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In the appendix of this paper (Volume 62, Nos. 1–4, 293–320), it was erroneously stated
that Gaussians are optimizers for the Strichartz inequality. This is incorrect, as pointed
out in [1], and it remains a challenging open problem to determine their nature. This,
however, does not affect the main content of the paper, which was independent of the
appendix.

The following corrections are needed to the published version of the paper:

(1) Page 293, Equation (1.3) should have an unspecified constant C in place of
2�

1
4 .

(2) Appendix: After the first paragraph, the rest of the appendix should be
replaced by the following paragraph:
“The original version of this paper stated erroneously that Gaussians were
optimizers for the Strichartz norm above, and gave a corresponding numerical
value for C . In fact, it was later proved in [1] that Gaussians are not critical
points of the Strichartz norm and thus cannot be optimizers. One can,
however, use the profile decomposition to prove existence of an extremizer
(see [3] for a similar proof).

PROPOSITION 1
The extremizers of (A.1) exist, and there is a constant C such that

(0.1) keit@x@yf kL4x;y;t
� Ckf kL2x;y

for all f 2L2x;y.R
2/.

The exact nature of the extremizer f above remains mysterious. They are not
simple tensor products (i.e., there is no function g such that
f .x;y/D g.xC y/g.x � y/), for otherwise, one could adapt arguments
from [2] (see the proof in the previous version of this paper) to show that f
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would need to be Gaussian. Preliminary numerical investigations confirm that
the optimizer should be a genuine function of x and y and suggest that it has
nice decay and smoothness properties.”
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