2 =—%/(x+w)u,2--

As for the second term on the left-hand side of (7-11), we have

% [(X +Y)uu; = % / 3jj (X +¥)u® — %(X + Y’

Collecting the computations above, we find
/(xk)(R[aklu]Alu + %(XR +yr)[uATu)dx
1 x/ xk (223, 2
ZE/A()(—I-W)uZ—/[Sjk ]Xujuk—/w xwu] dx,

which yields (7-11).
We next consider the contribution of —F (/u) to (7-10). Using (7-9) and integration by parts,

1 1 1
— [ [ty vy | Pt s = [ (i) A ol 1 S Graerw

— [ (5-3) vl ul* . (-12)

Hence, by (7-10), (7-11), and (7-12) and the fundamental theorem of calculus, we deduce

/f |[Tu|Ptdx dr < sup [M(1)] +// A(xr + ¥R)|Tul*dx dr
Ix2,3/<R

teJ

+ ‘ [/ I xR Tu + (rr + wR)TWlF(Te) — TF ()] dx di

for any interval J. In the following, we choose J = [0, T17€], where € > 0 will be chosen below and T
is large enough that Proposition 7.3 and Corollary 7.6 hold.

We need to estimate the terms on the right-hand side of this inequality. We first bound |M(¢)|. By
Bernstein’s inequality, the Sobolev embedding (7-8), and Proposition 7.4, we have

sup (MO < 1 Tuell oo p2 (RIVxo s Tl oo 2 + ||I””L?°L§l L2 xR+ WRIIL%(IJW)
ST (RTY + R ull oo yov)
t X
S TSP (RTY 4+ R1TSP), (7-13)

for v > 0 to be chosen sufficiently small below.
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For the next term, we have
2 1— 2
[ SGw-+ woltuPaxar S TIUIR L i | AGR + ¥R 200
LPLY LY, 5 X523

< Tl—€ 2 —(2-2sp)

< Tl-e g=(=2sp) (7-14)
Now we turn to the final term. Arguing as in the long-time Strichartz estimates, we need to estimate

terms of the form

P p—1 2 P2 3
u_p Hustu_p tuSqpuy +ulp b,

where F5 involves both high and low frequencies. Thus we estimate

/ ek RO Tu + (rr + W) TWl[F(T0) — TF ()] dx di

5// K yrOgu<r Porulp)dx di (7-15)
+[/kaRakusTP>T[|”>T||”5T|p_1]dth (7-16)
+//kaRakusTP>T[|”>T|2|“ST|p_2]dth (7-17)
+// x* yrOgu<r Por(|usT|> F] dxdr (7-18)
+//(XR +WR)M§TP>T[MQT] dx dr (7-19)
+//(XR + Y Ru<r Porllusr|lusr (P~ dx de (7-20)

+/ (xR + ¥R)u<T PoTllus1lusr [P~ dx dr (7-21)

+/ (XR + VR)u<T Pr[[usT |’ F2] dx dt. (7-22)

where all the integrals are taken over [0, T17¢] x R3. We treat each of these terms separately.
We first consider (7-15). Estimating as in the long-time Strichartz estimates and using Corollary 7.6,
we obtain

‘ [+ xrduucr Poglul ) avar | SRT' 21V st o 2 T 2NV IPor (a2

1- -2 -1
SRT=SpHvTse ||M5T||iz(p—1)/<2—9)L2<p—l>/9||VusT||L§/9L%/“_0)
1 X E

,SRTI_SP+U.
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We next consider (7-16). We let 0 < 0 < %e. By Bernstein’s inequality, Proposition 7.4, and
Corollary 7.6, we obtain

| R

<R ||Vx2 sU<T ||L°°L2 ||u<T ” 2(p—1)/6 ||u>T ||L?0Li/(l_0)

LplL

< RTY7 |V, yusr oo 2 T usr |7, a7l o 270-0

LP~ 1L2 (p—1)/0
< R T l—Sp +v .
For (7-17) we again argue as in the proof of the long-time Strichartz estimates, and using Corollary 7.6,

we obtain
‘ // * y rigu<r (st 2 u<r P2 dx di

< RlIVaystu<rllpeo 2 lusrl?, ||u>T||L2u>—l>L4

LP‘Loo

S RTVT P Vay 5| usr oo 2 N7 usr 17,70 ollustll 201 4

L’”Loo
< R T 1 —Sp +v .
For (7-18), we once again use the bounds from the proof of the long-time Strichartz estimates as well

as Corollary 7.7, and we obtain

/[kaRakusTP>T[|u>T|3F2] dxdr

3
SRV su<tllp20-50 25 1P llu> T Falll 2704500 2705

(—e)(d—sp)

T 2
Vo 1—vg
SRY N (ﬁ) Voo 31Ul 270=500 205
N<T
T (1—=e)(1—=sp)
2
SRT™ Y~ N1=sp
N
N=<T |, _(=©)1=sp)
P 2
SRT!rHvo Y- N S RT!=SrFv0
T

N<T
for any vg > v, where v > 0 is as in Proposition 7.4.
Arguing analogously for the remaining terms, the estimates are almost identical, up to noting that by
Holder’s inequality in the x- and x3-variables we have

< RSp
IR +VR)u<T|peor2 S R ||usT||L?oL§1L§£§}Y;sp>,

which is controlled by the H*? norm by the Sobolev embedding (7-8). Thus we obtain for (7-19)—(7-21) the
estimates

(-19) S RO T ™ fucrl o 2o T2 2NV Por a7 S R

L®L% LY,
) < pSpTl—s osp—1 p—1 < ps
(200 S RYT st ll oo pp p2rasp T Por sy Nz S RV

— — -2
T2 SRPT 2 Nusr oo pa p2ramsm T2 P (2 puly Mgy 22 < R
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For the last term (7-22), we note that ) )

and we use Holder’s inequality in the x» 3-variables to estimate

(7-22) S (xR + ¥ R)u<T || 270=5p) 2750 | P>rul s o)l 2/0+5p) p2/2=sp)
t X t X

(1—e)(1—sp) 1—sp 25, —1
ST 2 T2 RPN OUR+AVRUST | ooy 2705
1 2.3

ST R TR+ VRUT | oo yn p 27050
t X17Xx2.3

Now, using (7-13), (7-14), and our estimates for (7-15)—(7-22), we have established that

/f lu<r|Ptldxde < RT'TV=5r 4 RS» 4 RZSp= 171750,
|x2.3|<R

We now choose R = T1/2+ o obtain that the right-hand side is o(7 1 ~€). This can be achieved provided
V+e<spy— %, and hence we complete the proof. O

As mentioned above, with the Morawetz estimate Proposition 7.5 in hand, we can quickly rule out
traveling waves. The final ingredient we will need is the nontriviality for compact solutions appearing in
Corollary 3.9. Combining this corollary with Proposition 7.5, we can now prove Proposition 7.2.

Proof of Proposition 7.2. Suppose toward a contradiction that u is a traveling-wave critical element for
(1-1). It suffices to prove that

Tlfe
/ / lu<r(t,x)|Pt dxdr > T1€ (7-23)
0 JixaslsT/2+ 0

for T sufficiently large, as this contradicts Proposition 7.5. By Corollary 3.9, the definition of the critical
element, and the fact that N(¢) = 1, there exists C > 1 and T > 1 large enough that

to+1 3(p—1)
/ / lu<r(t,x)| 2 dxdt Z, 1 (7-24)
to  Jlx—x@)|<C
for all #9 € R. Recalling |x(¢) — (¢,0,0)| < +/t we see that for T > C? we have
{x—x()] = C} Cllwasl = T2

for all ¢ € [0, T17¢]. Thus (7-24) implies (7-23), as desired. O

7C. Additional regularity: proof of Proposition 7.4. Our final task is to prove Proposition 7.4, namely,
additional regularity for traveling waves. More precisely, we can establish additional regularity in the
directions orthogonal to the direction of travel.

Recall the notation x = (x1, x2,3). We similarly use £ = (£1, &2,3) for the frequency variable. We also
introduce the following modified Littlewood—Paley operators:

For N, M € 2%, we let ﬁN,> M be the Fourier multiplier operator that is equal to 1 where

|~ N and |&3]2 M.

We let ﬁN,M = ﬁN,>2M — ﬁN,>M, and we let Py = ﬁN,sM + ﬁN,>M-
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We will occasionally abuse notation slightly and apply these multipliers to a vector, where this should
be taken to mean applying these multipliers componentwise. We note that this notation differs from that
of the previous sections; however, we would like to make explicit that N corresponds to &-frequencies,
while M corresponds to those of & 3.

We fix v > 0. We begin with the observation that

I P<notll oo g1 SNo 1. (7-25)
We will choose the precise value of Ng >> 1 in the course of the proof. On the other hand, we have

—v A SP(1—p)—
> Vsl ”PNystp/ufv)u(t)Hi%S > N2z a-v) sp]|||v|spuN(,)||i%
N>Ny N>No

S IVIPPu@|z.- (7-26)
Therefore, we are left to show that
> > MU Py pu)]7, $1
N=No CoNsr/A=VI<M<N

for some fixed Coy > 0 (uniformly in ?).

We will use a double Duhamel argument together with a frequency envelope to estimate this expression.
We will estimate
| P> a1 (to) IIiz(Rs) ~ N~ Py,> mu(to) ||i',s,, ®) = N727(Py > multo). Pn,>mu(lo)) gsp ®)-
We will show that there exists a frequency envelope yps, n such that

| PN, 1t (t0) | s w3y S VN, M (b0)
and such that

> >, M\ _ZSPVN,M(ZO)Z) <L

N=No "CoNsr/0—V<M<N
Consequently, this will show that

> > MU Py s pu(o) 172

N=No CoNsp/A=V)<M<N

< ) > MPUINT20 || Py s ppu(to) | 3ysp S 1.
N=>=No CoNsp/0-V)<M<N )

Together with (7-25) and (7-26) (and time-translation invariance), this will imply
|||32|1_v”||L<;OL§ + |||33|1_vu||L<l>oL)2€ <00,
and hence prove Proposition 7.4. Thus, we let

In,m(to) = N*7 ”P\N,EMM([O)”Lz(R%’
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and we fix some o > 0 to be specified later. We define the frequency envelope

N N (M'\°
ymN(0) =) D min{ﬁ,ﬁ} (ﬁ) Iy m (o).

N M'sM

By time-translation symmetry, it suffices to consider the case tp = 0. Once again, we complexify the
solution, letting
i
wW=u-—+——u;.
v—=A

Then

lw @l o = MOl gy

and if 1(¢) solves (1-1), then w(7) is a solution to

i
w; =—iv—Aw =+ ulP~ly.

By Duhamel’s principle, for any 7', we have
; 0
. — i . A
w(0) = TV=2w(T) £ — / eTVTAF (u)(2) dr,
v=AJT
where F(u) = |u|?~1u. To estimate yn, ar, we write

—ITN=Ay(T) — VAP v F(u)dr

1 T
pp— e
V—A/(;

~ o 1 o
:PN,zMe_lT _Aw(—T)—ﬁ/ e 't _APN,ZMF(u)d‘L’.

—AJ-r

Py smw(0) = Py spe

When we pair these expressions and take 7" — oo, we use the facts that
e iT~ _AﬁN,ZMw(T) —~0 and €'T» _AﬁstMw(—T) — 0,

and ultimately we are left to estimate

s
H,”

< / - S(—t) Py, p F(u)dr, f ’ S(—1) Py.>m F(u) dr>
0

—00
where we have introduced the notation

S(t) 1= L pitVA

B

above.

As we have done in previous sections, we will estimate this expression by dividing space-time into
three regions: a compact time interval, an outer region, and a region inside the light-cone. We note,
however, that the arguments on the compact time interval and the region inside the light cone will be
considerably different than in previous sections.
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Thus, we let ng > 0 and € > 0 be sufficiently small parameters and define the smooth cut-off

X0, X) = Lo x(W1-6)|2 R(10)+ (=N 1=€), 1= N1=<}
where R(79) is such that
LoV =€ X )u(N 7 ) s + 120 (N =4 )3u (N7, 0) | gsp—1 < 1o
By the small-data theory, we may solve the Cauchy problem

vir—AV+ F() =0 onRxR3,
(v,0:0)|1=0 = (Yo(N '€, X)u(N 7€, x), xo (N7, x)us (N17€, x)) € H (R3).

Note that by finite propagation speed, v = u on the set
{(6.x) 1 x =x(N'179)[ = R(mo) + (t = N'76). 1 = N17¢},

‘We now write
o0
/ S(—t)PN>mF(u)dt =A+ B +C,
0

where
o0
A :f S(—t) Py >p F(v)dr,
Nl—e
Nl—é
B =/ S(—t) Py, p F(u)dr, (7-27)
Ooo )
c=1 S(=t)Pn>m [F(u) — F(v)]dt
N —€

and perform a similar decomposition in the negative time direction, yielding quantities A’, B’, C’. We
will use the estimate

A+ B+ C A+ B+ CY 5 A1y + 141 + 1By + 1B/ + 1C.C) | (7-28)
whenever A+ B+C =A"+ B +C".

Term A. We first estimate (A, 4) zs» and (A, A’)H;p, where

o0 _Nl—e
A:/ S(—t)PN>m F(v)dt and A/Z/ S(—1)Pn,>m F(v)dr.

Nl—e —00

We introduce two parameters ¢ and r satisfying

2 5p-9
2<q<min{p—1,—p—} and

2
, —§r§min{
sp 3p—1

2 _1
Sp

2p—3 '
and let / = [N17¢, 00). We fix 0 > 0 to be specified later, and we define

_(2_ ~ 2_ ~
anvn = (NG Py zaa vl g p20ra—ar + (V)T Pyr vl e ),
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and let

M/ o ] N N/ g
(XN’M=Z Z (ﬁ) mln{ﬁ,ﬁ} aN’,M’-

N’ M'<M
All space-time norms are taken over / x R3. Our goal is to prove the following result.
Lemma 7.8. Let A, A" and yy p be as above, then
o o
> 3 (57 mind e A Gl 1400 <6
N’ M'<M
and we also have

1— —1
anm SYNM(N' )+ 08 anm

Proof. On this region, we will use the small-data theory, which implies, in particular, that

il L20-1 gy < Mo-

By Strichartz estimates, we may write

(=) B 2_ -
NG S”)||PN,2MU||LqL2f1/w—2>+N’ TN PN vl oo
t X 1t X

(7-29)

SIPN>m V0 v) (N ) gysp + 1 PN sm FO)Ivwy,  (7-30)

and recall that, by definition, we have

1PN,>m 0, v) (N ) gsp < Tam (N17€).

(7-31)

Here, we let the norm || F'[| y(r) denote any finite combination ;|| Fj || v, ), with F = }_; F; and each

N; (R) being a dual admissible Strichartz space with the appropriate scaling and number of derivatives.

It will be useful to introduce the quantities

UIOZZPN’,SMU and UhiZZPN’,>Mv’
N’ N’

where “l0” and “hi” are meant to refer to the &> 3-frequency component. We decompose the nonlinearity via

1
F(v) = F(v) + Uhi/ F'(vio + Ovy;) 6,
0

which we write schematically as
F(v) = F(vio) 4 vpiv? "

For the high-frequency (in M) component, we write
vniv? ! = (P<yvm)v? ! 4 (Poyun)v? 7,

and to estimate these terms we may use the dual Strichartz spaces

(G—s0)-5tt

2—1+Spa ,2;2

29, _ r .2
LI H, and L/7TH
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respectively. This yields

| Pn > poniv?™ ||N(R) S(N)” (G=s») Z ||PN” >MU||L61L2c1/<61 2)(1xR3)”v” 2(p 1
N”<N’

2_1+4s
+(N)yr =it NEN/ | Pn bl zrrie— g ey 1 2
=N1 +MN3; -
hence we conclude that

N N/ o N N/ o
;min;ﬁ»ﬁ} | PN’ > M onivP ™ IIN(R)<;HHH{N,,—§ (N +N2).

Thus, we argue in order to bound the N7 and N> terms. We only treat the first term as an example since
the other term follows analogously. We obtain

Z Z ( ) (N) ( _Sp)”PN” >MU||Lq 2q/(q 2)

N'ZN N7ZN’
N/ g N/, *_Sp e ~
Z Z ( ) ( ) (N//) (q sﬁ)“PN”aZMv”L‘ILh]/(q—z)
t =X

N/<N N//<N/
2
N\ N’ —(2-sp)+o
< Z (— aN”,.m Z .
N//SN N N/ZN// N

Hence this term can be bounded by oy ps provided o < % —Sp.
We also have

N o /_(;_s) N
2 ) W S 1Bz g es
>

N”<N’

e 5 (T
~ T aN”yM N
N”<N N N”<N’/,N<N’ N'N" N” _(;_ )
N Z N (o2 Z N// o Nl q Sp
_— anN’ —_— — .
oy N N,MN//<N/ N/ N
N2 g (N/)2 g N/ o
(N/N//) S(N/N//) =(W)’

we can bound this expression by yy, s provided

NN (NG 2
Z (W) (W) 51 — O'<5—Sp,

N"<N'’

Using that in the first term

and so we obtain

Z Z NN -1 < P71
min VN I P> pvniv? v Sy an,m- (7-32)

N M'<M
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Next we estimate the contribution of the low-frequency piece. We can write
1PN, M F0o)llv@wy < M2 Pn,>m Axa,xs F(010) | vw)-
Applying the chain rule and taking the decomposition v = P>y v 4+ P<yv, we obtain for j = 2, 3 that

axj F(vo) = axj V1o F' (V16)
= axj PvaloF/(vlo) + axj PszloF/(vlo),

and hence
2
| PN,>p Dxy xs F(vlo)“N(IR) = Z ||8Xj PN,zM(axj Ulo)F,(vlo)”N(R)
j=1
2
< 3 M Pr.2a1 (05, 00) F )l veey-
j=1

Estimating as above, using the dual Strichartz spaces

—(3-sp).7%x

—14s5p,2
L"“H and L]~ 'Hf "f”,

we conclude that

||PN>MF(U10)||N(R)<N ( =5r) Z Z M~ 1||Vx2,x3PN’M’Ulo”Lf/LZ‘l/(f/ 2)(Ix[R{*)”v” 2(p 1)
N'<sNM'=M

LN Z Z M~ 1||Vx2,X3PN’ M/U10||L2r/(l 2)Lr(lsz)||v||pz(p D
N'>NM'<M

<N G 7-50) Z Z ( )||PN/ M/v10||Lq 2a/(a— 2)(1xR3)”v” 2(p D

N'<sNM’'<M

214
H NPT NN ( )||PN’ M Vol p2r/er— 2)Lr(1XR2)”v”L2(1) %
N'>N M'<M

To establish a bound for this expression, it is useful to introduce the notation

B N N/ o
aN,.M’ = me{ N,,— anN’.mM’.

Thus summing over N and M’ < M, we can again argue exactly as above to bound this expression by

M/ o M// M// o M// M/ g
p—1 p—1 ~
60 ¥ (3r) X ()= 5 (57) % () (3 avor

M'<sM M"<M’ M"<M M"<M’
'\ O /! I\NO
=i 2 () o () (i)
M"<M M"<M’
<nd lanm

provided o < 1. Thus, we obtain

M'\° N N)° »
Z Z (ﬁ) min{ﬁ,ﬁ§ I PN=m F (o) Inwy S 08 anm- (7-33)

N M'<M
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By Strichartz estimates, we have

1A 3o + 1Al grsr < 1PN,z F @) v
Hence, putting these bounds together with (7-32) and (7-33) we obtain
M\’ (N N)° _1
Yo 7)) ming ot (Al + 14N o) S0 e
M N N x x
N M'<M
Together with (7-30) and (7-31), we also have

1— -1
anm SYNM(N' ™) +08 anm.
as required. O

Term B. We next estimate the terms (B, B) and (B’, B') from (7-27). On this region, we use the long-time
Strichartz estimates (Proposition 7.3) and another frequency envelope argument for this contribution. In
the following we suppose, unless otherwise specified, that norms be taken over

1:=[0,N'"“] xR’
We define

’ —(;—sp) 5 / 73(”_?)
by =[(N')" 1PN zmttll oy 20/a—2 + (N)2OD Py > putll 20 p 20000002
A T I s, 30
+ (N =120 D | Py s put|l p=1 p2o-16 + (NP2 || PNy = mtll oo p 2/0-0)

13 X t X

- ¢
+ (N) 52| Py s pgull 26 20000 + (N')2 1PNzl 2070 45p—p0) | 20/ =s5p)
t X t X

NN 23
+ (N ”PN/,ZM||L6/(1+Sp)L6/(2*Sp):|7
3 X

where £ > 0 will be determined more precisely below and 6 is as in Proposition 7.3. These are just a
collection of admissible Strichartz pairs at regularity s,. We then define the frequency envelope

= M Gmin%ﬁ,ﬂ}ab ' M-
Bn.m %;ME:M(M) NN (VM
Our goal in this section is to prove the following result.
Lemma 7.9. Let B, B’ and By ,m be as above. Then
I\NO /1\O

> 3 (5 ) mind e N OBl + 18 o) < 08" B

N M'<sM
and we also have

ynm (N7 + B Sy )+ B (7-34)

Proof. Fix t9 = 0. Throughout, we will assume that N > Ny as in the statement of the long-time
Strichartz estimates. By Strichartz estimates

1PN, = (s ue) | pooggsn (o, n1-€1) + N7 S I PN =p () (O)llggsr + 1| P = Fll vy
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Once again, it will be useful to introduce the quantities

ulO:ZPN',fMu and uhi=ZPN’,>Mua
N/ ’
where “lo” and “hi” are meant to refer to the &> 3-frequency component. We decompose the nonlinearity via

1
F(u) = F(up) + Mhi/ F'(u1o + Qup;) dé,
0

which we write schematically as
F(u) = F(up) + uhiup_l.

These two expressions will be estimated almost identically, up to requiring additional exponential gains
for the low frequency (in M) term, F(uj,). We will only estimate this term since the other is easier.
Arguing as above via the chain rule with the Laplacian in the x5 3-directions, we have

I Pn>m F o) vy < M 7PN m (V2,3u10) F (uio) | vy
We write

(V2,3110) F' (u10) = (V2,3 P N1t10) F' (1) + (V2,3 P<nttio) F' (u1o) := 142 (7-35)
and we begin with term 1. We set

P>nuio :=uio, >N, P<NUlo :=Ulo,<N,

and take the decomposition
1

(V2,3ulo,2N)F,(vlo) = (V2,3u10,2N)F,(ulo,§N) + (V2,3u10,2N)M10,2N / F//(MIO,SN + Gulo,ZN)
0

= (Va,3u10,>N) F (th10,<N) + V2 3110, > NU10,> N F” (t10,<N)
1
+ (V230102 M)ty = iy /f F" (u10,<n + 01021105 N)
0
=1.I+1.11 +1.111.

Term 1.1. We estimate using Corollary 7.6 to get
! [ |V|SP_1 PNV2,3u10,ZN F/(ulo,gN)”L}L%
<M INST1 | V2, 3u10 >NF/(M10,5N)||L;L§

=M INSP 1||u10 <N || 2(p—1)/6 ||V2 3UJo >N||L°°L)2/“_9)

LP~ ‘L
< N%»~ 1||ulO<N||Lp 112 /0 Z Z( )IPN/M/uHLooLz/u -6)
<M N’'>N

< NSp~ Y S”+2 ||ulo <N||Lp 172(=1)/6

N/ _Sp+39 36
x D Z( )( ) (N2 =5 oyt oo 2700

M'<M N'>N

B

M’'<M N'>N
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Term 1.I1. We estimate

-1 -1
V"7 PN Va2 3110, N0, =N F” (t10,<N) 11 12
<M~ le')_l ”VZ 3Ulo,>N ”LZ(P 1)L4 ”ulo >N”L2(l’ 1)L4 ||M10 <N||Lp 1L°°
—1 prsp—1
<SMIN Y Vo 3up0 5N IILg(n—nLi 10,2 N 1l 20010 4 1uro, <N||Lp oo

N\i"2oD 5 4
Z Z N/ (N7)*+2=D ”PN’,M’MHL?(p—I)L;tC

M’'<M N’>N
3__3
172D
Ny z:( V5)
M'<M N’>N
Term 1.I11. As in the proof of term IV in the long-time Strichartz estimates, there are two terms. For the
first we estimate

-1 2 p—3
M= Va 3u10,2 Nt > N Uio > 3 | 2/ +5p) 2725
- = t X
< MINE|Va su10 52 o v 2|l
~ 2,3U10,>NUjo,>NU10,>N L?/(]“I‘Sp—e)Li/(z—Sp)

—1a & —1
=M N2||“>%||izp/u+sp> 2p/@=sp 110, 2N | 20/045p =00 | 201 =5p)

Lx
£
DD ( )( ) (N2 Pyr o] 127/ +sp=p0) 1 20/C=5p)
M/'=M N'=N
£
Ty y by
)
M'<M N/ZN( )(N

where we have used that for p > 3 and £ > 0, the pair
2p 2p
l4sp,—pl’ 2—sp

3 14+sp—pt 6-=3s, L
- — - =s5p—=.
2p 2p 7

is wave-admissible at regularity

For the second term, we have

-1 2 p—3
M V2 3u0,2Nio > N0, < | 2704500 f 2105

1
i) () o
> 2N (N3 7301 PN vl 6ra4sp) ; 6/asp)
/ 4 L Ly
M’sMN/zN(M N !
2sp 1
M\ (N ¥ 3
> S (5)) " e
M/'<M N'>N

This completes the estimation of term 1 in (7-35).
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Now we turn to term 2 in (7-35), namely

V2,3 P<yuio F' (uo).
We take the decomposition

1

/ ! 14
V2 3uio,<N F'(Vio) = V2 3u10,<N F' (U10,<N) +V2,3ulo,§Nulo,ZN/ F" (u0,<N + Ouio,>N)
0

= V2, 3u10,<N F'(10,<N) + V2,3U10,5> NUio,>N F” (U10,<N)
+ V2,3U1o,5Nuﬁ)2N [/ F" (uyo,<N + 0162u10,>N)
=21 +2.11 +2.11I.

We omit the estimates for the first two terms since they follow as above, and we focus on

1
2 " . 2
V2, 3Ul0, <N Ujo > N // F™(u10,<n + 0102u10,>N) =: V2 3U10,<NUj, >y F3.
0

Here, we will need to introduce some new exponent pairs compared to the proof of the long-time Strichartz
estimates. We divide this expression into two parts:

v _2(',;,:31)+Spp \V/ 2 F
(V] N (V23110 <N Uio, > F)ll po-1rco-2 1

__p=3 -1
< N 2-D 52|V, 3u u? —D/(p—2
S || 2,3Ulo,<N lo,zN”L;p )/ (p )L)lc
p—3
—5t—r+s 2 p—3
+ N 20D [ Vo 3Uio, <N Uig, > N Uio, < I (=702 1 -

Note that (g—:;, 1) is dual wave-admissible for p > 3.
For the first term, we have a bound of

N~ [V usy 2 o i 1753 S M Prianlp1 oo
1L SNl p =i S IR

L
M'<M 1
N =1
1 N\ 71 1
57701) Z Z M/(W) (N,) r—1 HPN/,M’””Lf’_'Lgo'
M’'<M N'<N

For the second term we estimate

p—3
—s2 == +s p—1
N~ 2(—D ”||V2,3“lo,5N”10,2N”Lgl’—”/“’—z’L;

p—3
— 55—y 5 p—3 2
SN 2-D7T°7 ”uzN”L%’(ffl) ”uZN ”L?Li(p—l)/(p-i-l)

2

NN\ 2
x Z Z M N (N')" 71| PNr mru| Loo oo

M’'<M N’'<N

4(p—1
( 4, 3 ))
p+1
is wave-admissible at regularity

31 3p+3 2 1 3p+3

2 1 ap-n T TI T a0y

Now we note that the pair
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Noting that
3p+3 _ 3(p+1) 3

p—1D) 4p-1  (p-1)

we see that this is number strictly less than s,. Thus we obtain a bound of

p—1 / N/ % N——2
o . > M) WP e

M’'<M N’'<N

Arguing as in the estimates for term A, we may determine the restrictions on o. First, we need to
assume that 0 < 1 so that we can perform the summation in M, and we further require that o be bounded
above by the power appearing on the N’/N factor when N’ < N and the N/N’ factor when N < N’.
Examining the exponents in the definition of Sy, as, this amounts to requiring o smaller than the smallest
(in absolute values) exponent in that expression, and hence we may assume the most restrictive of these
will be taking o < £/2 in term 1.111.

Provided this is the case, we obtain

/

Yy M\ N N)° -
. pr—1

N M'<sM

and since, by Strichartz estimates

1Bl o + 1B ll g < 1 PN7=m F I nery-

X

M/ o . N N, o _1
2 2 (W) mm{ﬁ’ﬁ}(”B”H?+”B/”H;p>5no” BN

N M'<M

we have

as well as the estimate

YN (N7 + Baae S vvm (0) + 0~ B
as required. O

Term C. We turn to the (C, C’) term (see (7-27) and (7-28)). In this section we prove the following
lemma.

Lemma 7.10. Let C, C’ be defined as in (7-27), and let M > CONSI’/(I_”). Then, for any L € N we have

1

(C.CY | SL 37

where the implicit constant above depends only on L.

Proof of Lemma 7.10. We introduce the notation

Gu,v)() = Fu(r) — F(v()),
which we may abbreviate as G(¢) or even G. We are faced with estimating

(C.C")sr = N2 (C, )2
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where
€

—N!=€ ro0 R R
(C.CYp2 :/_ /NI_G(S(—Z)PN,MG(M,v)(t),S(—r)PN,MG(u,v)(r))L% dr dt

_Nl—é
/—OO

o0
~ 1
f (G(u,v)(1), S(t — f)Pj%,MmG(u, v)(1));2 dt dr. (7-36)
Nl—e€ ’ x
Since M > Cy N3$2/(1=v) it suffices to show that

1

(C.Chl S o

and all inner products in this proof will be L)ZC inner products.
For each fixed 7, t as above we estimate the pairing,

(G(u,v)(), St — ‘L’)ﬁ]%,,MG(M, ”)(I»L}C'
Recall that by the definition of ¥(t), G(u, v)(t) is supported in the region
Ge(t) i={x:|x —x(£N'"9)| < R(npo) + |t| - N forall 7> N'7¢}. (7-37)

This points to an immediate problem in any naive implementation of the double Duhamel trick by way of
the Huygens principle as performed in previous sections. Namely, the support of the S(# — t) evolution
of G(u, v)(r) intersects with the support of G(u, v)(¢) in the “wave zone”, i.e., near the boundary of the
light cone where the kernel of S(¢ —t) only yields (t —)~! decay, which is not sufficient for integration
in time. However, we are saved here by a gain in angular separation in the wave zone guaranteed
by our directional frequency localization ﬁN, M- Indeed, application of ﬁN, M restricts to frequencies
& = (§1.52,3) with

5231 M

&l N

whereas for any x = (x1,x2,3) € G(t) N {(¢,x) : |x| > — R(no)} we claim that

|x23] M
— L —
|x] N

for all M > N3»/(1=v) We establish this fact in Lemma 7.11 below.
We introduce some additional notation. Let R(-) be the compactness modulus function. For given

teRlet
Cext (1) :={x 1 |x| = [t| = R(no)},

(7-38)
Cine(?) :={x : |x| < |t] = R(no)}

We decompose (C, C') as follows. First, we write

G, v)(@) = G, v)() e ) + G, V) ()1, -
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Using this decomposition in (7-36) leads to four terms:

/ / <S(t - ‘L’)%ﬁ]\]’ mle, (0)G(1), lcm(z)G(t)>dt dr, (7-39)
/ / <S(r - z)%ﬁN, mlc, (D)G(2), lcim(t)G(t)> dr dr, (7-40)
f/<5(z - T)%ﬁN’MICim(T)G(‘L’), lcm(z)G(t)>dt dr, (7-41)
/ / <S(z - T)|17|13N’ mlc, (1)G(), lcim(t)G(t)> dr dr, (7-42)

where the integrals are over [—00, —N 7€ x [N 17€, 0o]. We will refer to these terms as Cex; — exts Cext —ints
Cint—ext and Cip—in¢ respectively, and we will handle these terms separately below. Were it not for the
frequency localization ﬁN, M all but the first term above would vanish using the support properties of
G(u, v), together with the particular pairing of the cutoffs 1¢,

nt

and 1¢

ext?

and the sharp Huygens principle.
On the other hand, whereas in previous scenarios (e.g., the subluminal soliton) the first term would vanish,
in the present setting there truly is an interaction between these two terms. This is the origin of the
essential technical difficulty faced in the present scenario, and indeed we will find that the first term (7-39)
requires the most careful analysis. The crucial observation is that in this setting we can rely on angular
separation to exhibit decay.

The term Cexi—ext- We will rely crucially on the following two lemmas, which together make precise
the gain in decay from angular separation.

Lemma 7.11 (angular separation in the wave zone). For any ¢ > 0 there exists No = No(c) > 0 with the
following property. Fix v € (0, 1) and let € > 0 be any number with

2s
€< P

1—v
Let (¢, x) satisfy
1] > N1 x = (x1,x2,3) € G(1) N Cexi(?).
where G(t) are defined in (7-37), (7-38). Then,

|x2,3] < 11
x| 7 Nz275

< M (7-43)
c— -
- N

forall N > Nog and M > NSp/(1—v)

See Figure 3 for a depiction of Lemma 7.11.
Next, we show that if we restrict to those x € R satisfying (7-43) then we get strong pointwise decay
for the kernel of the operator S(r) ﬁ P 1%, M

To state the result, we define
|x2 3] < 1

Sy = xeR3: —
x| 7 Nz275

(7-44)
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X2, X3

X1

Figure 3. The dark gray region above represents the region G4 (¢) N Cex in space at fixed
time t > N17€

Lemma 7.12 (kernel estimates via angular separation). Let Ky p (¢, x) denote the kernel of the operator
S(l)ﬁﬁf] u- Let N = No where Ny is as in the hypothesis of Lemma 7.11. Then, for any L,
sy (X)Ky p(t,x)| < NNL ! forallt > N'™€ (7-45)
X ,X)| S ———— forallt > , -
SN N,.M L ML <M|X|)L
where Sy is the set defined in (7-44) and where we have used the notation (z) := (1 + |z|*)/2 above.

Proof of Lemma 7.11. We assume that ¢ > 0. Since we are assuming

2sp 1

D<e< —
1—v

and that M > NS»/(0=v) it suffices to show the first inequality in (7-43), i.e., that

[x2,3] < 1

Xl TN
for all x € G(t) N Cexc(t) for some uniform constant.
First, we claim that (7-46) holds at time t = N ™€, Suppose

(7-46)

=
()

X € G (N9 N Coxt(N179).
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By the definition of traveling wave (i.e., (7-1) and (7-2)) we have

1
x|~ N'7€, |xp3| SN273

and thus,
|x2,3]
|x|

[N/
D=

<N

as desired.

Now suppose ¢ > N 7€, We introduce some notation. Let Oy (w1-<) denote the angle between the unit
vector &1 (the unit vector in the positive x1-direction) and the vector x (N ! 7€), where we recall that x (¢)
denotes the spatial center of 1. Above, we have just shown that

. e_1
|sin(O (vi-e))| = O (n1-)| < A1N272

for some uniform constant A; > 0. To finish the proof it will suffice to show that for any x € G(¢) NCex(?),
the angle 6, (1<) formed between the vectors x and x (N 1=€) satisfies

1

|0(x,x(N1_f))| <A,N272

for some other uniform constant A, > 0, as then the sine of the total angle between x and the x1-axis,
i.e., |x2,3|/[x| would satisfy (7-46). To get a hold of 6, ,(y1-<)) we square both sides of the inequality
defining the set G4 (¢). For x € G(¢) we have

e[ = 22 X (N176) + [ (V)72 = (R(no) +1 = N'7)2,
Using that x - x(N17¢) = |x||x (N 17¢)| cos O(x,x(n1-¢)) the above yields the inequality
—2|x|[x(N'7€) | cos O x(n1-ey) < (R(m0) +1 = N2 — x| — [x (N 7).
Bootstrapping, we may assume that 6, ,(y1-)) is small enough to use the estimate

02 1_
o8 Oy x(n1-€)) = 1— _Gox (V7€)

4
Plugging the above in we arrive at the inequality
62 . 1
(x,x(N'17€)) 1—€)2 2 1—€y (2
2 R t—N — —|x(N

=2+ e (R + P = 5= (N P)

_ 2 [IX(NITO 4 (R(no) +1 = N7 — [x 2 — [x (N)'7<|?

- [x[x(N1=9)] '

The requirement that x € Cex(?), finite speed of propagation, and (7-1) imply that we have

t—R(no) <|x| <t+R(no) and N'"¢—R(no) <|x(N'79)| < N'"¢+ R(no).
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Plugging the above into the previous line gives

2 _ _ _
OG-y _ 20+ R00)) (N~ +R(00))+(R(10)+1—N'")?  (t—R(10))>*~(N'"*—R(no))*
2 - (t—R(10))(N'=¢=R(10)) (t—=R(10))(N'=¢=R(no))
_ 61R(110)+2N " R(10)+ R (10)?
(t=R(10))(N'~¢=R(10))
< 1 1
SN
Taking the square root and noting that > N ! ™€ we arrive at
6 15—
1—e ~ P
(x,x(N17€)) NS
as desired. O

Next, we prove Lemma 7.12.

Proof of Lemma 7.12. The kernel Ky p of the operator S (z)ﬁﬁ]%, s 18 given by

KN (2, x) :=[eix-$|s|—2eit|$|¢2(%)¢2(|($2Aaf3)|)dg__’

where ¢ € C{°(R) is satisfies ¢ (r) = 1if 1 <r <2 and supp ¢ € (4. 4). Now, recall that we are restricting
to only those x € Sy, as defined in (7-44). We express any such x in spherical coordinates

x = |x|(cos Oy, sin Oy cos w, sin O sinw),

where 0, denotes the angle formed by x and the unit vector in the e;-direction. And recall that any

x € Sy satisfies

|Xz 3| . 1
> — ~ < -
™ s1n9x_|6x|NN1 . (7-47)

€
Similarly, we change to the spherical variables

& = |&|(cos 0, sin O¢ cos a, sin O sin )

in the integral defining K, ps and note that because of the frequency localization ﬁN, M we have

1§23 . M
— =sin0f >~ —. (7-48)
€] TN

This yields
2w pmw p4N ) inf
KN’M(I’X)=/0 /O/N elle|E|f(9x,9s,wﬂ)|g|—2elt$|¢2(|§/_|)¢2(|é|s%)|g|2sin9§d|g|d9$da7
4

where the angular phase function f(6x, g, w, @) is given by

f(Ox,0¢, w,a) = cos O cos O + sin Oy sin O (cos w cos a + sin w sin ).
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The idea is that the angular separation between x and £ given by (7-47) and (7-48) allows us to integrate
by parts in 0¢. Indeed, using (7-47) and (7-48) we have the lower bound

d
@[|x| |€] f (O, Gg,a),a)]‘ = |x||€] ‘—cos B sin O + sin Oy cos g (cos w cos & + sinw sina)‘
£

e o{i )

Z |x|M.

Moreover, note that forany L e Nand M < N

ab (5 ([Elsindy)
(7 (55 e

Thus, integration by parts L-times in 6 yields the estimate

NL
<
~ ML'

NL
Kymt,x)|Sp N>2—————— forallt > N'7¢,  x e€G(t) NCex(?),
| N,M( x)| L ML <M|X|>L or a - X g() CXI()
as desired. O

We can now estimate (7-39). Here will rely crucially on Lemmas 7.11 and 7.12. First we write,

<S(t — ‘L’)%ﬁN,M le, ()G (u,v)(7), le, (2)G(u, v)(z)>
= (Kn,m (1 = 1) * 1, (1) G (1, 0)(2), e, (1) G (u, v)(1)).
We claim that in fact the above can be expressed as
(Knom (t = 1) % 1, ()G (0), L,y (DG ()
= {(Lsy (D 5 1oy (DENM (= D) % 10 (DG (D), 1¢, (G(D)).  (7-49)
where the set Sy is defined in (7-44). Indeed, note that above we have
x €G4+(t)NCext(t) and y € G_(7) N Cexi(T), (7-50)
where G4 are as in (7-37) and Cey; is as in (7-38). Thus,
x =yl = |t = [ =2R(no) = 3lt — 7|

as long as N is chosen large enough. Similarly by (7-50) we have |x — y| > |x| and |x — y| > |y| and
thus,
|x2,3 = y2,3] < |x2,3] | [y2,3] < 11
[x =yl |x] Iy[ 7 N275

where in the last inequality above we used Lemma 7.11. This proves the equality in (7-49).

’

Now, let g, denote the Sobolev embedding exponent for H%, ie., qp = @. Note that g, > p
for p >3 and (¢q,/p)’ > 2 for p > 0 (where x denotes the Holder dual of x). By Holder’s and Young’s
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inequalities we then have
(s (Vg1 3—ey (VKN (E = 1)) # 1 (D)G(D), 1, (DG ()

= s (D1 ey (VKN E =D 721G 0O /|Gt )@
Using (7-45) we see that

2

NL+1 1 Y
180 I yemey VK =Dl < s ([ o))
=2 L M25 ez j—) 2L (F)
NL+1 1

S AT T (7-51)

Since G(u,v) = F(u) — F(v) we have
1G @, YOl paprr < IIM(I)IIing + ||v(t)||pqp < ||u(t)||ps,) +llvOI%,,-

Putting this all together we arrive at the estimate

_Nl
‘/ /Nl B S(I—T)PNMICW(T)G(u v)(2), L, ()G (u, v)(2))df dT

—N1=¢€ r00 NL+1 1 » » » »
NL/ [N G e O+ O I, + Il ) drdr

<, NLH1H(1-o@- L)M_ZL(“””L“’H”’ + vl

L°°H ‘P
LM
where to obtain the last line we ensure that € > 0 is small enough so that when M > N sp/A=v) we also
have ML > N4+€L We have proved that
(739 <L M~E,

as desired. This completes the treatment of the Ceyx— ex¢ term.

The term Cipt—int. Here we will use a combination of arguments based on sharp Huygens principle and
the techniques developed to deal with the previous term Cex(— ext-
First we record an estimate for the kernel of the modified frequency projection.
Lemma 7.13. Let plz\, g denote the kernel of the operator P 1%, a- Then,
N3 N3
PR ()] 52 + : (7-52)
M (NIxE - (M]x])E
Next, consider the following decomposition of the forward cone centered at (¢, x) = (N17¢, x (N 17¢))
of width R(ng), i.e., the set
U g+

tle—e

where G(¢) is defined as in (7-37). This decomposition is depicted in Figure 4.
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t

Gt
G2+ =8N
4
Y
Ca,+
Gy 4 1—e
I+ = 4N
Ci+
Yo+ t=2N'"¢
B
t=N'"¢
A
X1

Figure 4. A depiction of the first few regions C; + and G4 ; within the region C.

‘We write

g+ =JC+,ulJ G+

Jjz1 Jj=0
We define C4 j, G ; as follows. First, set
Coa={(.x):|x—x@N'"9)|[ = R(no) +1 —2N'"¢, 1 = 2N~} n gy
and for j > 1
Chji={{t.x): Ix—=x@/' N[ = R(no) +1 -2/ N, t =2/ N'"} NG} \ Cy 1.
For j >0, define sets G ; to be the regions
Grj={(t.x) |x—x@ N9 < R(po) +1 -2/ N7, 2/ N'=¢ <1 <2/ HIN1=6}n g,

Then we define
Ciji=Cq 0{t,x): x| <t =2/ N'"¢ 1 >2/NI€},

G, =G4, U[C+ j+1\C,j+1]-

The regions C4+ ; and G4 ; are depicted in Figure 4.
Now, split the integrand of (7-42) in the four pieces,

_N1
(7-42) = /

—€

(]
/ (I+11+1I1+1V)dtdr,
N1l—e€
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where
I = §< A]%]’M|_é|S(t —O)lle_; 16, G1(x), [y 1cmG](t)>, (7-53)
I = 2 < P M|_é|S(t —D[le_ 16, Gl(r), g, , lcimG](z)>, (7-54)
11 = ;x A§’M|V|S(t—r)[lg_ e Gl(2). [1c+k101m(;](z)> (7-55)
1V = (P g5~ 0l 10,610 1, 16, G100 ). (7-56)

First we estimate the term (7-53) above. The key points are the following. First, by the support
properties of 1¢, , ¢, (7, ¥), 1c_; l¢,, (¢, y) and the sharp Huygens principle, we must have

x—y|2 2/ +25)N'7¢ forall x € supp(lc, ¢, G(u. v))(t). y €supp[S(t—1)lc_;1e, G(u,v)](0).

(7-57)
Second, by the definitions of the space-time cutoffs 1¢_ ; and lc, ,, the functions 1¢c_ ;u(t) and 1¢, , u(?)
are restricted to the exterior small-data regime and we thus have

e_ ;160G 0t V) nr((—o0,—27 N1=]) S I1ill poogisp S 1, 7-5%)
ey 1w G V) nai N 1< 00)) < ill poogysn S 1.

where A denote suitable dual spaces.
We argue as follows. For any ¢ > 2, and up to fattening the projection P\N, M, we have

‘(ﬁfv,m—ép(r —Dlle. 16, Gl 0)](0). [le, , L, Gl v)1<z>>‘

—1— 2
Sy 2@/ 42w - PN I PN VT 20 S (=) [1e_ 16, G, 0)(D)l e
_2
X[V~ 4 [1ey x Loy G, VIOl Lo

We estimate last line above as follows. Note that by (7-52) and (7-57) (and the lower bound on M), we

have
N3
(2j + zk)Nl—e]L—l :

I1¢. 122/ +2x)N1-e3 PN.M L SL [

By the dispersive estimate for the wave equation and noting that |t — | > 2N 7€ we have

_1— 2
IPNIVIT 2% aS (1 = 1) [le_ ; 16, G, )](T) ]| Lo
1

5%”‘?"!’ VI e 16, G Il
It —|
1 _ _2
< 2 N 28p ||PN|V|SP q [IC_.j lcimG(u’ v)](f)”ngc’-

r—|'74
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Thus, using the above, Bernstein’s inequality, the Hardy-Littlewood—Sobolev inequality, and (7-58) in
the last line below we have

00 —N1—€
/ / (7-53)dt dt
N1—e€

—25p _N1—€
VIl 16, G
o Z [(21+2k)N1 L= 1/N1 / (“_T' e L R L
_2
X IV [l T G, v)](t)lle/) dr de

NSN 2sp o2
L Z [(2/ +2k)N1—€]L— 1|||V| ! q[lc+,k16imG(“’U)]”L?q/(wz)LZ/

2
x [V~ 4 [le_ 16, G(u, v)] ”L?q/("“)L?C'

NSN—Zsp L
-L/2
SL Z (zj +2k)N1—e]L—1 SLN ’

J.k>1

where in the second-to-last line we have fixed ¢ > 2 above and note that the norms above are dual sharp
admissible Strichartz pairs (e.g., one can take g = 4).

Next, consider the term (7-56). Here we cannot rely exclusively on separation of supports because the
S(t —17) evolution of the term localized to G_ ; has some of its support within 2R (1) of the term localized
to Gy x for all j, k. The saving grace is that the pieces of the supports of S(z —7)[1g_ ; 1¢,, G(u, v)](t)
and [lg, , ¢, G(u,v)](7) that are close to each other (say within 29 4 2%k for some small parameter
a > 0) come along with angular separation in the sense of Lemma 7.12. To make this precise we must
further subdivide G4 j as follows.

Let o > 0 be a small parameter to be fixed below. Let

G kini= G N{(t,x) 1 |x| < ¢ =29k yo(1=e)y,
G kout i= Gy N{(2,x) 1 |x| > 1 — 29k ya(1=e)y,

We decompose (7-56) as follows, noting symmetry in j, kK means it suffices to consider only the sum for
Jj > k. We write (7-56) in the form

Z<E%I,M%S(t —Dllg_;ulen Gl [1g+.k.m1cimG]> (7-59)
+ Z<ﬁfv,MﬁS(t —Dllg_ ;ulen Gl [1g+.k.omlcimG]> (7-60)
+ Z<ﬁﬁ,MﬁS(Z —D)lg_ e, G, [1g+,k,in1cimG]> (7-61)

# X P 8= Ml 16,) [, 1.0 16,61) (7-62)

where the sums are over j,k > 0 with j >k, G = G(u, v), and the pairings are evaluated at t, ¢.
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The key point will be that on the outer regions G— ; out» G+ k,out WE can recover the same angular
separation used to treat the term Cex;—ex¢ and on the inner regions G ; i, and G x i, we obtain sufficient
separation in support between the two factors after evolution by S(¢ — 7) to get enough decay in j, k after
the application of P 1%, M ﬁ.

Lemma 7.14 (angular separation in G4 j ou). Let a > 0 and let Sy o be the set

[x2,3] _ 1
|X| NN(lfoz)z(lfe)

SNg:={xeR>: (7-63)

Then, there exists o > 0 small enough and No > 0 large enough so that for all x € G4 ; ou We have

1 M

xedsS and ——— K —
N« N a=a)(=9) N

forall N = No and M = N*»/0~Y) and for all j > 0.

Proof. 1t suffices to consider x € G4 ;. The proof is nearly identical to the proof of Lemma 7.11,
but here we have allowed the region G4 ; ou to deviate farther from the boundary of the cone as j (and
hence ¢) gets larger. As in Lemma 7.12 we have

1

|sin(0y (27 y1—€))| 2 |0y 2) N1—ey| S A1N272
independently of j > 0. To finish the proof it suffices to show that for any x € G4 ; ou. the angle
0(xx (27 N1—¢)) formed between the vectors x and x(2/ N17¢) satisfies

1
|6(x,X(2<"N1_5))| = AZN(l—a)z(l—e)

for some other uniform constant A, > 0, as then the sine of the total angle between x and the x-axis,
i.e., |x2,3|/|x| would satisfy (7-63). Note that for any (¢, x) € G+ jout

2/ N1-¢€ _2ajNa(1—e) <|x| < 9 +1 1€ + zajNoz(l—e)'
Arguing as in the proof of Lemma 7.11 we see that for any (¢, x) € G4 _j out

2424 N&(179) 1
62 . < <
(x@INT=) ~ (;p _gej Nya(1=€))(2/ N1=€) ~ 2(1—a)j Ny (1—a)(1—€)’
as desired. O

With Lemma 7.14 in hand, we can estimate the term (7-62) in an identical fashion as the term (7-39),
noting that applications of Lemma 7.12 are still valid in this new setting because for x € G k o, and
¥y € G_ j ou We have

|X2,3 = y2,3 < X231 | [y2.3l < 1 < ﬂ
x=yl TR D[ S NT@0-9 SN
i.e., sufficient angular separation since the Fourier variable £ satisfies
5231 =M

gl N
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Moreover we have
Ix—y| =~ @/ +25)N1™¢ ifx € Gy g ous ¥ € G jout.
This means that we are free to write,
<ﬁ§;,M %S(t —Dlg_ ;o len G, v)I(T). [1gy o len G, v)](t)>

= (Usyo L |22/ 420 N 1=y KN M) % (1o 01 G 01(D), [l o L G, 0)](0)).  (7-64)
Mimicking the estimates of (7-62) we see that as in (7-51) we have
L+1 1
M?2L [(2]‘ + 2k)N1—e]L ’

sy (g 2@ 26y n1-ey DKM E =D pwr/ori2 SL

This allows us to sum in j, k, and we obtain

—N1— 1
2 <
/ /Nle(76)dtdr~ oL

To handle the term (7-59) we rely on the following observation: by the support properties of 1¢, , 1¢,, (7, ¥),
le_ ;1¢,, (¢, y) and the sharp Huygens principle, we must have

Ix—y|Z @7 +2F)N1e

for all
x €supp(lgy 4 i, e G (1, 0))(7)
and
y esupp S(t —)[lg_ ;;,1¢, G(u, v)](2).
Hence,

‘ﬁﬁMéﬁv—ﬂuaﬁu%GmenwwﬂmMwawm%

S g 2@7 426N 1-€} PN.M ||L§qu/p>’/21\’_1 1PN S =)l lew G, V@ aprr

X[1C+,k lcintG(u’ U)]([) ”Lle/P
l X

Ll T NI 7 (|l ||L00Hsp

—N1— 1
<
/ /;vl 6(759)d[dT” NI

Next, for the term (7-60) we note that the same argument used to treat (7-59) applies. However, we note

10127, o)

Hence,

that here we only obtain spatial separation of 2/ N 1~¢. Nonetheless, since j > k we have

2N ~ (27 42k N1E
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and hence we are able to sum in j, k, obtaining
—_N1

[
Lastly, consider the term (7-61). Here we use a mix of the arguments used to control (7-59) and (7-62).
In particular we split the sum into two pieces noting that if j ~ k then the same argument used to

estimate (7-59) applies since the spatial supports are separated by ~ 2K N1=€ ~ (27 4 2Ky N1=€ If j >k,
we obtain enough angular separation argument to use the same argument used to bound (7-62), since in

—€

o0 1
7-60)dr dt <7 —.
fN (60 drdr 5L~

this case we have
|x2,3—y23l _ |y2.3 _ 1 < M
Ix=yl — |y] T NO-@U-9 TN

forall x € G4 g inand y € G joue as long as j > k. We obtain

_Nl
>/—OO

This completes the estimation of (7-56).

—€

/Oo (7-59)dt dr <p —— + —
- T —+ —.
Nl ~ENL T ML

At this point, the mixed terms (7-54) and (7-55) (i.e., the remaining contributions to the Ciy—in term),
as well as the Cjpr—ext and Cext—int terms ((7-40) and (7-41)) can be handled with a combination of the
techniques developed above. For example, after further subdividing G_ in the regions C— ; and G_ ;
consider the term of the form,

—2J/ N1—€ 00 ~n 1
> | <PN,MﬁS<r —D)llg, 1en Gl WD), e Gl v)1<z)> d dr.

=0 —2Jt2N1—€ JN1—€

Fixing a large constant K1 > 0, we can divide the above into two further pieces, namely

—2/N'=¢  ,Kj2/N'=¢; 1
/ f <P§,’M ﬁS(t —O[lg_ ;1¢,, G(u, v)|(7), lc, G(u, v)](t)> dr dt

>0 —2Jjt+2N1—€ JN1—€

—2/ N1—€ 00
+y / . / . <ﬁfv MiS(z —Dlg_ 16, G, v)](2), 1e, G, v)](t)> dr dr.
Sol-rant—e Jgpini—e\ TV

For the first term on the right-hand-side above we can copy the argument used to estimate (7-59). Indeed
by the sharp Huygens principle the spatial supports (before the application of Py ) are separated for
each fixed ¢, T by a distance of at least ~ 2/ N17€ ~ K, |t —t/|. For the second term above we can choose
K7 > 1 large enough to guarantee enough angular separation between the spatial and Fourier variables
to mimic a combination of the arguments used to estimate (7-39) (where one integrates in ) and (7-62)
(where one sums in j). The remaining interactions are handled similarly. We omit the details.

We have thus proved that
1 1 1

ﬁ-‘l_ LT

|<C,C/) SL mgL ML
which finally completes the proof of Lemma 7.10. O
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We are now prepared to conclude the frequency envelope argument and the proof of Proposition 7.4.

Proof of Proposition 7.4. Recall that we are trying to prove that

> > MU Py s pu@)l7, <1,
N>No CoNs»/0-M<M<N ’

for some fixed Cy > 0, for which it suffices to prove that

> > MPUINT20 || Py s pgu(t) 350 S 1.
N=No CoNsr/0-V<M<N ’

Once again, by time-translation invariance, we argue for t = 0. Recall that

(Proau(0), Proagu©) ool < 1AIR, + 141, + 181, + 1B, +1(C.C) o,

and hence by Lemmas 7.8, 7.9 and 7.10, we obtain

(N N M\ A
@ = ¥ mind 0 CE () 12w a1,
N'M'>M

<nd lanm + 08 By + ML (7-65)

Furthermore by (7-29) and (7-34),

anm Sy (N + 08 an
and
yN (N6 + Byg S v 0) + 08~ B
Hence

Bum SyNm (). anm S yNm(N'T9) <y m(0),
and we conclude from (7-65) that
ynm(0) S yn (0 + ML,

which implies

ynm (0) < M~

for any L > 1. Consequently, we have established that

Z Z MPIINTZ0yy 0(0)2 < 1,
N=No M>CoNsp/0—)

which concludes the proof. O
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