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Isogeometric analysis has received extensive attention in the last decade, but despite its merits, many
isogeometric models are still produced manually or semi-manually. In this work, we introduce a new technique
using Ricci flow and a carefully constrained minimization to convert trimmed and faceted open geometries
into watertight spline models free of trim and suitable for isogeometric analysis with potential for automation.
This technique is used to rebuild parts of the US Army’s DEVCOM Generic Hull vehicle and portions of a
1996 Dodge Neon finite element model into trim-free spline models. Isogeometric modal analysis is performed
on each to show the viability of this reconstruction framework in generating IGA-suitable splines for shell

1. Introduction

Engineering shell structural analysis requires an integrated design-
through-analysis framework. Under the current paradigm, a designer
creates computer-aided design (CAD) geometry to define the intended
shape by combining a set of smooth B-spline or NURBS patches into
a so-called “boundary representation” or “B-Rep” (which may simply
be a midsurface, or “open” B-Rep); an analyst then replaces it with a
finite element mesh that only approximates the original CAD geometry.
Not only is the precise geometry of the model lost in this procedure
(which alone may have significant implications [1]), but underlying
physics of the analysis may also be lost. Additionally, this process
takes a significant amount of time (over 70% of the design-through-
analysis process) [2,3] and money [4]. Regarding the analysis of these
faceted meshes, traditional finite element techniques for shells struggle
with locking (which is alleviated by increasing polynomial degree [5])
and numerically-induced large spurious eigenvalues (which increase
with increased polynomial degree [6]). For operations such as explicit
dynamics, where the maximal time step is inversely proportional to the
square root of the maximum eigenvalue [7, p. 335], increasing polyno-
mial degree leads to a reduction of time step size and a concomitant
increase in computational effort.

* Corresponding author.

Isogeometric analysis (IGA), proposed in [8], aims to address these
issues by using the same smooth basis functions employed in CAD for
engineering analysis. Isogeometric techniques can be used to directly
solve (without resorting to mixed methods) high order PDEs like the
Kirchhoff-Love shell formulation [9,10] and to represent physics using
smooth spline functions [6,8]. [sogeometric methods are more accurate
per degree of freedom than traditional finite element methods [11-13]
and can operate directly on the B-spline and NURBS geometries created
in CAD without the need for an auxiliary faceted mesh [8,14]. Further-
more, the smoothness of isogeometric basis functions alleviate modal
“outliers” introduced with traditional finite element techniques [6,12,
15], and increasing basis function smoothness and polynomial degree
accordingly reduces locking [16-19]. Isogeometric shells admit high-
accuracy, high-sparsity quadrature routines unavailable for traditional
shells [18]. And finally, isogeometric techniques offer the potential
of a single model suitable for both engineering design and analysis,
reducing the time and expense associated with meshing.

Unfortunately, CAD models are not simply curvilinearly mapped
rectangles, as are the B-spline and NURBS patches from which they
emanate. Rather, CAD technologies piece B-spline and NURBS patches
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Fig. 1. A typical B-Rep geometry will consist of a topological gluing of multiple B-spline and NURBS tensor product patches mapped into a spatial configuration. In the presence
of complicated topology or geometry, trimming operations—which mask portions of the tensor product spline—are ubiquitous. These trimming operations, though useful in rapid
design prototyping, impede the use of the B-Rep in engineering analysis. This particular B-Rep is a sample engine turbine from Rolls Royce.

Fig. 2. A trimmed B-Rep engine turbine from Rolls Royce (top-left) portrays an intended geometry, but the underlying computational representation visualized after removing
trimming features reveals that the model is defined by a complicated data structure bearing very little resemblance to the intended geometry.

together to define the boundary of an intended object, a computational
representation called a B-Rep. Midsurfaces of these models, called open
B-Reps, are created analogously. For models with complicated geome-
try or topology, Boolean operations are typically employed to portray
the intended shape by masking unwanted parts of the underlying
spline patches [20, p. 304-307], [21,22]. Aspects of this construction
process are displayed in Fig. 1. Visually, the results portray the intended
design, but these Boolean (a.k.a. “trimming") operations hide what is
often a complex computer representation (see Fig. 2). Trimming breaks

spline function continuity [20, p. 305], [22], complicates numerical
integration [23-25], and requires weak coupling of subdomains [26—
29]. Because CAD software cannot exactly represent general trimming
operations [30,31], approximations are made that lead to tiny gaps and
overlaps between surface edges that should be coincident [22,32]. This
leads to surfaces that are not “watertight”. [22,32].

In this paper, we propose a new framework for converting open
midsurface CAD geometries into isogeometric analysis-suitable, trim-
free B-Reps using discrete surface Ricci flow and metric optimization.
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Fig. 3. A contrived quadrilateral layout on an annulus (left) is induced by a mapping of the cut annulus into the Euclidean plane (right). Here, the point in blue is a cone
singularities of valence five and the point in red is a cone singularity of valence three. Cuts to cone singularities are given in red, while cuts to make the bracket a topological
disk are in blue. Boundary curves are in dark green, while non-boundary integral curves are given in black. The coordinate differentials, du and dv, when traced from singular
points and pulled back from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning the surface into a set of quadrilaterals. These differentials are
depicted as black lines of constant u and v coordinates in the immersion, and curvilinear black arcs when pulled back to the original surface. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. A quadrilateral layout on a bracket of the DEVCOM Generic Hull vehicle (left) is induced by a mapping of the cut bracket into the Euclidean plane (right). Here, points
in blue are cone singularities of index —1 (valence five), points in red are boundary cones of index 1, and points in purple are boundary cones of index —1. Feature points of
the model that are not cone singularities in the defined parameterization are displayed in green. Cuts to cone singularities are given in red, while cuts to make the bracket a
topological disk are in blue. Feature curves to be preserved in the computed layout are in dashed black. The coordinate differentials, du and dv, when traced from singular points
and pulled back from the Euclidean plane to the original surface, integrate into curvilinear arcs partitioning the surface into a set of quadrilaterals. These differentials are depicted
as black lines of constant « and v coordinates in the immersion, and curvilinear black arcs when pulled back to the original surface. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

In this framework, a trimmed CAD model is converted into an easy- there, the discrete surface Ricci energy is minimized to determine
to-compute, feature-aware surface triangulation with a topologically- a flat metric on the surface with cone singularities: this metric can
constrained number of cone singularities (defined in Section 2). From be thought of as an immersion of a cut version of the surface into
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Fig. 5. A bracket with computed singular and feature points is cut into a topological disk. Singular points are shown in red, purple, and blue, with those in red and purple
representing boundary cone singularities of index 1 and —1, respectively, and blue points representing interior cone singularities of index —1 (valence five). Points in green are
features of the bracket that are not chosen to be cone singularities in the parameterization. Cuts to singularities are depicted in red, while cuts to make the bracket a topological
disk are in blue. Curves in dark green and dashed black are the surface boundary and features, respectively. Notice that each singular point is either in the cutting graph or the
surface boundary. Edges in the cutting graph are represented twice in the cut surface, vertices that are cut through are multiply represented, and vertices at the termination of
the cutting graph are singly represented. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. A bracket of the DEVCOM Generic Hull vehicle is triangulated, and the neighborhood of one of its vertices is shown in green and subsequently mapped via a quad layout
immersion map, ¥. Additionally, all triangular faces on the sides of a particular homological cut are represented in either red or cyan and similarly mapped. Under the immersion,
the image of the bracket is no longer injective: for example, the map takes portions of the vertex’s neighborhood to the same coordinate locations that are part of the cyan side
of the cut. However, an inverse is well-defined locally throughout the surface, including for each of these colored neighborhoods. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

the Euclidean plane, or a locally-bijective “parameterization”. Subse-
quently, this parameterization is transformed into one that induces
a quadrilateral layout on the surface. A quadrilateral layout can be

thought of as a coarse quadrilateral partitioning of the surface that can

be refined as much as desired while still guaranteeing a valid quadri-
lateral refinement. Subsequently, the original CAD model is rebuilt
using this computed layout as the skeleton for a set of quadrilateral

watertight spline patches. Because this method employs a feature-aware
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Fig. 7. The cutting graph of a surface—shown as a solid line, a dashed line, and a dash—dot line—splits this singular point into three child vertices. Accordingly, the neighborhood
is split into three different portions, shown in blue, dark green, and dark magenta. Under the immersion mapping, the sum of the interior angles of this vertex with its incident
triangles is 57”, making the point a cone singularity of index —1 (i.e. valence five). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 8. A cut version of an annulus with a valence three (red) and a valence five (blue) singularity has subdomains of its boundary labeled. Because the cut surface is a topological
disk, members of the cutting graph are also included. Under the quadrilateral layout inducing parameterization, ¥, curves 1 and 3 are mapped to lines of constant v coordinate
and curves 6 and 8 are mapped to lines of constant u coordinate. After a translation, curve 2 rotated by ’—2' radians counter-clockwise (CCW) aligns with curve 7, and curve 4
matches curve 5 after rotation by ’5’ radians CCW, and curve 9 matches curve 10 after rotation by 37”
legend, the reader is referred to the web version of this article.)

radians CCW. (For interpretation of the references to color in this figure
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Fig. 9. An integral curve emanating from a singular curve in the —du coordinate direction is extracted (a line of constant v in the immersion). On the right of each subfigure is
the integral curve under the quad layout immersion, ¥, while on the left the integral curve of the pullback, ¥*, of the coordinate function differential into the spatial domain is
shown. After reaching the cutting graph, the integral curve is continued in the —dv coordinate direction on the opposite side of the cut: the direction and location for continued
integration is prescribed by Property Q4, and will generate a continuous curve in the spatial domain. This particular integral curve terminates when it returns to the singular point

from which it began.

triangulation for the quadrilateral parameterization computation, it
works equally-well in converting a faceted mesh into a feature-aware
smooth spline surface.

1.1. Prior work

Two approaches have arisen to address the issues related to analysis
of trimmed B-Rep models. The first, primarily driven by the analysis
community, aims to address the issues of trimmed B-Reps by employ-
ing various generalizations of the classical cut cell method [23,25,
29]. Here, cut elements are addressed using specialized integration
techniques (see e.g. [23-25] and [36, p. 87-95]), numerical stabiliza-
tion [37-40], and weak enforcement of both connectivity and boundary
constraints [26-29]. This approach has seen significant progress of
late [26,41,42], with recent works performing explicit dynamics com-
putations on trimmed industrial B-Reps, [43], but additional efforts
are still needed to ensure robustness in the presence of poorly shaped
trimmed parametric spaces.

The other primary approach aiming to address analysis of trimmed
CAD models seeks to rebuild a trimmed B-Rep prior to use in analysis.
Many methods have been developed to rebuild a trimmed spline into
a set of trim-free Bézier, B-spline, or NURBS patches by subdividing a
trimmed patch’s parametric domain into more regular shapes [32,45-
47]. These techniques work well when the original model already
meets high quality criteria, but generally cannot perform well on
models for which the designer prescribed a poor parametric spline
definition. Unfortunately, many models of engineering interest (in-
cluding that of Fig. 2) may not meet the requisite quality criteria,
and reconstruction using these techniques is difficult, and sometimes

impossible. Alternatively, recent works aim to redefine the B-Rep’s
underlying parametric domain by computing a global reparameteri-
zation using an auxiliary feature-aware surface triangulation [48-53].
Unlike typical analysis-suitable meshing methods that are predomi-
nantly well-structured quadrilaterals [54] and are labor-intensive to
produce, the triangulations necessary for these reparameterizations can
be unstructured and are easily-defined [55-57]. After computation of
a quadrilateral-layout inducing reparameterization, splines are then fit
to the computed layout. To date, many of these global reconstruction
techniques have required significant user intervention [58,59], require
expensive mixed-integer optimization [48,49,51,53,60], are limited by
the use of templates [61,62] or certain types of singularities [63-65],
or suffer from robustness issues [14]. Many are based on the frame field
methods proposed in the computer graphics community [33,34,49,66,
671, which frequently employ mixed-integer optimization [48,49,51,
53] and require heuristics to address errors introduced by the non-
integrability of frame field vectors [53,67,68]. These methods generally
cannot guarantee a locally-injective parameterization, meaning that
some elements are either degenerate or possess non-positive Jacobian.

Global quadrilateral reparameterizations additionally require that
defined cone singularities connect with each other through integral
curves of the parameterization in order to segment the surface into
a set of quadrilaterals. Traditionally, this has been done by forcing
cone singularities to integer-valued coordinates using rounding [69],
mixed integer optimization [48,49,68], or some other form of quanti-
zation [51,53,70]. The most recent methods in automating this process
typically operate on a suitable global parameterization inducing a
generalized T-mesh that is then transformed into a quadrilateral lay-
out using either integer linear programming [53] or a simple linear
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Fig. 10. The layout reconstruction process is shown for a contrived, but instructive example. In (a), a set of cone singularities are prescribed, with two interior cones of index
—1 (valence 5), one interior cone of index —2 (valence 6), and four boundary cones of index 1. Cuts are made to each cone and to make the surface a topological disk, with
edges of the disk labeled in clockwise manner; a feature curve is also shown as a dashed line and labeled using an “a”. In (b), the surface is immersed into the plane based on
the computation of discrete surface Ricci flow. This immersion does not induce a feature-aligned quadrilateral layout because the feature curve is not a line of constant u or v
coordinate and because the boundary curves on the reentrant corners of the L-shaped immersion are also not lines of u or v coordinates. This parameterization is minimized against
a quadrilateral layout-inducing energy to yield (c), an immersion that induces the quadrilateral layout of (d). In addition to the boundary curves and the feature curve “a”, the
black lines of (c) and (d) are integral curves from the singular points yielding the quadrilateral layout. Regions of magenta hatching are locations in which the immersion maps,
though locally invertible, are not globally invertible. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Automatically Computed Singularities (b) Manually Adjusted Singularities

Fig. 11. On the left, singularities are automatically computed using [14], which combines the theory from [33,34]. Because of the high clustering of cone singularities in this
configuration, singularities were manually modified to combine valence five singularities (blue) into valence six singularities (cyan) in the regions of high clustering (right). Note
that the automatically-computed locations clarify potential positions for the manually-adjusted configuration. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 12. After minimizing the discrete Ricci flow energy, the cut surface with flat
metric can be isometrically immersed into the Euclidean plane using the law of cosines
of Eq. (11) in conjunction with the lengths and angles depicted in this figure.

solve [70]. Quadrilateral layouts thus automatically extracted may
still have poor connectivity properties, and additional methods have
been proposed to optimize them by collapsing sets of faces [71], by
optimizing based on length and angle of integral curves [72], any by
binary programming [73]. Finally, manual intervention can be used to
establish singular point connectivity where necessary [14,59,74].

1.2. Contributions

In this work, a global reparameterization technique is defined and
employed in rebuilding both trimmed and faceted geometries of indus-
trial relevance. Unlike many other global reparameterization methods,
however, it does not require the use of mixed-integer optimization,
and the resulting parameterization is guaranteed to have a well-defined
inverse locally. Specifically, we make the following contributions.

We define a set of generalized criteria on a triangulation that, if
satisfied, yield a quadrilateral layout on the surface (Section 2).
In Section 3.3, we present a set of partial differential equa-
tions that, in combination with Ricci flow, yield a quadrilateral
layout-inducing parameterization on a faceted surface.

We employ the technique in Section 4 to extract trim-free spline
surfaces from the US Army’s trimmed CAD model of the Unclas-
sified DEVCOM Generic Hull vehicle [35] and from the National
Crash Analysis Center’s (NCAC’s) finite element model of a 1996
Dodge Neon [44]. Extracted spline spaces include ones for which
previous methods are known to fail (see [14] and [75, Appendix
BD).

Additionally, in Section 4 we demonstrate, using the isogeometric
analysis capabilities in the commercial solver LS-DYNA, that the
defined spline surfaces are suitable for use in isogeometric shell
analysis.

The first contribution gives a general characterization that, if met,
ensures that the computed parameterization on a triangulation defines
a quadrilateral layout. The second provides an alternative approach
for computing such a parameterization. The third and fourth demon-
strate the potential of the proposed technique in creating isogeomet-
ric analysis-suitable shells from trimmed and faceted models. Finally,
conclusions and future work are discussed in Section 5.

Engineering Structures 252 (2022) 113602
2. Definition of a quadrilateral-inducing parameterization

This section is foundational but necessarily mathematical. It utilizes
concepts from differential and algebraic topology and geometry with
which many readers may not be familiar. We invite readers unfamiliar
with this material to scrutinize figures in this section to attain at least
a visual comprehension of the ideas.

Because the NURBS-based B-Rep is the predominant computational
representation of CAD geometries, the target object of this work is a
non-degenerate set of NURBS splines redefining the original geometry
without any trimming. This could be thought of as a coarse, curvi-
linear quadrilateral mesh, called a quadrilateral layout, defined by a
set of splines. This characterization emphasizes that each spline is a
curvilinear quadrilateral, but leaves the global objective that the splines
must fit together precisely along boundaries unaddressed. Such a local-
to-global characterization is not amenable for computation, and so a
different representation is necessary.

Additionally, the trimmed spline spaces defining a CAD object also
are not amenable for computation without weak coupling. As such,
these geometries are converted to a feature-aware unstructured sur-
face triangulation by, for example, triangulating individual parametric
domains and mapping these triangulations using the surface mapping,
taking care that nodes on surface boundaries align appropriately. Given
this triangulation, a global parameterization inducing a quadrilateral
layout on the surface is defined by the following criteria of Defini-
tion 2.1. Two sample parameterizations satisfying all of these criteria
are depicted on a contrived example for an annulus in Fig. 3 and for
a bracket of the DEVCOM vehicle in Fig. 4. These criteria may best be
understood pictorially, and the reader is invited to study Figs. 5 through
9, in conjunction with Figs. 3 and 4 for best comprehension.

Definition 2.1 (Quad Layout Immersion). Let S be an oriented,' trian-
gulated surface with a prescribed set of singular points, P. Take G as
a graph along edges of S making .S — G a (set of) topological disk(s)
such that P ¢ G U dS (hereafter called a cutting graph). With this
representation, we assume that each edge through which G passes is
represented as two edges in .S — G, and similarly that vertices of §
are split into multiple representations in .S — G (see Fig. 5). Then a
continuous map ¥ : § — G — R? that generates a quadrilateral layout
(called a quad layout immersion) satisfies the following criteria.

Q1 Local injectivity: all but a discrete set of points (specifically, not
singularities) have a neighborhood that is locally invertible (see
Fig. 6).

Q2 For each vertex v of the triangulation on .S, take U(v) to be the
one-ring neighborhood (a.k.a. the closed star [76]) of v, with T
a triangle of U (v). For ease of notation, also write U(v) as the set
of triangles in the cut representation S — G, where now v may
be cut, and is to be understood as the vertex incident to T after
cutting. Define £(v,%(T)) as the inner angle of ¥(7T) incident to
vertex ¥ (v). Then the following holds:

2z if v & P and v is in the interior of .S
Y 2(v¥M) =1z

if v ¢ P and v is on the boundary of .S
TeU(v) kx

5 forkeZifve P

@

(See Fig. 7 for an example in which k = 5.) Furthermore, a
discrete version of the Gauss-Bonnet theorem holds:

Y (2= Y low@m))+ Y (2= Y 2(ov@)) =245,

vEdS TeU(v) vEDS TEU(v)

(2)

1 Surfaces of engineering interest are oriented. Non-orientable surfaces are
objects like the Mobius band.
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(a) Layout without connectivity constraints
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(b) Layout with connectivity constraints

Fig. 13. The effects of energy E; are demonstrated for a bracket midsurface. Here, two topologically valid layouts are computed—the one on the left without connectivity
constraints between singularities and the one on the right with these constraints. The layout without these constraints yields a quadrilateral decomposition with 1898 patches,
most of which are slivers and are infeasible for use in design or analysis. The constrained layout, instead, is defined by only 73 patches, and meets needs from both design and

analysis perspectives.

Fig. 14. Three reconstructed parts of the DEVCOM Generic Hull vehicle [35]—two support beams and a bracket of a structural pillar—are shown in the context of the primary

support members for the vehicle. All surfaces in this representation are trimmed.

where x(S) is the Euler characteristic of the surface.”

Q3 Each connected component of 0.5 —G is mapped by ¥ to a line with
constant u or v coordinate (see Fig. 8).

Q4 Let each arc of G be written by w;, be given an orientation, and be
parameterized by arc length. Under S—G, w; is represented by w,;
and w_; on the left and right side of w;, respectively, with parame-
terization consistent with ;. Then ¥ (w_;() =T (T(a) +,-(t))) for
7 : R? - R? a translation and rotation by %’” k € Z (see Fig. 8).

Q5 Lines emanating from singularities under the immersion with con-
stant u or v coordinate value, when pulled back to S — G,
either

1. Terminate at a (possibly identical) singularity

2 Recall that for a triangulated surface with V vertices, E edges, and F
faces, y(S)=V — E+ F, and is a topological invariant.

2. Terminate transversely to the boundary
3. Are transverse to the cutting graph G

In the final case, the line is continued inductively across the cut
using the transformation 7 prescribed in Item Q4 (see Fig. 9).
All such sets of lines are finite, i.e. they achieve Item (1) or (2)
twice.® The set of these curves emanating from singularities are
frequently called separatrices.

Furthermore, if these conditions hold, then any curve generated as in
Item Q5 at any point on the surface will be finite (either periodic, part
of the separatrices, or terminating transverse to two boundaries). These
curves are called isocontours or integral curves.

These criteria are presented in the smooth setting in [77]. The pre-
scribed set of vertices P are called cone singularities. If the set of cone

3 In the case that S is an annulus with no singularities or a torus with no
singularities, the same holds after artificially calling an arbitrary regular point
the surface’s only singularity and proceeding as before.
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(a) Trimmed bracket

(c) Reconstructed using [14]

(d)

method
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(b) Untrimmed bracket

Reconstructed using  present

Fig. 15. A bracket of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation. Below, the reconstruction technique of [14] is compared
against that of this method: all splines depicted are Bézier patches. Notice that while singularity locations for both are the same, the integral curves of this approach, being more
conformal, are less straight than those of [14], which minimizes a Dirichlet-type energy.

singularities satisfies Eq. (2), it is said that the set is “admissible”. Prop-
erty Q3 is referred to as the boundary-alignment constraint. For frame
field-based parameterization methods, Property Q1 is referred to as
integrability of a frame field [78]. Properties Q1, Q2, and Q4 together
define a so-called “seamless surface parameterization” [79]. Property
Q5 is frequently satisfied by obeying integer-grid constraints [48,49,
51,53,68]. Alternative characterizations of a quadrilateral layout as a
special Riemannian metric on a surface and as a meromorphic quartic
differential are given in [70,80,81], respectively.

In a spline parameterization, the aforementioned cone singularities
are referred to as “extraordinary points” or “star points”, particularly
when located in the interior of the surface. The valence of a spline
node is defined as the number of spline edges emanating from the node.
Extraordinary points correspond to boundary nodes whose valence is
not three, or interior nodes with valence not equal to four. Because

10

extraordinary points are not commonly defined on boundaries and
because these cone singularities live on the surface triangulation, we
define the index of a vertex, v, on the surface triangulation as

2(27 = Brev (o)) ifvgos
2 (7= Zrevw 4(0.#(M))  ifveos.

E3

I(v) = 3)

Accompanying the index, the following Gauss-Bonnet condition holds,
which is equivalent to that in Property Q2:

Y 1) =44(S).

ves

4

The index is an integer-valued function defining the discrete contri-
bution of a point to the surface’s total curvature. Regular points have
index zero, while cone singularities will have non-zero values. A cone
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Fig. 16. Jacobians within patches of the DEVCOM bracket rebuilt using the frame field method of [14] (left) and the proposed method of this work (right) are shown. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

singularity v corresponds to a point of valence 4 — I(v) if v is in the
interior of .S, and a point of valence 3 — I(v) if it is on the boundary.

Definition 2.1, though long and a bit arduous, provides a global,
computationally-amenable framework for defining a quadrilateral sur-
face parameterization. Given this characterization, the following sec-
tion defines a set of partial differential equations used to produce such
a parameterization.

3. Computation

Given the global recharacterization of a quadrilateral layout as
a special type of immersion mapping into the Euclidean plane, as
described in Definition 2.1, we proceed to define how to realize this
characterization. Fig. 10 walks through this reconstruction process for
a contrived yet instructive example of a plate with a hole and a single
feature curve, and will be referred to throughout this section.

3.1. Selection of singular points

After having extracted a feature-aware triangulation of the B-Rep
(or having subdivided a faceted mesh into a triangulation), a set of
singular points must be defined that obey the Gauss-Bonnet condition
of Eq. (2) (or equivalently Eq. (4)). For surfaces, this discrete Gauss—
Bonnet condition is analogous to the discrete Poincaré-Hopf theorem
for frame fields presented in [33,82].

For this work, we employ the frame field method of [14], which
combines aspects of [33,34], to automatically place a set of cone
singularities. When the prescribed mesh is sufficiently smooth, the
results of [33] guarantee that an admissible set of cones is prescribed.
However, if the mesh lacks smoothness, has a number of features,
or requires prescription of extraordinary points not of valence three
or five, manual adjustment may need to be performed. Additionally,
the engineer should check to see if the cones are placed in geomet-
rically meaningful locations; if not, the problematic cones should be
repositioned for a higher-quality spline reconstruction. For instance,
Fig. 11(a) shows cone singularities automatically computed using the
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frame field method of [14]: while many singularities are well-placed,
some cluster in a way that would benefit from singularity merger,
and additional singularities must be introduced because the mesh lacks
smoothness necessary to guarantee the Gauss—Bonnet condition of [33].
Instead, these automatically computed singularity positions for a Dodge
Neon firewall are manually adjusted to satisfy Gauss-Bonnet, for better
positioning, and to combine clustered low-valence singularities into
higher-valence ones. All cones of the reference example, Fig. 10, were
placed manually. Better placement of these cones in an automatic or
semi-automatic manner for featured geometries is a topic for future
research.

3.2. Discrete surface Ricci flow

After selection of an admissible set of cone singularities (obeying the
Gauss—Bonnet condition of Eq. (2)), a flat metric on the surface with
cone singularities is computed using discrete surface Ricci Flow [83—
87]. A thorough discussion of discrete surface Ricci flow is presented
in [86], with a generalization to less regular meshes given in [87]. Here
we briefly review the basic concepts related to this flow.

3.2.1. Ricci Computation

Every surface, S, embedded in R? with a triangulation, ¥, inherits
the Riemannian metric of R3. Here, each face T, jx with vertices v;, v;, vy
inherits lengths from Euclidean space and angles obeying the typical
law of cosines:

O = O3+ Ch =20l cos (£ Ti)) (5)

where £;; is the length of the edge between v; and v;, and £(vy, T}j) is
the interior angle of triangle T;;, at vertex v,. Take % as the set of all
vertices in the surface triangulation.

Defining the discrete Gaussian curvature at a vertex on the surface
to be

2r — z(v;, T
R
= ETET,U,-ET £(v;, T)

if v, & 05

. ©
if v, €98,
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Fig. 17. A structural beam of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation using bicubic Bézier patches.

then the following discrete Gauss—Bonnet theorem holds [88, p. 252—
253]:

Z K; = 274(S).

v; €V

)

From here, a parameter y; is selected for each v; : this represents the
length of the radius of a circle about v; for a discrete circle-packing
metric on the surface [83,86,87]. Taking a conformal factor

(€))

(with potential choices of u; given in [86,87]), discrete Euclidean
surface Ricci flow is governed by the following nonlinear, partial
differential equation:

ou; _
- =K-K,
where K, is the input target curvature. Recall that in this instance, K;
will be zero for all non-singular points and predefined based on the
type of cone singularity for all other points.

Alternatively, discrete surface Ricci flow can be recast as the unique
minimizer of the following convex energy,

E(u) = /0 Y (K, - K),
i=1

where n is the number of vertices in 2. Computationally, only a critical
point of this energy is needed, meaning that the exact integral never
needs to be computed. This can effectively be done using Newton-like
methods as in [86,87].

u; = log(y;)

9

(10)
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3.2.2. Metric immersion

Upon solving for each u; by minimizing Eq. (10), the surface has a
flat metric with cone singularities. This is converted to an immersion
mapping into the two-dimensional Euclidean plane by transforming the
computed conformal factors to circle radii (using Eq. (8)), and using a
fixed, conformal edge weight cos(¢;;) in conjunction with the following
law of cosines (see Fig. 12):

O =77+ 77+ 207, cos (). an

After one surface triangle, T, has been immersed into the plane with
arbitrary rotation, neighboring triangles are then mapped into the plane
and glued to an edge of T in a similar manner. Proceeding until all
surface faces have been visited once will effectively define a map from
a cut version of the surface into the Euclidean plane. For the sake of
computational simplicity, it is often preferable that these cuts go to,
but not through singular points (meaning that a small neighborhood of
every singular point is a single connected component under the cutting
operation). Recall the set of these cuts, G, is the cutting graph.

For genus zero surfaces with boundary, the surface can be immersed
into the Euclidean plane using this metric to satisfy Properties Q1,
Q2, and Q4 of Definition 2.1 [80], leaving only boundary-alignment,
feature alignment, and finite-length integral curves to be addressed.
More general surfaces will of necessity only satisfy Properties Q1 and
Q2. Because we always assume that the surfaces here are open shells
(so genus zero with boundaries), we additionally assume that there is
an edge in the boundary of .S that, under this immersion mapping, has
constant u or v coordinate; if not, perform a rotation to make this true.
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Fig. 18. A rounded structural support beam of the DEVCOM Generic Hull vehicle is converted into a trim-free watertight spline representation using bicubic Bézier patches.

Fig. 10(b) depicts the immersion of a cut version of a plate with
a hole—Subfigure (a)—into the Euclidean plane based on surface Ricci
flow. Here, cuts to cone singularities are shown in red (edges 4,5,7,8, 15
and 16), while cuts to make the surface a topological disk are given by
edges in blue (edges 2 and 10). This computed map is locally injective,
but does not induce a feature-aligned quadrilateral layout because the

13

[7Pe]

feature curve, curve “a”, is not constant in either u or v coordinate.
Furthermore, the edge boundaries on the reentrant corners of the L-
shaped immersion are not actually constant in « or v, though they are
nearly so. This immersion will be transformed into the quadrilateral
layout-inducing parameterization of Fig. 10(c) using the following

techniques.
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(a) Mode 7: 194 Hz

(b) Mode 8: 196 Hz

(c) Mode 9: 401 Hz

(d) Mode 10: 412 Hz

Fig. 19. Isogeometric modal analyses of the reparameterized bracket of Fig. 15(d) with each Bézier patch uniformly subdivided to have 8 x 8 patches by insertion of knots with
single multiplicity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3. Minimization against a layout-inducing energy

Having parameterized the surface by immersing it into the plane,
it now remains to transform this parameterization into one that in-
duces a quadrilateral layout, and thus meets all of the requirements
of Definition 2.1.

Because all of Definition 2.1 must be enforced, there will accord-
ingly be a variety of constraints on surface subdomains. These sub-
domains will be written using the following symbols: Fu,Fu,F,feam’e,
Fufeat“re, and Lo, k € {0,1,2,3}. Each of these constrained subdomains
is geometric in nature and can easily be visualized: without this appeal
to geometry, however, the notation can be heavy. To alleviate this
issue, we first present these subdomains on our reference example,
Fig. 10, prior to defining the minimization problem and the definition
of these symbols. It may be helpful to refer to Fig. 10 throughout this
section. In this figure, boundary curves 1,3,9,11, and 13 comprise the
set I',, boundary curves 6, 12,14, and 17 comprise I',, and the feature
curve “a” defines I’lfea“”e. The edges of 4 and 5 should be related to
one another via Iy, or Iy, (depending on which side is used as
reference). Similarly, edges 7 and 8 should be related to one another
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via Iy, or Iy, edges 2 and 10 should be related using Iy, and
edges 15 and 16 should be related using Iy, Both Fufeat‘"e and Iy,
are empty.

Additionally, note that the Ricci parameterization (Fig. 10(b)) and
the quadrilateral-layout inducing parameterization (Fig. 10(c)) both
have regions that lie on top of one another, shown with magenta hatch-
ing—particularly near the interior cone singularities. Nonetheless, both
parameterizations are locally invertible, non-degenerate, and preserve
the surface orientation with the mapping. As a result, non-singular
locations in the domain have a well-defined inverse mapping with
positive Jacobian.

Having established a point of reference for notation, we now pro-
ceed defining the minimization problem with its relevant subdomains
in the general setting. Let £ be the domain of the cut surface, S — G,
and yy : Q — R? be the immersion mapping defined by Ricci flow.

Take
F={p:2->R%peC’Q),ep locally invertible}. (12)

This defines the set of continuous maps that have a well-defined inverse
map. For functions in this family, take u : 2 — R as the parametric u
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(a) Beam with fixed displacements on red portion of boundary

(c) Mode 2: 753 Hz

Fig. 20. Isogeometric modal analysis of the reparameterized structural beam of Fig. 17 with pinned supports (zero displacements) on the red portion of the boundary. The Bézier
patches of Fig. 17 were uniformly subdivided into 8 x 8 patches by insertion of knots with single multiplicity. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

coordinate of the function, v : £ — R as the parametric v coordinate.
Call a vertex, edge, or face of Q the child of some parent vertex, edge,
or face in .S if both the child and parent occupy the same space in
R3. Notice that for edges in G, there will be two children edges of 2
corresponding to a single edge of S, as seen in Fig. 5.
Take ¢; as an edge in  between vertices v; and v; in which
lu(v;) — u(v))| < |o(v;) — v(v;)| and e;; has a parent in dS. Define the set
of all such edges as I, and take the all edges in £ whose parents are
also in 0.5 but not belonging to I', as I',. Let feature curves of .S (and
thus of ) similarly be classified as members of Flfe"‘t“‘e or vaeat‘“e based
on whether the flux across them is greater in v or in u, respectively.
Similarly, let g be a continuous path in G c .S with start and end
points that are one of the following

+ singular points,
« transverse to a boundary of .S, or
+ do not have two children in Q.

Take each interior vertex of the path to have two children in Q. Thus,
each path g will have two continuous children paths in £, and each
child path will have exactly one child of edges contained in f C G.
Define y as one of these children, w as the other, and take z(y) as the
unique translation taking one child vertex of y to its corresponding
sibling in w, v,,. Define R;C,fc € {0,1,2,3} as a rotation by %” radians
about v,,. Take k to be number for which the rotation by R, minimizes
the deviation between w and R, (7(7)). Set Iy, , to be the set of all such
B paths in which the rotation R, is used.

Lastly, assume an input set of path connectivity constraints to be en-
forced between points p, ¢ in the parameterization—typically between
singular or feature points that should be connected by an integral curve.
These path constraints should be defined in the homotopy class of
S — P that they are intended to follow, though the precise path is not
important. The paths may be cut by G, and the primary direction of
each subcurve under the parameterization mapping may differ across
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cuts; these subcurves must be consistently oriented to form a continu-
ous, smooth curve on the branched covering space of the surface [69]
defining the quadrilateral layout. Call the set of such constraints I'gp,-
Note that each subcurve y; of the topologically constrained curve y, -
(...) -y, will be bounded by G, p, or q.

Based on this information, the parameterization sought minimizes
the following energy.

Find y € § such that

5

=min Y A E; 13
w “’63; JE; (13)
with
E\(p) = / IR + 17 a0 a9

Q
ou\? ov\2
Ey(p) = (—) dr /(— dr 15
2#) /F ds "I as) as
ou\2 ov\2
E3((ﬂ) - A{eatme(a) dF+ [ﬂgeamre(g) dF (16)

3

Eyp) = Z Z

0 0
99+ _R—l(a&» . (& _R—l(a&))()p
=0 (pE Iigar, )/ P ds

das kX os as k

a7
Exp)= Y (i/ "ﬁdr)z a8
i 71°(-)ve €T opo  J=17i ds
4
= Y (Zenlnm) -e,(,0) )2- a9

71 ) vp€lopo  J=1

Here, J is the Jacobian transformation from 2 to R (local to each
triangle), with ||J|| representing the Frobenius norm, and @, is the
constrained direction and orientation (k = 0 is +u, k = 1 is +v, k =2
is —u and k = 3 is —v) for the subcurve V) The first energy aims
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(c) Mode 2: 323 Hz

Fig. 21. Isogeometric modal analysis of the reparameterized structural beam of Fig. 18 with pinned supports (zero displacements) on the red portion of the boundary. The Bézier
patches of Fig. 18 were uniformly subdivided into 8 x 8 patches by insertion of knots with single multiplicity. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

for a smooth deformation (||J ||fr term) while also ensuring that local
injectivity is preserved (||J ‘1||2F term), and is called the symmetric
Dirichlet energy [89]. It preserves Property Q1 of Definition 2.1. The
next energy ensures boundary-alignment constraints, and helps satisfy
Property Q3. Energy E; gives control over feature alignment, and
ensures that features of the triangulation (preserved from the B-Rep)
are preserved. Next, energy E, enforces Properties Q2 and Q4. Finally,
energy Es can be used to satisfy Property Q5.

Remark 3.1. For the purposes of generating a quadrilateral layout
on a midsurface, energy Es may not be absolutely necessary in that
a quadrilateral layout on the surface may be found without enforcing
any connectivity constraints. However, such unconstrained layouts will
seldom meet downstream needs for design and analysis due to quadri-
laterals of arbitrarily poor aspect ratios, as demonstrated in Fig. 13.

16

Energy E;5 precludes such poor layout configurations on open surfaces.
For closed surfaces, these constraints are necessary to ensure that a
valid quadrilateral partitioning can be generated.

The above energy is non-linear with penalty terms, and can be
minimized using Newton-like iteration. Note that the initial param-
eterization guess, wy, will not exactly satisfy many of the necessary
constraints, so constraints transforming it into a quadrilateral layout
must be enforced weakly. Because a Nitsche formulation will not gener-
ally yield the exact satisfaction of these constraints (which is necessary
for the parameterization to yield a layout, as in Definition 2.1), we
instead opt for iteratively solving using a penalty method. Here, as
A = o for j = 2,...,5 the parameterization converges to enforcing
exact constraint satisfaction. For all operations, 4, = 1 is selected to
preserve local injectivity, while the other penalty terms are gradually
increased. This minimization problem can be solved efficiently using
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(d) Mode 8: 34.4 Hz,

Fig. 22. The front right shock house from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 7 x 7 control points (i.e. 4 x 4
Bézier patches), with at least C? continuity on the interior of each patch and C° continuity between patches. After uniform refinement to 8 x 8 Bézier patches for each patch,
modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

techniques such as [90-92]. It is often valuable to switch J between
referencing the Euclidean geometry of the surface and the Ricci metric
of the surface to extract the solutions of subsequent minimizations with
increased lambda values from local minima.

4. Results

We demonstrate the efficacy of the proposed framework by recon-
structing both trimmed and faceted models of industrial vehicles into
trim-free spline representations suitable for isogeometric analysis. Here,
integral lines emanating from singular points, from feature vertices,
and along boundaries are extracted from the surface triangulation’s
parameterization, yielding a feature-aware quadrilateral partitioning of
the surface. From here, cubic spline curves are fit using a least squares
approximation of the integral lines. Lastly, surfaces are extracted using
Coons patch interpolation. As such, all B-Reps have C° continuity
between adjacent patches, and at least C? continuity in their interiors.

4.1. DEVCOM Generic Hull

The US Army’s DEVCOM Generic Hull vehicle was created in an
initiative to involve academia and industry in the research of under-
vehicle blast phenomena without the challenges posed by operating on
classified material [35]. The entire vehicle is comprised of an outer
hull with various structural beams and pillars composing the structural
frame. The midsurfaces of a structural bracket and two beams were
extracted from the frame for reconstruction, shown in reference to the
rest of the vehicle’s primary structural members in Fig. 14.

The bracket, which has been reconstructed in [14] using a global
frame field-based approach, is shown in Fig. 15. Here, it is shown in its
trimmed form, its untrimmed form, and its reconstructed form using
the present method. Additionally, its form after reconstruction using
the method of [14] is presented for reference. While both the layout
computed using Ricci flow with metric optimization and the layout
of [14] have singular points in the same locations, the frame field
layout produces integral curves that are more geodesic on the original
geometry, while the proposed method is more biased to the geodesic
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(b) Spline reconstruction

(c) Mode 7: 5.4 Hz

(d) Mode 8: 5.7 Hz

Fig. 23. The cabin firewall from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 6 x 6 control points (i.e. 3 x 3
Bézier patches), with at least C? continuity on the interior of each patch and C° continuity between patches. After uniform refinement to 12 x 12 Bézier patches for each patch,
modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

curvature of the nearby boundary. As seen in Fig. 16, both methods
yield splines whose Jacobians are comparable.

Both rebuilt beams are also depicted with their trimmed and
untrimmed representations (see Figs. 17 and 18). However, the frame
field method of [14] failed to produce a valid parameterization for
these models, so the layouts produced from this work are not compared
against an alternative global reparameterization technique.

For analysis, each bicubic Bézier patch was uniformly refined into
a bicubic NURBS patch with 8 x 8 Bézier patches each using single-
multiplicity knot insertion. Implicit modal analysis was performed
using LS-DYNA. All parts analyzed are shells of thickness 6.350 mm,
and are made of ASTM A36 Steel, which has the following properties.

+ Modulus of Elasticity (E): 2.07 - 10° MPa
« Mass Density (p): 7.8 - 103 kg/m>
« Poisson’s Ratio (v): 0.33

Analyses use the Reissner—Mindlin shell formulation. The bracket is
taken with no boundary conditions (Fig. 19), so has six rigid body
displacement modes. Both of the other analyses assume boundary
constraints as depicted in their accompanying figures (Figs. 20 and 21).

4.2. 1996 Dodge Neon

George Washington University’s National Crash Analysis Center
(NCAC) has performed a variety of finite element crash simulations
for evaluation of safety of a number of commercial vehicles. One such
model is the 1996 Dodge Neon [44], which was tested for frontal crash
loading.

Though hundreds of parts comprise the actual vehicle, this work
focuses on the evaluation of four: the vehicle firewall, the cabin’s
rear deck speaker support, the front-right shock house, and the outer-
right shell member of the vehicle’s chassis. These parts were selected
due to their geometric and topological complexity. For each of these
models, the original faceted model and the reconstructed watertight B-
Rep are displayed side-by-side in Subfigures (a) and (b), respectively,
of Figs. 22, 23, 24, and 25.

When starting from a finite element mesh, geometric errors that
are a by-product of feature removal, geometry clean-up, and other

18

approximations typically made to facilitate finite element mesh gen-
eration are obviously inherited by the spline model. The sharp crease
in Fig. 22 and the sharp reentrant corners in the holes of Fig. 25 are
manifestations of this. Nevertheless, the spline models eliminate all
triangles in FEM meshes, which are a liability in local nonlinear failure
analysis, and thus are a significant improvement. However, many of
these geometric errors can be fixed by smoothly mapping the spline
model to the original CAD geometry. An L2-best fitting would seem a
simple and efficient procedure for this purpose. This is a topic for future
research.

Isogeometric modal analyses are performed for refinements of each
of the above-listed models. All analyses use the Reissner-Mindlin shell
formulation. Material data for the NCAC finite element model, which
was also used in these isogeometric analyses, was determined from
coupon testing [44]: the analyzed parts are all steel. All analyzed mod-
els have following mass density, modulus of elasticity, and Poisson’s
ratio:

+ Modulus of Elasticity (E): 2.1-10° MPa
+ Mass Density (p): 7.89 - 10° kg/m’
+ Poisson’s Ratio (v): 0.30

Thicknesses of shells are 0.735,0.829,0.96, and 0.907 mm, respectively.
Representative modes for the spline models are shown in the latter
subfigures of Figs. 22, 23, 24, and 25.

5. Conclusions

In this work, we presented a new framework to rebuild trimmed
and faceted open midsurface geometries into isogeometric analysis-
suitable spline spaces. First, we defined a generalized set of criteria
for a surface triangulation that, if satisfied, generate a quadrilateral
layout. Based on this theory, we combined the tools of discrete sur-
face Ricci flow [86,87] with a constrained minimization against an
inversion-precluding energy [89-92] with layout-inducing penalty con-
straints. The methodology assures that the computed parameterizations
are locally injective, a necessary criterion frequently not satisfied by
many current quadrilateral parameterization techniques [14,48,49,53,
68]. The defined framework was used to rebuild topologically and
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(¢) Mode 7: 3.4 Hz

Fig. 24. The right outer shell of the cabin chassis from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with 7 x 7 control
points (i.e. 4 x 4 Bézier patches), with at least C? continuity on the interior of each patch and C° continuity between patches. After uniform refinement to 8 x 8 Bézier patches
for each patch, modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

geometrically complicated members of both the US Army’s DEVCOM
Generic Hull vehicle [35] and the National Crash Analysis Center’s
1996 Dodge Neon finite element model [44], including models for
which current state-of-the-art techniques fail [75, Appendix B]. We
show the viability of each of the rebuilt models by using them for
isogeometric modal analyses using the commercial solver LS-DYNA.
While the proposed framework offers a feature-aware technique
to generate spline surfaces suitable for isogeometric analysis, addi-
tional work remains. First, the proposed methodology focuses on re-
construction of open surfaces. While there is no theoretical reason that
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the technique cannot extend to closed surfaces other than potential
holonomy issues for unusual and pathological singularity configura-
tions [79,81], the methodology has not yet been explored on these
surfaces. Closed surfaces pose an additional challenge, as well, because
they will not typically satisfy Property Q5 of Definition 2.1, as will
most open surfaces. A forthcoming work formalizing theory defined
in [93] demonstrates that connectivity constraints automatically or
semi-automatically defined between singularities can easily fit into the
proposed framework. As such, we are optimistic that the proposed
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Fig. 25. The frame supporting the rear speakers of the cabin from a finite element mesh of a 1996 Dodge Neon [44] is rebuilt as a set of bicubic NURBS patches, each with
6 x 6 control points (i.e. 3 x 3 Bézier patches), with at least C? continuity on the interior of each patch and C° continuity between patches. After uniform refinement to 12 x 12
Bézier patches for each patch, modal analysis is performed on the model with free boundaries. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

technique can also easily incorporate the automatic connectivity con-
straints defined in [53,70], particularly because both of these methods
operate on an initial seamless surface parameterization, which kind of
parameterization is exactly produced herein.

Next, the parameterization framework needs alternative ways to
select singularities. The current framework relies on a Dirichlet-type
energy with guarantees for valid singularity positions only if the in-
put geometry is sufficiently smooth [33]: these smoothness conditions
may not hold on highly-featured structural and mechanical surfaces.
Furthermore, automatic placement of singularities is limited to valence
three and five singularities [33], though many geometries of interest
may benefit from higher-valence cones. Future research will explore
alternative ways to robustly compute cone singularities for featured
surfaces, including evaluating existing techniques proposed in [49,70,
94-96].
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Finally, additional research should focus on more advanced spline
fitting techniques. The current technique employs linear interpola-
tion between integral curves defining the boundary of a patch in the
quadrilateral layout. For more nonlinear parameterizations or geome-
tries with significant curvature in their domains, this technique will
be insufficient to capture these nonlinear features and would require
additional layout subdivision at the expense of more degrees of freedom
and reduced continuity. Instead, manifold splines such as unstructured
T-splines [97-99] or U-splines [100] may be necessary. Additional
research will also need to focus on how to fit splines produced on
the triangulation back to the original trimmed CAD domain. Because
geometries used herein are predominantly flat, reconstruction from the
triangulation to the original geometry was fairly straightforward. An
ultimate objective is minimizing the need for user intervention in the
process.
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