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A B S T R A C T

Isogeometric analysis has received extensive attention in the last decade, but despite its merits, many
isogeometric models are still produced manually or semi-manually. In this work, we introduce a new technique
using Ricci flow and a carefully constrained minimization to convert trimmed and faceted open geometries
into watertight spline models free of trim and suitable for isogeometric analysis with potential for automation.
This technique is used to rebuild parts of the US Army’s DEVCOM Generic Hull vehicle and portions of a
1996 Dodge Neon finite element model into trim-free spline models. Isogeometric modal analysis is performed
on each to show the viability of this reconstruction framework in generating IGA-suitable splines for shell
analysis.
1. Introduction

Engineering shell structural analysis requires an integrated design-
through-analysis framework. Under the current paradigm, a designer
creates computer-aided design (CAD) geometry to define the intended
shape by combining a set of smooth B-spline or NURBS patches into
a so-called ‘‘boundary representation’’ or ‘‘B-Rep’’ (which may simply
be a midsurface, or ‘‘open’’ B-Rep); an analyst then replaces it with a
finite element mesh that only approximates the original CAD geometry.
Not only is the precise geometry of the model lost in this procedure
(which alone may have significant implications [1]), but underlying
physics of the analysis may also be lost. Additionally, this process
takes a significant amount of time (over 70% of the design-through-
analysis process) [2,3] and money [4]. Regarding the analysis of these
faceted meshes, traditional finite element techniques for shells struggle
with locking (which is alleviated by increasing polynomial degree [5])
and numerically-induced large spurious eigenvalues (which increase
with increased polynomial degree [6]). For operations such as explicit
dynamics, where the maximal time step is inversely proportional to the
square root of the maximum eigenvalue [7, p. 335], increasing polyno-
mial degree leads to a reduction of time step size and a concomitant
increase in computational effort.
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Isogeometric analysis (IGA), proposed in [8], aims to address these
issues by using the same smooth basis functions employed in CAD for
engineering analysis. Isogeometric techniques can be used to directly
solve (without resorting to mixed methods) high order PDEs like the
Kirchhoff–Love shell formulation [9,10] and to represent physics using
smooth spline functions [6,8]. Isogeometric methods are more accurate
per degree of freedom than traditional finite element methods [11–13]
and can operate directly on the B-spline and NURBS geometries created
in CAD without the need for an auxiliary faceted mesh [8,14]. Further-
more, the smoothness of isogeometric basis functions alleviate modal
‘‘outliers’’ introduced with traditional finite element techniques [6,12,
15], and increasing basis function smoothness and polynomial degree
accordingly reduces locking [16–19]. Isogeometric shells admit high-
accuracy, high-sparsity quadrature routines unavailable for traditional
shells [18]. And finally, isogeometric techniques offer the potential
of a single model suitable for both engineering design and analysis,
reducing the time and expense associated with meshing.

Unfortunately, CAD models are not simply curvilinearly mapped
rectangles, as are the B-spline and NURBS patches from which they
emanate. Rather, CAD technologies piece B-spline and NURBS patches
vailable online 11 December 2021
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Fig. 1. A typical B-Rep geometry will consist of a topological gluing of multiple B-spline and NURBS tensor product patches mapped into a spatial configuration. In the presence
of complicated topology or geometry, trimming operations—which mask portions of the tensor product spline—are ubiquitous. These trimming operations, though useful in rapid
design prototyping, impede the use of the B-Rep in engineering analysis. This particular B-Rep is a sample engine turbine from Rolls Royce.
Fig. 2. A trimmed B-Rep engine turbine from Rolls Royce (top-left) portrays an intended geometry, but the underlying computational representation visualized after removing
trimming features reveals that the model is defined by a complicated data structure bearing very little resemblance to the intended geometry.
m

together to define the boundary of an intended object, a computational
representation called a B-Rep. Midsurfaces of these models, called open
B-Reps, are created analogously. For models with complicated geome-
try or topology, Boolean operations are typically employed to portray
the intended shape by masking unwanted parts of the underlying
spline patches [20, p. 304–307], [21,22]. Aspects of this construction
process are displayed in Fig. 1. Visually, the results portray the intended
design, but these Boolean (a.k.a. ‘‘trimming") operations hide what is
2

often a complex computer representation (see Fig. 2). Trimming breaks f
spline function continuity [20, p. 305], [22], complicates numerical
integration [23–25], and requires weak coupling of subdomains [26–
29]. Because CAD software cannot exactly represent general trimming
operations [30,31], approximations are made that lead to tiny gaps and
overlaps between surface edges that should be coincident [22,32]. This
leads to surfaces that are not ‘‘watertight’’. [22,32].

In this paper, we propose a new framework for converting open
idsurface CAD geometries into isogeometric analysis-suitable, trim-
ree B-Reps using discrete surface Ricci flow and metric optimization.
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Fig. 3. A contrived quadrilateral layout on an annulus (left) is induced by a mapping of the cut annulus into the Euclidean plane (right). Here, the point in blue is a cone
singularities of valence five and the point in red is a cone singularity of valence three. Cuts to cone singularities are given in red, while cuts to make the bracket a topological
disk are in blue. Boundary curves are in dark green, while non-boundary integral curves are given in black. The coordinate differentials, 𝑑𝑢 and 𝑑𝑣, when traced from singular
oints and pulled back from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning the surface into a set of quadrilaterals. These differentials are
epicted as black lines of constant 𝑢 and 𝑣 coordinates in the immersion, and curvilinear black arcs when pulled back to the original surface. (For interpretation of the references

o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. A quadrilateral layout on a bracket of the DEVCOM Generic Hull vehicle (left) is induced by a mapping of the cut bracket into the Euclidean plane (right). Here, points
in blue are cone singularities of index −1 (valence five), points in red are boundary cones of index 1, and points in purple are boundary cones of index −1. Feature points of
the model that are not cone singularities in the defined parameterization are displayed in green. Cuts to cone singularities are given in red, while cuts to make the bracket a
topological disk are in blue. Feature curves to be preserved in the computed layout are in dashed black. The coordinate differentials, 𝑑𝑢 and 𝑑𝑣, when traced from singular points
and pulled back from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning the surface into a set of quadrilaterals. These differentials are depicted
as black lines of constant 𝑢 and 𝑣 coordinates in the immersion, and curvilinear black arcs when pulled back to the original surface. (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)
n this framework, a trimmed CAD model is converted into an easy-
o-compute, feature-aware surface triangulation with a topologically-
onstrained number of cone singularities (defined in Section 2). From
3

there, the discrete surface Ricci energy is minimized to determine
a flat metric on the surface with cone singularities: this metric can
be thought of as an immersion of a cut version of the surface into
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Fig. 5. A bracket with computed singular and feature points is cut into a topological disk. Singular points are shown in red, purple, and blue, with those in red and purple
representing boundary cone singularities of index 1 and −1, respectively, and blue points representing interior cone singularities of index −1 (valence five). Points in green are
features of the bracket that are not chosen to be cone singularities in the parameterization. Cuts to singularities are depicted in red, while cuts to make the bracket a topological
disk are in blue. Curves in dark green and dashed black are the surface boundary and features, respectively. Notice that each singular point is either in the cutting graph or the
surface boundary. Edges in the cutting graph are represented twice in the cut surface, vertices that are cut through are multiply represented, and vertices at the termination of
the cutting graph are singly represented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. A bracket of the DEVCOM Generic Hull vehicle is triangulated, and the neighborhood of one of its vertices is shown in green and subsequently mapped via a quad layout
immersion map, 𝛹 . Additionally, all triangular faces on the sides of a particular homological cut are represented in either red or cyan and similarly mapped. Under the immersion,
he image of the bracket is no longer injective: for example, the map takes portions of the vertex’s neighborhood to the same coordinate locations that are part of the cyan side
f the cut. However, an inverse is well-defined locally throughout the surface, including for each of these colored neighborhoods. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
he Euclidean plane, or a locally-bijective ‘‘parameterization’’. Subse-
uently, this parameterization is transformed into one that induces
quadrilateral layout on the surface. A quadrilateral layout can be
hought of as a coarse quadrilateral partitioning of the surface that can
4

be refined as much as desired while still guaranteeing a valid quadri-
lateral refinement. Subsequently, the original CAD model is rebuilt
using this computed layout as the skeleton for a set of quadrilateral
watertight spline patches. Because this method employs a feature-aware



Engineering Structures 252 (2022) 113602K.M. Shepherd et al.

w

m

Fig. 7. The cutting graph of a surface—shown as a solid line, a dashed line, and a dash–dot line—splits this singular point into three child vertices. Accordingly, the neighborhood
is split into three different portions, shown in blue, dark green, and dark magenta. Under the immersion mapping, the sum of the interior angles of this vertex with its incident
triangles is 5𝜋

2
, making the point a cone singularity of index −1 (i.e. valence five). (For interpretation of the references to color in this figure legend, the reader is referred to the

eb version of this article.)
Fig. 8. A cut version of an annulus with a valence three (red) and a valence five (blue) singularity has subdomains of its boundary labeled. Because the cut surface is a topological
disk, members of the cutting graph are also included. Under the quadrilateral layout inducing parameterization, 𝛹 , curves 1 and 3 are mapped to lines of constant 𝑣 coordinate
and curves 6 and 8 are mapped to lines of constant 𝑢 coordinate. After a translation, curve 2 rotated by 𝜋

2
radians counter-clockwise (CCW) aligns with curve 7, and curve 4

atches curve 5 after rotation by 𝜋
2
radians CCW, and curve 9 matches curve 10 after rotation by 3𝜋

2
radians CCW. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
5
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Fig. 9. An integral curve emanating from a singular curve in the −𝑑𝑢 coordinate direction is extracted (a line of constant 𝑣 in the immersion). On the right of each subfigure is
the integral curve under the quad layout immersion, 𝛹 , while on the left the integral curve of the pullback, 𝛹 ∗, of the coordinate function differential into the spatial domain is
shown. After reaching the cutting graph, the integral curve is continued in the −𝑑𝑣 coordinate direction on the opposite side of the cut: the direction and location for continued
integration is prescribed by Property Q4, and will generate a continuous curve in the spatial domain. This particular integral curve terminates when it returns to the singular point
from which it began.
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triangulation for the quadrilateral parameterization computation, it
works equally-well in converting a faceted mesh into a feature-aware
smooth spline surface.

1.1. Prior work

Two approaches have arisen to address the issues related to analysis
of trimmed B-Rep models. The first, primarily driven by the analysis
community, aims to address the issues of trimmed B-Reps by employ-
ing various generalizations of the classical cut cell method [23,25,
29]. Here, cut elements are addressed using specialized integration
techniques (see e.g. [23–25] and [36, p. 87–95]), numerical stabiliza-
tion [37–40], and weak enforcement of both connectivity and boundary
constraints [26–29]. This approach has seen significant progress of
late [26,41,42], with recent works performing explicit dynamics com-
utations on trimmed industrial B-Reps, [43], but additional efforts
re still needed to ensure robustness in the presence of poorly shaped
rimmed parametric spaces.
The other primary approach aiming to address analysis of trimmed

AD models seeks to rebuild a trimmed B-Rep prior to use in analysis.
any methods have been developed to rebuild a trimmed spline into
set of trim-free Bézier, B-spline, or NURBS patches by subdividing a
rimmed patch’s parametric domain into more regular shapes [32,45–
7]. These techniques work well when the original model already
eets high quality criteria, but generally cannot perform well on
odels for which the designer prescribed a poor parametric spline
efinition. Unfortunately, many models of engineering interest (in-
luding that of Fig. 2) may not meet the requisite quality criteria,
nd reconstruction using these techniques is difficult, and sometimes
6

mpossible. Alternatively, recent works aim to redefine the B-Rep’s
nderlying parametric domain by computing a global reparameteri-
ation using an auxiliary feature-aware surface triangulation [48–53].
nlike typical analysis-suitable meshing methods that are predomi-
antly well-structured quadrilaterals [54] and are labor-intensive to
roduce, the triangulations necessary for these reparameterizations can
e unstructured and are easily-defined [55–57]. After computation of
quadrilateral-layout inducing reparameterization, splines are then fit
o the computed layout. To date, many of these global reconstruction
echniques have required significant user intervention [58,59], require
xpensive mixed-integer optimization [48,49,51,53,60], are limited by
he use of templates [61,62] or certain types of singularities [63–65],
r suffer from robustness issues [14]. Many are based on the frame field
ethods proposed in the computer graphics community [33,34,49,66,
7], which frequently employ mixed-integer optimization [48,49,51,
3] and require heuristics to address errors introduced by the non-
ntegrability of frame field vectors [53,67,68]. These methods generally
annot guarantee a locally-injective parameterization, meaning that
ome elements are either degenerate or possess non-positive Jacobian.
Global quadrilateral reparameterizations additionally require that

efined cone singularities connect with each other through integral
urves of the parameterization in order to segment the surface into
set of quadrilaterals. Traditionally, this has been done by forcing
one singularities to integer-valued coordinates using rounding [69],
ixed integer optimization [48,49,68], or some other form of quanti-
ation [51,53,70]. The most recent methods in automating this process
ypically operate on a suitable global parameterization inducing a
eneralized T-mesh that is then transformed into a quadrilateral lay-
ut using either integer linear programming [53] or a simple linear
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Fig. 10. The layout reconstruction process is shown for a contrived, but instructive example. In (a), a set of cone singularities are prescribed, with two interior cones of index
1 (valence 5), one interior cone of index −2 (valence 6), and four boundary cones of index 1. Cuts are made to each cone and to make the surface a topological disk, with

edges of the disk labeled in clockwise manner; a feature curve is also shown as a dashed line and labeled using an ‘‘a’’. In (b), the surface is immersed into the plane based on
the computation of discrete surface Ricci flow. This immersion does not induce a feature-aligned quadrilateral layout because the feature curve is not a line of constant 𝑢 or 𝑣
coordinate and because the boundary curves on the reentrant corners of the L-shaped immersion are also not lines of 𝑢 or 𝑣 coordinates. This parameterization is minimized against
a quadrilateral layout-inducing energy to yield (c), an immersion that induces the quadrilateral layout of (d). In addition to the boundary curves and the feature curve ‘‘a’’, the
black lines of (c) and (d) are integral curves from the singular points yielding the quadrilateral layout. Regions of magenta hatching are locations in which the immersion maps,
though locally invertible, are not globally invertible. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. On the left, singularities are automatically computed using [14], which combines the theory from [33,34]. Because of the high clustering of cone singularities in this
configuration, singularities were manually modified to combine valence five singularities (blue) into valence six singularities (cyan) in the regions of high clustering (right). Note
that the automatically-computed locations clarify potential positions for the manually-adjusted configuration. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
7
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Fig. 12. After minimizing the discrete Ricci flow energy, the cut surface with flat
metric can be isometrically immersed into the Euclidean plane using the law of cosines
of Eq. (11) in conjunction with the lengths and angles depicted in this figure.

olve [70]. Quadrilateral layouts thus automatically extracted may
till have poor connectivity properties, and additional methods have
een proposed to optimize them by collapsing sets of faces [71], by
ptimizing based on length and angle of integral curves [72], any by
inary programming [73]. Finally, manual intervention can be used to
stablish singular point connectivity where necessary [14,59,74].

1.2. Contributions

In this work, a global reparameterization technique is defined and
employed in rebuilding both trimmed and faceted geometries of indus-
trial relevance. Unlike many other global reparameterization methods,
however, it does not require the use of mixed-integer optimization,
and the resulting parameterization is guaranteed to have a well-defined
inverse locally. Specifically, we make the following contributions.

• We define a set of generalized criteria on a triangulation that, if
satisfied, yield a quadrilateral layout on the surface (Section 2).

• In Section 3.3, we present a set of partial differential equa-
tions that, in combination with Ricci flow, yield a quadrilateral
layout-inducing parameterization on a faceted surface.

• We employ the technique in Section 4 to extract trim-free spline
surfaces from the US Army’s trimmed CAD model of the Unclas-
sified DEVCOM Generic Hull vehicle [35] and from the National
Crash Analysis Center’s (NCAC’s) finite element model of a 1996
Dodge Neon [44]. Extracted spline spaces include ones for which
previous methods are known to fail (see [14] and [75, Appendix
B]).

• Additionally, in Section 4 we demonstrate, using the isogeometric
analysis capabilities in the commercial solver LS-DYNA, that the
defined spline surfaces are suitable for use in isogeometric shell
analysis.

The first contribution gives a general characterization that, if met,
nsures that the computed parameterization on a triangulation defines
quadrilateral layout. The second provides an alternative approach
or computing such a parameterization. The third and fourth demon-
trate the potential of the proposed technique in creating isogeomet-
ic analysis-suitable shells from trimmed and faceted models. Finally,

.

8

onclusions and future work are discussed in Section 5 o
2. Definition of a quadrilateral-inducing parameterization

This section is foundational but necessarily mathematical. It utilizes
concepts from differential and algebraic topology and geometry with
which many readers may not be familiar. We invite readers unfamiliar
with this material to scrutinize figures in this section to attain at least
a visual comprehension of the ideas.

Because the NURBS-based B-Rep is the predominant computational
representation of CAD geometries, the target object of this work is a
non-degenerate set of NURBS splines redefining the original geometry
without any trimming. This could be thought of as a coarse, curvi-
linear quadrilateral mesh, called a quadrilateral layout, defined by a
set of splines. This characterization emphasizes that each spline is a
curvilinear quadrilateral, but leaves the global objective that the splines
must fit together precisely along boundaries unaddressed. Such a local-
to-global characterization is not amenable for computation, and so a
different representation is necessary.

Additionally, the trimmed spline spaces defining a CAD object also
are not amenable for computation without weak coupling. As such,
these geometries are converted to a feature-aware unstructured sur-
face triangulation by, for example, triangulating individual parametric
domains and mapping these triangulations using the surface mapping,
taking care that nodes on surface boundaries align appropriately. Given
this triangulation, a global parameterization inducing a quadrilateral
layout on the surface is defined by the following criteria of Defini-
tion 2.1. Two sample parameterizations satisfying all of these criteria
are depicted on a contrived example for an annulus in Fig. 3 and for
a bracket of the DEVCOM vehicle in Fig. 4. These criteria may best be
understood pictorially, and the reader is invited to study Figs. 5 through
9, in conjunction with Figs. 3 and 4 for best comprehension.

efinition 2.1 (Quad Layout Immersion). Let 𝑆 be an oriented,1 trian-
ulated surface with a prescribed set of singular points, 𝑃 . Take 𝐺 as
graph along edges of 𝑆 making 𝑆 − 𝐺 a (set of) topological disk(s)
uch that 𝑃 ⊂ 𝐺 ∪ 𝜕𝑆 (hereafter called a cutting graph). With this
epresentation, we assume that each edge through which 𝐺 passes is
epresented as two edges in 𝑆 − 𝐺, and similarly that vertices of 𝑆
re split into multiple representations in 𝑆 − 𝐺 (see Fig. 5). Then a
ontinuous map 𝛹 ∶ 𝑆 − 𝐺 → R2 that generates a quadrilateral layout
called a quad layout immersion) satisfies the following criteria.

1 Local injectivity: all but a discrete set of points (specifically, not
singularities) have a neighborhood that is locally invertible (see
Fig. 6).

Q2 For each vertex 𝑣 of the triangulation on 𝑆, take 𝑈 (𝑣) to be the
one-ring neighborhood (a.k.a. the closed star [76]) of 𝑣, with 𝑇
a triangle of 𝑈 (𝑣). For ease of notation, also write 𝑈 (𝑣) as the set
of triangles in the cut representation 𝑆 − 𝐺, where now 𝑣 may
be cut, and is to be understood as the vertex incident to 𝑇 after
cutting. Define ∠

(

𝑣, 𝛹 (𝑇 )
)

as the inner angle of 𝛹 (𝑇 ) incident to
vertex 𝛹 (𝑣). Then the following holds:

∑

𝑇∈𝑈 (𝑣)
∠
(

𝑣, 𝛹 (𝑇 )
)

=

⎧

⎪

⎨

⎪

⎩

2𝜋 if 𝑣 ∉ 𝑃 and 𝑣 is in the interior of 𝑆
𝜋 if 𝑣 ∉ 𝑃 and 𝑣 is on the boundary of 𝑆
𝑘𝜋
2 for 𝑘 ∈ Z if 𝑣 ∈ 𝑃

(1)

(See Fig. 7 for an example in which 𝑘 = 5.) Furthermore, a
discrete version of the Gauss–Bonnet theorem holds:

∑

𝑣∉𝜕𝑆

(

2𝜋−
∑

𝑇∈𝑈 (𝑣)
∠
(

𝑣, 𝛹 (𝑇 )
)

)

+
∑

𝑣∈𝜕𝑆

(

𝜋−
∑

𝑇∈𝑈 (𝑣)
∠
(

𝑣, 𝛹 (𝑇 )
)

)

= 2𝜋𝜒(𝑆),

(2)

1 Surfaces of engineering interest are oriented. Non-orientable surfaces are
bjects like the Möbius band.
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Q

Fig. 13. The effects of energy 𝐸5 are demonstrated for a bracket midsurface. Here, two topologically valid layouts are computed—the one on the left without connectivity
constraints between singularities and the one on the right with these constraints. The layout without these constraints yields a quadrilateral decomposition with 1898 patches,
most of which are slivers and are infeasible for use in design or analysis. The constrained layout, instead, is defined by only 73 patches, and meets needs from both design and
analysis perspectives.
Fig. 14. Three reconstructed parts of the DEVCOM Generic Hull vehicle [35]—two support beams and a bracket of a structural pillar—are shown in the context of the primary
support members for the vehicle. All surfaces in this representation are trimmed.
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where 𝜒(𝑆) is the Euler characteristic of the surface.2

3 Each connected component of 𝜕𝑆−𝐺 is mapped by 𝛹 to a line with
constant 𝑢 or 𝑣 coordinate (see Fig. 8).

Q4 Let each arc of 𝐺 be written by 𝜔𝑖, be given an orientation, and be
parameterized by arc length. Under 𝑆−𝐺,𝜔𝑖 is represented by 𝜔+𝑖
and 𝜔−𝑖 on the left and right side of 𝜔𝑖, respectively, with parame-
terization consistent with 𝜔𝑖. Then 𝛹

(

𝜔−𝑖(𝑡)
)

= 
(

𝛹
(

𝜔+𝑖(𝑡)
)

)

for
 ∶ R2 → R2 a translation and rotation by 𝑘𝜋

2 , 𝑘 ∈ Z (see Fig. 8).

Q5 Lines emanating from singularities under the immersion with con-
stant 𝑢 or 𝑣 coordinate value, when pulled back to 𝑆 − 𝐺,
either

1. Terminate at a (possibly identical) singularity

2 Recall that for a triangulated surface with 𝑉 vertices, 𝐸 edges, and 𝐹
faces, 𝜒(𝑆) = 𝑉 − 𝐸 + 𝐹 , and is a topological invariant.
9

t

2. Terminate transversely to the boundary
3. Are transverse to the cutting graph 𝐺

In the final case, the line is continued inductively across the cut
using the transformation  prescribed in Item Q4 (see Fig. 9).
All such sets of lines are finite, i.e. they achieve Item (1) or (2)
twice.3 The set of these curves emanating from singularities are
frequently called separatrices.

urthermore, if these conditions hold, then any curve generated as in
tem Q5 at any point on the surface will be finite (either periodic, part
f the separatrices, or terminating transverse to two boundaries). These
urves are called isocontours or integral curves.

These criteria are presented in the smooth setting in [77]. The pre-
cribed set of vertices 𝑃 are called cone singularities. If the set of cone

3 In the case that 𝑆 is an annulus with no singularities or a torus with no
ingularities, the same holds after artificially calling an arbitrary regular point
he surface’s only singularity and proceeding as before.
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Fig. 15. A bracket of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation. Below, the reconstruction technique of [14] is compared
against that of this method: all splines depicted are Bézier patches. Notice that while singularity locations for both are the same, the integral curves of this approach, being more
conformal, are less straight than those of [14], which minimizes a Dirichlet-type energy.
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ingularities satisfies Eq. (2), it is said that the set is ‘‘admissible’’. Prop-
rty Q3 is referred to as the boundary-alignment constraint. For frame
ield-based parameterization methods, Property Q1 is referred to as
ntegrability of a frame field [78]. Properties Q1, Q2, and Q4 together
efine a so-called ‘‘seamless surface parameterization’’ [79]. Property
5 is frequently satisfied by obeying integer-grid constraints [48,49,
1,53,68]. Alternative characterizations of a quadrilateral layout as a
pecial Riemannian metric on a surface and as a meromorphic quartic
ifferential are given in [70,80,81], respectively.
In a spline parameterization, the aforementioned cone singularities

re referred to as ‘‘extraordinary points’’ or ‘‘star points’’, particularly
hen located in the interior of the surface. The valence of a spline
ode is defined as the number of spline edges emanating from the node.
xtraordinary points correspond to boundary nodes whose valence is
ot three, or interior nodes with valence not equal to four. Because
10

i

xtraordinary points are not commonly defined on boundaries and
ecause these cone singularities live on the surface triangulation, we
efine the index of a vertex, 𝑣, on the surface triangulation as

(𝑣) =

⎧

⎪

⎨

⎪

⎩

2
𝜋

(

2𝜋 −
∑

𝑇∈𝑈 (𝑣) ∠
(

𝑣, 𝛹 (𝑇 )
)

)

if 𝑣 ∉ 𝜕𝑆
2
𝜋

(

𝜋 −
∑

𝑇∈𝑈 (𝑣) ∠
(

𝑣, 𝛹 (𝑇 )
)

)

if 𝑣 ∈ 𝜕𝑆.
(3)

ccompanying the index, the following Gauss–Bonnet condition holds,
hich is equivalent to that in Property Q2:

∑

𝑣∈𝑆
𝐼(𝑣) = 4𝜒(𝑆). (4)

he index is an integer-valued function defining the discrete contri-
ution of a point to the surface’s total curvature. Regular points have
ndex zero, while cone singularities will have non-zero values. A cone
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Fig. 16. Jacobians within patches of the DEVCOM bracket rebuilt using the frame field method of [14] (left) and the proposed method of this work (right) are shown. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ingularity 𝑣 corresponds to a point of valence 4 − 𝐼(𝑣) if 𝑣 is in the
nterior of 𝑆, and a point of valence 3 − 𝐼(𝑣) if it is on the boundary.
Definition 2.1, though long and a bit arduous, provides a global,

omputationally-amenable framework for defining a quadrilateral sur-
ace parameterization. Given this characterization, the following sec-
ion defines a set of partial differential equations used to produce such
parameterization.

. Computation

Given the global recharacterization of a quadrilateral layout as
special type of immersion mapping into the Euclidean plane, as
escribed in Definition 2.1, we proceed to define how to realize this
characterization. Fig. 10 walks through this reconstruction process for
a contrived yet instructive example of a plate with a hole and a single
feature curve, and will be referred to throughout this section.

3.1. Selection of singular points

After having extracted a feature-aware triangulation of the B-Rep
(or having subdivided a faceted mesh into a triangulation), a set of
singular points must be defined that obey the Gauss–Bonnet condition
of Eq. (2) (or equivalently Eq. (4)). For surfaces, this discrete Gauss–
Bonnet condition is analogous to the discrete Poincaré–Hopf theorem
for frame fields presented in [33,82].

For this work, we employ the frame field method of [14], which
ombines aspects of [33,34], to automatically place a set of cone
ingularities. When the prescribed mesh is sufficiently smooth, the
esults of [33] guarantee that an admissible set of cones is prescribed.
owever, if the mesh lacks smoothness, has a number of features,
r requires prescription of extraordinary points not of valence three
r five, manual adjustment may need to be performed. Additionally,
he engineer should check to see if the cones are placed in geomet-
ically meaningful locations; if not, the problematic cones should be
epositioned for a higher-quality spline reconstruction. For instance,
ig. 11(a) shows cone singularities automatically computed using the
11
rame field method of [14]: while many singularities are well-placed,
ome cluster in a way that would benefit from singularity merger,
nd additional singularities must be introduced because the mesh lacks
moothness necessary to guarantee the Gauss–Bonnet condition of [33].
nstead, these automatically computed singularity positions for a Dodge
eon firewall are manually adjusted to satisfy Gauss–Bonnet, for better
ositioning, and to combine clustered low-valence singularities into
igher-valence ones. All cones of the reference example, Fig. 10, were
laced manually. Better placement of these cones in an automatic or
emi-automatic manner for featured geometries is a topic for future
esearch.

.2. Discrete surface Ricci flow

After selection of an admissible set of cone singularities (obeying the
auss–Bonnet condition of Eq. (2)), a flat metric on the surface with
one singularities is computed using discrete surface Ricci Flow [83–
7]. A thorough discussion of discrete surface Ricci flow is presented
n [86], with a generalization to less regular meshes given in [87]. Here
e briefly review the basic concepts related to this flow.

.2.1. Ricci Computation
Every surface, 𝑆, embedded in R3 with a triangulation, T, inherits

he Riemannian metric of R3. Here, each face 𝑇𝑖𝑗𝑘 with vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘
nherits lengths from Euclidean space and angles obeying the typical
aw of cosines:
2
𝑖𝑗 = 𝓁2

𝑗𝑘 + 𝓁2
𝑘𝑖 − 2𝓁𝑗𝑘𝓁𝑘𝑖 cos

(

∠(𝑣𝑘, 𝑇𝑖𝑗𝑘)
)

(5)

here 𝓁𝑖𝑗 is the length of the edge between 𝑣𝑖 and 𝑣𝑗 , and ∠(𝑣𝑘, 𝑇𝑖𝑗𝑘) is
he interior angle of triangle 𝑇𝑖𝑗𝑘 at vertex 𝑣𝑘. Take V as the set of all
ertices in the surface triangulation.
Defining the discrete Gaussian curvature at a vertex on the surface

o be

𝑖 ≡ 𝐾(𝑣𝑖) =

{

2𝜋 −
∑

𝑇∈T,𝑣𝑖∈𝑇 ∠(𝑣𝑖, 𝑇 ) if 𝑣𝑖 ∉ 𝜕𝑆
∑

(6)

𝜋 − 𝑇∈T,𝑣𝑖∈𝑇 ∠(𝑣𝑖, 𝑇 ) if 𝑣𝑖 ∈ 𝜕𝑆,
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Fig. 17. A structural beam of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation using bicubic Bézier patches.
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hen the following discrete Gauss–Bonnet theorem holds [88, p. 252–
253]:
∑

𝑣𝑖∈V
𝐾𝑖 = 2𝜋𝜒(𝑆). (7)

rom here, a parameter 𝛾𝑖 is selected for each 𝑣𝑖 ∶ this represents the
ength of the radius of a circle about 𝑣𝑖 for a discrete circle-packing
etric on the surface [83,86,87]. Taking a conformal factor

𝑖 = log (𝛾𝑖) (8)

with potential choices of 𝑢𝑖 given in [86,87]), discrete Euclidean
urface Ricci flow is governed by the following nonlinear, partial
ifferential equation:
𝜕𝑢𝑖
𝜕𝑡

= 𝐾̄𝑖 −𝐾𝑖, (9)

where 𝐾̄𝑖 is the input target curvature. Recall that in this instance, 𝐾̄𝑖
will be zero for all non-singular points and predefined based on the
type of cone singularity for all other points.

Alternatively, discrete surface Ricci flow can be recast as the unique
minimizer of the following convex energy,

𝐸(𝑢) = ∫

𝑢

0

𝑛
∑

𝑖=1
(𝐾̄𝑖 −𝐾𝑖), (10)

where 𝑛 is the number of vertices in V. Computationally, only a critical
point of this energy is needed, meaning that the exact integral never
needs to be computed. This can effectively be done using Newton-like
methods as in [86,87].
12

c

.2.2. Metric immersion
Upon solving for each 𝑢𝑖 by minimizing Eq. (10), the surface has a

lat metric with cone singularities. This is converted to an immersion
apping into the two-dimensional Euclidean plane by transforming the
omputed conformal factors to circle radii (using Eq. (8)), and using a
ixed, conformal edge weight cos(𝜙𝑖𝑗 ) in conjunction with the following
aw of cosines (see Fig. 12):
2
𝑖𝑗 = 𝛾2𝑖 + 𝛾

2
𝑗 + 2𝛾𝑖𝛾𝑗 cos (𝜙𝑖𝑗 ). (11)

fter one surface triangle, 𝑇 , has been immersed into the plane with
rbitrary rotation, neighboring triangles are then mapped into the plane
nd glued to an edge of 𝑇 in a similar manner. Proceeding until all
urface faces have been visited once will effectively define a map from
cut version of the surface into the Euclidean plane. For the sake of
omputational simplicity, it is often preferable that these cuts go to,
ut not through singular points (meaning that a small neighborhood of
very singular point is a single connected component under the cutting
peration). Recall the set of these cuts, 𝐺, is the cutting graph.
For genus zero surfaces with boundary, the surface can be immersed

nto the Euclidean plane using this metric to satisfy Properties Q1,
2, and Q4 of Definition 2.1 [80], leaving only boundary-alignment,
eature alignment, and finite-length integral curves to be addressed.
ore general surfaces will of necessity only satisfy Properties Q1 and
2. Because we always assume that the surfaces here are open shells
so genus zero with boundaries), we additionally assume that there is
n edge in the boundary of 𝑆 that, under this immersion mapping, has

onstant 𝑢 or 𝑣 coordinate; if not, perform a rotation to make this true.
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Fig. 18. A rounded structural support beam of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation using bicubic Bézier patches.
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Fig. 10(b) depicts the immersion of a cut version of a plate with
hole—Subfigure (a)—into the Euclidean plane based on surface Ricci
low. Here, cuts to cone singularities are shown in red (edges 4, 5, 7, 8, 15
nd 16), while cuts to make the surface a topological disk are given by
dges in blue (edges 2 and 10). This computed map is locally injective,
ut does not induce a feature-aligned quadrilateral layout because the
13

t

eature curve, curve ‘‘a’’, is not constant in either 𝑢 or 𝑣 coordinate.
urthermore, the edge boundaries on the reentrant corners of the L-
haped immersion are not actually constant in 𝑢 or 𝑣, though they are
early so. This immersion will be transformed into the quadrilateral
ayout-inducing parameterization of Fig. 10(c) using the following
echniques.
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Fig. 19. Isogeometric modal analyses of the reparameterized bracket of Fig. 15(d) with each Bézier patch uniformly subdivided to have 8 × 8 patches by insertion of knots with
single multiplicity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Minimization against a layout-inducing energy

Having parameterized the surface by immersing it into the plane,
it now remains to transform this parameterization into one that in-
duces a quadrilateral layout, and thus meets all of the requirements
of Definition 2.1.

Because all of Definition 2.1 must be enforced, there will accord-
ingly be a variety of constraints on surface subdomains. These sub-
domains will be written using the following symbols: 𝛤𝑢, 𝛤𝑣, 𝛤 feature𝑢 ,
feature
𝑣 , and 𝛤Hol𝑘 , 𝑘 ∈ {0, 1, 2, 3}. Each of these constrained subdomains
is geometric in nature and can easily be visualized: without this appeal
to geometry, however, the notation can be heavy. To alleviate this
issue, we first present these subdomains on our reference example,
Fig. 10, prior to defining the minimization problem and the definition
of these symbols. It may be helpful to refer to Fig. 10 throughout this
ection. In this figure, boundary curves 1, 3, 9, 11, and 13 comprise the
et 𝛤𝑢, boundary curves 6, 12, 14, and 17 comprise 𝛤𝑣, and the feature
curve ‘‘a’’ defines 𝛤 feature𝑣 . The edges of 4 and 5 should be related to
one another via 𝛤Hol1 or 𝛤Hol3 (depending on which side is used as
14

reference). Similarly, edges 7 and 8 should be related to one another m
via 𝛤Hol1 or 𝛤Hol3 , edges 2 and 10 should be related using 𝛤Hol2 , and
edges 15 and 16 should be related using 𝛤Hol2 . Both 𝛤

feature
𝑢 and 𝛤Hol0

re empty.
Additionally, note that the Ricci parameterization (Fig. 10(b)) and

he quadrilateral-layout inducing parameterization (Fig. 10(c)) both
ave regions that lie on top of one another, shown with magenta hatch-
ng—particularly near the interior cone singularities. Nonetheless, both
arameterizations are locally invertible, non-degenerate, and preserve
he surface orientation with the mapping. As a result, non-singular
ocations in the domain have a well-defined inverse mapping with
ositive Jacobian.
Having established a point of reference for notation, we now pro-

eed defining the minimization problem with its relevant subdomains
n the general setting. Let 𝛺 be the domain of the cut surface, 𝑆 − 𝐺,
nd 𝜓𝑅 ∶ 𝛺 → R2 be the immersion mapping defined by Ricci flow.
ake

= {𝜑 ∶ 𝛺 → R2, 𝜑 ∈ 𝐶0(𝛺), 𝜑 locally invertible}. (12)

his defines the set of continuous maps that have a well-defined inverse

ap. For functions in this family, take 𝑢 ∶ 𝛺 → R as the parametric 𝑢
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Fig. 20. Isogeometric modal analysis of the reparameterized structural beam of Fig. 17 with pinned supports (zero displacements) on the red portion of the boundary. The Bézier
patches of Fig. 17 were uniformly subdivided into 8 × 8 patches by insertion of knots with single multiplicity. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
coordinate of the function, 𝑣 ∶ 𝛺 → R as the parametric 𝑣 coordinate.
Call a vertex, edge, or face of 𝛺 the child of some parent vertex, edge,
or face in 𝑆 if both the child and parent occupy the same space in
R3. Notice that for edges in 𝐺, there will be two children edges of 𝛺
corresponding to a single edge of 𝑆, as seen in Fig. 5.

Take 𝑒𝑖𝑗 as an edge in 𝛺 between vertices 𝑣𝑖 and 𝑣𝑗 in which
|𝑢(𝑣𝑖) − 𝑢(𝑣𝑗 )| ≤ |𝑣(𝑣𝑖) − 𝑣(𝑣𝑗 )| and 𝑒𝑖𝑗 has a parent in 𝜕𝑆. Define the set
of all such edges as 𝛤𝑢, and take the all edges in 𝛺 whose parents are
also in 𝜕𝑆 but not belonging to 𝛤𝑢 as 𝛤𝑣. Let feature curves of 𝑆 (and
thus of 𝛺) similarly be classified as members of 𝛤 feature𝑢 or 𝛤 feature𝑣 based
on whether the flux across them is greater in 𝑣 or in 𝑢, respectively.

Similarly, let 𝛽 be a continuous path in 𝐺 ⊂ 𝑆 with start and end
points that are one of the following

• singular points,
• transverse to a boundary of 𝑆, or
• do not have two children in 𝛺.

Take each interior vertex of the path to have two children in 𝛺. Thus,
each path 𝛽 will have two continuous children paths in 𝛺, and each
child path will have exactly one child of edges contained in 𝛽 ⊂ 𝐺.
Define 𝛾 as one of these children, 𝜔 as the other, and take 𝜏(𝛾) as the
unique translation taking one child vertex of 𝛾 to its corresponding
sibling in 𝜔, 𝑣𝜔. Define 𝑅𝑘̂, 𝑘̂ ∈ {0, 1, 2, 3} as a rotation by 𝑘̂𝜋

2 radians
about 𝑣𝜔. Take 𝑘 to be number for which the rotation by 𝑅𝑘 minimizes
the deviation between 𝜔 and 𝑅𝑘

(

𝜏(𝛾)
)

. Set 𝛤Hol𝑘 to be the set of all such
𝛽 paths in which the rotation 𝑅𝑘 is used.

Lastly, assume an input set of path connectivity constraints to be en-
forced between points 𝑝, 𝑞 in the parameterization—typically between
singular or feature points that should be connected by an integral curve.
These path constraints should be defined in the homotopy class of
𝑆 − 𝑃 that they are intended to follow, though the precise path is not
important. The paths may be cut by 𝐺, and the primary direction of
each subcurve under the parameterization mapping may differ across
15
cuts; these subcurves must be consistently oriented to form a continu-
ous, smooth curve on the branched covering space of the surface [69]
defining the quadrilateral layout. Call the set of such constraints 𝛤topo.
Note that each subcurve 𝛾𝑖 of the topologically constrained curve 𝛾1 ⋅
(… ) ⋅ 𝛾𝓁 will be bounded by 𝐺, 𝑝, or 𝑞.

Based on this information, the parameterization sought minimizes
the following energy.

Find 𝜓 ∈ F such that

𝜓 = min
𝜑∈F

5
∑

𝑗=1
𝜆𝑗𝐸𝑗 (13)

with

𝐸1(𝜑) = ∫𝛺
‖𝐽‖2𝐹 + ‖𝐽−1

‖

2
𝐹 𝑑𝛺 (14)

𝐸2(𝜑) = ∫𝛤𝑢

( 𝜕𝑢
𝜕𝑠

)2
𝑑𝛤 + ∫𝛤𝑣

( 𝜕𝑣
𝜕𝑠

)2
𝑑𝛤 (15)

𝐸3(𝜑) = ∫𝛤 feature𝑢

( 𝜕𝑢
𝜕𝑠

)2
𝑑𝛤 + ∫𝛤 feature𝑣

( 𝜕𝑣
𝜕𝑠

)2
𝑑𝛤 (16)

𝐸4(𝜑) =
3
∑

𝑘=0

∑

(𝛽∈𝛤Hol𝑘 )
∫𝛽

( 𝜕𝜑+
𝜕𝑠

− 𝑅−1
𝑘
( 𝜕𝜑−
𝜕𝑠

)

)

⋅
( 𝜕𝜑+
𝜕𝑠

− 𝑅−1
𝑘
( 𝜕𝜑−
𝜕𝑠

)

)

𝜕𝛤

(17)

𝐸5(𝜑) =
∑

𝛾1⋅(… )⋅𝛾𝓁∈𝛤topo

(

𝓁
∑

𝑗=1
∫𝛾𝑗

𝜕𝜑𝑗𝑘
𝑑𝑠

𝑑𝛤
)2

(18)

=
∑

𝛾1⋅(… )⋅𝛾𝓁∈𝛤topo

(

𝓁
∑

𝑗=1
𝜑𝑗𝑘

(

𝛾𝑗 (1)
)

− 𝜑𝑗𝑘
(

𝛾𝑗 (0)
)

)2
. (19)

Here, 𝐽 is the Jacobian transformation from 𝛺 to R (local to each
triangle), with ‖𝐽‖𝐹 representing the Frobenius norm, and 𝜑𝑗𝑘 is the
constrained direction and orientation (𝑘 = 0 is +𝑢, 𝑘 = 1 is +𝑣, 𝑘 = 2
is −𝑢 and 𝑘 = 3 is −𝑣) for the subcurve 𝛾 . The first energy aims
𝑗
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Fig. 21. Isogeometric modal analysis of the reparameterized structural beam of Fig. 18 with pinned supports (zero displacements) on the red portion of the boundary. The Bézier
patches of Fig. 18 were uniformly subdivided into 8 × 8 patches by insertion of knots with single multiplicity. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
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or a smooth deformation (‖𝐽‖2𝐹 term) while also ensuring that local
njectivity is preserved (‖𝐽−1

‖

2
𝐹 term), and is called the symmetric

irichlet energy [89]. It preserves Property Q1 of Definition 2.1. The
next energy ensures boundary-alignment constraints, and helps satisfy
Property Q3. Energy 𝐸3 gives control over feature alignment, and
ensures that features of the triangulation (preserved from the B-Rep)
are preserved. Next, energy 𝐸4 enforces Properties Q2 and Q4. Finally,
energy 𝐸5 can be used to satisfy Property Q5.

Remark 3.1. For the purposes of generating a quadrilateral layout
on a midsurface, energy 𝐸5 may not be absolutely necessary in that
quadrilateral layout on the surface may be found without enforcing
ny connectivity constraints. However, such unconstrained layouts will
eldom meet downstream needs for design and analysis due to quadri-
16

aterals of arbitrarily poor aspect ratios, as demonstrated in Fig. 13.
Energy 𝐸5 precludes such poor layout configurations on open surfaces.
For closed surfaces, these constraints are necessary to ensure that a
valid quadrilateral partitioning can be generated.

The above energy is non-linear with penalty terms, and can be
minimized using Newton-like iteration. Note that the initial param-
eterization guess, 𝜓𝑅, will not exactly satisfy many of the necessary
constraints, so constraints transforming it into a quadrilateral layout
must be enforced weakly. Because a Nitsche formulation will not gener-
ally yield the exact satisfaction of these constraints (which is necessary
for the parameterization to yield a layout, as in Definition 2.1), we
nstead opt for iteratively solving using a penalty method. Here, as
𝑗 → ∞ for 𝑗 = 2,… , 5 the parameterization converges to enforcing
xact constraint satisfaction. For all operations, 𝜆1 = 1 is selected to
preserve local injectivity, while the other penalty terms are gradually

increased. This minimization problem can be solved efficiently using
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Fig. 22. The front right shock house from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 7 × 7 control points (i.e. 4 × 4
ézier patches), with at least 𝐶2 continuity on the interior of each patch and 𝐶0 continuity between patches. After uniform refinement to 8 × 8 Bézier patches for each patch,
odal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
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i
v
c

echniques such as [90–92]. It is often valuable to switch 𝐽 between
eferencing the Euclidean geometry of the surface and the Ricci metric
f the surface to extract the solutions of subsequent minimizations with
ncreased lambda values from local minima.

. Results

We demonstrate the efficacy of the proposed framework by recon-
tructing both trimmed and faceted models of industrial vehicles into
rim-free spline representations suitable for isogeometric analysis. Here,
ntegral lines emanating from singular points, from feature vertices,
nd along boundaries are extracted from the surface triangulation’s
arameterization, yielding a feature-aware quadrilateral partitioning of
he surface. From here, cubic spline curves are fit using a least squares
pproximation of the integral lines. Lastly, surfaces are extracted using
oons patch interpolation. As such, all B-Reps have 𝐶0 continuity
etween adjacent patches, and at least 𝐶2 continuity in their interiors.
17
.1. DEVCOM Generic Hull

The US Army’s DEVCOM Generic Hull vehicle was created in an
nitiative to involve academia and industry in the research of under-
ehicle blast phenomena without the challenges posed by operating on
lassified material [35]. The entire vehicle is comprised of an outer
hull with various structural beams and pillars composing the structural
frame. The midsurfaces of a structural bracket and two beams were
extracted from the frame for reconstruction, shown in reference to the
rest of the vehicle’s primary structural members in Fig. 14.

The bracket, which has been reconstructed in [14] using a global
frame field-based approach, is shown in Fig. 15. Here, it is shown in its
trimmed form, its untrimmed form, and its reconstructed form using
the present method. Additionally, its form after reconstruction using
the method of [14] is presented for reference. While both the layout
computed using Ricci flow with metric optimization and the layout
of [14] have singular points in the same locations, the frame field
layout produces integral curves that are more geodesic on the original
geometry, while the proposed method is more biased to the geodesic
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Fig. 23. The cabin firewall from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 6 × 6 control points (i.e. 3 × 3
ézier patches), with at least 𝐶2 continuity on the interior of each patch and 𝐶0 continuity between patches. After uniform refinement to 12 × 12 Bézier patches for each patch,
odal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
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urvature of the nearby boundary. As seen in Fig. 16, both methods
ield splines whose Jacobians are comparable.
Both rebuilt beams are also depicted with their trimmed and

ntrimmed representations (see Figs. 17 and 18). However, the frame
ield method of [14] failed to produce a valid parameterization for
hese models, so the layouts produced from this work are not compared
gainst an alternative global reparameterization technique.
For analysis, each bicubic Bézier patch was uniformly refined into
bicubic NURBS patch with 8 × 8 Bézier patches each using single-
ultiplicity knot insertion. Implicit modal analysis was performed
sing LS-DYNA. All parts analyzed are shells of thickness 6.350 mm,
nd are made of ASTM A36 Steel, which has the following properties.

• Modulus of Elasticity (𝐸): 2.07 ⋅ 105 MPa
• Mass Density (𝜌): 7.8 ⋅ 103 kg/m3

• Poisson’s Ratio (𝜈): 0.33
nalyses use the Reissner–Mindlin shell formulation. The bracket is
aken with no boundary conditions (Fig. 19), so has six rigid body
isplacement modes. Both of the other analyses assume boundary
onstraints as depicted in their accompanying figures (Figs. 20 and 21).

.2. 1996 Dodge Neon

George Washington University’s National Crash Analysis Center
NCAC) has performed a variety of finite element crash simulations
or evaluation of safety of a number of commercial vehicles. One such
odel is the 1996 Dodge Neon [44], which was tested for frontal crash
oading.
Though hundreds of parts comprise the actual vehicle, this work

ocuses on the evaluation of four: the vehicle firewall, the cabin’s
ear deck speaker support, the front-right shock house, and the outer-
ight shell member of the vehicle’s chassis. These parts were selected
ue to their geometric and topological complexity. For each of these
odels, the original faceted model and the reconstructed watertight B-
ep are displayed side-by-side in Subfigures (a) and (b), respectively,
f Figs. 22, 23, 24, and 25.
When starting from a finite element mesh, geometric errors that

re a by-product of feature removal, geometry clean-up, and other
18

6

pproximations typically made to facilitate finite element mesh gen-
ration are obviously inherited by the spline model. The sharp crease
n Fig. 22 and the sharp reentrant corners in the holes of Fig. 25 are
anifestations of this. Nevertheless, the spline models eliminate all
riangles in FEM meshes, which are a liability in local nonlinear failure
nalysis, and thus are a significant improvement. However, many of
hese geometric errors can be fixed by smoothly mapping the spline
odel to the original CAD geometry. An 𝐿2-best fitting would seem a
imple and efficient procedure for this purpose. This is a topic for future
esearch.
Isogeometric modal analyses are performed for refinements of each

f the above-listed models. All analyses use the Reissner–Mindlin shell
ormulation. Material data for the NCAC finite element model, which
as also used in these isogeometric analyses, was determined from
oupon testing [44]: the analyzed parts are all steel. All analyzed mod-
ls have following mass density, modulus of elasticity, and Poisson’s
atio:

• Modulus of Elasticity (𝐸): 2.1 ⋅ 105 MPa
• Mass Density (𝜌): 7.89 ⋅ 103 kg/m3

• Poisson’s Ratio (𝜈): 0.30
hicknesses of shells are 0.735, 0.829, 0.96, and 0.907 mm, respectively.
epresentative modes for the spline models are shown in the latter
ubfigures of Figs. 22, 23, 24, and 25.

5. Conclusions

In this work, we presented a new framework to rebuild trimmed
and faceted open midsurface geometries into isogeometric analysis-
suitable spline spaces. First, we defined a generalized set of criteria
for a surface triangulation that, if satisfied, generate a quadrilateral
layout. Based on this theory, we combined the tools of discrete sur-
face Ricci flow [86,87] with a constrained minimization against an
inversion-precluding energy [89–92] with layout-inducing penalty con-
straints. The methodology assures that the computed parameterizations
are locally injective, a necessary criterion frequently not satisfied by
many current quadrilateral parameterization techniques [14,48,49,53,

8]. The defined framework was used to rebuild topologically and
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Fig. 24. The right outer shell of the cabin chassis from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 7 × 7 control
points (i.e. 4 × 4 Bézier patches), with at least 𝐶2 continuity on the interior of each patch and 𝐶0 continuity between patches. After uniform refinement to 8 × 8 Bézier patches
for each patch, modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

s
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geometrically complicated members of both the US Army’s DEVCOM
Generic Hull vehicle [35] and the National Crash Analysis Center’s
1996 Dodge Neon finite element model [44], including models for
which current state-of-the-art techniques fail [75, Appendix B]. We
show the viability of each of the rebuilt models by using them for
isogeometric modal analyses using the commercial solver LS-DYNA.

While the proposed framework offers a feature-aware technique
to generate spline surfaces suitable for isogeometric analysis, addi-
tional work remains. First, the proposed methodology focuses on re-
construction of open surfaces. While there is no theoretical reason that
19

p

the technique cannot extend to closed surfaces other than potential
holonomy issues for unusual and pathological singularity configura-
tions [79,81], the methodology has not yet been explored on these
urfaces. Closed surfaces pose an additional challenge, as well, because
hey will not typically satisfy Property Q5 of Definition 2.1, as will
ost open surfaces. A forthcoming work formalizing theory defined
n [93] demonstrates that connectivity constraints automatically or
emi-automatically defined between singularities can easily fit into the
roposed framework. As such, we are optimistic that the proposed
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Fig. 25. The frame supporting the rear speakers of the cabin from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with
6 × 6 control points (i.e. 3 × 3 Bézier patches), with at least 𝐶2 continuity on the interior of each patch and 𝐶0 continuity between patches. After uniform refinement to 12 × 12
ézier patches for each patch, modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
echnique can also easily incorporate the automatic connectivity con-
traints defined in [53,70], particularly because both of these methods
perate on an initial seamless surface parameterization, which kind of
arameterization is exactly produced herein.
Next, the parameterization framework needs alternative ways to

elect singularities. The current framework relies on a Dirichlet-type
nergy with guarantees for valid singularity positions only if the in-
ut geometry is sufficiently smooth [33]: these smoothness conditions
ay not hold on highly-featured structural and mechanical surfaces.
urthermore, automatic placement of singularities is limited to valence
hree and five singularities [33], though many geometries of interest
ay benefit from higher-valence cones. Future research will explore
lternative ways to robustly compute cone singularities for featured
urfaces, including evaluating existing techniques proposed in [49,70,
94–96].
20
Finally, additional research should focus on more advanced spline
fitting techniques. The current technique employs linear interpola-
tion between integral curves defining the boundary of a patch in the
quadrilateral layout. For more nonlinear parameterizations or geome-
tries with significant curvature in their domains, this technique will
be insufficient to capture these nonlinear features and would require
additional layout subdivision at the expense of more degrees of freedom
and reduced continuity. Instead, manifold splines such as unstructured
T-splines [97–99] or U-splines [100] may be necessary. Additional
research will also need to focus on how to fit splines produced on
the triangulation back to the original trimmed CAD domain. Because
geometries used herein are predominantly flat, reconstruction from the
triangulation to the original geometry was fairly straightforward. An
ultimate objective is minimizing the need for user intervention in the
process.
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