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A B S T R A C T

Significant interest has been placed on Scanning X-ray Diffraction Microscopy (SXDM) techniques for its ability
to spatially resolve material/chemical strain at nanometer length scales. As instrumentation that employs this
technique pushes the bleeding edge of research, the ability to process the influx of data produced is becoming
difficult on traditional hardware. Traditionally, the analysis protocols were left for the individual to develop,
leading to inefficiencies and long computational times for analysis. The python module sxdm was developed to
reduce efficiencies by standardizing a data structure, displaying experimental analysis metrics in a graphical
user interface, and providing resource-efficient analysis protocols.
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1. Introduction

The ever-growing expansion of scientific technologies has created
a world that allows single users to create more raw data than could
be processed by that individual alone. This immense flux of data
generation required innovative techniques to perform the analysis in a
reasonable time frame, which can be carried out in one of three ways.

The first way is to use pre-built computational clusters for General
Users. Argonne National Laboratory and Brookhaven National Labora-
tory have several resources (Theta, Cooley, Aurora, and the BlueGene
Series) dedicated to user-submitted proposals. The second technique
improvement is through the incremental upgrade of silicon chips used
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in central processing units (CPUs) or random access memory (RAM)
modules by leading manufacturers. With decreasing prices and avail-
ability of once enterprise-grade equipment, computationally expensive
data analytics can be achieved with comparatively little cost. The
third avenue for improvement is to optimize open-source software
used in data analysis for low-cost computational systems. This brings a
deeper level of democratization of large data throughput to the average,
computer-owning, individual.

Often, these three avenues for improving data analysis are inter-
twined. An advancement in one may push an advancement in another.
This is not an intended competition between the three, rather than
a cooperative venture to generationally improve the state of data
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analysis. Therefore, it is ideal when newly developed modules for data
processing and analysis are built to allow for the continued use of
general computational resources even with this new influx of data, by
focusing on the optimization of data handling methods into a more
scalable solution.

Materials science has seen a rapid amount of scalable open-source
software packages, which bring complex data analysis routines and
simulations to the general scientific community. Some examples can
be found through PyNx [1], AtomSK [2], and RMCProfile [3]. With
their ease of use and low computational cost, these tools have paved the
way for accessibility in materials science research. One less established
technique used for such domain which could benefit from easy-to-use,
scalable data analysis tools is scanning diffraction X-ray microscopy
(SXDM). The code presented in this paper aims to contribute toward
such outcome.

2. Scanning X-ray diffraction microscopy

The core concept of Scanning X-ray Diffraction Microscopy (SXDM)
is to raster an X-ray beam of a given wavelength across a material,
to spatially resolve Bragg diffraction signals [4,5]. Fundamentally, this
technique does not require a high flux X-ray source or a 2-dimensional
detector. However, to push SXDM to obtain nanometer resolution along
with precise 2-dimensional diffraction patterns, a high-flux X-ray source
is needed.

Nano-Scanning X-ray Diffraction Microscopy (nSXDM) can be car-
ried out in several locations, most notably implemented at The Ad-
vanced Photon Source (beamline 26-ID-C) and National Synchrotron
Light Source II (beamline 3-ID). These beamlines contains a unique
instrument capable of implementing nSXDM at a spatial resolution
of 30nm [4] or better. Detailed by May et al. [6], general SXDM
experiments are initiated by interactions between an incoming X-ray
and a staged sample that meets its respective Bragg condition. X-ray
focus is achieved, samples are scanned (in X–Y) relative to the beam
for a given sample theta, and the process is repeated for subsequent
sample rotation angles. Since the detector dimensions are sensitive to
either crystal domains (𝜒) or crystalline phase (2𝜃), one can create
domain misalignment and chemical maps, respectively, for the sample
of interest.

A standard workflow to analyze the 2𝜃 vs 𝜒 mapping positions is
as follows: obtain the raw data and understand data-structure, develop
tools for background subtraction, align subsequent sample rotations,
remove pixel anomalies, apply an analysis function to the pre-processed
mapping positions, visualize the analysis outputs, all in a time efficient
manner. Taken individually, most of these processing steps sound
trivial. But, due to the lack of code repositories for these types of
processes and the large data file sizes from SXDM experiments, it is
difficult to achieve a resource-efficient software package. Previously
bench-marked code was available to run on a single-threaded process,
completed in 12+ hours, and occasionally crashed due to a RAM
overflow. Even though this software package was developed for Sector
26-ID-C at the Advanced Photon Source, the goal of the proposed
software package is to give researchers a standard platform for SXDM
data analysis that is open-sourced, multi-threaded, resource-efficient,
and which can be tailored for the specific needs of the scientist. Meeting
these goals would allow researchers to focus more on the interpretation
of results rather than data preparation for the efficient analysis of these
types of datasets on resource-limited hardware.

The proposed sxdm module was scripted in Python, the object-
oriented programming language for Sector 26-ID-C at the Advanced
Photon Source. This language was chosen over the many alternatives
that exist because it combines highly desirable features: it is open-
source, has a comparably shallow learning curve and is supported by
a large community infrastructure devoted to data science. Publicly
available modules such as SciPy [7], Numpy [8], and PyQt5 [9] are

encompasses a graphical user interface (GUI) that is easy to use .
Even though we detail the data analysis in this paper, a more detailed
explanation of pre-processing steps, such as data importing into h5,
meta-data storing, scan dimension check, alignment, determining angle
bounds, and background data creation, can be found on the sxdm
documentation page.

3. Analysis

3.1. Hot pixels

During an SXDM experiment, the CCD detector occasionally will
record pixels with abnormally large intensity pixel or contain defective
pixels that continuously record the same value. The sxdm module
allows the user to deal with these ‘‘hot pixels’’ in two different ways.
First, the python module named SciPy [7] (Scientific Python) contains
a median filter function which is then applied to the 1-D array summed
column values or all row values of the 2D CCD detector image. Al-
though fast, SciPy’s median filter comes at the cost of blurring the entire
dataset. A selective median blur feature is also offered which is geared
toward maintaining data integrity. If the current pixel in the search
space is a set value away from the mean, the value is replaced with the
mean value. This hot pixel removal method is slower than the SciPy
filter, but retains most of the raw CCD detector values.

3.2. Centroid analysis

The primary tool for data analysis in the sxdm module targets the
analysis of centroid positions of the diffraction pattern sampled by
the CCD detector. The centroid of the signal in the 𝑥 and 𝑦-axis of
the detector is directly related to the presence of mechanical strain,
microstructure or chemical state, depending on the material.

Fig. 1 shows the basics of the centroid analysis. The first step in-
volves taking the summed diffraction data for a single pixel, subtracting
corresponding background data, and removing hot pixels through a
selective (Fig. 1B) or SciPy median filter (Fig. 1C). The program allows
to selectively crop the data of interest (orange lines in Fig. 1B2/C2) to
get a more accurate representation of the value of the signal centroid.
This centroid position is then translated to a mapping position on an
image array, Fig. 1 D. All data is paralleled through multi-threaded
programming, allowing a full 1000 point scan to be completed in ≈20 s,
all while using 8 gb of RAM.

3.3. Region of interest analysis

The second data analysis tool presented by the sxdm module was
initially built to help users analyze the scan angle progress of a con-
current experiment. Similar data analysis protocols to those shown in
Fig. 1 were implemented for the region of interest (ROI) calculations
for each mapping position. The only difference is instead of calculating
the centroid of the signal, the ROI mapping protocols take the sum of
the signal. Once a user re-defines multiple ROIs inside the diffraction
images (outside those stored during experimental run times), these ROI
protocols are used to visually inspect distributions of diffraction signals
coming from the current field of view (FOV). An example use case of
this can be seen in Fig. 2. Without much effort, a user can identify
enough points in their diffraction sample rocking curve to obtain
reasonable analysis results. In this case, the user is able to identify
conditions for the maximum intensity (i.e., at the Bragg condition) and
does not need to take any more points to provide meaningful analytics
to the system sampled.

Fig. 2 shows an example sample rocking curve taken for different
scans of a FOV. One can see that it is critical to rock through various
angles around an individual Bragg peak for a given crystal. Most
critical to creating a fast and lightweight, self-contained module that experiments rely on guesswork to estimate when the experiment has
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Fig. 1. Steps followed to process the data in the protocol for centroid analysis. First a raw spectral image (A) is subject to either a Selective Median Blur (B1) or SciPy Median
lur (C1). Then, a signal identifier is used to segment out the signal from the background (B2, C2 — Orange Lines). The centroid is established by the black Line, then placed
nto a 2-dimensional array for visualization (D). Plots in A, B, and C correspond to the red box shown in section D..

Fig. 2. A plot of the total diffraction intensity vs the scan number during a typical
SXDM experiment. Scan theta incremental number is d. This plot shows the user has
reached the diffraction intensity peak and can stop the experiment early without the
need for more sample angle iterations.

reached the apex. This program considers the entire FOV or a section
of the FOV and creates these rocking curves of intensity vs ordered
angles to identify if the experiment can be concluded or which angles
are missing data.

Once the experiment is complete, the ROI functionality can not only
be used to segment multiple particles in the current FOV, but also
help define strain/chemical phases by plotting differences in chemical
states along a single particle. Users can define multiple ROI’s for the
given summed diffraction pattern FOV. These ROI’s may correspond to
different chemical states, particle strain regions, or multiple particles
in the FOV. An example of the bounding box GUI can be seen in Fig. 3,
hich makes it intuitive to select these ROIs for the summed diffraction
attern. For each mapping position, all ROIs defined by the user are
alculated in parallel, only taking 30 s to complete through multi-
hreading the sub-processes for the user. Built-in functions such as here
an then be called to return a 4-dimensional map of the total intensity
istributions for each selected ROI imported into the DataFrame: (user
reated ROI(s), real-space X, real-space Y, ROI intensity).

.4. General analysis

Even though these analysis packages are helpful, users are able and

Fig. 3. A region of interest graphical user interface (GUI). This GUI allows the user to
define their own diffraction bounding boxes, which will be used for generating separate
region of interest maps for the selected diffraction regions.

to their diffraction patterns. The General User Analysis suite provided
allows users to conduct background subtractions, multi-threading, or
data processing of their custom function as applied to individual pixels
in the DataFrame.

The code found in Fig. 4 briefly details how 12 lines of code can
achieve quick addition and subtraction analysis over all the data pro-
vided in the SXDMFrameset. This removes the need for users to develop
resource efficient code to implement a background subtraction, scan
alignment, and multiprocessing functions used in data analysis (2000
lines of code). Loading entire 100gb datasets into memory is unfeasible
on ordinary laptops. The general user analysis provided by sxdm allows
users to perform complex operations on 100’s of GB of data, all from
their laptops with as little as 8–16 GB of RAM. This brings data analysis
to normal users without the need for costly high-performance compute
units.

4. Viewing

This module comes with Viewer packages that allow users to visual-
ize the centroid data and the single ROI data — lowering the knowledge
barrier of high-level data analysis for scanning X-ray diffraction mi-
croscopy and making this technique available to more scientists. The
graphical user interface (GUI) for the user is shown in Fig. 5. Built
using the PyQT5 python package, the GUI is fast, responsive, and
updates its appearance according to the user’s native operating system.
From this GUI, one can view the X-ray fluorescence map for a single
element, individual diffraction patterns, summed diffraction patterns,
ncouraged to write their own functions to perform analysis tailored
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Fig. 4. A basic General User Function tutorial to apply a user generated mathematical operation on the collected diffraction pattern for a given mapping position.

Fig. 5. The centroid viewer graphical user interface (GUI). This GUI allows the user to easily brows through all summed diffraction patterns (Spot Diffraction) for a given mapping
position (Fluorescence signal). One is also given the ability to view the centroid calculations for both the 2𝜃 and 𝜒 axes shown in the line plots in the figure.

egion of interest map, and the centroid analysis for both diffraction
xis domains. Not only are users able to interactively move the cursor
round the field of view, but there are also able to change centroid
nalysis parameters and reprocess the data with these new parameters
ll from one location.

. Conclusions

The sxdm python module provides valuable impact in the analysis of
canning X-ray diffraction microscopy data. It simplifies the experimen-
al run times by providing fast analysis of experimental rocking-curves
nd allows users to focus on developing data analysis functions without
orrying about data pre-processing or resource management of multi-
hreading. These advancements have decreased data analysis runtimes

from hours to seconds, while resource requirements have dropped from
64GB+ to 8 GB. The sxdm module also provides a user-intuitive way
to interact/analyze the centroids of the mapped diffraction data; there-
fore, decreasing the amount of time/knowledge/inconsistencies in data
analysis through standardized analysis protocols. Current applications
of this software have been used to determine crystal strain of Li-Ion
battery materials at the nanoscale. Although the work is in progress,
sxdm’s first utilization has shown promising utility in the material
science field. However, some limitations do exist. First, data importers
may be challenging to write if users are unfamiliar with the incoming
file structures. Second, duplication of incoming data is required. Lastly,
this software package has only been developed for Ubuntu/MacOS in
a Jupyter Notebook environment. Future developments could include
4
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allowing for user-friendly creation of data importer functions, stream-
ing data from current experimental files without data duplication, and
testing the software on more computing environments such as Windows
or headless servers.
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