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Abstract

The evolutionary forces that determine genome size in bacteria and archaea have been the

subject of intense debate over the last few decades. Although the preferential loss of genes

observed in prokaryotes is explained through the deletional bias, factors promoting and pre-

venting the fixation of such gene losses often remain unclear. Importantly, statistical analy-

ses on this topic typically do not consider the potential bias introduced by the shared

ancestry of many lineages, which is critical when using species as data points because of

the potential dependence on residuals. In this study, we investigated the genome size distri-

butions across a broad diversity of bacteria and archaea to evaluate if this trait is phyloge-

netically conserved at broad phylogenetic scales. After model fit, Pagel’s lambda indicated a

strong phylogenetic signal in genome size data, suggesting that the diversification of this

trait is influenced by shared evolutionary histories. We used a phylogenetic generalized

least-squares analysis (PGLS) to test whether phylogeny influences the predictability of

genome size from dN/dS ratios and 16S copy number, two variables that have been previ-

ously linked to genome size. These results confirm that failure to account for evolutionary

history can lead to biased interpretations of genome size predictors. Overall, our results indi-

cate that although bacteria and archaea can rapidly gain and lose genetic material through

gene transfers and deletions, respectively, phylogenetic signal for genome size distributions

can still be recovered at broad phylogenetic scales that should be taken into account when

inferring the drivers of genome size evolution.

Author summary

The evolutionary forces driving genome size in bacteria and archaea have been subject to

debate during the last decades. Typically, independent comparative analyses have sug-

gested that unique variables, such as the strength of selection, environmental complexity,

and mutation rate, are the main drivers of this trait, without considering for potential

biases derived from shared ancestry. Here, we applied a phylogeny-based statistical

approach to assess how tightly genome size in bacteria and archaea is linked to
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evolutionary history. Moreover, we also evaluated the predictability of genome size from

the strength of purifying selection and ecological strategy on a broad diversity of bacteria

and archaea genomes under a phylogenetic comparative framework. Our approach indi-

cates that despite the ability of bacteria and archaea to rapidly exchange genes, a strong

phylogenetic signal to genome size distributions can be recovered at broad phylogenetic

scales.

Introduction

Bacterial and archaeal genomes are densely packed with genes and contain relatively little

non-coding DNA, and therefore an increase in genome size is directly translated into more

genes [1–3]. In contrast, multicellular eukaryotes generally show genome expansion due to the

proliferation of noncoding-DNA as a consequence of high genetic drift [2]. The Depletion of

non-functional elements in prokaryotes is explained through the bias towards more deletions

than insertions; newly acquired or existing genes are removed if selection on those genes is

insufficient for their maintenance in the population [4–6]. Although narrowly constrained

when compared with eukaryotes, prokaryotic genome sizes still vary by over one order of mag-

nitude. Assuming an intrinsic deletion bias across all prokaryotes, it remains unclear what evo-

lutionary forces determine which genes are maintained and which are lost, and what

determines the variability of genome sizes across the broad diversity of bacteria and archaea.

Multiple individual factors have been hypothesized to be primary drivers of genome size in

bacteria and archaea. Early studies suggested that effective population size (Ne) may be the pri-

mary force that determines genome size and fluidity in prokaryotes [7,8]. For example,

genome reduction has been observed in host-dependent bacteria that have small Ne and corre-

spondingly high levels of genetic drift due to population contractions. Under such evolution-

ary constraints, slightly deleterious deletions accumulate and cause overall genome reduction

[9–13]. Paradoxically, later studies focusing on abundant free-living planktonic lineages in the

ocean suggested that genome reduction can also be observed in bacteria with larger Ne that

experience strong purifying selection [14–17]. In this case selection favors genomic economi-

zation, such as the removal of paralogs and intergenic sequences. Factors other than Ne and

the strength of purifying selection have also been postulated to play a role in determining pro-

karyotic genome size. Recently, one study suggested that environmental stress leads to genome

streamlining in soil bacteria [18], and other genomics studies have suggested that habitat com-

plexity and ecological strategy [19], as well as the capability to use oxygen [20] may also play

major roles in determining genome size in bacteria and archaea [19]. Mutation rate has also

been proposed to be a major factor determining genome size [21,22]. In particular, it was sug-

gested that a high mutation rate would be the primary cause of genome reduction in both

streamlined and host-dependent bacteria due to the erosion of genes, loss of function, and sub-

sequent deletion [21–23]. However, other studies analyzing the mutation rate of the abundant

picocyanobacteria Prochlorococcus show estimates similar to Escherichia coli, casting doubt on

the view that high mutation rates drive genome reduction in all cases [24,25]. Given the large

number of forces that have been proposed to be primary determinants of genome size, it

remains largely unknown whether genome size in prokaryotes is driven by unique variables,

their interaction, or variables that have specific influence depending on the lineage.

Importantly, most statistical analyses exploring the association between genome size and

other traits have typically not used phylogenetic comparative methods that are necessary when

using species as data points. Shared evolutionary history may obscure the relationship between
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traits because the phylogenetic dependence between lineages leads to the violation of the statis-

tical assumption of independence in residuals. Thus, conventional statistical methods can lead

to overestimation of the strength of the association between traits [26,27]. In this study, we

estimated the phylogenetic signal of genome size across a broad diversity of bacterial and

archaeal genomes available on the Genome Taxonomy Database (GTDB) [28,29]. Although

genome size has been shown to change rapidly in prokaryotes due to HGT and gene loss, we

sought to test if this trait still bore a phylogenetic signal across broad phylogenetic scales.

Moreover, because previous studies have suggested that effective population size or ecological

niche are potential drivers of genome size [3,8], we evaluated whether correlations with these

factors would change if evolutionary history was taken into account. Our work provides

important insights into the complex mechanisms that shape genome size in bacteria and

archaea, and the importance of considering shared evolutionary relationships when studying

its evolution to avoid bias in the association between traits.

Results and discussion

Genome size distribution across major phyla of bacteria and archaea

In order to explore the distribution of genome size across the Tree of Life of bacteria and

archaea, and to measure phylogenetic signal across broad phylogenetic scales, we built a phylo-

genetic tree using one representative genome of 836 genera belonging to 33 phyla available on

the GTDB. For the reconstruction of this phylogeny, we used a set of ribosomal proteins and

RNA polymerase subunits that we have previously benchmarked [30]. The size of genomes in

our analysis and across the phylogeny varied by almost two orders of magnitude (0.6–14.3

Mbp, Figs 1A and 2). The minimum and maximum corresponded to two bacterial lineages

with contrasting lifestyles: the endosymbiont Buchnera aphidicola of the phylum Proteobac-

teria and the free-living Actinobacteria Nonomuraea sp. (Fig 1A and 2). The greatest within-

phylum variation of genome size was observed for the phyla Actinobacteria and Cyanobacte-

ria, whereas Patescibacteria had the shortest mean genome length (Fig 1A). We also evaluated

the difference in genome size found within the genera used in our study, which we report here

as the variance (Fig 1B) and the difference between the largest and smallest genomes within

Fig 1. A) Distribution of genome size within bacteria and archaea taxonomic groups at the phylum level. First and third quantiles, as well as median are shown

for each phylum distribution. B) Relationship between mean genome size and genome size variance for each genus cluster. Abbreviations:

TDS = Thermotogota, Deinococcota, and Synergistota. Raw data for genome size can be found in S2 Data.

https://doi.org/10.1371/journal.pgen.1010220.g001
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each genus (S1 Fig). Most of the genera used in our analysis (571 out of 863) showed a differ-

ence smaller than 1 Mbp, but some genera exhibited a wide range of genome sizes; for example

the genera Streptomyces and Nonomuraea showed a difference of 6.29 and 6.06 Mpb between

the smaller and the larger genomes, respectively (Figs 1B and S1). The large difference found

between the largest and smallest genome of some of the genera in our dataset is consistent

with previous observations of considerable differences in the genome size and genome content

of many closely related taxa [31–34].

Genome size in bacteria and archaea is strongly dependent on phylogenetic

history at broad evolutionary scales

Although it is well known that genome size can vary markedly between closely-related bacteria

and archaea [31–34], it is still possible that overall genome size distributions are linked to evo-

lutionary history at broad phylogenetic scales, which we define here as anything broader than

the genus level according the GTDB classification (Fig 2). Due to the shared evolutionary his-

tory of some lineages, traits of related groups often resemble each other more than when com-

pared with randomly-selected species in the same phylogenetic tree (phylogenetic signal) [35–

37]. We therefore sought to investigate the phylogenetic signal of genome size distributions in

our genome dataset (Fig 2). Phylogenetic methods are needed to analyze these associations

because any study involving statistical analyses and species as data points potentially violates

the assumption of independence of residuals [26,38].

When studying phylogenetic signal, it is recommended to measure it at two different

levels: 1) in traits’ raw data and 2) in the residuals resulting from statistical models (e.g.,

regressions) [39]. As a first approximation, we assessed whether genome size distribution

data show phylogenetic signal by estimating Blomberg’s K [35] on the genome size of the

GTDB genome dataset (Fig 2). Values of Blomberg’s K between 0 and 1 indicate that the

sizes of closely related genomes resemble each other but less than expected under the

Brownian Motion model (BM) of trait evolution, where trait variation is proportional to

phylogenetic distance [26]. Conversely, a K of 1 is evidence of genome size variation

according to the Brownian Motion expectation [35]. We observed phylogenetic signal in

genome size data that is strong but different to what would be expected under the Brown-

ian Motion model (BM) (K = 0.51, P = 0.001), suggesting that although genome size shows

phylogenetic signal, variation is not fully explained through phylogenetic distance in our

tree [40].

In addition, we tested the fit of different models of trait evolution for genome size, includ-

ing Brownian Motion [40], Ornstein-Uhlenbeck [41], Early-Burst [42], a diffusion model,

Pagel’s model [43], a drift model, and a white-noise model (non-phylogenetic signal)

(Table 1). According to a likelihood ratio test performed (P<0.001 when compared with the

next-best likelihood), Pagel’s model showed the best fit (Table 1) with a lambda value of 0.90

(P<0.001). The Pagel’s lambda (λ) represents how strongly phylogenetic relationships predict

the observed pattern of variation of a trait at the tips of a phylogeny, and varies from 0 (no phy-

logenetic signal) to 1 (phylogenetic signal under BM) [43]. Although we obtained different

estimates for Blomberg’s K and Pagel’s λ, we considered that λ is more reliable because this

metric is more robust than Blomberg’s K in situations of erroneous branch lengths [44]. Our λ
estimate supports our conclusion that genome size data in bacteria and archaea show phyloge-

netic signal. These findings indicate that genome size in bacteria and archaea does not evolve

independently of broad evolutionary relationships. To confirm that our phylogenetic signal

estimates are not unduly influenced by the phylogenetic scale that we examined, we repeated

our analyses using a larger set of genomes consisting of multiple representatives for each genus
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(S1 Data) and we observed a similar trend (S1 Table), suggesting that the phylogenetic signal

trend observed in genome size data is not the result of a biased taxonomic representation.

Moreover, for our genus-level tree we estimated kappa (k) and delta (δ) on genome size data,

two parameters that describe the mode of evolution of a trait (punctuated vs gradual) and the

rate change across the phylogeny (acceleration vs deceleration), respectively [45]. Our esti-

mates (k = 0.24 and δ = 3) are consistent with a gradual and late diversification of genome size

in bacteria and archaea, which might indicate lineage-specific adaptations [43,45].

Because phylogenetic signal estimates can be biased due to sample size [46], we measured

phylogenetic signal within each phylum (Fig 1A). Our results indicate that most of the phyla

with a small sample size (<25 genomes) showed remarkably large or small K and λ values (S3

Fig), consistent with previous findings that small sample sizes lead to biased estimates [38,46].

Fig 2. Genome size distribution across the Tree of Life of bacteria and archaea using one representative genome for each genus. Phylogenetic tree was built

using a concatenated alignment of ribosomal and RNA polymerase sequences through a maximum likelihood approach and the substitution model LG+R10.

Abbreviations: TACK = Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota; TDS = Thermotogota, Deinococcota, and Synergistota;

AMND = Acidobacteriota, Methylomirabilota, Nitrospirota, Deferribacterota. Raw data for genome size can be found in S2 Data.

https://doi.org/10.1371/journal.pgen.1010220.g002
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We did not observe a linear increase in λ values with the number of genomes tested, however,

suggesting that the large lambda estimate found in our overall genome size data is not associ-

ated with our large sample size (S3 Fig).

Non-phylogenetic regression overestimates the effect of dN/dS on genome

size

We next explored whether the residuals resulting from the statistical association between

genome size and other traits show phylogenetic signal. Previous studies have suggested that

high levels of genetic drift are related with a decrease in genome size in bacteria [8,47]. How-

ever, such studies were based on a limited set of genomes available at the time and did not

include a broad repertoire of streamlined genomes, which are notable for their small genomes

and large effective population sizes [12,48]. We first investigated whether this trend is main-

tained when including a broader diversity of taxa by calculating pairwise dN/dS values for

each genus in the GTDB genomes dataset. Our non-phylogenetic generalized least squares

(GLS) showed a positive and significant but weak correlation between genome size and dN/dS

(P<0.001, Pseudo-R2 = 0.04, Table 2, Fig 3A). This result contrasts with earlier studies report-

ing a strong relationship between genome content and dN/dS [8,47]; we attribute this large

discrepancy to the broad taxonomic representation in our dataset, which includes small

genomes under both strong purifying selection and genetic drift [12]. Interestingly, when con-

sidering phylogeny through the better-fitting Pagel’s model, our phylogenetic generalized least

squares model (PGLS) showed poorer predictability and a non-significant relationship

between both variables (P = 0.5, Pseudo-R2 = 0.0006, Table 2, Fig 3A). Similar results were

found in a study that analyzed the phylogenetic signal associated with genome size across pro-

karyotes and eukaryotes [49,50]. In this previous study, authors showed that the phylogenetic

signal found in genome size data caused a biased association between Ne.μ (approximated

Table 1. Summary of model fitting for genome size data. We highlighted the model that showed the highest likeli-

hood and the lowest AIC.

Model Loglik Parameters AIC

Brownian motion -1463.3 Sigma = 12.3

Root state = 2.7

2930.7

Ornstein-Uhlenbeck -1420.7 alpha = 2.7

Sigma = 17.5

Root state = 3.1

2847.4

Early-Burst -1463.3 a = 0

Sigma = 12.3

Root state = 2.7

2932.7

Pagel’s model� -1415.6 Lambda = 0.9

Sigma = 6.2

Root state = 2.7

2837.2

Trend diffusion -1447.7 Slope = 100

Sigma = 0.1

Root state = 2.9

2901.3

Drift -1463.3 Drift = -99.9

Sigma = 12.2

Root state = 102.7

2932.7

White-noise -1695.6 Sigma = 3.4

Root state = 3.9

3395.2

�Significantly higher likelihood when compared with the rest of the models tested according to the chisq test

(P<0.001)

https://doi.org/10.1371/journal.pgen.1010220.t001
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through nucleotide diversity) and other genetic traits, including genome size [49,50]. Our

PGLS analysis indicates that not only does genome size data show phylogenetic signal, but that

the residuals of our regression models also bear this signal (Table 2), confirming the need of

assessment of phylogenetic-based methods when studying the evolution of genome size

[46,51]. We also calculated the lambda parameter on our dN/dS data, and the value found (λ =

0.68; 95% CI = 0.56–0.77) indicates a relatively high phylogenetic signal for this variable, sug-

gesting that phylogenetically related microorganisms tend to experience similar levels of selec-

tion. Altogether, these results suggest that correlations between dN/dS and genome size found

previously are largely driven by poor sampling and artifacts that arise by not specifically

accounting for the recent shared evolutionary history of many lineages [26].

Although our results indicate that dN/dS is a poor predictor of genome size in bacteria and

archaea (Fig 3A), it is worth mentioning that dN/dS only reflects recent evolutionary constraints

due to saturation of substitutions at synonymous sites [52,53]. Therefore, we do not discount that

genome reduction may be driven in part by processes such as population bottlenecks and periods

of relaxed selection that happened in the past but are not reflected in dN/dS estimations. This sce-

nario has been suggested for Prochlorococcus, in which the genome simplification observed in this

clade could be the result of periods of relaxed selection experienced in the past [53].

Ecological strategy plays a role in genome size evolution in bacteria and

archaea

In addition to testing the effect of the strength of selection on genome size, we also assessed the

predictability of genome size from 16S rRNA copies as an approximation to ecological strategy

using both, GLS and PGLS. Previous studies have shown that copies of the rrn operon can be a pre-

dictor of the number of ribosomes that a cell can produce simultaneously, and that this reflects the

Table 2. Statistics of the regression models relating genome size with dN/dS and 16S rRNA as predictor variables using Generalized Least Square and Phylogenetic

Least Square analyses. We highlighted the models that were statistically significant (α = 0.05).

Model Predictor variable Kappa (95%

CI)

Lambda (95%

CI)

Delta (95%

CI)

Slope Intercept P-val AIC R2

Generalized Least Square

Genome Size ~ Median dN/dS dN/dS - - - 13.57 2.97 <0.001 3366.2 0.04�

Genome Size ~ 16S rRNA copies 16S rRNA copies - - - 0.12 3.65 0.002 3387.7

0.01�

Genome Size ~ Median dN/dS + 16S

rRNA copies

dN/dS + 16S rRNA

copies

- - - 14.11/

0.13

2.7 <0.001 3355.9

0.05�

Phylogenetic Generalized Least Square

Genome Size ~ Median dN/dS dN/dS 0.48 (0.39–

0.58)

0.98a,b

(0.96–0.99)

2.44

(2.01–2.85)

1.26 2.46 0.5 2748.8 0.0006��

Genome Size ~ 16S rRNA copies 16S rRNA copies 0.49

(0.34–0.59)

0.98a

(0.96–0.99)

2.49

(2.06–2.9)

0.08 2.42 0.003 2740.268 0.01��

Genome Size ~ Median dN/dS + 16S

rRNA copies���

dN/dS + 16S rRNA

copies

0.49

(0.40–0.59)

0.98a,b

(0.96–0.

99)

2.51

(2.08–2.93)

1.29/

0.08

2.35 0.009 2741.79 0.01��

�Nagelkerke’s R2

�� Multiple R square; percentage of variance explained between a null model and the actual model given that precise model of trait change

���Anova did not show significant differences between models Genome Size ~ 16S rRNA copies and Genome Size ~ Median dN/dS + 16S rRNA copies (P = 0.48)
aSignificantly different from 0 (no phylogenetic signal)
bSignificantly different from 1 (Brownian Motion expectation)

https://doi.org/10.1371/journal.pgen.1010220.t002
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ecological strategy in microorganisms [54,55]. A large number of rrn copies is associated with the

ability to adapt quickly to fluctuating environmental conditions (i.e., “boom and bust” strategies)

[56], while multiple rrn copies would confer a metabolic burden to slow-growing microorganisms

living in stable or low-nutrients environments because of ribosome overproduction [54]. Similarly

to what we observed for dN/dS, we found a weak, positive, and significant relationship between

genome size and 16S rRNA copies when using GLS (P<0.001, Pseudo-R2 = 0.01, Table 2, Fig 3B).

Interestingly, we still observed a significant relationship when accounting for the phylogenetic sig-

nal in the residuals through a PGLS analysis (P = 0.003, Pseudo-R2 = 0.01, Table 2, Fig 3B). How-

ever, the Pagel’s lambda of this model was not significantly different from 1 (Table 2), indicating

that the residuals of this model show a distribution closer to the BM expectation. After fitting

under the BM, we still observed a positive and significant relationship between genome size and

16S rRNA copies (P<0.001, Pseudo-R2 = 0.02). Although the predictability of 16S rRNA is weak

under both BM and Pagel’s model, our findings suggest that environment complexity plays a role

on genome size independently of phylogenetic relationships. This is consistent with the observa-

tion that larger genomes tend to inhabit environments with temporal variability and diversity of

resources [57,58]. In addition to fitting our model using dN/dS and 16S rRNA copies individually

as predictors, we fitted an additive model with both variables (Table 2). An ANOVA test showed

that a model including both variables does not significantly improve the fit when compared with

the model based on 16S rRNA copies as a unique predictor variable (P = 0.48).

A hypothesis for the evolutionary processes that shape genome size in

bacteria and archaea

According to our phylogenetic comparative framework (Tables 1 and 2 and Fig 3), lineages

with recent shared evolutionary history tend to maintain similar sizes since the divergence

from their common ancestor. Nevertheless the pattern of variation in genome size data (λ =

Fig 3. Relationship between genome size and genomic traits for bacteria and archaea using one representative genome for each genus. A) Regression line

of the relationship between genome size and dN/dS ratio before (dashed line) and after (solid line) taking phylogenetic relationships into account through the

Pagel’s model. B) Regression line of the relationship between genome size and 16S rRNA copies before (dashed line) and after (solid line) taking phylogenetic

relationships into account through the Brownian Motion model. Parameters of the regression equation for both relationships can be found in Table 2. Raw data

can be found in S2 Data.

https://doi.org/10.1371/journal.pgen.1010220.g003
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0.90) differs from what would be expected under the Brownian Motion model. This finding

suggests that besides evolutionary relationships, there are other variables defining genome size

in prokaryotes. Our results are consistent with the view that genome size in prokaryotes is the

result of a complex interplay of multiple variables, including evolutionary history, past events

such as population bottlenecks, and environmental complexity (substrates available, variability

in environmental factors, biotic pressure, etc.), but it can still remain relatively stable at broad

phylogenetic scales. Although several factors have been proposed to be singular drivers of

genome size in prokaryotes, such as effective population size [59], ecological strategy [19,60],

and mutation rate [21–23], our findings strongly suggest that genome size is a complex trait

determined by the interaction of multiple variables, and that the relative importance of these

factors may vary across lineages.

Phylogenetic signal estimates can vary across phylogenetic scales [61], and it is therefore

possible that the strong phylogenetic signal found in our analyses is weaker or not observed at

finer scales. This is particularly expected in clades that experience rapid genome turnover due

to the acquisition and loss of genes through horizontal gene transfer events (HGT) and dele-

tions, respectively. For example, genome contraction events are expected in endosymbionts

like Buchnera and Blattabacterium, which are thought to derive from a large-genome ancestor

[10], and are frequently undergoing bottlenecks and periods of diversity loss [9,10,62]. Such

exacerbated loss of genes and diversity is enhanced by the nearly absent homologous recombi-

nation found in vertically transmitted endosymbionts [63]. These observations are consistent

with the relatively high dN/dS value and small genome size that we observed for Buchnera and

Blattabacterium (Fig 4). In contrast, some abundant marine clades inhabiting the open ocean

such as Prochloroccocus and Pelagibacter have undergone long periods of adaptation and spe-

cialization to their stable environments [64,65]. The open ocean is characterized by chroni-

cally-oligotrophic nutrient conditions that are stable throughout the year [66], and genes that

are under relaxed selection are therefore pseudogenized and lost [12]. The latter is supported

by the unusual growth requirements and low number of transcriptional regulators found in

Pelagibacter, which is expected to limit its response to changing environmental conditions

[67,68]. Consistent with these observations, we observed low dN/dS values, small genome size,

and fewer 16S rRNA for these streamlined bacteria (Fig 4). The small genomes observed in

both endosymbionts and free-living planktonic lineages are therefore likely the result of dis-

tinct evolutionary processes, as previously proposed [17].

In contrast to the genome simplification observed in host-dependent and streamlined pro-

karyotes, genome expansion is expected in free-living lineages that inhabit complex environ-

ments like soils or sediments, where microenvironments with strikingly different abiotic

conditions can be found millimeters apart [69]. Although temporal diversity declines and

sweeps for specific gene variants are likely to occur in soil prokaryotes due to rapidly changing

environmental conditions [69,70], larger genomes may be selected in these environmental

realms due to variable abiotic and biotic constraints. Indeed, a study exploring the genes

enriched in larger genomes of soil prokaryotes found a larger proportion of genes involved in

regulation and secondary metabolism, and were depleted in genes related with translation,

replication, cell division, and nucleotides metabolism when compared with smaller genomes

[60]. These environmental and genomic findings are consistent with the large genome sizes,

intermediate dN/dS, and multiple 16S rRNA copies estimated in our study for soil microor-

ganisms of the genera Actinomyces, Actinoplanes, and Myxococcus (Fig 4), the latter showing

complex fruiting body development [71]. It is interesting to note that the largest genomes ana-

lyzed in our study (>6 Mpb) tend to experience intermediate levels of purifying selection (dN/

dS), suggesting that either extremely high or low purifying selection are not conducive to geno-

mic expansion events.
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Conclusions

Despite the increase of genomes available on publicly available databases, the evolutionary pro-

cesses and factors driving genome size and content in bacteria and archaea are continuously

debated. Several studies have proposed ecological strategies, the strength of purifying selection,

and mutation rate as prominent forces that individually determine prokaryotic genome size.

Our statistical approach shows that, at broad phylogenetic scales, evolutionary history plays a

large role in structuring genome size distributions across bacteria and archaea. Genome size is

therefore not independent of phylogeny, and a failure to account for this can lead to mislead-

ing associations between traits. In some ways our finding of a strong phylogenetic signal to

genome size in prokaryotes across broad evolutionary timescales is paradoxical given the well-

known variability of prokaryotic genome size within species and between closely-related line-

ages [31–34]. These two realities need not conflict, however; for example it is possible that

genome size fluctuates rapidly at short evolutionary timescales but remains relatively constant

due to an overall balancing of gene gain and loss over long periods of time. The significant but

poor relationship between genome size and 16S rRNA copies suggest that besides phylogenetic

history, ecological strategy plays a role in shaping genome size in bacteria and archaea,

although this single trait is insufficient to completely represent ecological strategies. Future

studies will be necessary to evaluate the evolution of genome size on a lineage-by-lineage basis.

However the strong phylogenetic signal observed in genome size data indicates that analyses

Fig 4. Relationship between genome size and dN/dS. dN/dS values represent the median estimate for each genus cluster. Dots

represent a representative genome for each genus and size is equivalent to the number of 16S rRNA gene copies. Raw data can be found

in S2 Data.

https://doi.org/10.1371/journal.pgen.1010220.g004
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involving this trait cannot consider species as phylogenetically independent, therefore phylo-

genetic relatedness should be assessed and taken into account in order to avoid simplified

models and biased associations between traits.

Material and methods

Genomes compilation and phylogenetic reconstruction

In order to estimate the phylogenetic signal in genome size data at a broad phylogenetic

scale, we compiled a genomes dataset that included a broad diversity of bacteria and

archaea. All the representative genomes available on the Genome Taxonomy Database

(GTDB) (Release 05-RS95; 17th July 2020) [28,29] were filtered based on completeness (> =

95%) and contamination (< = 5%) and then classified at the class levels. Genomes belonging

to the phylum Patescibacteria (also known as Candidate Phyla Radiation or CPR) were fil-

tered using the parameters completeness> = 80% and contamination< = 5%. After filtering

and classification, classes with more than 500 genomes were randomly downsample to 500

genomes. The resulting genomes were clustered based on their taxonomic identity at the

genus level and genera with fewer than two genomes were discarded from further analyses.

Our final dataset consisted of 4380 genomes classified in 836 genera. For phylogenetic

reconstruction, we randomly selected one genome from each genus (referred hereafter as

GTDB genomes dataset) and used the MarkerFinder pipeline reported previously [30]. This

pipeline consisted in the identification of 27 ribosomal proteins and three RNA polymerase

genes (Ribosomal-RNAP set) [72] using HMMER3. The resulting individual sequences

were aligned with ClustalOmega and concatenated. We trimmed the concatenated align-

ment with trimAl [73] using the option -gt 0.1. The Ribosomal-RNAP alignment was then

used to build the phylogenetic tree with IQ-TREE 1.6.12 [74] with the substitutions model

LG+R10 and the options -wbt, -bb 1000, and—runs 10 [75–77]. The resulting phylogeny

was manually inspected on iTOL [78] (Fig 2). Raw phylogenetic tree is included in S1

Phylogeny.

dN/dS estimation and rrn genes identification

To investigate whether the phylogenetic signal in genome size data leads to biased associations

with other variables like the strength of selection and ecological strategy, we estimated the

ratio of synonymous and nonsynonymous substitutions (dN/dS) within each genus cluster of

our GTDB genomes dataset using two sets of conserved marker genes, checkm_bact and

checkm_arch for bacteria and archaea, respectively [79]. Genomes used to calculate the dN/dS

for each genus cluster are reported in S1 Data. The open reading frames (ORFs) retrieved from

the GTDB were compared to the HMMs of the checkm_bact (120 marker genes) and check-

m_arch marker (122 marker genes) sets using the hmmsearch tool available in HMMER v.

3.2.1 with the reported model-specific cutoffs [80]. We aligned the amino acid sequences for

each marker gene and each genus cluster individually using ClustalOmega [81], and then con-

verted amino acid alignments into codon alignments using PAL2NAL with the parameter—

nogap [82]. We used the resulting codon alignments to estimate the pairwise ratio of synony-

mous and nonsynonymous substitutions for each pair of genomes using the maximum likeli-

hood approximation (codeML) available on PAML 4.9h (runmode = -2) [83]. In order to

avoid bias associated with divergence, dN/dS estimates with dS>1.5 were removed due to

potential saturation. We also discarded pairwise comparisons with dS<0.1 because these

might represent dN/dS values calculated from genomes of the same population. Moreover,

dN/dS values >10 were considered artifactual [48]. Genomes with fewer than 25 dN/dS esti-

mates remaining after filtering were discarded. We used the resulting median dN/dS of our
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representative genomes for further analysis. In order to examine the effect of genes’ selection

on final dN/dS estimations, we randomly selected 40 genera and identified their core genes

using CoreCruncher [84] using usearch [85] and the default parameters except for -score 80.

We estimated the pairwise dN/dS for each core gene using the approach described previously

and estimated the median dN/dS for our genus-representative genomes. A linear regression

between the dN/dS values resulting from core genes and the 120 marker genes set for the 40

genera showed similar results (S2 Fig), therefore we used the latter for further statistical analy-

ses. In addition, we predicted ribosomal RNA genes in our representative genomes as an

approximation to ecological strategy using Barrnap with the default parameters (barrnap 0.9:

rapid ribosomal RNA prediction; https://github.com/tseemann/barrnap). Genome size, 16S

rRNA copies, and dN/dS values for the GTDB representative genomes dataset are reported in

S2 Data.

Statistical analyses

Due to the tendency of related species to resemble each other because of their shared phyloge-

netic ancestry, we assessed the suitability of a phylogeny-based method for our regression anal-

yses by first estimating Blomberg’s K on genome size data [35] using the phylosignal function

on R [86]. This parameter represents the phylogenetic signal in a continuous trait, and goes

from 0 (no phylogenetic signal) to 1 (phylogenetic signal) with the null hypothesis (K = 1)

meaning that the trait analyzed evolves under Brownian Motion [40,87]. In addition, we also

tested the fit of different trait evolution models, including Brownian Motion [40], Ornstein-

Uhlenbeck [41], Early-Burst [42], a diffusion model, Pagel’s model [43], a drift model, and a

white-noise model (non-phylogenetic). We tested the predictability of genome size from dN/

dS and 16S rRNA copies as predictor variables using the “glm” function available on R. Since

we detected phylogenetic signal in genome size data, we additionally accounted for potential

phylogenetic nonindependence in the residuals using the PGLS method with the function pgls

on the R package Caper [88] and the Pagel’s model [43], as well as the function gls available on

the package ape [89]. We additionally tested the effect of sample size on the calculation of

Blomberg’s K and Pagel’s lambda by estimating these parameters within each phylum (Figs 1A

and S3). The trait data and the phylogeny used in these analyses can be found in S2 Data and

S1 Phylogeny, respectively. In addition to testing phylogenetic signal in a broad-scale phylog-

eny (S2 Data, Fig 2), we built a phylogenetic tree with multiple representative genomes for

each genus and the IQ-TREE workflow used for the rest of our analyses. The genome size data

and the phylogenetic tree used for this analysis can be found in S1 Data and S2 Phylogeny,

respectively.

Supporting information

S1 Data. Genomes used to calculate pairwise dN/dS within each genus cluster.

(TSV)

S2 Data. dN/dS, genome size, and rrn operon copies for each genus representative.

(TSV)

S1 Fig. Relationship between mean genome size and the difference in Mbp between the

largest and shortest genome for each genus cluster. Abbreviations: TDS = Thermotogota,

Deinococcota, and Synergistota. Raw data for genome size can be found in S3 Data.

(TIF)

S2 Fig. Regression between the dN/dS estimates resulting from 120 and 122 markers genes

for bacteria and archaea respectively, and the core genes of 40 randomly selected genera
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from the GTDB genomes dataset.

(TIF)

S3 Fig. Pagel’s lambda and Blomberg’s K estimation within GTDB genomes dataset phyla.

(TIF)

S1 Table. Summary of model fitting for genome size data using a fine scale phylogeny

(multiple representatives per genus). We highlighted the model that showed the highest like-

lihood and the lowest AIC.

(DOCX)

S1 Phylogeny. Broad scale phylogeny (one representative per genus) used to perform the

phylogenetic signal estimation on genome size data and the phylogenetic generalized least

square tests.

(TXT)

S2 Phylogeny. Fine scale phylogeny (multiple representatives per genus) used to perform

the phylogenetic signal estimation on genome size data.

(TXT)
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