2022 23rd IEEE International Conference on Mobile Data Management (MDM) | 978-1-6654-5176-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/MDM55031.2022.00050

2022 23rd IEEE International Conference on Mobile Data Management (MDM)

RASED: A Scalable Dashboard for Monitoring
Road Network Updates in OSM

Mashaal Musleh, Mohamed F. Mokbel
Department of Computer Science and Engineering, University of Minnesota, MN, USA
{musle005, mokbel} @umn.edu

Abstract—Understanding the evolution and changes of digital
road networks and how it resembles the true physical road
network, have been a rich area of study within map analyzers,
urban planners, and transportation communities. The main focus
was to study OpenStreetMap (OSM) as the most commonly used
platform for worldwide digital road networks, and is deemed
even more accurate than commercial maps. However, all such
studies have been localized to small areas of interest, mainly
due to the large scale of the whole OSM road network. This
paper presents RASED; a publicly available scalable dashboard
to interactively monitor and analyze the evolution of all OSM
road network. Using RASED, map analyzers can query and
visualize various statistics about the road network daily changes
worldwide, which would give a better understanding of the status
of map quality and stability anywhere in the world. RASED
relies on daily and monthly offline precomputations, accessed
via a hierarchical temporal index structure. Experimental results
show that RASED queries are always supported in the order
of milliseconds, regardless of how large is the query temporal
window, which allows highly interactive map analysis.

I. INTRODUCTION

It used to be the case that accurate digital maps are only built
and sold by major industry, e.g., HERE [12] and TomTom [15].
However, the high cost and proprietary nature of commercial
maps along with their inherent inaccuracy due to not being
able to be frequently updated, made researchers, developers,
practitioners, and enterprises turn their attention towards open-
source maps [5], [14], [28], [38]. A prime example of such
maps is OpenStreetMap (OSM) [34], known as the Wikipedia
of maps. OSM is a platform for crowdsourcing-based maps
that has recently replaced commercial providers in various
sectors of academia, government, and industry [29], [31]. For
example, Amazon Logistics [1] is using OSM data in their
delivery programs [33], Apple Maps [3] have been using
OSM since 10S 6 [32], Facebook uses OSM as its backbone
mapping support [10], Lyft has described OSM as the “Freshet
Map for Rideshare” [24], while Tesla [39] uses OSM for its
routing [40]. All these companies, and many others including
Mapbox, Microsoft, and Uber, are not only using OSM, but
are also extensively contributing to it [2], [9], [46].

Meanwhile, though there is extensive research in academia
and industry for developing efficient algorithms for a myriad of
road network queries (e.g., shortest path [21], [20], [44], [47],
range [6], [19], [43], [49], and k-NN [4], [7], [17], [37], [45]
queries), all algorithms have the implicit assumption that the

This work is supported by the National Science Foundation, USA, under
Grant 11S-1907855.

underlying road network is accurate. Unfortunately, such an
assumption is not always true as road networks suffer from all
sorts of inaccuracy that significantly degrade the query result
accuracy. While this may be acceptable for casual users where
inaccuracy may only mean few minutes of delay, it is not the
case for governmental or commercial applications that support
map services for large numbers of users. For example, in USA,
99% of delivery company drivers say that they would be more
efficient if they had better maps [26]. Problems, identified by
those drivers, include: maps recommend longer routes and are
not updated. This wastes significant time that translates into
wages and high gas consumption, costing delivery companies
$6B annually [41]. This trend is just going to increase with the
increase of online shoppers and riders, which shifts traffic from
casual users to delivery companies and ride sharing services.

Though OSM is deemed more accurate and up-to-date
than commercial maps, its accuracy is still far from being
acceptable for high-demand map services [11], [23], [25], [27],
[42]. This has triggered several research efforts, mostly led
by the transportation community, to study the quality of the
underlying road network, represented by OSM (e.g., [13], [18],
[48]). Unfortunately, all such quality assessment studies have
very limited scope and scale, where the focus is only to study
a certain city or country road network with heavy manual
operations. Up to our knowledge, there is no comprehensive
global-scale study for the quality of OSM road network. This
is mainly due to its large scale, which makes researchers limit
their studies to small regions. For example, OSM road network
has more than 180M road segments and 2B nodes, which
account for 500GB worth of raw data.

This paper introduces RASED (https://rased.cs.umn.edu); a
publicly available scalable dashboard to interactively moni-
tor and analyze all OSM road network updates worldwide.
RASED is the first-ever attempt to quantify and visualize all
OSM worldwide changes on a daily basis, which gives an idea
about road network stability anywhere in the world. RASED
provides the necessary infrastructure immensely needed by
map analyzers to understand and assess the map quality. Using
RASED, map analyzers can query and visualize various map
statistics, including number and percentage of OSM updates
per country, comparison between countries, types of updated
roads, and temporal evolution of updates. All queries can have
several filters including temporal (e.g., time of update), spatial
(e.g., country or state), road types, and update types, which
would all give a better understanding of map status globally.

2375-0324/22/$31.00 ©2022 IEEE 214
DOI 10.1109/MDM55031.2022.00050

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

RASED is a highly interactive system, where all its analysis
queries are supported in milliseconds allowing interactive vi-
sualization of the results. This makes RASED a convenient and
highly important dashboard for road network map analyzers
worldwide. To achieve its scalability and interactivity, the
RASED backend employs: (1) offline daily aggregation, where
the daily crawled OSM updates are analyzed offline to form all
sorts of required precomputations, stored in data cubes [16],
(2) hierarchical indexing, where the offline daily aggregation
cubes form a hierarchical index of weekly and monthly
updates to support analysis queries over longer time periods,
and (3) caching, where some of the daily/weekly/monthly data
cubes are prefetched in memory for faster access. All together,
achieve a milliseconds response time when querying all OSM
road network updates during the past 15 years.

The rest of this paper is organized as follows: Section II
gives a brief background about OSM. Section III gives RASED
system architecture. Section IV shows the queries supported by
RASED. RASED three main modules, namely, Data Collec-
tion, Indexing, and Querying are described in Sections V, VI,
and VII, respectively. Section VIII experimentally evaluates
RASED. The paper is concluded in Section IX.

II. BACKGROUND

OpenStreetMap (OSM) [34], launched in 2004, is a collab-
orative community project to create a free editable map of the
world. Known as the Wikipedia of maps, OSM has 8.5 Million
users, with 300K active users per year (users who made at least
one edit during the year) [36]. OSM supports 400+ public
free open-source OSM-based services [22], 80+ OSM-based
commercial services [8], and receives API requests at the rate
of 800 requests per second, for only one OSM data center [35].
This section gives a brief and necessary background about
OSM data and update representation.

A. OSM Conceptual Data Model

OSM data is all stored in one big XML file (Plant.osm)
presenting a massive list of elements, where each element is
one of the following three types: (1) Node, which represents
a certain point in the space with node identifier and its
latitude and longitude coordinates. Objects represented by
Nodes include intersection points, traffic lights, stop signs,
bus stations, and other Points of Interest (Pol). (2) Way, which
represents an ordered list of node identifiers making connected
road segments. (3) Relation, which represents the relations
between one or more elements of any type. Relations are used
to model complex roads that may contain multiple parts (e.g.,
multiple Ways). Currently, OSM Planet.osm file is 1.6TB, and
includes more than 7.5B nodes, 800M ways, and 9M relations.

B. OSM Map Updates

OSM is based on crowdsourcing where mappers voluntarily
upload geographical data for their surroundings, which results
in updating the map by creating new elements or modifying
existing ones. OSM stores such updates in three different sets
of files, described below:

215

osMm

B

! Data Collection and Processing | |
[Crawling H Preparation } H
Answer Query

Query Execution

Daily Monthly Full

Changes

Interactive Spatio-
Temporal Exploration

Query

Views Parameters }

Aggregation

Hierarchical
Indexing

Query
Optimizer :

Fig. 1. RASED Architecture

Diff (https://wiki.openstreetmap.org/wiki/Planet.osm/diffs.)
OSM creates such a file every minute, day, and hour such that
any created or modified element is added (and replicated) to
these three files. Only the element’s after-image is stored in
these files. Currently, OSM has 5M, 82K, and 3.5K minute,
hourly, and daily Diff files, respectively, with sizes that range
from a few megabytes to a few gigabytes per file.
Changesets (https://wiki.openstreetmap.org/wiki/Changeset.)
A set of files that provide metadata information about map
updates, e.g., user information, bounding box, comments,
and sources, described for each changeset; a term used to
represent all updates submitted by a particular user in one
session (maximum of 24 hours). OSM provides two sources
to download such data: (a) A single large file created every
week with a dump of all changesets in OSM lifetime, currently
of size 50GB. (2) A series of sequentially numbered small files
(tens of kilobytes), such that a new file is created for every
1K new changesets. Currently, OSM approximately creates a
new such file every minute and has created SM files.

Full History (https://wiki.openstreetmap.org/wiki/Planet.osm/
full.) One huge file dumped every few weeks for entire OSM
updates. Unlike Diff files, the full history includes the previous
state of each update. Currently, this file size is 3+TB and has
12+ Billion elements of all versions.

III. RASED ARCHITECTURE

Figure 1 depicts the architecture of RASED, composed of
the following four main modules:
User Interface. This module presents the Web Graphical User
Interface (GUI) for RASED. It receives a set of interactive
online queries from RASED users and sends it to the Query
Execution module, which responds back with the answer in an
interactive way. The query result is then visualized in various
ways that allow map analyzers and domain experts to assess
OSM stability and changes anywhere in the world. We will not
discuss this module further in this paper. Interested readers can
refer to the live RASED system and interact with it to explore

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

its friendly user interface at https://rased.cs.umn.edu and/or
refer to RASED published demo [30] for detailed screenshots
and description of RASED user interface.

Data Collection and Processing. This module is responsible
for daily and monthly crawling of the OSM updates and
preparing them for consumption by the Storage and Index-
ing module. The output of this module is a long list of
daily/monthly updates, termed UpdateList, where each update
has eight attributes: <ElementType, Date, Country, Latitude,
Longitude, RoadType, UpdateType, ChangesetID>. Element-
Type is the type of the updated element (i.e., node, way,
relation), Date, Country, Latitude, Longitude represent the date
and location of the update, RoadType is the type of the updated
road (e.g., highway, service, residential), UpdateType is the
type of the update (e.g., new road, update geometry, deletion),
ChangesetID is a reference to the changeset (Section II-B) that
contains this update. Details are in Section V.

Storage and Indexing. This module takes the output of the
Data Collection module as its input. Then it goes through two
main operations: (a) computing various sorts of precomputa-
tions in a form of data cubes [16] and using it to populate
its own hierarchical temporal index structure of daily, weekly,
monthly, and yearly precomputed statistics, and (b) dumping
the input to a traditional data warehouse indexed by both
ChangeSetID and a spatial index. Details are in Section VL
Query Execution. This module receives RASED queries
submitted through the User Interface module, and answers
them in an interactive way. Internally, it employs two main
ideas: (a) Caching, where a selected set of aggregate data
cubes are cached in memory to efficiently support incoming
queries, and (b) Level optimization, where it smartly decides
which level(s) in the index hierarchy would be better exploited
for more efficient query support. Details are in Section VII.

IV. RASED QUERIES

This section describes the various queries supported by
RASED, presented in a SQL format. The most important
queries fall under the category of analysis queries, described
in Section IV-A. Update sample queries are described in
Section IV-B.

A. Analysis Queries

RASED analysis queries aim to provide detailed statistics
about road network updates. Examples of such queries include:
“finding the number or percentage of road network updates
over the last two years for a particular set of countries”,
“finding the number of updates for each road type for a certain
country over a certain time period’, and “compare the road
network evolution for a particular set of countries”. The results
of RASED analysis queries can be presented as either absolute
numbers or percentages of the country’s road network size,
and can be visualized as: (a) tabular format sorted on any
column, (b) various charts (bar, choropleth, time series), or
(c) a timelapse video showing the road network evolution.

Generally speaking, RASED analysis queries are aggregate
queries on a subset of the fields from the UpdateList relation,

216

namely, ElementType, Date, Country, RoadType, and Update-
Type, described in Section III. In particular, RASED queries
would have the following SQL signature:

SELECT
U.ElementType, U.Date,
U .RoadType, U.UpdateType,
FROM UpdateList U
WHERE
U.ElementType IN ListofElementTypes
AND U .Date BETWEEN datel AND date?2
AND U.Country IN ListofCountries
AND U .RoadType IN ListofRoadTypes
AND U .UpdateType IN ListofUpdateTypes
GROUP BY
U.ElementType, U.Date,
U.Country, U.RoadType,

U.Country,
COUNT (=)

U .UpdateType

Below are few examples of RASED analysis queries and
their visualized answer, based on the above query signature:
Example 1: Country Analysis. “Find the number of newly
created or modified element types (node, way, relation) for
each country road network in 2021”: Out of the five attributes
in the query signature, we would need to group on only two
of them (Country and ElementType) as we need the answer
for each country and each element type. We have conditions
on both the Date and UpdateType. No group or constraints on
the fifth attribute, RoadType.

SELECT U.Country,U.ElementType, COUNT (x)
FROM UpdateList U
WHERE U .Date BETWEEN 2021-01-01

AND 2021-12-31

AND U .UpdateType IN [New, Update]
GROUP BY U.Country, U.ElementType

Figures 2 and 3 give RASED visualization for that query
in both bar chart and table formats, respectively.
Example 2: Road Type Analysis. “Find the number of newly
created or modified elements types (node, way, relation) for
each road type in USA since 2018”: We group on two attributes
(RoadType and ElementType) and have filters on the remaining
three attributes, Date, Country, and UpdateType.

SELECT U .RoadType,U .ElementType, COUNT (*)
FROM UpdateList U
WHERE U .Date AFTER 2018-01-01

AND U .Country USA

AND U .UpdateType IN [New, Update]
GROUP BY U .RoadType, U.ElementType

Figure 4 gives RASED visualization for the query answer.
Example 3: Comparative Time-Series Analysis. “Compare
the percentage of daily changes in road network in Germany,
Singapore, and Qatar over 2020 and 2021”. We group and
have conditions on Country and Date. Nothing is needed for
the remaining three attributes.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

Total updates by country

United States
India
Germany]
Brazil N ———
Mexico e
France -| EE— Il Ways Created
Vietnam - i
China | EEE— I Ways Modified
Thailand —— 7
United Kingdom - B Relations Created
Russian Federation I — . i
Poland | EE— Il Relations Modified
Indonﬁ:‘; - . Nodes Created
Jsa;;g - Nodes Modified
_Greece |
Philippines - Only top 20 entries (absolute count) are shown here.
T;J:Zr:',?i: _- Switch to table view for the full list.
t t t t t
0.0 2.0m 4.0m 6.0m 8.0m

Fig. 2. Visualized Results for Country Analysis Example in Bar Chart Format

country All Ways Created Ways Modified Relations Cr Relations Mc Nodes Cr¢ Nodes Moc

United States 9,142,858 3,559,417.0 5483,190.0 43.0 92.0 19,2950 80,821.0
India 4,200,546 25258640 1,771,880.0 3.0 104.0 2100 1,485.0
Germany 3,302,925 641,3720 2,639,701.0 79.0 143.0 43830 17,247.0
Brazil 2,847,160 857,8520 19715620 4.0 9.0 4,0680 13,665.0
Mexico 2,432,545 751,1540 1,677,6850 0.0 3.0 5260 3,177.0
France 2,203,375 521,5120 17552160 54.0 60.0 4,267.0 12,266.0
Vietnam 2,223,752 1,117,460 1,106,0880 0.0 25.0 1570 66.0

Fig. 3. Results for Country Analysis Example in Table Format

SELECT U.Country, U.Date, Percentage (x)
FROM UpdateList U
WHERE U .Date BETWEEN 2020-01-01
AND 2021-12-31
AND U.Country IN [Germany,
Qatar]

U .Date

Singapore,
GROUP BY U .Country,

Figure 5 gives RASED visualization for the query answer.

B. Sample Update Queries

RASED users may want to see a sample of the updates that
represent a given analysis query. Hence, RASED provides a
query interface that visualizes a sample of N (default = 100)
such updates on the map based on their latitude and longitude
information. RASED also uses the ChangesetID of the samples
to call a third-party application that visualizes the details of
the sample update.

V. DATA COLLECTION AND PROCESSING

This module crawls OSM update files, described in Sec-
tion II to produce the UpdateList of eight-attributes tuples:
<ElementType, Date, Country, Latitude, Longitude, RoadType,
UpdateType, ChangesetID>. One way to realize this module is
to deploy a monthly crawler of OSM full history file. However,
this would mean that RASED would have stale statistics, only
updated on a monthly basis. Hence, we opt to have daily
crawlers of the daily diff and changesets files, and use them
to construct as much as possible of the UpdateList. Then, use

217

Total updates by road/feature type

service —
residential
tertiary -1 L
secondary -1 |
primary - E—
track | mmm— . Ways Created
unclassified + = ifi
e i — B Ways Modified
motorway - - .
tuming_circle 4 [l Relations Created
motorway_link — [. i
turing_loop - I B Relations Modified
trunk_link + I
primary_link | 1 [l Nodes Created
dary_link 1 | =
Secloer:n:z]::k 4 1 Nodes Modified
3 living_street -1]
mlnl,rm:jnrg;!;?aul Al Only top 20 entries (absolute count) are shown here.
highwaz B[o Switch to table view for the full lst.
t t t t t f t t
0.0 2.0m 4.0m 6.0m 8.0m 100m 120m 140m

Fig. 4. Visualized Results for Road Type Analysis Example

Updates over time (7-days moving average)

0.60%

— Germany
0.50% " Qatar
] | — Singapore

0.40%
0.30%
0.20% 4

0.10% 4

0.00% 3

t t t T t t t
1/2020 5/2020 9/2020 1/2021 5/2021 9/2021 1/2022

Fig. 5. Visualized Results for Comparative Time-Series Analysis Example

the monthly crawler to complete the missing information. This
ensures the accuracy of most RASED analysis queries.

Daily Crawler. The daily crawler mainly constructs seven
out of the eight attributes of the UpdateList. For the eighth
attribute (UpdateType), we can only infer whether an update
is a new or updated tuple, but would not know whether
this is an update for geometry or for metadata. Hence, we
would defer these details to the monthly crawler. For each
update record, four out of the seven attributes (in addition
to the UpdateType) are obtained in a straightforward way
from the diff files, namely, ElementType, Date, RoadType,
and ChangesetID attributes. The remaining three attributes,
Country, Latitude, Longitude, can only be easily obtained for
the node elements, but not for the way and relation elements.
To find out such information for each update tuple, we use its
ChangesetID to retrieve its bounding box from the changesets
file. We then map the bounding box to its country, and assign
latitude and longitude coordinates based on the center point
contained in the bounding box.

Monthly Crawler. The monthly crawler is made to go through
the full history file to compare every two consecutive versions
of an element and classify the update type as either create,
delete, metadata update, or geometry update. Newly created
elements will always be their first version, while deleted ones
are the last version. Geometry updates occur when there is
a change in the latitude/longitude attributes or the list of
members of a way or relation element, while metadata update
occurs by changing the element tags.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

VI. STORAGE AND INDEXING

The Storage and Indexing module takes the daily and
monthly UpdateList: <ElementType, Date, Country, Latitude,
Longitude, RoadType, UpdateType, ChangesetID>, produced
from the Data Collection module (Section V) as its input.
Then, it builds and maintains a storage infrastructure that can
be efficiently accessed by the Query Execution module (Sec-
tion VII) to support RASED queries. This section describes
such storage infrastructure per the type of supported queries.

A. Supporting Analysis Queries

To support RASED analysis queries (Section IV-A), we

build and maintain a hierarchical temporal index structure
that ensures that all queries will be supported with very few
I/0Os. This gives an interactive user experience navigating
through various analysis queries. We describe below the index
hierarchy, index nodes, index size, and index maintenance.
Index Hierarchy. Figure 6 depicts the hierarchical temporal
index structure, employed by RASED. The index does not
index the OSM updates itself. Instead, it indexes precomputed
statistics (i.e., aggregates) about the OSM updates. These
precomputed statistics basically cover everything one could
ask for from any RASED analysis query. The index has
four levels that represent yearly, monthly, weekly, and daily
statistics with one dummy root node at the top that points to
the various yearly statistics. All statistics are presented in the
form of data cubes [16], each is stored in one-page index node.
Each yearly statistics is basically an aggregation of twelve
monthly statistics. In turn, the monthly statistics are aggregates
of four weekly and zero to three daily statistics, and so on.
Index Nodes. Each index node at any level is basically a four-
dimensional data cube [16], where the dimensions correspond
to four attributes from the UpdateList, namely, ElementType,
Country, RoadType, and UpdateType. In RASED, we have the
following possible values for each dimension: (1) Element-
Type. Three possible values, presenting node, way, and relation
elements. (2) Country. 300+ values presenting all countries
plus some selected zones of interest (e.g., continents and
US states). (3) RoadType. 150 possible road types, including
highway, residential, service, and truck roads. (4) Update-
Type. Four kinds of update operations, namely, newly created
roads/nodes, deleted roads/nodes, road geometry update, and
road metadata update. This means that each cube maintains
540,000 precomputed values. Each cube cell is basically the
count of OSM updates that happen in the time window of the
cube (year, month, week, day) and match the corresponding
value for each of the four dimensions.
Index Size. All nodes at all levels are of fixed size. With 540K
values per node, each node takes ~4MB of storage, which
directly fits in one disk page. Considering all the OSM updates
since its inception in 2004, we have 6,000+ daily nodes, 850+
weekly nodes, 200+ monthly nodes, and 16 yearly nodes. So,
the total required storage is ~28GB, which accommodate close
to 7,000 nodes with 4 billion aggregate values. Though we
store all index nodes on disk, the query executor caches some
of them in memory for faster processing.

218

,,,,,,,,,,,,,,,,,,,,,,, Daily Cubes

! Hierarchical 7 T

ind Yearly Cubes
! ndexer Yo Yy ¢

Monthly Cubes

(M)
N A A :
Weekly Cubes !
wo) - w]) - [e
N L N .’ Daily Cub
aily Cubes
oo) = [)fo, |
e.g.,Jan 01
2021

Fig. 6. Hierarchical Temporal Index for Data Cubes

Index Maintenance with Daily Updates. Once the daily
UpdateList is received from the daily crawler process in
Section V, we scan all the updates (10~20MB), and construct
a new data cube of 540,000 aggregate values as described
above. Notice that with the daily crawlers, we would have
only two possible values for the UpdateType dimension, so, in
fact, we would calculate only 270,000 aggregate values, while
putting zeros in the rest of the data cube cells. The cube is then
stored in a newly allocated disk page and linked to last day
cube. If this day is the end of the week, we construct the parent
weekly cube by reading the six previous cubes and summing
up their corresponding values to build a newly weekly cube.
We do so recursively for monthly and yearly cubes, if this day
is the end of the month and year, respectively. This process
is performed offline, and takes up to 30 minutes. The time is
mainly spent in scanning the UpdateList, and hence it depends
on the number of updates of each day. The process does not
consume much I/Os. Normally, we would need only one I/O
for daily cubes. If it is the end of the week/month/year, we
would need up to 8, 6, and 13 I/Os, respectively.

Index Maintenance with Monthly Updates. Once the
monthly UpdateList is received from the monthly crawler
process in Section V, we scan all the updates and reconstruct
all the daily and weekly data cubes in that month. The main
reason is that by now we have more detailed information about
the UpdateType with four possible values. This would be a bit
costly operation that would take a few hours due to the size
of the monthly UpdateList and the number of I/O operations.
Yet, the process is completely done offline, and copied to the
index structure only when done.

B. Supporting Sample Update Queries

To support sample update queries (Section IV-B), we dump
the whole UpdateList into a standard database table indexed
by: (a) a hash index on ChangesetID, which is needed to
retrieve a single update for RASED users to see the change
that took place for a specific object, and (b) a spatial index
on <Latitude, Longitude>, which is needed to retrieve the
sample updates located in a certain spatial region.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

VII. QUERY EXECUTION

The Query Execution module supports RASED queries
through efficient data retrieval from the index infrastructure
laid out by the Storage and Indexing module. This section
only focuses on supporting RASED analysis queries (Sec-
tion IV-A), as sample update queries are supported through
a straightforward index-based retrieval from a traditional
DBMS. RASED query execution goes through two main
phases: The first phase is mostly disk-based as it retrieves
the data cubes that include the answer for a given query.
The second phase is completely in-memory, where some
computations may still be needed to aggregate values within
the cube. For example, a query that asks about the number of
updates in each country in a certain time window ¢, would first
retrieve the data cubes that satisfy ¢. Since each cell in each
cube represents one value of the four dimensions, Country,
ElementType, RoadType, and UpdateType), we would then
need to aggregate the values across three dimensions as we are
only interested in the sum of updates for each country. The first
phase is actually the bottleneck of this module, as the second
phase is executed all in-memory. To reduce the overhead of the
first phase, we employ two optimization techniques, caching
(Section VII-A) and level optimization (section VII-B), geared
towards reducing the number of retrieved data cubes from disk.

A. Caching Strategy

The idea of caching is to preload into memory some of
the very recent data cubes, such that queries over recent
data would be either fully or partially answered from in-
memory cubes. This would significantly save from the query
response time as we reduce the number of disk retrieval
of data cubes. The rationale is that RASED is more likely
to receive inquiries about recent updates than older ones.
The challenge is from which index level we should pick
our preloaded data cubes. Hence, we formulate our caching
strategy as follows: Given N available memory slots and
the sets Y, M, W, D of yearly, monthly, weekly, and
daily cubes, we preload the following cubes into memory:
{Dyp-i}e2 U Wm0 UAM - }725 U (Vi i35
where «, 3, v, and 0 has a total sum of 1 and present the
ratio of the N memory slots that will be allocated to each
daily, monthly, weekly, and yearly levels, respectively. Such
parameters present a trade-off between aggregation granularity
and time coverage. For example, higher a would cache more
daily details but less covered period, while higher v and 6
would favor longer period queries.

B. Level Optimization

A given analysis query could be answered from a mix
of data cubes at different temporal levels. For example, an
aggregate query for the period Jan 1, 2022 to Feb 15, 2022 can
be answered using either: (a) 46 daily cubes, (b) six weekly
cubes (weeks of Jan 2, 9, 16, 23, 30, and Feb 6) and four
daily cubes (Jan 1 and Feb 13-15), or (c) one monthly cube
(January), one weekly cube (week of Feb 6), and eight daily
cubes (Feb 1 to 5 and 13-15). The objective of the level

219

optimization is to find the query plan that would retrieve from
disk the least number of data cubes, taking into consideration
that some of the data cubes are already in memory due to the
deployed caching strategy. For example, trying to reduce the
number of data cubes in the previous example would directly
advise using either plan (b) or plan (c) as both plans would
only require 10 data cubes. However, if the caching strategy
is set with a high value of a, then it could be that the last
60 daily cubes are in memory, and none of the other higher
temporal level cubes. Hence, plan (a) would be favored here as
it has zero disk access, while plans (b) and (c) would require
six and two disk cubes, respectively.

VIII. EXPERIMENT

This section provides experimental evaluation of RASED
to: (a) setup RASED parameters in terms of cache size and
number of index levels (Section VIII-A), (b) understand the
performance gain from employing caching and level opti-
mization strategies (Section VIII-B), and (c) compare RASED
overall performance against a traditional DBMS implementa-
tion (Section VIII-C). All experiments are done on an actual
deployment of RASED as a publicly available web service at:
https://rased.cs.umn.edu. For evaluation, we use the OSM full
history dump which contains more than 12 billion updates
with a total size of 3 TB of raw data. We run the whole
dataset through RASED Data Collection module to come up
with the full UpdateList as: <ElementType, Date, Country,
Latitude, Longitude, RoadType, UpdateType, ChangesetID>,
then bulk load the list into RASED temporal hierarchical index
structure. We focus our experiments only on analysis queries
(Section IV-A), as sample update queries (Section IV-B) are
executed in a traditional DBMS way, so, there is nothing much
to report about it. Our main performance measure is the query
response time, which needs to be in order of milliseconds
to ensure an interactive user experience of RASED analysis
queries. Each point reported in all performance experiments
is an average of 100 query execution. Unless mentioned
otherwise, each query retrieves only one data cube cell to focus
our performance results on the disk retrieval time, the default
cache size N is 2GB, with «, 3, 7, and 0 are set to 0.4, 0.35,
0.2, and 0.05 respectively. All experiments are done using an
Ubuntu system running on 8-core Intel(R) i7-4790 CPU @
3.60GHz and 32GB of memory.

A. Setting RASED Parameters

This experiment aims to set the parameters of RASED index
structure, namely the cache size and the number of levels in
the hierarchical index. Figure 7 gives the query response time
of RASED when varying the cache size from 128MB to 4GB,
which can fit from 32 to 1,000 data cubes. We perform this
experiment using various query loads with a time span of 1,
3, 6, and 12 months, which would reflect on the number of
data cubes needed to answer each query. Clearly, the larger
the cache size, the better the performance as higher numbers
of data cubes can be retrieved from memory. For each query
temporal window, there is a saturation point where increasing

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

©
= L 1 Month A Flat Ind
s 10000 3 Monihs % 25 | 2 levels.
@ 6 Months -©- o 3-Levels
= [E 12 Months - 20 | 4-Levels
o (O]
o 1000 1 =

o
E K N 15t
° [70]
£ 100 Bl 5 101
[hel
>) 4 < 5t
) 10F —2—a—a—a—4 5
& 0

riea
100000 | Bisep 5 %
10000 W

1000 T]

100
10
1

e

Query Time (ms log scale)

128 256 512 1024 2048 4096
Cache Size (MB)

4

6
Indexed Period (Years)

Fig. 7. Setting RASED cache size

the cache size will not have significant enhancement, e.g.,
512MB, 1024MB, and 2048MB for the queries with 3, 6, and
12 months, respectively. Since RASED supports queries with
large time windows, we opt to choose 2048MB cache size in
RASED deployment. Figure 8 gives the size needed for each
additional hierarchy level for RASED index when varying the
covered period from one to 16 years, where a flat index means
one level of daily cubes, while extra levels are for weekly,
monthly, and yearly cubes. Apparently, the extra levels do not
add much beyond the storage already needed for the first daily
level. In particular, a four-levels index for a 16-years period
would only take 1.15 of storage taken by a flat index for the
same period. Hence, we opt to have our hierarchical index
with four levels.

B. RASED Query Execution Strategies

This section aims to understand the performance gain
from employing caching and level optimization strategies in
RASED. In particular, Figure 9 gives the performance of three
variants of RASED when varying the query time window from
one to 16 years. The first variant (RASED-F) is a one-level
flat index with neither caching nor level optimization. The
second variant (RASED-O) is the full RASED index with
level optimization, but no caching. The third variant is the
full RASED system with both level optimization and caching.
The more than two orders of magnitude performance gain from
RASED-F to RASED-O shows the impact of having the index
hierarchy, along with the level optimizer. Meanwhile, the order
of magnitude performance gain from RASED-O to RASED
shows the impact of deploying the caching strategy. Overall,
both index hierarchy and caching boost RASED performance
by three orders of magnitude.

C. Overall Performance

This section evaluates RASED against PostgreSQL imple-
mentation of the RASED analysis queries. To ensure fairness,
we set PostgreSQL buffer size to 2GB similar to RASED
cache size. Figure 10 gives the performance of RASED and
PostgreSQL when varying the query time window from one to
16 years. PostgreSQL constantly takes around 1000 seconds to
answer the analysis queries regardless of the query period or

8

Fig. 8. Setting RASED number of levels

220

10 12 14 16 2 4 6 8 10 12 14 16

Query Period (Years)

Fig. 9. Effect of Each Component in RASED

T 6

S 1x10" 4 N
g 100000 } 1
S oo | R &
3 1000 } 1
o i]
£ 100

: 10 T‘E/E/E/—E’B’H‘E{]
S ' ’
G 0.1

2 4 6 8 10 12 14 16
Query Period (Years)

Fig. 10. Effect of Each Component in RASED

the aggregation size. This is mainly because it requires scan-
ning the whole data since the query involves multiple attributes
in the Group By clause. Meanwhile, RASED consistently
achieves five to six orders of magnitudes better performance,
reaching up to 10 milliseconds in its longest query period,
which is due to its powerful index structure.

IX. CONCLUSION

This paper presented RASED; a publicly available scalable
dashboard to interactively monitor and analyze all Open-
StreetMap (OSM) road network daily updates worldwide.
RASED supports a myriad of analysis queries that provide
detailed statistics about road network daily updates activity,
e.g., finding the number or percentage of road network updates
over the last two years for a particular set of countries, finding
the number of updates for each road type for a certain country
over a certain time period, and comparing the road network
evolution for a particular set of countries. RASED is equipped
with a hierarchical temporal index structure and caching
strategy that efficiently retrieve precomputed statistics needed
for analysis queries. Results of RASED queries are visualized
as either tabular format, various charts, or a timelapse video.
RASED is highly interactive with milliseconds response to
all its analysis queries. Realization of RASED has orders of
magnitudes better performance than realizing similar ideas
using traditional PostgreSQL DBMS.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

1

2

— =

[3]
[4]

[5

—

[6

—

[7

—

[8

—

[9

[t

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Amazon Delivery and Logistics. https://www.aboutamazon.com/what-
we-do/delivery-logistics.

Jennings Anderson, Dipto Sarkar, and Leysia Palen. Corporate Editors in
the Evolving Landscape of OpenStreetMap. ISPRS International Journal
of Geo-Information, 8(5):232, 2019.

Apple Maps. https://www.apple.com/maps/.

Jie Bao, Chi-Yin Chow, Mohamed F. Mokbel, and Wei-Shinn Ku.
Efficient Evaluation Of K-Range Nearest Neighbor Queries In Road
Networks. In MDM, 2010.

Bloomberg CityLab. Who Owns the Digital Map of the World?
www.bloomberg.com/news/articles/2015-06-25/mapbox-openstreetmap-
and-the-future-of-the-global-digital-mapping-industry.

Ling Chen, Yanlin Tang, Mingqi Lv, and Gencai Chen. Partition-
Based Range Query For Uncertain Trajectories In Road Networks.
Geolnformatica, 19(1):61-84, 2015.

Mirla Rafaela Rafael Braga Chucre, Samara Martins do Nascimento,
José Antonio Fernandes de Macédo, José Maria Monteiro, and
Marco Antonio Casanova. Taxi, Please! A Nearest Neighbor Query
In Time-Dependent Road Networks. In MDM, 2016.

Commercial OSM Software and Services. https://wiki.openstreetmap.
org/wiki/Commercial_OSM_Software_and_Services.

Corey Dickinson. Inside the Wikipedia of Maps Tensions Grow
Over Corporate Influence. Bloomberg. https://www.bloomberg.com/
news/articles/2021-02- 19/openstreetmap-charts-a-controversial-new-
direction.

Facebook AI. Mapping roads through deep learning and weakly su-
pervised training. https:/ai.facebook.com/blog/mapping-roads-through-
deep-learning-and-weakly-supervised-training/.

Facebook Engineering. MaRS: How Facebook keeps maps current and
accurate. https://engineering.fb.com/2019/09/30/ml-applications/mars/.
Geo Awesomeness. What does the acquisition of HERE mean
for Nokia, carmakers, TomTom, Google and the industry?
https://geoawesomeness.com/what-does-the-acquisition-of-here-mean-
for-nokia-carmakers-tomtom-google-and-the-industry/.

Jean-Francois Girres and Guillaume Touya. Quality Assessment of the
French OpenStreetMap Dataset. Transactions in GIS, 14(4):435-459,
2010.

GIS Lounge. Businesses Using Open Source GIS.
gislounge.com/businesses-using-open-source- gis/.
GPS World. TomTom-Tele Atlas Merger a Done
https://www.gpsworld.com/consumer-oemnewstomtom-tele-atlas-
merger-a-done-deal-2911/.

Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh.
Data Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Total. In ICDE, 1996.

Ling Hu, Yinan Jing, Wei-Shinn Ku, and Cyrus Shahabi. Enforcing K
Nearest Neighbor Query Integrity On Road Networks. In SIGSPATIAL,
2012.

Kent T. Jacobs and Scott W. Mitchell. OpenStreetMap Quality Assess-
ment using Unsupervised Machine Learning Methods. Transactions in
GIS, 24(5):1280-1298, 2020.

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, and Christian S. Jensen.
Path Prediction And Predictive Range Querying In Road Network
Databases. VLDB J., 19(4):585-602, 2010.

Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. Fast Query
Decomposition for Batch Shortest Path Processing in Road Networks.
In ICDE, 2020.

Lingxiao Li, Muhammad Aamir Cheema, Mohammed Eunus Ali, Hua
Lu, and David Taniar. Continuously Monitoring Alternative Shortest
Paths on Road Networks. PVLDB, 13(11):2243-2255, 2020.

List of OSM-based services. https://wiki.openstreetmap.org/wiki/List_
of_OSM-based_services.

Lyft Engineering. How Lyft Creates Hyper-Accurate Maps from
Open-Source Maps and Real-Time Data. https://eng.lyft.com/how-
lyft-creates-hyper-accurate-maps-from-open-source-maps-and-real-time-
data-8dcf9abdd46a.

Lyft Engineering. How Lyft discovered OpenStreetMap is the Fresh-
est Map for Rideshare. https://eng.lyft.com/how-lyft-discovered-
openstreetmap-is-the-freshest-map-for-rideshare-a7a4 1bf92ec.

https://www.

Deal.

221

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]
[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

Lyft mapping team. ground truth evaluation of openstreetmap qual-
ity in north american cities. https://drive.google.com/file/d/1Sb-

dOUjeP1Ljqz4ra931D3Pe8B5C3pde/view.
Mapillary. Unveiling the Mapping in Logistics Report: The Impact

of Broken Maps on Last-Mile Deliveries. https://blog.mapillary.com/
update/2020/02/14/mapping-in-logistics.html.

Marco Minghini and Francesco Frassinelli. OpenStreetMap History for
Intrinsic Quality Assessment: Is OSM up-to-date? Open Deospatial
Data, Software, and Standards, 4(9):1-17, 2019.

Money Control News. Uber may shun Google Maps for open source
ones: Report. www.moneycontrol.com/news/business/uber-may-shun-
google-maps-for-open-source-ones-report-2764111.html.

Joe Morrison. OpenStreetMap is Having a Moment: The Billion Dollar
Dataset Next Door. Medium Artcile. https://joemorrison.medium.com/
openstreetmap-is-having-a-moment-dcc7eef1bb01.

Mashaal Musleh and Mohamed F Mokbel. A Demonstration of RASED:
A Scalable Dashboard for Monitoring Road Network Updates in OSM.
In ICDE, 2022.

Nextbillion.ai. OpenStreetMap for Businesses: A Primer. White Pa-
per. https://nextbillion.ai/whitepapers/OpenStreetMap-for-Businesses-A-
Primer.

OpenStreetMap Blog. Apple Maps. https://blog.openstreetmap.org/2012/
10/02/apple-maps/.

OpenStreetMap Wiki. Organised Editing/Activities/Amazon. https://
wiki.openstreetmap.org/wiki/Organised_Editing/Activities/Amazon.
OpenStreetMap. http://www.openstreetmap.org/.

OSM API Calls Dashbord per Server (Culebre). https://prometheus.
openstreetmap.org/d/9xY_210Mk/apache?orgld=1&refresh=1mé&var-
instance=culebre&from=now-7d&to=now.

OSM Statistics. https://wiki.openstreetmap.org/wiki/Stats.

Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and
Xuemin Lin. Progressive Top-K Nearest Neighbors Search in Large
Road Networks. In SIGMOD, 2020.

Studio Software Blog. Google Maps vs OpenStreetMap: Which One Is
Better for Your Project? https://studiosoftware.com/blog/google-maps-
vs-openstreetmap/.

Tesla. https://www.tesla.com/.

Tesmanian. Tesla and SpaceX News. Tesla Owners Improve
Smart Summon Routes by Updating Open Street Maps.
https://www.tesmanian.com/blogs/tesmanian-blog/tesla-owners-smart-
summon-routes-open-street-maps-full-self-driving.

Traffic Technology Today. Poor maps costing delivery companies US
$6bn annually. https://www.traffictechnologytoday.com/news/mapping/
poor-maps-costing-delivery-companies-us6bn-annually.html.

Uber engineering. enhancing the quality of uber maps with metrics
computation. https://eng.uber.com/maps-metrics-computation/.

Haojun Wang and Roger Zimmermann. Processing of Continuous
Location-Based Range Queries on Moving Objects in Road Networks.
TKDE, 23(7):1065-1078, 2011.

Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen
Zhu, and Shuigeng Zhou. Shortest Path and Distance Queries on Road
Networks: An Experimental Evaluation. PVLDB, 5(5):406-417, 2012.
Bin Yao, Zhongpu Chen, Xiaofeng Gao, Shuo Shang, Shuai Ma, and
Minyi Guo. Flexible Aggregate Nearest Neighbor Queries In Road
Networks. In ICDE, 2018.

Deborah Yates. How Facebook, Apple and Microsoft are contributing
to an openly licensed map of the world. The Open Data Institute
(ODI). https://theodi.org/article/how-are-facebook-apple-and-microsoft-
contributing-to-openstreetmap/.

Zigiang Yu, Xiaohui Yu, Nick Koudas, Yang Liu, Yifan Li, Yueting
Chen, and Dingyu Yang. Distributed Processing of k Shortest Path
Queries over Dynamic Road Networks. In SIGMOD, 2020.

Hongyu Zhang and Jacek Malczewski. Accuracy Evaluation of the
Canadian OpenStreetMap Road Networks. International Journal of
Geospatial and Environmental Research, 5(2):1:1-1:14, 2018.

Kai Zheng, Goce Trajcevski, Xiaofang Zhou, and Peter Scheuermann.
Probabilistic Range Queries For Uncertain Trajectories On Road Net-
works. In EDBT, 2011.

Authorized licensed use limited to: University of Minnesota. Downloaded on August 29,2022 at 18:42:46 UTC from IEEE Xplore. Restrictions apply.

