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ABSTRACT: Machine learning holds the potential to be a powerful tool to aid
in designing catalytic and sustainable chemical systems. However, it is important
for experimental researchers to understand the capabilities of different machine
learning models when trained on experimental data. In this work, we trained
three different machine learning algorithms (decision tree, random forest, and
multilayer perceptron) with a hand-curated dataset of 127 reaction conditions for
electrocatalytic CO2 reduction on heterogeneous catalysts in aqueous electro-
lytes. The input to the machine learning models were the experimental
conditions, and we posed four separate outputs to each of these machine learning
algorithms: (1) if the number of proton-coupled electron transfer events was
greater than two, (2) if carbon−carbon coupling occurred, (3) if ethylene was
the major product, and (4) major product prediction. We observed that with a dataset of this size, all three machine learning models
could achieve accuracies between 0.7 and 0.8 for the three binary classification problems (1, 2, and 3). Also, the shallow learning
decision tree and random forest models performed equal to or better than the deep learning multilayer perceptron models. In the
multiclass classification problem (i.e., predicting the product) the accuracy for all models decreased, with the random forest model
producing the highest accuracy of 0.6. Analysis of the models showed that machine learning can independently arrive at conclusions
that are well-known in the literature, e.g., that Cu is an important catalyst for producing high-carbon content products, and discern
more-complicated patterns, with respect to feature importance.
KEYWORDS: Machine Learning, CO2 Conversion, Artificial Intelligence, Electrochemistry, Artificial Neural Network

■ INTRODUCTION
In designing catalytic and sustainable chemical systems, there
are an extensive number of process variables (e.g., temperatures,
pressures, solvents, catalytic centers, supports, promoters,
reactor configurations), and the interplay between these
variables is vastly complex. Traditionally, two approaches have
been taken for catalyst and reactor design: (1) an Edisonian/
empirical/screening approach that relies heavily on experimen-
tation and discovery, and (2) a fundamental approach where
mechanistic insights are used (often complemented by
computational chemistry) to guide experimental research.
Recently, there is an open question regarding how machine
learning can be used to augment chemical and catalytic research.
The field of machine learning is based on designing software

algorithms that learn from data, discern patterns, and make
predictions.1 This powerful data-driven approach is becoming
increasingly popular in many fields including medicine,2

material science,3 energy,4 and engineering,5−7 because of the
increasing availability and improvements in machine learning
tools and datasets.8 While still not used extensively in the field of
catalysis and sustainability, groups are starting to use machine
learning algorithms such as artificial neural networks to help
predict catalyst performance.9−14 In addition, it is becoming
increasingly popular to use a combination of density functional

theory (DFT) calculations and machine learning algorithms to
accelerate the search for new catalysts.8,15−18

Taking a complementary approach of using machine learning
trained on computational datasets, in this work, we aim to
discover what type of insights off-the-shelf machine learning
algorithms trained on experimental datasets can reveal about the
electrochemical reduction of CO2 on heterogeneous surfaces in
aqueous electrolytes. While there is some precedent in the
literature for machine learning algorithms to be used on
electrocatalytic data, this area has yet to be fully explored. For
example, Palkovits et al.10 were able to predict overpotentials of
the oxygen evolution reaction using artificial neural networks,
support vector regression, and K-nearest neighbor regression
models. Their input features consisted of elemental composition
of four different catalyst metals with a large dataset of over 6000
experimental data points found in the literature. Their results
confirmed that simple machine learning regression algorithms
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can predict overpotential on the oxygen evolution reaction,
which has a single reaction product and typically well-defined
experimental conditions. Here, we chose to investigate how
classification machine learning algorithms would fare on
electrochemical CO2 reduction, because the reaction pathway
is more complex and it is popular in sustainable chemistry
research. Specifically, the electrochemical reduction of CO2 is
seen as a popular route for enabling the electrification of the
chemical industry and for utilizing a ubiquitous greenhouse gas
pollutant.
There are several pathways for electrochemical CO2 reduction

on heterogeneous surfaces, depending on how strongly the
electrocatalysts adsorbs key CO2 intermediates. For example, it
is well-known that CO2 can be electrochemically reduced via
2e−/2H+ transfers with high selectivity and efficiency to either
CO (on electrocatalysts that strongly adsorbed CO2 inter-
mediates, e.g., Au)19,20 or formate (on electrocatalysts that
weakly adsorbed CO2 intermediates, e.g., Sn21,22 or Bi).23,24

However, copper electrocatalysts have long been known to
produce several C2 (i.e., two-carbon) products in aqueous
media.25−28 This C−C coupling occurs uniquely on Cu surfaces,
because the CO adsorption energy sits at an optimum, which
promotes the formation of C2 products.29−34 While there is
evidence that the local pH changes caused by basic cations in the
electrolyte can change the selectivity,35 it is still not clear what all
of the variables are that effect themajor product formation in the
electrochemical CO2 reduction reaction.
To demonstrate the ability of machine learning algorithms to

augment catalytic research, we proposed four classification
questions to three different machine learning models trained on
a custom-built dataset collected from literature. One of the road
blocks of using machine learning is obtaining datasets of
sufficient size so that the algorithms can detect patterns. Thus, to
determine if machine learning could be a useful tool to the
individual catalytic researcher, we restricted ourselves to a
dataset of the size that is typically collected by a traditional
literature search. Thus, our dataset consisted of 127 examples
taken from 106manuscripts (see the Supporting Information for
a full list of manuscripts). We used off-the-shelf shallow learning
(e.g., decision tree and random forest) and deep learning
(artificial neural network) algorithms to determine if the
algorithms could accurately predict (1) if the system would
undergo a two-electron transfer or more than a two-electron
transfer, (2) if the major product was a multicarbon product or a
single carbon product, (3) if the major product was (or was not)
ethylene, and (4) the major product.

■ METHODS
Compiling the Dataset and Data Processing. The dataset used

in this study was human-curated and was limited to a size that could be
reasonably obtained by a single researcher. To reduce the time used to
search for data in the literature, and tomimic the actual literature search
processes of a traditional catalysis researcher, review papers containing
tabular electrochemical CO2 reduction data were utilized. The
compiled dataset consists of 127 data points of different catalysts and
reaction conditions. The full dataset is provided in the Supporting
Information.
Feature Selection.When building machine learning algorithms, it

is important to decide which features (inputs) to include in the model.
We included features that we found to have a high likelihood of authors
including that information across multiple manuscripts. In this study,
the features extracted from the literature include catalyst metal, dopant,
structure, electrolyte, form, potential, and product. Some features that
may impact electrochemical CO2 reduction, or that were not widely or

uniformly reported in the literature, were not included in the database.
For example, for electrolytes commonly reported within the literature,
the pH is not commonly given.

Many of the features used in this dataset were categorical. For
example, we assigned the feature form to indicate if the catalyst was
either a metallic, oxide, nitride, or chalcogenide. The structure feature
was composed of 28 different types of catalyst structures including
polycrystalline, nanoparticles, and films. All categorical features were
label-encoded. However, the features catalyst metal and dopant were
encoded using the atomic number of the metal to give physical meaning
to the encoding. Numerical features such as applied potential were
entered as reported using the reversible hydrogen electrode (RHE) as
the potential reference or were converted to RHE using pH. If the
literature did not disclose a pH value, it was estimated using the
electrolyte used. A full list of all categorical features and their label
encodings are included in Tables S1, S2, and S3 in the Supporting
Information.

Machine Learning Packages. The Jupyter notebook framework
and Python programming language were used for all of the machine
learning studies. The decision tree and random forest algorithms were
implemented using the scikit-learn machine learning libraries. The
Keras library, which is a user-friendly wrapper for the Tensorflow, was
used for all artificial neural networks. All source code for this study can
be found in the Supporting Information.

Model Validation.Model validation was performed by splitting the
data with 80% in the training set and 20% in the testing set. To further
ensure the accuracy scores for the machine learning algorithms, 5-fold
cross validation was performed. The algorithms used the scikit-learn
kfold function with 5 splits to create training and testing sets that
incorporate the entire dataset. The scores are calculated for each
validation set and an average is taken to give the cross-validation score.
For decision trees and random forests, the max depth parameter was
varied and for neural networks the number of hidden layers and nodes
were varied. The models were then run to determine the parameters
that produced the highest accuracy using F-1 score, precision, and
recall.

■ RESULTS AND DISCUSSION
Dataset andMachine LearningModels. Electrochemical

CO2 reduction can undergo several different reaction pathways
(a subset is shown in Table 1). There are three binary
classification questions relevant to electrochemical CO2
conversion research:

Table 1. Possible Electrochemical CO2 Reduction Reactions
Pathways along with Whether the Reaction Pathway
Undergoes More than Two Electron Transfers, Undergoes
C−C Coupling, or Produces Ethylene

product
2+

electrons multicarbon ethylene

CO2 + 2H+ + 2e− → HCOOH N N N
CO2 + 1H+ + 2e− → HCOO− N N N
CO2 + 2H+ + 2e− →CO + H2O N N N
CO2 + 8H+ + 8e− →CH4 + 2H2O Y N N
2CO2 + 7H+ + 8e− →C2H3OO− +
2H2O

Y Y N

2 CO2 + 10H+ + 10e− → CH3CHO +
3H2O

Y Y N

2 CO2 + 12H+ + 12e− → C2H4 + 4H2O Y Y Y
2 CO2 + 12H+ + 12e− → C2H5OH +
3H2O

Y Y N

2 CO2 + 14H+ + 14e− → C2H6 + 4H2O Y Y N
2 CO2 + 18H+ + 18e− → C3H7OH +
5H2O

Y Y N
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(1) Will specific catalyst/reaction conditions undergo a
simple two-electron reduction or undergo more than a
two-electron reduction?

(2) Is the major product single carbon or multicarbon?
(3) Is the major product ethylene or not ethylene?

For these binary classification questions, the dataset is relatively
well balanced. Out of the 127 reaction conditions in the dataset,
there are 59 products that result from a two-electron transfer
versus 68 that result from more-than-a-two-electron transfer, 55
multicarbon products versus 72 single carbon products, and 40
that have ethylene as the major product and 87 that do not have
ethylene.
Figure 1 shows the models used to ascertain the ability of off-

the-shelf machine learning algorithms to aid in electrocatalytic
design. We started with decision trees (Figure 1a), which are
supervised learning algorithms that split datasets based on
descriptive features that enable the resulting sub-datasets to be
as pure as possible (with respect to output label). We also
investigated random forest algorithms (Figure 1b), which
consist of a large number of individual decision trees that
operate as an ensemble, where each individual decision tree is
trained on a subset of the dataset, and the final output is a
majority vote among all the trees. Lastly, we used multilayer
perceptron artificial neural networks, which are nonlinear
regression or “deep learning” models inspired by the human
brain. All of these models were evaluated using simple and user-
friendly Python packages (sci-kit learn for the decision tree and
random forest models and Keras for the artificial neural
network) and all four questions were evaluated for all models.

Numbers of Electrons Transferred. In this set of machine
learning experiments, the experimental and catalyst conditions
were used as the features, and the label was whether the major
reaction pathway was a two-electron transfer or more than a two-
electron transfer. A summary of the machine learning results are
shown in Figures 2 and 3.
Even though decision trees are relatively simple machine

learning algorithms, the fact that they are able to split data based
on minimizing the gini impurity (i.e., separate the data into bins,
which makes each bin as pure as possible), we observed several
correlations by analyzing decision trees. Supporting Information
Figure S1a shows an example tree with a depth of two.
Intuitively, one may expect that the root node (i.e., the feature
that would separate the data best) for achieving more than two
proton-coupled electron transfer events would be if the catalyst
metal was copper. However, this model showed that splitting the
data on the applied potential first actually separated the data the
most. For example, of the 127 total samples, 52 samples had an
applied potential more negative than−0.878 V vs RHE. Of these
samples with highly negative applied potentials, 41 were able to
produce products that had more than two proton-coupled
electron transfer events. Contrastingly, of the 49 samples that
had potentials less negative than−0.879 V vs RHE, only 13 were
able to achieve reactions with more than two proton-coupled
electron transfer events. Moreover, of those 41 samples where
the potential was more negative than −0.879 V vs RHE, 40 used
potassium-based electrolytes. This indicates that applying a
potential more negative than −0.879 V with potassium-based

Figure 1. Representations of machine learning models investigated: (a) decision trees, (b) random forest, and (c) multilayer perceptron.

Figure 2. Machine learning results predicting the number of electrons transferred in the electrochemical reduction of CO2: (a) accuracy versus
maximum depth for the decision tree; (b) feature importance obtained from the random forest; and (c) accuracy comparison for decision tree, random
forest, and multilayer perceptron.
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electrolytes is important for achieving more than two proton-
coupled electron transfer events.
A drawback to decision trees is that it is easy to obtain an

overfit model by simply increasing the depth of the tree (i.e.,
allowing the tree to keep splitting the data). To avoid overfitting,
the training and testing set accuracy scores were plotted versus
the max depth shown in Figure 2a. The max depth of the final
decision tree was chosen based on when the testing set accuracy
no longer increased as the training set accuracy increased.
Therefore, the max depth for the more than two-electron
predicting tree was three layers (see Figure S1b in the
Supporting Information). This tree was able to produce an
accuracy score of 0.77 on the testing set. This increased accuracy
was obtained by adding in the catalyst metal in the third layer. A
5-fold cross-validation was performed over the entire dataset to
ensure the training set did not overly influence the output
accuracy. The cross-validation score for this dataset was
determined to be 0.78, demonstrating the quality of the
model. The precision, recall, and confusion matrix were also
calculated for this decision tree and are shown in Figure 3. From
the precision, recall, and confusion matrix, it can be determined
that all of the samples in the testing set that actually produced
more than two proton-coupled electron transfer events were
correctly predicted by the model. However, if the sample
actually only produced a two-proton coupled electron transfer,
the model’s accuracy was 0.5. There were six total two-proton

coupled electron transfer events that were incorrectly catego-
rized as more than two proton-coupled electron transfers.
An advantage of decision trees is that you can determine at

which decision on the tree the training set was incorrectly
classified (see the Supporting Information). For example, this
decision tree has three layers and eight child leaves. Many of
these child leaves have very low gini impurity and, thus, are good
for accurate prediction. For example, there were 40 samples that
had an applied potential more negative than −0.879 V vs RHE
and used 1 of the first 13 electrolytes and had 1 of the first 5
structures (see Tables S1 and S2 in the Supporting Information
for electrolyte and structure encodings). Of these 40 samples, 38
underwent more than two-electron transfer events for the major
product. In addition, there were 18 samples that had potentials
less negative than −0.801 V vs RHE and used a catalyst that was
Pd or heavier. All of these samples produced two-electron
transfer products. However, there was one child leaf with a gini
impurity of only 0.475. These were samples that had potentials
less negative than −0.879 V vs RHE, a catalyst metal that was
copper (or lighter), and were either metallic or a chalcogenide.
Of these 19 samples, 11 produced more than two-electron
transfer products, and 7 produced two-electron transfer
products. Thus, Cu catalysts at potentials less negative than
−0.979 V vs RHE will sometimes undergo more than two
electron transfers and will sometimes undergo only two electron
transfers. Interestingly, 3 of the 6 data points in the testing set
that were incorrectly predicted also occurred at this leaf node.

Figure 3. Confusion matrix for predicting the number of electrons transferred in the electrochemical reduction of CO2: (a) decision tree, (b) random
forest, and (c) multilayer perceptron. (d) summary of accuracy, precision, and recall. DT = Decision Tree, RF = Random Forest, NN = Neural
Network.
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These were samples that used Cu catalysts, but with a low
applied potential, and themajor product was only a two-electron
transfer product.
The second algorithm used to predict whether the reaction

undergoes more than two proton-coupled electron transfer
events was random forest. Random forests usemultiple trees and
take the most popular prediction from the ensemble of trees as
their final output. Traditionally, training multiple trees and
different subsets of the dataset can produce models with higher
accuracy. Here, the random forest algorithm for the proposed
questions was trained with 100 decision trees over a range of
maximum depths (see the Supporting Information).
For the two-electron prediction, the max depth given by the

training and testing set accuracy was determined to be 1 (see the
Supporting Information). The random forest with a max depth
of 1 produced an accuracy score of 0.8. The confusion matrix
shows that the random forest algorithm predicted 13 out of the
14 greater than two proton-coupled electron transfer events
correctly, while the two-proton coupled electron transfer was
predicted in 8 out of the 12 instances.
Similar to the decision tree, all data points in the testing set

that used Cu (or lighter) catalysts were predicted to have more
than two electron transfers. However, all four of the testing set
samples that were incorrectly classified by the model were
samples that used copper, but hadmajor products that were only
two-electron transfers. Furthermore, the sample in the testing
set that was misclassified by the model as a two-proton coupled
electron transfer used silver. All other samples in the testing set
with catalysts heavier that copper were classified as a two-proton
coupled electron transfer.
Comparing these results to the decision tree confusionmatrix,

the random forest algorithm slightly increases the precision of
the more than two proton-coupled electron transfer events and
recall of the two-proton coupled electron transfer events.
However, with this increase comes a slight decrease in the
precision and recall of the two-proton coupled electron transfer
events and the greater than two proton-coupled electron transfer
events, respectively. Similar to the decision trees, cross-
validation was performed over the entire dataset for the random
forest algorithm, and the cross-validation accuracy was found to
be 0.77.
Even though examining splits on a single decision tree can give

some information on which features affect the outcome the

most, random forest models can give more quantitative feature
importance data, because they train over multiple decision trees.
As seen in Figure 2b, the higher the feature importance, themore
themodel used the feature tomake decisions. The random forest
algorithm with the max depth of 1 indicated that the electrolyte
and potential were the two most important features, closely
followed by catalyst metal. This matches what we saw from the
single decision tree and verifies that the applied potential and
electrolyte are important features that affect the products of
electrochemical CO2 reduction.
The last algorithm used for prediction was an artificial neural

network. Artificial neural networks are popular because they can
produce highly accurate models on complex datasets. However,
the disadvantage is that they often require large datasets for
training, and it is difficult to obtain insights such as feature
importance. To predict the number of proton-coupled electron
transfer events, the neural network was tuned using the Keras
hyperband tuner to obtain the best number of layers, number of
nodes, and learning rate for the data. The tuner gave a model
with 5 layers and 1 output layer containing 80, 176, 96, 176, 160,
and 1 nodes. The best learning rate was found to be 0.001. The
number of nodes determined by the Keras tuner to give the
highest accuracy was large for the size of the dataset. Generally
smaller amounts of nodes in neural networks are considered
better. However, the Keras tuner removes the variability of
manually determining the best number of layers and nodes.
Interestingly, the neural network model performed with the
same accuracy as the decision tree with these parameters, giving
a model with an accuracy score of 0.77. The 5-fold cross-
validation accuracy was calculated to be 0.71.
The confusion matrix for the neural network shows the two

proton-coupled electron transfer event was correctly predicted
11 times, while 4 samples were misclassified as greater than two
proton-coupled electron transfers. The more than two proton-
coupled electron transfer samples were correctly predicted 9
times, with only 2 samples being incorrectly labeled as a two
proton-coupled electron transfer. Since neural networks can be
described as a “black box” model, the structure of the network
does not give insights to how the predictions are made.
However, the prediction of the testing set data may be able to
give us clues on how it predicts. In the testing set, 11 out of the
26 samples had catalysts heavier than copper. All but 1 sample
with catalysts heavier than copper were labeled as a two-proton-

Figure 4. Machine learning results predicting whether the major product underwent C−C coupling in the electrochemical reduction of CO2: (a)
accuracy versus maximum depth for the decision tree; (b) feature importance obtained from the random forest; and (c) accuracy comparison for
decision tree, random forest, and multilayer perceptron.
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coupled electron transfer by the model. The single sample that
was not classified as a two proton-coupled electron transfer was
1 of the 4 misclassified as greater than two-proton-coupled
electron transfer in the testing set. Moreover, out of the samples
heavier than copper in the testing set, only 1 sample with a Pt
catalyst was incorrectly classified as a two-proton-coupled
electron transfer.
Multicarbon Prediction. The next question that we asked

the same three algorithms to predict is whether the product was
a multicarbon or single-carbon product (see Figures 4 and 5).
The difference between this question and the more than two
proton-coupled electron transfer reactions is that products such
as methane and methanol undergo more than two electron
transfer events, but do not undergo C−C coupling.
The decision tree for the multicarbon prediction had a root

node of catalyst metal atomic number of less than 29.5. This is an
interesting finding, because we used a hierarchical label
encoding for catalyst metal based on atomic number. Thus,
when the model predicts that multicarbon products are formed
with an atomic number less than 29.5, this implies that the
catalyst metal is copper (or lighter). The model also predicted
that, for catalysts with an atomic number larger than 29.5, the
classification was single carbon. For those catalysts whose
atomic number was less than 29.5 (i.e., copper or lighter),
further improvement could be made by again looking if the
applied potential was highly negative. Similar to above, the
training and testing set accuracy was plotted and the max depth

of the tree that gave the highest accuracy was determined to be 5.
The final decision tree can be found in the Supporting
Information.
The decision tree gave an accuracy score of 0.88 with high

precision and recall for both the single carbon and multicarbon
predictions. The confusion matrix indicates that all 15 of the
single-carbon instances in the testing set were correctly
predicted as single carbon. For the multicarbon predictions, 8
out of the 11 were correctly predicted as multicarbon products
with 3 instances being incorrectly labeled as single-carbon
products. By comparing the 3 misclassified data points in the
training set to the decision tree, we can see where the algorithm
misclassified. The first sample incorrectly labeled as single
carbon had a high atomic number of 78, indicating Pt as the
catalyst. Coincidentally, this sample was the only one in the
database to have Pt as its catalyst. Therefore, there was no
training data for the model to learn from to correctly classify this
as a multicarbon product. This indicates that the Pt catalyst may
be incorrectly classified in other models, because of the lack of
representative training data. The second data point incorrectly
classified was a Cu catalyst with a potential of −0.85 V that
produced a multicarbon product. It was misclassified as single
carbon due to its “low potential” and its electrolyte being K2SO4.
Interestingly, the child leaf that this data point was split into had
a gini of 0, meaning that all the testing data in that leaf were
single-carbon samples. The last misclassified sample in the
testing set was classified as single carbon, because the catalyst

Figure 5. Confusion matrix for predicting the whether a C−C coupling occurred in the electrochemical reduction of CO2: (a) decision tree. (b)
random forest, and (c) multilayer perceptron. (d) summary of accuracy, precision, and recall. DT =Decision Tree, RF = Random Forest, NN =Neural
Network.
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metal was nickel. Interestingly, the training set data there

contained one data point with a nickel catalyst that had a

potential more negative than −0.876 V that produced methane,

a single-carbon product. Therefore, the model predicted the

testing sample with a nickel catalyst to be single carbon as well.

Cross-validation was performed over the entire dataset and the
accuracy was found to be 0.76.
The random forest algorithm was trained over 100 trees and a

range of maximum depths (see the Supporting Information).
The max depth found to be optimal for multicarbon prediction
was a max depth of 2. With a max depth of 2, the accuracy score

Figure 6. Machine learning results predicting whether the major product was ethylene or not ethylene: (a) accuracy versus maximum depth for the
decision tree; (b) feature importance obtained from the random forest; and (c) accuracy comparison for decision tree, random forest, and multilayer
perceptron.

Figure 7. Confusion matrix for predicting whether ethylene production occurred in the electrochemical reduction of CO2: (a) decision tree, (b)
random forest, and (c) multilayer perceptron. (d) summary of accuracy, precision, and recall. DT =Decision Tree, RF = Random Forest, NN =Neural
Network.
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resulting from the algorithm was 0.69. The low accuracy score
can be attributed to the low precision and recall of the
multicarbon class predictions. The confusion matrix shows that
12 out of the 15 single-carbon testing samples were predicted
correctly, while only 6 out of the 11 multicarbon instances in the
testing set were predicted correctly as multicarbon products.
The confusion matrix along with the larger precision, recall and
f1-score indicate that the random forest algorithm was better at
predicting single-carbon products than multicarbon products.
By looking at the testing set predictions, a trend is seen with

the 3 misclassified single-carbon predictions. All three used
copper catalysts with potentials more negative than −1.0 V and
were classified asmulticarbon by the random forest algorithm. In
addition, the three misclassified catalysts produced methane
instead of a multicarbon product. Out of the 5 samples
misclassified as single carbon, 4 of the samples had copper as the
catalyst metal, with the fifth sample using silver. The copper
catalysts that were misclassified all had potentials less negative
than −0.86 V and used either KHCO3 or KOH as their
electrolytes. The cross-validation score calculated was higher
with an accuracy of 0.79, demonstrating the importance of
having good representation between the training and testing
sets.
The feature importance was found for the multicarbon

prediction using random forest algorithm with a max depth of 2.
The feature with the highest importance was potential, with an
importance of 0.325. The second highest was catalyst metal with
0.28. This is similar to what we saw from the single decision tree
with the root node of catalyst metal, indicating that it is an
important feature for the multicarbon production from
electrochemical CO2 reduction.
As was done with the previous model, the neural network was

tuned using the Keras hyperband tuner to obtain the best
number of layers, number of nodes, and learning rate for the
data. The tuner gave a model with 5 layers and 1 output layer
containing 104, 32, 80, 64, 144, and 1 nodes. The best learning
rate was found to be 0.001. The neural networkmodel with these
parameters gave a model with an accuracy score of 0.73. The
neural network had the lowest cross validation accuracy out of
the multicarbon predictions with a values of 0.72.
The confusion matrix shows that the neural network

predictions were similar to the random forest predictions with
12 out of the 15 single carbon testing samples being predicted
correctly. Out of the 3 misclassified single-carbon products, 2 of
the samples used copper catalysts and 1 used palladium. The
neural network performed slightly better than the random forest
algorithm with the multicarbon predictions, with 7 out of the 11
instances being predicted correctly. The samples misclassified as
single carbon included 3 using copper catalysts and 1 using the
only a platinum sample in the database. From the copper
catalysts incorrectly labeled as single carbon, 2 contained
dopants of silver and chlorine.
Ethylene Prediction. In this set, we asked the models to

evaluate the binary classification problem of whether the major
product was ethylene or not ethylene (see Figures 6 and 7). The
decision tree gave an accuracy of 0.77 with a max depth of 2. The
decision tree had a root node of catalyst metal atomic number
less than 29.5, again indicating that the catalyst metal is copper
(or lighter). Both child nodes stemming from this root node
were classified as nonethylene products. However, for catalyst
metals larger than copper, none of the training samples included
an ethylene sample, making that a pure child leaf. The child node
with catalyst metals copper and lighter contained a split of 39

non ethylene samples and 32 ethylene samples. This set could
then be further split if the potential was more negative than ca.
−0.88 V vs RHE.
The confusionmatrix shows that 16 out of the 18 nonethylene

samples were correctly predicted, while 4 out of the 8 ethylene
products were correctly predicted. The two samples in the
testing set inaccurately classified as ethylene were copper and
nickel catalysts with potentials greater than −0.876 V. The 3 out
of 4 samples in the testing set that did produce ethylene but were
misclassified as nonethylene products all used copper as the
catalyst with potentials less negative than −0.876. The last
sample that produced ethylene but was misclassified as
nonethylene used Pt as the catalyst causing the misclassification.
Again, the random forest algorithm was trained over 100 trees

and a range of maximum depths. The random forest algorithm
had an optimal max depth of 2, resulting in an accuracy of 0.73.
The confusion matrix shows that the algorithm predicted mostly
nonethylene samples. It correctly predicted all of the non-
ethylene samples. However, it predicted 7 out of the 8 ethylene
samples as nonethylene.
Out of the 7 misclassified ethylene samples, 6 of them used

copper catalysts with a range of potentials from −0.5 V to −1.38
V vs RHE. Since copper catalysts can produce a wide range of
products, it is possible with a dataset of this size that there is not
enough data for the random forest algorithm to correctly
determine when ethylene would be made. The last missclassified
sample was the single platinum catalyst in the database with a
potential of −0.8 V vs RHE.
The feature importance for the ethylene predictions with the

entire database was found using the random forest algorithm.
The top feature for splitting the data was a potential at 0.32,
which was closely followed by catalyst metal with 0.30
importance. This matches what we saw from the single decision
tree’s root node of catalyst metal and verifies that the applied
potential and catalyst metal are important features that affects
the production of ethylene from electrochemical CO2 reduction.
As was done with the previous models, the neural network was

tuned using the Keras hyperband tuner to obtain the best
number of layers, number of nodes, and learning rate for the
data. The neural network consisted of 5 layers and an output
layer consisting of 256, 128, 192, 120, 200, and 1 node,
respectively. The optimum learning rate was found to be 0.01.
The neural network model with these parameters gave a model
with an accuracy score of 0.69. Out of the three algorithms for
ethylene predictions, the neural networks gave the worst
accuracy score. From the confusion matrix, it is seen that the
nonethylene samples were predicted correctly in 14 out of the 18
instances. The ethylene samples were predicted correctly half of
the time with 4 samples out of the 8 correctly predicted as
ethylene. The cross-validation score was found to be 0.69.
Interestingly, a recurring theme among all of the machine

learning models is that applied potential and electrolyte all have
high feature importance. To visualize this importance, a
comparison of the potential and electrolyte was plotted in
Figure 8 for the ethylene data using copper catalysts. Only
reactions using copper catalysts were plotted since most of the
ethylene samples in the dataset used copper as the metal. By
plotting the potential versus electrolyte, a trend for the usage of
KHCO3 was observed. Using KHCO3 as the electrolyte between
−1.00 V and−1.50 V vs RHE, ethylene was more likely to be the
major product. However, with KOH as the electrolyte, ethylene
was produced preferably at less-positive potentials. This
optimum range of applied potential is an example of an
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interesting finding that machine learning can yield in the field of
electrocatalysis. With even larger datasets available, machine
learning may indicate more relationships between applied
potential and electrolyte on product production.
Product Prediction. The last proposed question was

whether the machine learning algorithms can performmulticlass
predictions and predict the exact product of the reaction (see
Figures 9 and 10). The potential products included
acetaldehyde, acetate, ethylene, ethanol, ethane, propanol,
methane, CO, formate, formic acid, hydrogen, and methanol.
First, a decision tree was used for the multiclass prediction.

The product prediction tree was found to have a max depth of 3
(see Figure S4 in the Supporting Information). The root node
was used if the catalyst metal was less than 29.5 (Cu or lighter). If
the root node was true, then the model would predict ethylene
with 68 samples containing 30 ethylene occurrences. If the root
node was false, the model would predict CO with 33 samples
containing 17 CO occurrences. A major issue with the decision
tree’s multiclass predictions was that the tree would not have
enough leaves to predict each product. With 3 layers, the tree
was only able to predict 4 out of the 12 possible products in the
database. However, at higher depths, the tree became overfit and
the accuracy decreased. In addition, with the size of the dataset,
the products were not evenly distributed through the training
and testing sets. Therefore, the precision and recall were only
calculated for the 4 predicted products, leading to an accuracy

score of 0.5 with low precision and recall scores overall. The
cross-validation score was lower than the accuracy score with a
value of 0.40.
The four products that the decision trees predicted were

ethylene, methane, CO, and formate. From the confusion
matrix, seen in Figure S8 in the Supporting Information, the
decision tree correctly predicted ethylene 7 times, CO 5 times,
and formate once. However, it incorrectly predicted ethylene 3
times, methane 3 times, and CO 7 times. Ethylene and CO were
more likely to be predicted by themodel, since they were the two
products most commonly found in the training set.
Next, random forest was used to predict the products. The

max depth was found to be 4, with an accuracy of 0.62. However,
similar to the decision tree out of the 5 products in the testing
set, the model only predicted 4 of the products, as seen in Figure
10. The random forest model was able to accurately separate if
the reaction conditions would produce ethylene or CO with
these products having accuracy scores of 0.82 (9 out of 11) and
0.86 (6 out of 7), respectively. However, the model had difficulty
with the other products, because of the lack of representation of
these samples in the dataset. The cross-validation score was
found to be 0.49. Similar to the binary classification predictions
for multicarbon and ethylene, the potential was found to be the
most important feature for product predictions.
Lastly, the neural network model was used for product

prediction. The neural network contained 5 layers and 1 output
layer with 16, 64, 128, 64, 32, and 21 nodes, respectively. The
model was trained over 1000 epochs giving an accuracy of 0.46
with only 12 out of the 26 testing samples being accurately
predicted. Out of the 8 possible products in the testing set, only
5 products were predicted. However, only 4 of the predicted
products including ethylene, formate, CO, and hydrogen were
accurately predicted (see Figure S9 in the Supporting
Information). This led to low precision and recall values for
the predictions. Unlike the decision tree and random forest
algorithms, the class predicted the best by the neural network
was CO, followed by ethylene. Cross-validation was performed
for the neural network, resulting in an accuracy of 0.42.
Overall, the main challenge of multiclass prediction was the

amount and distribution of the data. For all of the algorithms,
there was not enough data to evenly distribute the classes to the
training and testing sets. Thus the training set data was not
representative of the testing sets leading to low accuracy scores.

Figure 8. Comparison of potential and electrolyte values for the
ethylene and nonethylene data.

Figure 9.Machine learning models for product prediction: (a) accuracy versus maximum depth for the decision tree; (b) feature importance obtained
from the random forest; and (c) accuracy comparison for decision tree, random forest, and multilayer perceptron.
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Similarly, an effective data collection method is crucial for
increasing the size of the dataset. The manual process of human-
curated datasets is limited to the time frame of the curator.

■ CONCLUSIONS
In this work, we showed that, on hand-curated datasets of the
size that a single researcher could obtain, machine learning can
provide relatively high accuracies with binary classification
questions. In addition, we show that deep learning multilayer
perceptron models do not necessarily outperform simple
shallow learning models such as decision trees and random
forests. Moreover, these shallow learning models can provide
additional insights such as the feature importance with the
random forest. We found that these machine learning models
can independently arrive at some conclusions already well-
established in the literature, e.g., that copper is an important
catalyst for producing high-carbon content products. In
addition, these models can show less obvious insights such as
the importance of the applied potential. Looking more closely at
the applied potential may help researchers in this area examine
their systems. Lastly, to get product prediction (multiclass
classification), a dataset of ca. 100 samples is not sufficiently
large when there are 12 possible products. To build models with
this capability, it will be imperative to develop automatic data
mining of the literature to build datasets significantly larger than
what a single researcher can obtain in a reasonable time.
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