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Abstract
Of theories for why large-scale machine learning
models generalize despite being vastly overparam-
eterized, which of their assumptions are needed
to capture the qualitative phenomena of general-
ization in the real world? On one hand, we find
that most theoretical analyses fall short of captur-
ing these qualitative phenomena even for kernel
regression, when applied to kernels derived from
large-scale neural networks (e.g., ResNet-50) and
real data (e.g., CIFAR-100). On the other hand,
we find that the classical GCV estimator (Craven
and Wahba, 1978) accurately predicts generaliza-
tion risk even in such overparameterized settings.
To bolster this empirical finding, we prove that
the GCV estimator converges to the generalization
risk whenever a local random matrix law holds.
Finally, we apply this random matrix theory lens
to explain why pretrained representations general-
ize better as well as what factors govern scaling
laws for kernel regression. Our findings suggest
that random matrix theory, rather than just being
a toy model, may be central to understanding the
properties of neural representations in practice.

1. Introduction
The fact that deep neural networks trained with many more
parameters than data points can generalize well contradicts
conventional statistical wisdom (Zhang et al., 2017). This
observation has inspired much theoretical work, with one
of the goals being to explain the generalization and scaling
behavior of such models. In this paper, we study how these
theoretical perspectives map onto reality. What assumptions
are necessary (or sufficient) to capture the qualitative phe-
nomena (e.g., pretraining vs. random initialization, scaling
laws) of large-scale models? And what do they reveal about
generalization in the real world?
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Figure 1. Predicted vs. actual generalization risk of a pretrained
ResNet-34 empirical NTK on CIFAR-100 over dataset sizes N and
ridge regularizations λ. Corresponding training risks are plotted in
the background. The fit achieving the lowest MSE has 19.9% test
error on CIFAR-100 (vs. 15.9% from finetuning the ResNet).

An adequate theoretical treatment should at least predict
the behavior of high-dimensional linear models. To assess
this, we focus on linear models derived from neural repre-
sentations (e.g., final layer activations or empirical neural
tangent kernels) of large-scale networks on vision data. We
test whether different theories can predict how kernel ridge
regression on these representations generalizes, given only
the training data.

In this setting of regression on realistic kernels, we find that
most theoretical analyses already face severe challenges. A
major difficulty is that the ground truth function has large—
effectively infinite—kernel norm, which we verify empiri-
cally on several datasets. Consequently, norm-based gener-
alization bounds are vacuous or even increase with dataset
size, echoing concerns raised by Belkin et al. (2018) and
Nagarajan & Kolter (2019). Other challenges for estimating
generalization include the slow convergence of the empiri-
cal covariance matrix and the fact that noise and signal are
indistinguishable in high-dimensional settings.

However, not all is lost. We find that the generalized cross-
validation (GCV) estimator (Craven & Wahba, 1978) does
accurately predict the generalization risk, even when typical
norm- or spectrum-based formulas struggle. GCV is accu-
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rate over a wide range of dataset sizes and regularization
strengths, for classification tasks of varying complexities,
and for representations extracted from residual networks
both at random initialization and after pretraining. For in-
stance, Figure 1 compares the GCV estimate against the true
generalization risk for an ImageNet-pretrained ResNet-34
representation on CIFAR-100.

To justify the performance of the GCV estimator, we prove
that it converges to the true generalization risk whenever a
local random matrix law (Knowles & Yin, 2017) holds. Our
analysis of this estimator allows for the highly anisotropic
covariates and large-norm ground truth functions observed
in our empirical setting. Along the way, we also generalize
recent random matrix analyses of high-dimensional ridge
regression (Hastie et al., 2020; Canatar et al., 2021; Wu &
Xu, 2020; Jacot et al., 2020b; Loureiro et al., 2021; Richards
et al., 2021; Mel & Ganguli, 2021; Simon et al., 2021) to
this setting. Finally, our analysis provides a new perspective
on this classical estimator that explains how its form arises
in connection to random matrix theory.

We next apply this random matrix theory lens to explore
basic questions about neural representations: Why do pre-
trained models generalize better than randomly initialized
ones? And what factors govern the rates observed in neural
scaling laws (Kaplan et al., 2020)? We find that alignment—
how easy it is to represent the ground truth function in the
eigenbasis (Marquardt & Snee, 1975; Caponnetto & Vito,
2007; Canatar et al., 2021)—is necessary to explain the per-
formance of deep learning models. In particular, pretrained
representations perform better than random representations
due to better alignment, and despite worse eigenvalue decay.
Finally, we provide sample-efficient methods to estimate the
alignment and eigenvalue decay, which circumvent the slow
convergence of the sample covariance matrix, and show that
these two quantities are sufficient to predict the scaling law
rate of ridge regression on natural data.

Our empirical findings and theoretical analysis show that
a random matrix theoretic perspective stands apart at cap-
turing the generalization of high-dimensional linear models
on real data. More classical approaches, which often boil
down to norms and/or eigendecay, do not suffice because
generalization typically depends on the specific alignment
between a high-norm ground truth function and the popula-
tion covariance matrix. More broadly, our results suggest
that accounting for random matrix effects is necessary to
model the qualitative phenomena of deep learning—and in
the case of kernel regression, sufficient.

Remark. In addition to our scientific contribution, we de-
velop a library for computing large-scale empirical neural
tangent kernels (e.g., for all of CIFAR-10 on a ResNet-101):
https://github.com/aw31/empirical-ntks, filling
in a gap in tools for exploring neural tangent kernels at scale.

1.1. Related Work

Since Zhang et al. (2017), many researchers have sought to
explain why overparameterized models generalize. High-
dimensional linear models capture many of the central em-
pirical phenomena and are a natural proving ground for
theories of overparameterized models (Mei & Montanari,
2020; Belkin et al., 2020; Bartlett et al., 2020). Recently, a
flurry of works has analyzed the generalization risk of high-
dimensional ridge regression under various assumptions,
typically Gaussian data in the asymptotic limit (Hastie et al.,
2020; Canatar et al., 2021; Wu & Xu, 2020; Jacot et al.,
2020b; Rosset & Tibshirani, 2020; Loureiro et al., 2021;
Richards et al., 2021; Mel & Ganguli, 2021; Simon et al.,
2021). Our analysis, like that of Hastie et al. (2020), is based
on a local random matrix law (Knowles & Yin, 2017) and
produces non-asymptotic bounds for general distributions.

Other, more classical, approaches to generalization include
Rademacher complexity (e.g., Bartlett & Mendelson (2001);
Bartlett et al. (2002)), norm-based measures (e.g., Bartlett
(1996); Neyshabur et al. (2015)), PAC-Bayes approaches
for stochastic models (e.g., McAllester (1999); Dziugaite
& Roy (2017)), and spectral notions of effective dimension
(e.g., Zhang (2005); Dobriban & Wager (2018); Bartlett et al.
(2020)). While some of these measures have been studied in
large-scale experiments (Jiang et al., 2020; Dziugaite et al.,
2020), our evaluations focus on a different perspective: we
study whether they capture the basic empirical phenomena
of overparameterized models, such as scaling laws and the
effect of pretraining.

To estimate generalization risk, we revisit the GCV estima-
tor of Craven & Wahba (1978). GCV was initially studied as
an estimate of error over a fixed sample (Golub et al., 1979;
Li, 1986; Cao & Golubev, 2006). Such analyses, however,
do not account for the randomness of the sample and thus
fail to capture high-dimensional settings with disparate train
and test risks. Recently, the high-dimensional setting has
received more attention: Jacot et al. (2020b) analyze GCV
for random, Gaussian covariates in the “classical” regime
where train risk approximates test risk.1 And, Hastie et al.
(2020), Adlam & Pennington (2020), and Patil et al. (2021)
asymptotically analyze GCV when the ratio P/N between
the dimension P and the sample size N converges to a fixed
limit. In contrast, to study scaling in N (for fixed P ), we
prove non-asymptotic bounds on the convergence of GCV
that hold: (i) beyond the classical regime, (ii) for a wide
range of N/P , and (iii) for general covariance structures.
Experimentally, GCV has previously been studied by Efron
(1986) and Rosset & Tibshirani (2020) in numerical simula-
tions and by Jacot et al. (2020b) for shift-invariant kernels
on the MNIST and Higgs datasets. Our experiments take

1See Appendix D for a detailed discussion of the classical vs.
non-classical regimes of high-dimensional ridge regression.

https://github.com/aw31/empirical-ntks
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these investigations to a significantly larger scale and focus
on more realistic neural representations.

One phenomenon we study—neural scaling laws—was first
observed by Kaplan et al. (2020). Since this observation,
Bahri et al. (2021) derive a spectrum-only formula for ker-
nel regression scaling, and Cui et al. (2021) derive precise
rates for ridge regression scaling in random matrix regimes.
In comparison, we show that alignment (and not just the
eigenvalues) is essential for understanding scaling in prac-
tice, and we also use random matrix theory to give a more
principled way to estimate the decay rates of the population
eigenvalues and alignment coefficients.

Finally, the neural representations we study are motivated by
the neural tangent kernel (NTK) (Jacot et al., 2018). There
has been a rich line of theoretical work studying ultra-wide
neural networks and their relationship to NTKs (e.g., Arora
et al. (2019); Lee et al. (2019); Yang (2019)). In contrast,
we work with NTKs extracted from realistic, finite-width
networks—including pretrained networks—and use them as
a testbed for exploring measures of generalization.

2. Preliminaries
2.1. High-dimensional Ridge Regression

We study a simple model of linear regression, in which we
predict labels y ∈ R from data points x ∈ RP . Each x is
drawn from a distribution D with unknown second moment
Σ := Ex∼D

[
xxT

]
, and its label y is given by y = βTx for

an unknown ground truth function2 β ∈ RP . Let Σ have
eigendecomposition

∑P
i=1 λiviv

T
i , with λ1 ≥ · · · ≥ λP .

To estimate β, we assume we have a dataset {(xi, yi)}Ni=1

of N independent samples, with xi ∼ D and yi = βTxi for
all i. For notational convenience, we write this dataset as
(X, y), where X ∈ RN×P has i-th row xi and y ∈ RN has
i-th entry yi. Let Σ̂ := 1

NXTX be the empirical second mo-
ment matrix, with eigendecomposition

∑P
i=1 λ̂iv̂iv̂

T
i such

that λ̂1 ≥ · · · ≥ λ̂N .

Given training data (X, y) and an estimator β̂ = β̂(X, y),
our goal in this paper is to predict its generalization risk R,
defined as R(β̂) := Ex∼D

[
(βTx− β̂Tx)2

]
, without access

to an independently drawn test dataset.

We focus on the ridge regression estimators β̂λ given by

β̂λ := argmin
β̂

1

N

N∑
i=1

(
yi − β̂Txi

)2
+ λ∥β̂∥22

for λ > 0, and β̂0 := limλ→0+ β̂λ.
2We assume—for simplicity’s sake—that the linear model is

well-specified and that labels are noiseless. This holds without loss
of generality in high dimensions: both noise and misspecification
can be embedded into the model by adding an additional “noise”
dimension. See Section 3.3 and Appendix B for details.

Recent theoretical advances (Hastie et al., 2020; Canatar
et al., 2021; Wu & Xu, 2020; Jacot et al., 2020b; Loureiro
et al., 2021; Richards et al., 2021; Mel & Ganguli, 2021; Si-
mon et al., 2021) have characterized R(β̂λ) under a variety
of random matrix assumptions. These works all show that
R(β̂λ) can be approximated by the omniscient risk estimate

Rλ
omni :=

∂κ

∂λ
· κ2

P∑
i=1

(
λi

(κ+ λi)2
(
βTvi

)2)
, (1)

where κ = κ(λ,N) is an effective regularization term (see
(4) for a definition). We call this expression the omniscient
risk estimate because it depends on the unknown second
moment matrix Σ and the unknown ground truth β. Our
analysis will approximate (1) using only the empirical sec-
ond moment matrix Σ̂ and the observations y, while also
yielding a concrete relationship between train and test risk.

2.2. Methods for Predicting Generalization Risk

We discuss several baseline approaches for predicting gen-
eralization risk and then describe the GCV estimator.

The simplest method uses empirical risk (i.e., training error)
Rempirical(β̂) :=

1
N

∑N
i=1(yi − β̂Txi)

2 as a proxy. This is
the foundation of uniform convergence approaches in learn-
ing theory (e.g., VC-dimension and Rademacher complex-
ity). However, training error is a poor predictor of test error
in the overparameterized regime, as seen in Figure 1.

Ridge regression admits more specific analyses. A typical
approach takes a bias-variance decomposition over label
noise and bounds each term with norm- or spectrum-based
quantities. For instance, the recent textbook of Bach (2023)
shows, based on matrix concentration inequalities, that

R(β̂λ) ≤ 16λ∥β∥22︸ ︷︷ ︸
norm-based

+16
σ2

N
Tr(Σ(Σ + λI)−1)︸ ︷︷ ︸
spectrum-based

(2)

holds when Nλ is large enough, where σ2 upper bounds the
variance of the label noise. Such norm- or spectrum-based
terms are typical of many theoretical analyses.

The GCV estimator. Cross-validation is a third approach
to predicting generalization risk. However, cross-validation
is not guaranteed to work in high dimensions and can fail in
practice (Bates et al., 2021). Craven & Wahba (1978) thus
introduce the generalized cross-validation (GCV) estimator

GCVλ :=

(
1

N

N∑
i=1

λ

λ+ λ̂i

)−2

Rempirical(β̂λ), (3)

which they and Golub et al. (1979) heuristically derive by
modifying cross-validation to be rotationally invariant.3 We

3As we did for β̂0, we define GCV0 := limλ→0+ GCVλ.
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Configuration Finetuning eNTK Last layer

CIFAR-10 / ResNet-18 4.3% 6.7% 14.0%
CIFAR-100 / ResNet-34 15.9% 19.0% 33.9%
Flowers-102 / ResNet-50 5.6% 7.0% 9.7%
Food-101 / ResNet-101 15.3% 21.3% 33.7%

Table 1. Test classification error rates of finetuning with SGD, ker-
nel regression on the eNTK, and linear regression on the last layer
activations for various datasets and pretrained models.

will study this estimator empirically and show its form can
be understood as a consequence of random matrix theory.

2.3. Experimental Setup: Empirical NTKs

To benchmark our risk estimates in realistic settings, we use
feature representations derived from large-scale, possibly
pretrained neural networks. Specifically, we use the empiri-
cal neural tangent kernel (eNTK). Given a neural network
f( · ; θ) with P parameters (θ ∈ RP ) and C output logits
(f(x; θ) ∈ RC), the eNTK representation of a data point x
at θ0 is the Jacobian φeNTK(x) :=

∂f
∂θ (x; θ0) ∈ RP×C .

Models and datasets. We consider eNTK representations
of residual networks on several computer vision datasets,
both at random initialization and after pretraining. Specif-
ically, we consider ResNet-{18, 34, 50, 101} applied to
the CIFAR-{10, 100} (Krizhevsky, 2009), Fashion-MNIST
(Xiao et al., 2017), Flowers-102 (Nilsback & Zisserman,
2008), and Food-101 (Bossard et al., 2014) datasets. All ran-
dom initialization was done following He et al. (2015); pre-
trained networks (obtained from PyTorch) were pretrained
on ImageNet and had randomly re-initialized output layers.

To verify that pretrained eNTK representations achieve com-
petitive generalization performance, we compare kernel re-
gression on pretrained eNTKs to regression on the last layer
activations and to finetuning the full network with SGD (see
Table 1). We find that pretrained eNTKs achieve accuracy
much closer to that of finetuning than that of regression on
the last layer. The eNTKs we consider also have stronger
empirical performance than the best-known infinite-width
NTKs (Arora et al., 2019; Li et al., 2019; Lee et al., 2020).

Computational considerations. For computations with
eNTK representations, we apply the kernel trick and instead
work with the eNTK matrix

[
φeNTK(xi)

TφeNTK(xj)
]N
i,j=1

∈
R(N×C)×(N×C). To further speed up computation, we use
the fact that, since our models have randomly initialized
output layers, the expected eNTK can be written as IC⊗K0,
for some kernel K0 ∈ RN×N and the C×C identity matrix
IC (Lee et al., 2020). The full NC×NC eNTK can thus be
approximated by IC⊗K, where K is the eNTK with respect
to a single randomly initialized output logit. Notice that
kernel regression with respect to IC⊗K decomposes into C

Figure 2. The top graph plots the growth of ∥β̂0∥2√
N

in N for linear
regression on the eNTK of a randomly initialized ResNet-18 on
Fashion-MNIST. The bottom graph shows that the generalization
risk of β̂0 decreases in N under the same setup, despite the growth
in ∥β̂0∥2, while the empirical risk of β̂0 remains 0 throughout.

independent kernel regression problems, each with respect
to K. To reduce compute, we apply this approximation in
all of our experiments. For further details, see Appendix E.

Baseline approaches. To illustrate some of the challenges
inherent to this setting, we compare GCV against two norm-
and spectrum-based expressions, similar to those of (2). We
describe these baselines in detail in Section 4.

3. Challenges of High-Dimensional Regression
from the Real World

We make several empirical observations that challenge most
theoretical analyses: (i) The ground truth β has effectively
infinite norm, leading ∥β̂λ∥2 to grow quickly with N and
making norm-based bounds vacuous. (ii) When N ≪ P ,
the empirical second moment Σ̂ is not close to its population
mean Σ. (iii) Many analyses estimate risk in terms of noise
in the training set, but noise and signal are interchangeable
in high dimensions, making such estimates break down.

3.1. Norm-based Bounds Are Vacuous

The norms ∥β∥2 and ∥β̂∥2 are often used to measure func-
tion complexity in generalization bounds. Here, we examine
how these norms behave for kernel regression in practice.

Many theoretical analyses, including Rademacher complex-
ity (Bartlett & Mendelson, 2001), give risk bounds for an
estimator β̂ in terms of the quantity ∥β̂∥2/

√
N (or a mono-

tonic function thereof). However, ∥β̂∥2/
√
N can increase

as N increases (and the generalization risk decreases): Fig-
ure 2 depicts this for β̂0 computed on the eNTK of a ran-
domly initialized ResNet-18 on Fashion-MNIST. Moreover,
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Figure 3. Each line plots the pairs (i, λ̂i) for Σ̂ from N pretrained
ResNet-34 eNTK representations of CIFAR-100 images. The Σ̂
eigenvalues converge slowly, and it is not obvious—particularly
from considering only a single N—what the scaling trend is.

this finding is consistent across models and datasets (see
Appendix H). Consequently, norm-based bounds give the
wrong qualitative prediction for scaling. This echoes the
findings of Nagarajan & Kolter (2019) and shows norm-
based bounds can fail even for practical linear models.

Other analyses rely on the norm ∥β∥2 of the ground truth,
either directly in the risk estimate (e.g., Dobriban & Wager
(2018)) or as a term in the error bound (e.g., Hastie et al.
(2020)). However, Figure 2 suggests that β has large norm:
for a clean dataset like CIFAR-10, we can assume labels are
close to noiseless.In this case, β̂0 is the projection of β onto
X , from which it follows that ∥β̂0∥2 ≤ ∥β∥2. Supposing
∥β̂0∥2 continues to grow superlinearly in N , the norm ∥β∥2
must be large. It may thus make the most sense to think of
β as having effectively infinite norm. However, this has the
effect of making bounds that rely on ∥β∥2 vacuous.4

3.2. Σ̂ Converges Slowly to Σ

The high dimensionality of our setting (P ≫ N ) implies the
empirical second moment Σ̂ is slow to converge to its expec-
tation Σ. Figure 3 depicts slow convergence of the spectrum
of Σ̂ derived from a pretrained ResNet-34 on CIFAR-100.
Similar conclusions hold for other models and datasets—see
Appendix H. We now discuss the consequences.

First, the slow convergence of Σ̂ makes it hard to empirically
estimate quantities that depend on the spectrum of Σ, such
as Rλ

omni; Loureiro et al. (2021) and Simon (2021) both
note this challenge. Moreover, as shown in Figure 3, trends
for eigenvalue decay extrapolated from Σ̂ may not hold for
Σ. This can be problematic for estimating scaling law rates
(Bahri et al., 2021; Cui et al., 2021).

The slow convergence also hurts analyses that rely on the
approximation Σ̂ ≈ Σ, e.g. those of of Hsu et al. (2014) and

4Belkin et al. (2018) suggest the perceptron analysis (Novikoff,
1962) as a way to understand generalization in the noiseless setting;
however, a large ∥β∥2 makes this approach ineffective as well.

Bach (2023) for ridge regression: the assumptions needed to
derive Σ̂ ≈ Σ would also imply Rempirical(β̂) ≈ R(β̂) (see
Appendix D), which we know does not hold (see Figure 1).
Therefore, we do not have Σ̂ ≈ Σ in the manner needed for
such analyses to apply.

3.3. Kernel Regression Is Effectively Noiseless

Many works (e.g., Belkin et al. (2018); Bartlett et al. (2020))
have sought to explain the finding that large models general-
ize despite being able to interpolate random labels (Zhang
et al., 2017), and thus focus on overfitting with label noise.
Yet high-dimensional phenomena occur on nearly noiseless
datasets like CIFAR-10. We now discuss how label noise
is unnecessary in a stronger sense: in high dimensions, any
noisy instance of linear regression is indistinguishable from
a noiseless instance with a complex ground truth.

To show this, we embed linear regression with noisy labels
into the noiseless model of Section 2.1 by constructing for
each noisy instance a sequence of noiseless instances that
approximate it. We sketch the construction here, and present
it in full in Appendix B. Suppose that y = βTx+ ξ, where
ξ represents mean-zero noise. We rewrite y as y = β′Tx′,
where x′ =

[ x
t1/2ξ

]
, β′ =

[
β

t−1/2

]
, and t > 0. As t → 0,

ridge regression on the “augmented” covariates x′ converges
uniformly over all λ ≥ 0 to ridge regression on the original
covariates x. The original, noisy instance is thus the limit
of a sequence of noiseless instances.5

This discussion suggests noiseless regression (allowing for
β of large norm) can capture our empirical setting, whereas
analyses that require label noise may not directly apply.

4. Empirically Evaluating GCV
Having demonstrated some of the challenges that our empir-
ical setting poses for typical theories, we now empirically
show that the GCV estimator,

GCVλ =

(
1

N

N∑
i=1

λ

λ+ λ̂i

)−2

Rempirical(β̂λ),

accurately predicts the generalization risk. In Section 4.1,
we first study the GCV estimator in isolation, following
the setup in Section 2.3. We observe excellent agreement
between the predicted and actual generalization risks across
a wide range of dataset sizes N and regularization strengths
λ. In Section 4.2, we then quantitatively compare the GCV
estimator against both norm- and spectrum-based measures
of generalization, and find that GCV both has better correla-
tion with the actual generalization risk and better predicts
the asymptotic scaling.

5In Appendix B, we show that the same reduction applies to
misspecified problems. As an application, we additionally show
how terms for variance from previous works can be read off of (1).
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Figure 4. Generalization risk vs. the GCV prediction, for various datasets and networks, across sample sizes N and regularization levels λ.

4.1. The Predictive Ability of GCV

To evaluate the GCV estimator, we compute an eNTK for
each model-dataset pair listed in Table 2. For each eNTK,
we then compare the GCV estimate to the actual generaliza-
tion risk over a wide range of dataset sizes N and regular-
ization levels λ. Full details of the experimental setup are
given in Appendix E. And in Appendix H, we run the same
experiment for ridge regression on last layer activations.

Figures 1 and 4 plot the results of this experiment. All curves
demonstrate significant agreement between predicted and
actual generalization risks, with over 90% of all predictions
having at most 0.09 error in both relative and absolute terms.
For most instances, the GCV predictions are nearly perfect
for large Nλ and only diverge slightly for small Nλ. Im-
portantly, the predictions are accurate in two regimes: (i)
when mean-squared error is minimized, and (ii) beyond
the “classical” regime (i.e., even when the train-test gap is
large). Finally, predictions for fixed Nλ tend to improve as
N increases, suggesting convergence in the large N limit.

4.2. Comparison to Alternate Approaches

We next use the same setup to compare GCV against two al-
ternative measures, based on the norm of β̂ and the spectrum
of Σ̂, respectively.

As discussed in Section 3.1, the norm-based approach gives
bounds of the form ∥β̂∥2/

√
N . Thus, we consider the esti-

mate R̂λ
norm := ∥β̂λ∥2/

√
N in our experiments. More gen-

eral norm-based quantities have been proposed to bound the
generalization risk of neural networks (see, e.g., Jiang et al.
(2020)); however, when specialized to linear models, these
bounds simply become increasing functions of ∥β̂∥2/

√
N .

For our spectrum-only estimate, we use a precise estimate of
generalization risk in terms of “effective dimension” quanti-
ties (Zhang, 2005) when β is drawn from an isotropic prior.
We consider, for κ̂ :=

(
1
N

∑N
i=1(λ+ λ̂i)

−1
)−1

, the family

R̂α,σ,λ
spec := κ̂2

(
α2

N∑
i=1

λ̂i

(λ+ λ̂i)2
+

σ2

N

N∑
i=1

1

(λ+ λ̂i)2

)
of estimates derived from the main theorem of Dobriban &

Wager (2018).6 We fit α2 and σ2 so that the predictions best
match the observed generalization risks, obtaining an upper
bound on the performance of this method over all α and σ.
This family of estimators lets us explore whether naturally-
occurring data can be summarized by the two parameters of
“signal strength” α and “noise level” σ.

To evaluate the ability of each predictor to model general-
ization, we consider two benchmarks. First, we measure the
correlation between the predictions and the generalization
risk for each dataset on the sets of (N,λ) pairs shown in
Figures 1 and 4. Correlation lets us equitably compare un-
scaled predictors, such as R̂norm, to more precise estimates,
such as GCV and R̂spec. Second, we test how well these
estimators predict the scaling of optimally tuned ridge re-
gression. For this, we find an optimal ridge parameter λ∗

N

for each N and then estimate the power law rate (given by
N−α for some α > 0) of predicted generalization risk with
respect to the sample size N . (Applied to the ground truth,
this would yield the scaling rate of the model.) Full details
are provided in Appendix E.

The results of these experiments are displayed in Table 2.
Plots of the spectrum- and norm-based predictions are also
presented in Appendix H. We find, perhaps unsurprisingly
in light of Section 3.1, that the norm-based measure has the
wrong sign when predicting generalization, both in terms
of correlation and in terms of scaling.7 The spectrum-only
approach also struggles to accurately predict generalization
risk: it does not predict any scaling on Fashion-MNIST and
achieves much lower correlations across the board. Finally,
GCV correlates well with the actual generalization risks and
accurately predicts scaling behavior on all datasets.

5. A Random Matrix Perspective on GCV
We next justify the impressive empirical performance of
GCV with a theoretical analysis. We prove a non-asymptotic

6See Appendix F for a derivation of this estimator.
7This cannot be explained by excess regularization reducing

the norm while also making performance worse: Figure 2 shows
that the trend points the wrong way even when λ = 0.



Random Matrix Models Predict How Real-World Neural Representations Generalize

Configuration Ground truth GCV Spectrum-only Norm-based

r α r α r α r α

Fashion-MNIST / ResNet-18 init. 1.000 0.166 0.996 0.192 0.080 0.008 −0.584 −0.121
CIFAR-10 / ResNet-18 pretr. 1.000 0.162 0.999 0.182 0.977 0.134 −0.641 −0.044

CIFAR-100 / ResNet-34 pretr. 1.000 0.124 0.996 0.124 0.846 0.070 −0.507 −0.166
Flowers-102 / ResNet-50 pretr. 1.000 — 0.999 — 0.665 — −0.786 —
Food-101 / ResNet-101 pretr. 1.000 0.099 0.979 0.085 0.718 0.035 −0.483 −0.188

Table 2. The r columns display the correlations of each prediction to generalization risk, and the α columns display the estimated scaling
exponents. We do not run the scaling experiment for Flowers-102 because it only consists of 2040 images.

bound on the absolute error
∣∣GCVλ−R(β̂λ)

∣∣ of GCV under
a random matrix hypothesis.

Our analysis of the GCV estimator has the following fea-
tures: (i) It holds even for β with large norm, requiring only
a bound on Ex∼D

[
(βTx)2

]
= βTΣβ. This is important for

our empirical setting because, while ∥β∥2 may be large (as
discussed in Section 3.1), the fact that our labels are 1-hot
implies (βTx)2 ≤ 1 always. (ii) It is the first, to our knowl-
edge, non-asymptotic analysis of GCV that applies beyond
the “classical” regime, holding even when the train-test gap
is large. (iii) It makes no additional assumptions beyond a
generic random matrix hypothesis and thus makes clear the
connection between the GCV estimator and random matrix
effects.8 In particular, we do not make further assumptions
about independence, moments, or dimensional ratio.

To illustrate the main technical ideas, we outline our theoret-
ical approach at a high level in the remainder of this section
and defer our formal treatment to Appendix A.

5.1. The Random Matrix Hypothesis

We assume a local version of the Marchenko-Pastur law as
our random matrix hypothesis. To state this hypothesis, we
first define κ = κ(λ,N) as the (unique) positive solution to

1 =
λ

κ
+

1

N

P∑
i=1

λi

κ+ λi
, (4)

with κ(0, N) := limλ→0+ κ(λ,N). We call κ the effective
regularization, as it captures the combined effect of the
explicit regularization λ and the “implicit regularization”
(Neyshabur, 2017; Jacot et al., 2020a) of ridge regression.
In terms of κ, the Marchenko-Pastur law can be roughly
thought of as the statement λ(λI + Σ̂)−1 ≈ κ(κI +Σ)−1.
We assume this approximation holds in the following sense:

Hypothesis 1 (Marchenko-Pastur law over R>0, informal).
The local Marchenko-Pastur law holds over S ⊆ R>0 if,
for every deterministic v ∈ RP such that vTΣv ≤ 1, the

8This random matrix hypothesis is known to hold for commonly
considered random matrix models (Knowles & Yin, 2017) and is
believed to hold even more broadly.

following hold uniformly over all λ ∈ S:

1

N

N∑
i=1

1

λ̂i + λ
≈ 1

κ
(5)

vTλ
(
λI + Σ̂

)−1
v ≈ vTκ

(
κI +Σ

)−1
v. (6)

Hypothesis 1 is known to hold when x is a linear function
of independent (but not necessarily i.i.d.) random variables
(Knowles & Yin, 2017), which includes Gaussian covariates
as a special case. Hypothesis 1 is expected, in fact, to hold
in even greater generality, as an instance of the universality
phenomenon for random matrices.

While one cannot verify Hypothesis 1 directly, since it de-
pends on the unknown quantities D and β, we present evi-
dence for its empirical validity in Appendix G. Specifically,
we verify that (5) and (6) are consistent with each other in
our empirical setting, by checking the relationships that they
predict between empirically measurable quantities.

5.2. The GCV Theorem

We show the following error bound for GCVλ, which states
GCVλ accurately predicts generalization risk under Hypoth-
esis 1 over a wide range of N and λ. Our bounds are stated
under the normalizations E

[
y2
]
≤ 1 and E

[
∥x∥22

]
≤ 1.

Theorem 2 (Informal). Suppose Hypothesis 1 holds over
S = ( 12λ,

3
2λ). Then∣∣∣GCVλ −R(β̂λ)

∣∣∣ ≲ N− 1
2+o(1) · 1

λ
.

To prove Theorem 2, we first show GCVλ ≈ Rλ
omni. We

then prove a sharpened version of the result of Hastie et al.
(2020) to show that, if E

[
y2
]
= βTΣβ ≤ 1, then Rλ

omni ≈
R(β̂λ). The first step can be stated as follows.

Proposition 3 (Informal). Suppose Hypothesis 1 holds over
S = ( 12λ,

3
2λ). Then∣∣GCVλ −Rλ

omni

∣∣ ≲ N−1/2+o(1) ·
(
1 + (Nλ)−3/2

)
.

For intuition, we give a heuristic proof of Proposition 3. As
a simplification, we use the approximate equalities ≈ in
Hypothesis 1 instead of precise error bounds. We further
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assume that ≈ is preserved by differentiation. We justify
these approximations in our full analysis in Appendix A.

Heuristic proof. By the closed form of Rempirical(β̂λ),

GCVλ =

(
1

N

N∑
i=1

1

λ+ λ̂i

)−2

βT(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1β.

Hypothesis 1 implies
(

1
N

∑N
i=1(λ+ λ̂i)

−1
)−2 ≈ κ2 and

∂
∂λ (β

Tλ(Σ̂ + λI)−1β) ≈ ∂
∂λ

(
βTκ(Σ + κI)−1β

)
, (7)

assuming we may differentiate through the ≈. Hence,

βT(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1β

= ∂
∂λ (β

Tλ(Σ̂ + λI)−1β)

≈ ∂
∂λ

(
βTκ(Σ + κI)−1β

)
= ∂κ

∂λ · βT(Σ + κI)−1Σ(Σ + κI)−1β.

Substituting into the equation for GCVλ, we obtain

GCVλ ≈ κ2
(
∂κ
∂λ · βT(Σ + κI)−1Σ(Σ + κI)−1β

)
= ∂κ

∂λ · κ2
P∑
i=1

(
λi

(κ+λi)2

(
βTvi

)2)
= Rλ

omni.

6. Pretraining and Scaling Laws through a
Random Matrix Lens

Having shown that a random matrix approach can fruitfully
model generalization risk both in theory and in practice, we
apply this theory towards answering: what factors determine
whether a neural representation scales well when applied
to a downstream task? To answer this question, we revisit
Rλ

omni =
∂κ
∂λ · κ2

∑P
i=1

(
λi

(κ+λi)2

(
βTvi

)2)
, a quantity that

depends on the eigenvalues λi and the alignment coefficients
(βTvi)

2 between the eigenvectors and β.

In Section 6.1, we use eigendecay and alignment to under-
stand why pretrained representations generalize better than
randomly initialized ones. We find, perhaps unintuitively,
that pretrained representations have slower eigenvalue decay
(i.e., higher effective dimension), but scale better due to bet-
ter alignment between the eigenvectors and the ground truth.
Thus, it is necessary to consider alignment in addition to
eigenvalue decay to explain the effectiveness of pretraining.

Motivated by this, in Section 6.2, we study scaling laws for
eigendecay and alignment (Caponnetto & Vito, 2007; Cui
et al., 2021). We show how to estimate their power law ex-
ponents with empirically observable quantities. Combining
these yields an empirically accurate estimate of the power
law exponent of generalization, suggesting that eigendecay
and alignment are sufficient statistics for predicting scaling.

6.1. Pretraining

A common intuition is that pretraining equips models with
simple, “low-dimensional” representations of complex data.

Figure 5. The pairs (i, λ̂i) plotted for two ResNet-34 eNTKs: one
at random initialization and one after pretraining. Note that the
pretrained kernel has higher effective dimension.

Configuration γ̂ δ̂ α̂ α

F-MNIST / ResNet-18 init. 0.657 −0.462 0.195 0.166
F-MNIST / ResNet-18 pretr. 0.353 −0.149 0.204 0.188
CIFAR-10 / ResNet-18 init. 0.535 −0.468 0.066 0.059
CIFAR-10 / ResNet-18 pretr. 0.270 −0.089 0.181 0.162
CIFAR-100 / ResNet-34 init. 0.482 −0.466 0.016 0.014
CIFAR-100 / ResNet-34 pretr. 0.257 −0.128 0.128 0.124
Food-101 / ResNet-101 pretr. 0.200 −0.113 0.087 0.099

Table 3. The first two columns display the estimated power law
rates γ̂ (of eigendecay) and δ̂ (of alignment). The last two columns
compare the estimate α̂ := γ̂ + δ̂ for the scaling rate of optimally
tuned ridge regression against the actual scaling rate α of R(β̂λ∗).

Thus, one might expect that pretrained representations have
lower effective dimension and that this is the cause of better
generalization. Figure 5, however, shows the opposite to
be true: on CIFAR-100, a pretrained ResNet-34 eNTK has
slower eigenvalue decay than a randomly initialized repre-
sentation (and higher effective dimension). Moreover, this
holds consistently across datasets and models, as shown
in Appendix H. Thus, dimension alone cannot explain the
benefit of pretraining.

The omniscient risk estimate Rλ
omni suggests a possible rem-

edy. While slower eigendecay will increase Rλ
omni, the in-

crease can be overcome if the alignment coefficients (βTvi)
2

decay faster. We will confirm this in Section 6.2 once we
develop tools to estimate the decay rates of the eigenvalues
and the alignment coefficients: across several models and
datasets, pretrained representations exhibit slower eigende-
cay but better alignment (Table 3). Our finding suggests
that the role of pretraining is to make “likely” ground truth
functions easily representable and in fact does not reduce
data dimensionality. In particular, the covariates cannot be
considered in isolation from potential downstream tasks.

6.2. Scaling Laws

The omniscient risk estimate Rλ
omni shows that both align-

ment and eigendecay matter for generalization. To better
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understand the behavior of these quantities, which are given
in terms of the unobserved Σ and β, we show how the power
law rates of these terms can be estimated from empirically
observable quantities. We then use these rates to estimate
the scaling law rate of the generalization error for optimally
regularized ridge regression. We find the estimated rates
accurately reflect observed scaling behavior, suggesting that
power law models of alignment and eigendecay suffice to
capture the scaling behavior of regression on natural data.

We suppose that the population eigenvalues and the align-
ment coefficients scale as λi ≍ i−1−γ and (βTvi)

2 ≍ i−δ,
for γ > 0 and δ < 1. (Note that the latter implies ∥β∥2 is
effectively infinite when N ≪ P .) Assuming known γ and
δ, Cui et al. (2021) analyze Rλ∗

omni, for λ∗ the optimal ridge
regularization, and show in the noiseless regime that

Rλ∗

omni ≍ N−α, for α = γ + δ. (8)

However, they do not give a satisfactory way to estimate γ
and δ from data: they propose simply using the eigenvalues
Σ̂ as a proxy for those of Σ. But as we previously observed
in Figure 3, convergence of Σ̂ to Σ can be slow for high-
dimensional regression problems.

The following propositions (proven in Appendix C) provide
a more principled way to estimate γ and δ in terms of empir-
ically observable quantities, using the same random matrix
hypothesis from before.
Proposition 4. Suppose that Hypothesis 1 holds as λ → 0
and that λi ≍ i−1−γ . Then, N−1 Tr

(
(XXT)−1

)
≍ Nγ .

Proposition 5. Suppose that Hypothesis 1 holds at λ > 0
and that λi ≍ i−1−γ and (βTvi)

2 ≍ i−δ . Then,

yT
(
XXT +NλI

)−1
y ≍ κ(λ,N)−

1−δ
1+γ . (9)

Consequently, γ can be estimated by fitting the slope of
the points

(
logN, log

(
N−1 Tr((XXT)−1)

))
∈ R2. And δ

can be estimated by inverting (9) and applying the estimate
(5) for κ and the preceding estimate for γ.

To test this approach, we estimate γ and δ as γ̂ and δ̂ via the
quantities in Propositions 4 and 5 and apply these estimates
to the datasets listed in Table 3. We also estimate α̂ = γ̂+ δ̂
following (8) and compare α̂ to the actual rate α in Table 3.

We find that α̂ accurately approximates α for all datasets,
suggesting that the power law assumption can be used to
model naturally-occurring data. Additionally, we observe
for all datasets that δ̂ < 0, which suggests that the coeffi-
cients (βTvi)

2 grow in i, reinforcing our conclusion from
Section 3 that β has large norm. Finally, for all pairs of ran-
domly initialized and pretrained models in Table 3, note that
the pretrained model has smaller γ and thus slower eigen-
value decay, but much larger δ. This verifies our hypothesis
that pretrained representations scale better due to improved
alignment (and despite higher dimension).

7. Discussion
In this paper, we identify that the GCV estimator accurately
predicts ridge regression generalization on neural represen-
tations of large-scale networks and real data, while other
more classical approaches fall short. We then elucidate the
connection between GCV and random matrix laws, showing
that GCV accurately predicts generalization risk whenever
a local Marchenko-Pastur law holds. Finally, we apply this
perspective to answer basic conceptual questions about neu-
ral representations. Our findings suggest several promising
directions for future inquiry, which we now discuss.

First, we believe that the random matrix approach has much
more to offer towards understanding the statistics of high-
dimensional learning: the structure imposed by a random
matrix assumption stood apart at capturing the qualitative
phenomena of ridge regression. It is thus conceivable that
such structure will be necessary to understand settings be-
yond ridge regression, e.g., classification accuracy for logis-
tic regression or modeling natural covariate shifts.

However, there remain open problems even in the setting
of ridge regression. For instance, current understanding of
random matrix laws does not encompass all the regimes of
interest: a natural scaling of regularization is λ ≍ N−1, but
the existing theory (Knowles & Yin, 2017) requires λ to be
bounded away from 0. Additionally, it would be of interest
to achieve a bound on the error of Rλ

omni that scales well in
the λ ≍ N−1 limit (like what we have for Proposition 3).

Finally, and most broadly, we hope that the perspective we
take towards studying neural representations can inspire
more insight towards what is learned by neural networks.
We find that eNTK representations reveal much more than
the typically considered final-layer activations and serve as
a reasonable proxy for understanding finetuning on a pre-
trained model. Can eNTKs be used as a tractable model to
untangle more of the mysteries around large-scale models?
For instance, what do eNTKs reveal about features learned
via different training procedures? And can the evolution of
the eNTK and its associated metrics (e.g., eigendecay and
alignment) during training shed light on feature learning?

Acknowledgements
We thank Yasaman Bahri, Peter Bartlett, Gintare Karolina
Dziugaite, Cassidy Laidlaw, Preetum Nakkiran, and Nilesh
Tripuraneni for valuable feedback. A. Wei acknowledges
support from an NSF Graduate Research Fellowship under
grant DGE-2146752. W. Hu acknowledges support from
the NSF through grants DMS-2023505 and DMS-2031883
and from the Simons Foundation through award #814639.



Random Matrix Models Predict How Real-World Neural Representations Generalize

References
Adlam, B. and Pennington, J. The neural tangent kernel

in high dimensions: Triple descent and a multi-scale
theory of generalization. In Proceedings of the 37th
International Conference on Machine Learning, pp. 74–
84, 2020.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In Advances in Neural Information Processing
Systems 32, pp. 8139–8148, 2019.

Bach, F. Learning Theory from First Principles. MIT, 2023.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U.
Explaining neural scaling laws. arXiv, abs/2102.06701,
2021.

Bai, Z. and Silverstein, J. W. Spectral Analysis of Large
Dimensional Random Matrices. Springer, 2010.

Bartlett, P. L. For valid generalization the size of the weights
is more important than the size of the network. In Ad-
vances in Neural Information Processing Systems 9, pp.
134–140, 1996.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. In Com-
putational Learning Theory, 14th Annual Conference on
Computational Learning Theory, pp. 224–240, 2001.

Bartlett, P. L., Bousquet, O., and Mendelson, S. Local-
ized rademacher complexities. In Computational Learn-
ing Theory, 15th Annual Conference on Computational
Learning Theory, pp. 44–58, 2002.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Bates, S., Hastie, T., and Tibshirani, R. Cross-validation:
what does it estimate and how well does it do it? arXiv,
abs/2104.00673, 2021.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, pp. 540–548, 2018.

Belkin, M., Hsu, D., and Xu, J. Two models of double
descent for weak features. SIAM J. Math. Data Sci., 2(4):
1167–1180, 2020.

Bloemendal, A., Knowles, A., Yau, H.-T., and Yin, J. On
the principal components of sample covariance matrices.
Probability theory and related fields, 164(1):459–552,
2016.

Bossard, L., Guillaumin, M., and Gool, L. V. Food-101 -
mining discriminative components with random forests.
In Proceedings of the Thirteenth European Conference
on Computer Vision, pp. 446–461, 2014.

Canatar, A., Bordelon, B., and Pehlevan, C. Spectral bias
and task-model alignment explain generalization in kernel
regression and infinitely wide neural networks. Nature
Communications, 12(1):1–12, 2021.

Cao, Y. and Golubev, Y. On oracle inequalities related to
smoothing splines. Mathematical Methods of Statistics,
15(4):398–414, 2006.

Caponnetto, A. and Vito, E. D. Optimal rates for the regu-
larized least-squares algorithm. Found. Comput. Math., 7
(3):331–368, 2007.

Craven, P. and Wahba, G. Smoothing noisy data with spline
functions. Numerische Mathematik, 31:377–403, 1978.

Cui, H., Loureiro, B., Krzakala, F., and Zdeborova, L. Gen-
eralization error rates in kernel regression: The crossover
from the noiseless to noisy regime. In Advances in Neural
Information Processing Systems 34, 2021.

Dobriban, E. and Wager, S. High-dimensional asymptotics
of prediction: Ridge regression and classification. The
Annals of Statistics, 46(1):247–279, 2018.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous
generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data. In
Proceedings of the Thirty-Third Conference on Uncer-
tainty in Artificial Intelligence, 2017.

Dziugaite, G. K., Drouin, A., Neal, B., Rajkumar, N., Ca-
ballero, E., Wang, L., Mitliagkas, I., and Roy, D. M. In
search of robust measures of generalization. In Advances
in Neural Information Processing Systems 33, 2020.

Efron, B. How biased is the apparent error rate of a predic-
tion rule? Journal of the American Statistical Association,
81(394):461–470, 1986.
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A. Analysis of the GCV Estimator (Proofs for Section 5)
In this section, we prove our main theoretical result: that the GCV estimator approximates the generalization risk of ridge
regression (Theorem 2). We now give formal statements of Hypothesis 1 and Theorem 2. For Theorem 2, we will assume
that Hypothesis 1 holds for D as well as a family of linear transformations of D.

Before giving formal statements, we make note of a few mathematical conventions that we use throughout this section:

• We say that a family of events AN indexed by N occurs with high probability if, for any (large) constant D > 0, there
exists a threshold ND such that AN occurs with probability at least 1−N−D for all N ≥ ND.

• For any two families of functions fN , gN : S → R≥0 indexed by N , we say that f ≲ g uniformly over S if there exists
a constant C > 0 such that, with high probability, fN (z) ≤ C · gN (z) uniformly over all z ∈ S. In particular, ≲ omits
constant factors from bounds.

• We let i (in roman type) denote the imaginary unit and use i (in italic type) as an indexing variable.

With these conventions in mind, Hypothesis 1 is formalized as follows:
Hypothesis 6 (Local Marchenko-Pastur law over R>0). The local Marchenko-Pastur law holds over an open set S ⊆ R>0

if, for every deterministic vector v ∈ RP such that vTΣv ≤ 1, both∣∣∣∣∣ 1κ − 1

N

N∑
i=1

1

λ̂i + λ

∣∣∣∣∣ ≲ N− 1
2+o(1) · 1

κ

√
∂κ

∂λ
(10)

and ∣∣∣vT(κ(κI +Σ)−1
)
v − vT

(
λ(λI + Σ̂)−1

)
v
∣∣∣ ≲ N− 1

2+o(1) · 1
κ

√
∂κ

∂λ
(11)

hold uniformly over all λ ∈ S.

To analyze the omniscient risk estimate, we will need a slight extension of Hypothesis 6, requiring that Hypothesis 6 hold
for a family of linear transformations of the data distribution D:
Hypothesis 7. Hypothesis 6 holds for z = (I + tΣ)−

1
2x, where x ∼ D, uniformly9 over all t ∈ {s ∈ R : |s| < 1

2∥Σ∥
−1
op }.

Theorem 2 can now formally be stated as follows:
Theorem 8. Suppose λ > 0 is such that Hypothesis 7 holds over S = ( 12λ,

3
2λ). Then,∣∣∣GCVλ −R(β̂λ)

∣∣∣ ≲ N− 1
2+o(1) · βTΣβ ·

[
∥Σ∥op

λ
+

(
Tr(Σ)

Nλ

)3/2
]
.

Recall from Section 5 that our analysis of the GCV estimator proceeds in two steps: showing that GCVλ ≈ Rλ
omni and then

showing that Rλ
omni ≈ R(β̂λ). For the first step, we show the following proposition (formally restating Proposition 3):

Proposition 9. Suppose λ > 0 is such that Hypothesis 6 holds over S = ( 12λ,
3
2λ). Then,

∣∣GCVλ −Rλ
omni

∣∣ ≲ N− 1
2+o(1) · βTΣβ ·

(
1 +

Tr(Σ)

Nλ

)3/2

.

For the second step, we show the following proposition:
Proposition 10. Suppose λ > 0 is such that Hypothesis 7 holds over S = ( 12λ,

3
2λ). Then,∣∣∣Rλ

omni −R(β̂λ)
∣∣∣ ≲ N− 1

2+o(1) · βTΣβ · ∥Σ∥op
λ

.

In the remainder of this section, we prove Theorem 8. To be self-contained, we briefly recap the setup, precise assumptions,
and some background material in Appendix A.1. Next, we prove a general lemma to justify the differentiation step (i.e., (7))
in Appendix A.2. Then, we prove Theorem 8 via Propositions 9 and 10 in Appendices A.3 and A.4.

9Since t is 1-dimensional, this uniformity assumption can be relaxed with a standard ε-net argument, which we omit for brevity.
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A.1. Theoretical Preliminaries

A.1.1. MODEL

We recall our basic setup from Section 2. We consider a random design model of linear regression, in which covariates xi

are drawn i.i.d. from a distribution D over RP with second moment Σ ∈ RP×P . Labels are generated by a ground truth
β ∈ Rp, with the i-th label given by yi = βTxi. In this model, the distribution D (and in particular its second moment Σ)
and the ground truth β are unobserved. Instead, all we observe are N independent samples (x1, y1), . . . , (xN , yN ).

For our theoretical analysis, we additionally impose the mild assumption that λ ≥ N−C for some (large) constant C > 0.10

Note that, beyond our random matrix hypothesis, we do not assume anything about the dimensional ratio P/N , allowing for
it to vary widely, and we do not assume anything about the covariate distribution D.

For the sake of simplicity, we focus on the case where Ex∼D[x] = 0. We note that our analysis can be extended to obtain a
correction for non-zero means via the Sherman-Morrison rank-1 update formula, but we do not pursue this extension further
at this time.

A.1.2. RIDGE REGRESSION

We first recall the notation defined in Section 2. Let X ∈ RN×P be the matrix of covariates and y ∈ RN be the vector of
labels. The empirical second moment matrix is denoted by Σ̂ := 1

NXTX . The eigendecompositions of Σ and Σ̂ are written
as Σ =

∑P
i=1 λiviv

T
i and Σ̂ =

∑N
i=1 λ̂iv̂iv̂

T
i , respectively, with λ1 ≥ · · · ≥ λP and λ̂1 ≥ · · · ≥ λ̂N .

Let β̂λ be the ridge regression estimator

β̂λ := argmin
β̂

1

N

N∑
i=1

(
yi − β̂Txi

)2
+ λ∥β̂∥22

for λ > 0, and let β̂0 := limλ→0+ β̂λ. For λ > 0, one has the closed form β̂λ =
(
Σ̂ + λI

)−1 1
NXTy =

(
Σ̂ + λI

)−1
Σ̂β.

Given an estimator β̂ ∈ RP for β, its generalization and empirical risks are

R(β̂) := E
x∼D

[(βTx− β̂Tx)2] and Rempirical(β̂) :=
1

N

N∑
i=1

(yi − β̂Txi)
2,

respectively. For ridge regression when λ > 0, one has the closed form expressions

R(β̂λ) = λ2βT
(
Σ̂ + λI

)−1
Σ
(
Σ̂ + λI

)−1
β and Rempirical(β̂λ) = λ2βT

(
Σ̂ + λI

)−1
Σ̂
(
Σ̂ + λI

)−1
β. (12)

A.1.3. THE ASYMPTOTIC STIELTJES TRANSFORM

To relate our random matrix hypothesis (Hypothesis 1) to the existing random matrix literature, we define the N -sample
asymptotic Stieltjes transform m of Σ, as m is the more standard object to consider in random matrix theory. We will state a
version of Hypothesis 1 in terms of m and later use the properties of m to analyze the GCV estimator.

Before defining m, it is helpful to recall the definition of effective regularization κ = κ(λ,N), for λ > 0, as the (unique)
positive solution to

1 =
λ

κ
+

1

N

P∑
i=1

λi

κ+ λi
. (13)

The N -sample asymptotic Stieltjes transform m of Σ is the analytic continuation of m(z) = 1/κ(−z,N) (as a function on
the negative reals) to C \ R≥0. We define m using an equation similar to (13). Let H := {z ∈ C : Im(z) > 0} denote the
complex upper half-plane. For each z ∈ H, one can show that there exists a unique solution in H to

1 = −zm+
1

N

P∑
i=1

mλi

1 +mλi
,

10This assumption is made for convenience: relaxing it worsens the bound by only a log(1/λ) factor.
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which we take to be m(z). By the Schwarz reflection principle, this function on H has a unique analytic continuation to
C \ R≥0. A key property of m is that there exists a unique positive measure ϱ on [0,∞) such that

m(z) =

∫
dϱ(x)

x− z
. (14)

In other words, m is the Stieltjes transform of ϱ. This measure ϱ is known as the N -sample asymptotic eigenvalue density of
Σ. For proofs of these claims, we refer the reader to Bai & Silverstein (2010) and Knowles & Yin (2017, Section 2.2).

A.1.4. THE RANDOM MATRIX HYPOTHESIS

To make our analysis as general as possible and to make the connection to random matrix theory clear, we give our analysis
for any distribution D that satisfies Hypothesis 6. This hypothesis is a modern interpretation of the Marchenko-Pastur law
and formalizes the heuristic random matrix theory identity11

λ
(
λI + Σ̂

)−1 ≈ κ
(
κI +Σ

)−1
.

To further connect Hypothesis 6 to the random matrix literature, we state here a stronger version of Hypothesis 6 (in that it
implies Hypothesis 6) that has been shown to hold for commonly studied random matrix models (Knowles & Yin, 2017).
While this stronger hypothesis provides uniform convergence for complex-valued λ, we will only need uniform convergence
for λ on the positive real line as in Hypothesis 6.

Let Ω := {z ∈ C : Re(z) < 0}. The stronger hypothesis, in terms of the asymptotic Stieltjes transform m, is as follows:

Hypothesis 11 (Local Marchenko-Pastur law over Ω\R). The local Marchenko-Pastur law holds over an open set S ⊆ Ω\R
if for every deterministic vector v ∈ RP such that vTΣv ≤ 1, both∣∣∣∣∣m(z)− 1

N

N∑
i=1

1

λ̂i − z

∣∣∣∣∣ ≲ N− 1
2+o(1)

√
Im(m(z))

Im(z)
(15)

and ∣∣∣vT(I +m(z)Σ
)−1

v − vT
(
I − z−1Σ̂

)−1
v
∣∣∣ ≲ N− 1

2+o(1)

√
Im(m(z))

Im(z)
. (16)

hold uniformly over all z ∈ S.

While we do not make further assumptions, we note that Hypothesis 11 is known to hold under general, non-asymptotic
assumptions, which subsume the typical random matrix theory assumptions of Gaussian covariates and fixed dimensional
ratio P/N . For instance, Knowles & Yin (2017, Theorem 3.16 and Remark 3.17) show that Hypothesis 11 holds for any
open S ⊆ Ω \ R if the following conditions are satisfied, for an a priori fixed (large) constant C > 0:

• Sufficient independence. The following two assumptions hold:

– The covariates x ∼ D are distributed as a linear transformation Tz of independent (but not necessarily identically
distributed) random variables z1, . . . , zP such that E[zi] = 0, and E[z2i ] = 1 for all i.12,13

– At least a C−1 fraction of the eigenvalues of Σ are at least C−1, and ∥Σ∥op ≤ C (i.e., the spectrum of Σ is not
concentrated at 0 relative to ∥Σ∥op).14

• Bounded moments. The random variables z1, . . . , zP have uniformly bounded p-th moments for all p < ∞.

• Bounded domain. The domain S is such that C−1 ≤ |z| ≤ C for all z ∈ S.

11In comparison, the classical Marchenko-Pastur law (Marchenko & Pastur, 1967) derives Tr
(
(λI + Σ̂)−1

)
≈ κ

λ
Tr

(
(κI +Σ)−1

)
over the complex plane, from which it follows that the spectral measure of Σ̂ converges to the measure whose Stieltjes transform is given
by the right-hand side.

12The assumption E[z2i ] = I is without loss: we can absorb any scaling of zi into T .
13To see the necessity of this condition, note that if x = z1 · (1, 1, . . . , 1)T, then we would not obtained the desired convergence.
14To see the necessity of this condition, note that if we allowed for T = (1, 1, . . . , 1)T · (1, 0, 0, . . . , 0) (in which case Σ would have

only one non-zero eigenvalue), then we would again have x = z1 · (1, 1, . . . , 1)T.
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• Log-bounded dimensional ratio15. The dimensions N , P satisfy N1/C ≤ P ≤ NC .

The non-asymptotic nature of the dimensional ratio assumption is particularly relevant to us because N varies while P ≫ N
is fixed when we study scaling in our empirical setting. As a consequence, the dimensional ratio P/N takes on a wide range
of values. (In contrast, the classical asymptotic assumptions of P → ∞ and P/N → γ are insufficient for our purposes.)

The following lemma shows that Hypothesis 11 implies Hypothesis 6 (note the change in sign due to z = −λ):

Lemma 12. Let S ⊆ Ω be open. If Hypothesis 11 holds on S \ R, then Hypothesis 6 holds on {λ : −λ ∈ S ∩ R}.

Proof. Fix λ ∈ S. Consider z = −λ+ iη in the limit η → 0+. Because S is open, Hypothesis 11 holds for z = −λ+ iη in
a (complex) neighborhood of λ. Since m maps reals to reals, limη→0+ Im(m(z))/Im(z) = ∂

∂η Im(m(−λ)) = m′(−λ) by
the Cauchy-Riemann equations. Moreover, m′(−λ) = 1

κ2
∂κ
∂λ . Hence∣∣∣∣∣m(−λ)− 1

N

N∑
i=1

1

λ̂i + λ

∣∣∣∣∣ = lim
η→0+

∣∣∣∣∣m(z)− 1

N

N∑
i=1

1

λ̂i − z

∣∣∣∣∣ ≲ lim
η→0+

N− 1
2+o(1)

√
Im(m(z))

Im(z)
= N− 1

2+o(1) · 1
κ

√
∂κ

∂λ

for (10) and likewise for (11).

A.1.5. THE OMNISCIENT RISK ESTIMATE

Recent works (Hastie et al., 2020; Canatar et al., 2021; Wu & Xu, 2020; Jacot et al., 2020b; Loureiro et al., 2021; Richards
et al., 2021; Mel & Ganguli, 2021; Simon et al., 2021) have shown under a variety of random matrix assumptions that the
generalization risk R(β̂λ) of ridge regression can be approximated by the omniscient risk estimate Rλ

omni:

Rλ
omni :=

∂κ

∂λ
· κ2

P∑
i=1

(
λi

(κ+ λi)2
(
βTvi

)2)
=

∂κ

∂λ
κ2βT(Σ + κI)−1Σ(Σ + κI)−1β. (17)

The analysis of Hastie et al. (2020) is the most general of these and establishes (17) under a similar set of assumptions as
Hypothesis 11, with approximation error proportional to ∥β∥22.

However, in our empirical setting with effectively infinite ∥β∥2, we need a stronger version of this result than was previously
known. Thus, we improve the result of Hastie et al. (2020) so that the error bound scales in the expected size of the label
βTΣβ rather than the squared norm ∥β∥22 (see Proposition 10). To prove this generalization requires a more careful analysis,
as the analysis of Hastie et al. (2020) does not directly extend to large ∥β∥2.

A.2. Bounding the Derivative of a Bounded, Real Analytic Function

A key step of our analysis will be arguing that we may differentiate the local random matrix law, as in (7), while preserving
the approximate equality. In this section, we show a general lemma that lets us accomplish this. Concretely, we will bound
the derivative of a bounded, real analytic function. Our approach here streamlines the argument of Hastie et al. (2020),
allowing for sharper bounds while also being easier to apply.

Let h : U → R, for some U ⊆ R. (In applications, h will represent the difference of two “approximately equal” functions.)
Suppose h is real analytic at x0 with radius of convergence R > 0. Then h has an analytic continuation h̃ to the open ball
V := {z ∈ C : |z − x0| < R}. Let K ⊆ V be the closed ball {z ∈ C : |z − x0| ≤ 1

2R}. Given that h and h̃ are bounded
on K ∩ R and K, respectively, the next lemma bounds h′(x0) with only a logarithmic dependence on the bound on h̃. In
our applications, this logarithmic dependence will be negligible: the dominant factor will be the ratio δ/R.

Lemma 13. Suppose M ≥ δ > 0, and h : U → R is such that |h(x)| ≤ δ on K ∩ R and |h̃(z)| ≤ M on K. Then,

|h′(x0)| ≲
δ

R

(
1 + log

(
M

δ

))2

.

15Knowles & Yin (2017, Section 2.1) note that their results can be obtained under a relaxed dimensional ratio assumption using the
techniques of Bloemendal et al. (2016).
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Proof. Given the power series expansion h(x) =
∑∞

j=0 cj(x− x0)
j of h at x0, the Cauchy integral formula tells us that

|cj | =

∣∣∣∣∣ 1

2πi

∫
∂K

h̃(z)

(z − x0)j+1
dz

∣∣∣∣∣ ≤
(
2

R

)j

M.

Let hk(x) :=
∑k

j=0 cj(x− x0)
j the k-th order Taylor expansion of h at x0. If I :=

[
x0 − 1

4R, x0 +
1
4R
]

and x ∈ I , then

|h(x)− hk(x)| =

∣∣∣∣∣∣
∞∑

j=k+1

cj(x− x0)
j

∣∣∣∣∣∣ ≤
∞∑

j=k+1

|cj ||x− x0|j ≤ 2−kM.

Let ∥·∥∞ denote the sup norm for continuous functions I → R. Setting k := ⌊1 + log2(M/δ)⌋, we have by the triangle
inequality that ∥hk∥∞ ≤ ∥h∥∞ + ∥h− hk∥∞ ≤ 2δ. Let Pk be the vector space of degree k polynomial functions I → R.
The Markov brothers’ inequality says that the linear functional Pk → R given by p 7→ p′(x0) has operator norm at most
4k2/R with respect to ∥·∥∞. Hence

|h′(x0)| = |h′
k(x0)| ≤

4k2

R
∥hk∥∞ ≲

δ

R

(
1 + log

(
M

δ

))2

.

A.3. Proof of Proposition 9

To prove Proposition 9, we follow the outline in Section 5. Define

f(λ) := βTβ − βTλ
(
Σ̂ + λI

)−1
β and g(λ) := βTβ − βTκ

(
Σ+ κI

)−1
β.

The βTβ terms in f and g ensure that f and g can be bounded, so that we may apply Lemma 13. Additionally, define

h(λ) := f(λ)− g(λ) = −βTλ
(
Σ̂ + λI

)−1
β + βTκ

(
Σ+ κI

)−1
β.

Note that f , g, and h may be analytically continued to take complex arguments w = λ−iη, since we may take κ = 1/m(−w).
We will also need these extended functions when applying Lemma 13.

Algebraically, the key drivers of our analysis are the relationships obtained from differentiating f and g with respect to λ:

f ′(λ) = βT
(
Σ̂ + λI

)−1
Σ̂
(
Σ̂ + λI

)−1
β =

1

λ2
Rempirical(β̂λ) =

(
N∑
i=1

1

λ+ λ̂i

)2

GCVλ

g′(λ) =
∂κ

∂λ
βT
(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β =

1

κ2
Rλ

omni.

The main technical steps in the analysis will be to bound |h′(λ)| = |f ′(λ)− g′(λ)| and |κ2f ′(λ)−GCVλ|, so that we may
relate GCVλ and Rλ

omni. The former we will bound via Lemma 13; the latter we will bound using Hypothesis 6.

A.3.1. AUXILIARY LEMMAS

We now set up the lemmas that let us formalize our heuristic argument from Section 5.

The next three lemmas note some basic properties of the effective regularization κ:

Lemma 14. For all λ > 0, κ = κ(λ,N) satisfies

1 ≤ ∂κ

∂λ
≤ κ

λ
≤ 1 +

Tr(Σ)

Nλ
.

Proof. Rearranging (13) gives us

κ = λ+
1

N

P∑
i=1

λi

(
1− λi

κ+ λi

)
≤ λ+

Tr(Σ)

N
.
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Dividing by λ immediately yields κ
λ ≤ 1 + Tr(Σ)

Nλ . To get the first two inequalities, we compute ∂κ
∂λ . By the implicit function

theorem applied to (13), ∂κ
∂λ satisfies

∂κ

∂λ
= 1 +

∂κ

∂λ
· 1

N

P∑
i=1

λ2
i

(κ+ λi)2
.

Solving for ∂κ
∂λ , we obtain

∂κ

∂λ
=

1

1− 1
N

∑P
i=1

λ2
i

(κ+λi)2

. (18)

From here, it is clear that ∂κ
∂λ ≥ 1. And the upper bound ∂κ

∂λ ≤ κ
λ follows from the fact that

1− 1

N

P∑
i=1

λ2
i

(κ+ λi)2
≥ 1− 1

N

P∑
i=1

λi

κ+ λi
=

λ

κ
.

Lemma 15. Suppose κ = κ(λ,N) and κ̃ = 1/m(−λ+ iη) for λ, η > 0. Then Re(κ̃) ≥ κ.

Proof. Note that Re(κ̃) satisfies

Re(κ̃) = λ+
1

N

P∑
i=1

λi

(
1− Re

(
λi

κ̃+ λi

))
≥ λ+

1

N

P∑
i=1

λi

(
1− λi

Re(κ̃) + λi

)
.

On the other hand, since κ is the unique positive solution to (13) and 0 < λ, it holds for all κ′ ∈ [0, κ) that

κ′ < λ+
1

N

P∑
i=1

λi

(
1− λi

κ′ + λi

)
.

Therefore, it must be the case that Re(κ̃) ≥ κ.

Lemma 16. Suppose λ > 0, and let κ = κ(λ,N). If λ′ > 1
2λ, then

1

κ(λ′, N)

√
∂κ

∂λ
(λ′, N) ≲

1

κ

√
∂κ

∂λ
.

Proof. The left- and right-hand sides of the desired inequality are simply
√
m′(−λ′) and

√
m′(−λ), respectively. Define

t := λ′/λ. Then it suffices to show m′(−tλ) ≲ m′(−λ) for all t > 1
2 . By the integral representation (14) of m,

m′(−tλ) =

∫
dϱ(x)

(x+ tλ)2
≤ 1

(min(t, 1))2

∫
dϱ(x)

(x+ λ)2
≲ m′(−λ),

where we use the elementary inequality min(t, 1)/(x+ tλ) ≤ 1/(x+ λ).

Using properties of κ, we bound |f(w)| and |g(w)| for complex w = λ− iη so that we may later apply Lemma 13.

Lemma 17. Suppose βTΣβ ≤ 1. Then functions f and g satisfies the bounds

E

[
sup

Re(w)≥λ0

|f(w)|

]
≤ 1

λ0
and sup

Re(w)≥λ0

|g(w)| ≤ 1

λ0
.

Proof. We first bound f(w) as follows:

|f(w)| =
∣∣∣βTΣ̂

(
Σ̂ + wI

)−1
β
∣∣∣ = ∣∣∣yT(XXT +N · wI

)−1
y
∣∣∣ ≤ ∥∥∥(XXT +N · wI

)−1
∥∥∥
op
∥y∥22 ≤ 1

λ0

1

N

N∑
i=1

y2i .
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Note that we used the fact that
(

1
NXXT +wI

)−1
is normal to bound its operator norm by its spectral radius. Our bound on

|f(w)| holds uniformly over all w such that Re(w) ≥ λ0. Hence, taking an expectation, we have

E

[
sup

Re(w)≥λ0

|f(w)|

]
≤ E

[
1

λ0

1

N

N∑
i=1

y2i

]
=

1

λ0
βTΣβ ≤ 1

λ0
.

We also have

|g(w)| =
∣∣∣βTΣ

(
Σ+ κI

)−1
∣∣∣ = ∣∣∣βTΣ1/2

(
Σ+ κI

)−1
Σ1/2β

∣∣∣ ≤ βTΣβ ·
∥∥∥(Σ+ κI

)−1
∥∥∥
op

≤ 1

Re(κ)
≤ 1

λ0
,

where the last inequality follows from Lemmas 14 and 15.

A.3.2. PROOF OF PROPOSITION 9

Proof of Proposition 9. We first bound |h′(λ)| = |f ′(λ) − g′(λ)| by applying Lemma 13 to h with U := (0, 2λ). By
Hypothesis 6 and Lemma 16, we may take

δ ≲ N− 1
2+o(1) 1

κ

√
∂κ

∂λ
.

And by Lemma 17, |g(w)| ≤ 1/λ when Re(w) ≥ 1
2λ. Setting M = ND/λ, Lemma 17 together with Markov’s inequality

gives us the high probability bound

P

[
sup

Re(w)≥ 1
2λ

|f(w)| ≥ M

]
≤ N−D.

Therefore, by Lemma 13,

|f ′(λ)− g′(λ)| = |h′(λ)| ≲ δ

λ
log

(
M

δ

)
≲ N− 1

2+o(1) · 1

λκ

√
∂κ

∂λ
. (19)

We now bound the error of GCVλ. Substituting the closed form (12) for Rempirical(β̂λ) into the definition of GCVλ, we
have that

GCVλ =

(
1

N

N∑
i=1

1

λ+ λ̂i

)−2

βT
(
Σ̂ + λI

)−1
Σ̂
(
Σ̂ + λI

)−1
β.

Let κ̂ :=
(

1
N

∑N
i=1

1
λ+λ̂i

)−1

. By Hypothesis 6,

∣∣∣1− κ

κ̂

∣∣∣ ≲ N− 1
2+o(1)

√
∂κ

∂λ
.

For sufficiently large N , the right-hand side is less than 1
2 , which implies κ ≥ 1

2 κ̂. Therefore,

∣∣κ2 − κ̂2
∣∣ ≤ (κ+ κ̂) · |κ− κ̂| ≤ 3κ · κ̂ ·

∣∣∣1− κ

κ̂

∣∣∣ ≲ κ2N− 1
2+o(1)

√
∂κ

∂λ
.

This yields the comparison∣∣∣GCVλ − κ2f ′(λ)
∣∣∣ ≲ f ′(λ) · κ2N− 1

2+o(1)

√
∂κ

∂λ
≲ g′(λ) · κ2N− 1

2+o(1)

√
∂κ

∂λ
≤ N− 1

2+o(1)

(
∂κ

∂λ

)3/2

where we applied (19) to get the third expression. We further have from (19) that

∣∣κ2f ′(λ)−Rλ
omni

∣∣ ≲ N− 1
2+o(1) · κ

λ

√
∂κ

∂λ
.

Thus, the triangle inequality followed by Lemma 14 implies

∣∣GCVλ −Rλ
omni

∣∣ ≲ N− 1
2+o(1)

((
∂κ

∂λ

)3/2

+
κ

λ

√
∂κ

∂λ

)
≲ N− 1

2+o(1)

(
1 +

Tr(Σ)

Nλ

)3/2

.
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A.4. Proof of Proposition 10

As we did for Proposition 9, we first outline a heuristic proof. Let U := (− 1
2∥Σ∥

−1
op ,

1
2∥Σ∥

−1
op ). For t ∈ U and λ > 0, let

κ̃ = κ̃(t, λ,N) denote the asymptotic Stieltjes transform associated to the covariance matrix Σ(I + tΣ)−1, and define

f(t) := βT
(
I + tΣ

)−1
β − βTλ

(
Σ̂ + λ(I + tΣ)

)−1
β,

g(t) := βT
(
I + tΣ

)−1
β − βTκ̃

(
Σ+ κ̃(I + tΣ)

)−1
β,

and
h(t) := f(t)− g(t) = −βTλ

(
Σ̂ + λ(I + tΣ)

)−1
β + βTκ̃

(
Σ+ κ̃(I + tΣ)

)−1
β.

Letting m̃ = 1/κ̃, note that

f ′(0) = λ2βT
(
Σ̂ + λI

)−1
Σ
(
Σ̂ + λI

)−1
β = R(β̂λ) and g′(0) =

(
1 +

∂m̃

∂t

)
κ2βT

(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β.

We will show that 1 + ∂m̃
∂t = ∂κ

∂λ (see Lemma 23), in which case g′(0) = Rλ
omni. Proposition 10 thus follows, predicated on

h(t) ≈ 0 and differentiation preserving the approximate equality.

A.4.1. AUXILIARY LEMMAS

We now set up the lemmas that let us formalize this heuristic argument. First, we show that h(t) ≈ 0.

Lemma 18. Suppose βTΣβ ≤ 1 and Hypothesis 7 holds over S = ( 12λ,
3
2λ). Then,

∣∣∣β̃Tλ
(̂̃
Σ+ λI

)−1
β̃ − β̃Tκ̃

(
Σ̃ + κ̃I

)−1
β̃
∣∣∣ ≲ N− 1

2+o(1) · 1
κ̃

√
∂κ̃

∂λ
.

Proof. Let Q := I + tΣ. That t ∈ U implies Q ⪰ 1
2I . Further, define Σ̃ := Q− 1

2ΣQ− 1
2 , X̃ := XQ− 1

2 , ̂̃Σ := 1
N X̃TX̃ , and

β̃ := Q− 1
2 β. Note that

h(t) = −βTQ− 1
2λ
(
Q− 1

2 Σ̂Q− 1
2 + λI

)−1
Q− 1

2 β + βTQ− 1
2 κ̃
(
Q− 1

2ΣQ− 1
2 + κ̃I

)−1
Q− 1

2 β

= −β̃Tλ
(̂̃
Σ+ λI

)−1
β̃ + β̃Tκ̃

(
Σ̃ + κ̃I

)−1
β̃.

Because Q and Σ commute, β̃TΣ̃β̃ = βTΣ
1
2Q−2Σ

1
2 β ≤ ∥Q−1∥2op ≤ 4. By Hypothesis 7, since Σ̃ = Σ(I + tΣ)−1,

∣∣∣β̃Tλ
(̂̃
Σ+ λI

)−1
β̃ − β̃Tκ̃

(
Σ̃ + κ̃I

)−1
β̃
∣∣∣ ≲ β̃TΣ̃β̃ ·N− 1

2+o(1) · 1
κ̃

√
∂κ̃

∂λ
≲ N− 1

2+o(1) · 1
κ̃

√
∂κ̃

∂λ
.

The next two lemmas verify that the conditions for applying Lemma 13 hold. Verifying these conditions turns out to be the
most technically challenging part of our analysis. Lemma 19 shows that we can analytically continue κ̃ (which we only
defined for t ∈ U ⊆ R) to the complex plane. It follows from Lemma 19 that f and g can be analytically continued over the
same domain. We then check in Lemma 20 that this analytic continuation is bounded with high probability.

Our analysis for Lemma 19 extends κ̃ using a fixed point definition of effective regularization. This argument proceeds in
three steps: (i) we show for each w = t− iη that a fixed point exists using the Brouwer fixed point theorem; (ii) we argue
that this fixed point is unique via the Schwarz lemma; (iii) we verify that the set of fixed points defined by these w give rise
to a holomorphic function using the implicit function theorem and the Schwarz reflection principle.

Proving Lemma 20 in the case of f requires a more involved analysis than its analog Lemma 17. The previous approach
based on diagonalizing the positive semidefinite matrix Σ̂ fails because Σ̂ + λ(I + wΣ) is no longer normal when w is
complex. (The failure of normality arises because Σ and Σ̂ do not commute.) While the same 1/λ bound still holds, proving
it is much more difficult; our argument makes careful use of the properties of symmetric matrices A + iB with positive
definite real part A ≻ 0.

Lemma 19. The effective regularization κ̃(t, λ,N) has an analytic continuation in t to the strip {z ∈ C : Re(z) ∈ U}.
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Proof of Lemma 19. For fixed λ > 0 and t ∈ U , define

φλ,t(z) := λ+
1

N

P∑
i=1

(
1

z
+

1

λ̃i

)−1

,

where λ̃i := λi/(1 + tλi) is the i-th eigenvalue of Σ̃.16 Note that (13) for κ̃ = κ̃(t, λ,N) can be rearranged to κ̃ = φλ,t(κ̃).
That is, we can define κ̃ as the unique fixed point of φλ,t on R>0.

We extend this definition from t ∈ U to w in the complex plane. Suppose w = t− iη satisfies t ∈ U and η > 0. (We will
handle η < 0 via the Schwarz reflection principle.) Define λ̃i := λi/(1 + wλi) and φλ,w(z) as above. Since t ∈ U and
η > 0, we have Re(λ̃i) > 0 and Im(λ̃i) > 0 for all i. Let κ̃(w, λ,N) be the unique fixed point of φλ,w in H. We validate
that κ̃ is well-defined as a holomorphic function in w through the three steps outlined above.

We show the existence of κ̃ by applying the Brouwer fixed point theorem to φλ,w acting on the compact, convex set

K := {z ∈ C : Re(z) ≥ λ, Im(z) ≥ 0, |z| ≤ M},

where M := λ+
∑P

i=1

(
Re(1/λ̃i)

)−1
. We first verify that φλ,w maps K into K. Let z ∈ K and qi := 1/z + 1/λ̃i. Then

Re(qi) > 0 and Im(qi) < 0, which in turn implies Re(q−1
i ) > 0 and Im(q−1

i ) > 0. Hence,

Re(φλ,w(z)) = λ+
P∑
i=1

Re(q−1
i ) > λ and Im(φλ,w(z)) =

P∑
i=1

Im(q−1
i ) > 0.

And by the triangle inequality,

|φλ,w(z)| ≤ λ+
P∑
i=1

1

|qi|
< λ+

P∑
i=1

1

Re(1/λ̃i)
= M.

These bounds show that φλ,w maps K into the interior of K. By the Brouwer fixed point theorem, φλ,w has a fixed point κ̃
in the interior of K. In particular, this fixed point satisfies κ̃ ∈ H.

We now argue that this fixed point κ̃ is unique over all z ∈ H. Following the above argument, one sees that φλ,w maps H to
H. Moreover, φλ,w is not the identity map. It is then a standard consequence of the Schwarz lemma that φλ,w has at most
one fixed point: We may identify H with the unit disk using a biholomorphic map that sends κ̃ to 0. (Such a map exists by
the Riemann mapping theorem.) The induced automorphism on the unit disk cannot fix any other point—otherwise the
Schwarz lemma would imply that it is the identity. Thus, φλ,w has at most one fixed point.

Having shown that κ̃ is well-defined for each w = t− iη, we now verify that it defines a holomorphic function over the set
of such w. By the (holomorphic) implicit function theorem, if ∂

∂z (z − φλ,w(z)) ̸= 0 at z = κ̃, then we can extend κ̃ to a
holomorphic function such that κ̃(z) = φλ,z(κ̃(z)) in a neighborhood of w. By continuity, Im(κ̃(z)) > 0 in a neighborhood
of w. Uniqueness then implies that this function coincides with our definition of κ̃ in this neighborhood. In particular, κ̃ is
holomorphic at w. It remains to check that ∂

∂z (z − φλ,w(z)) ̸= 0 at z = κ̃. Substituting in (13),

∂

∂z
(z − φλ,w(z))

∣∣∣
z=κ̃

= 1− 1

N

P∑
i=1

λ̃2
i

(κ̃+ λ̃i)2

=
λ

κ̃
+

1

N

P∑
i=1

λ̃i

κ̃+ λ̃i

− 1

N

P∑
i=1

λ̃2
i

(κ̃+ λ̃i)2

=
λ

κ̃
+

1

N

P∑
i=1

(
κ̃

λ̃i

+ 2 +
λ̃i

κ̃

)−1

.

Note that Re(κ̃/λ̃i),Re(λ̃i/κ̃) > 0 because both κ̃ and λ̃i have positive real and imaginary parts. Thus, each term in the
sum has positive real part. Since Re(λ/κ̃) > 0 as well, Re

(
∂
∂z (z − φλ,w(z))

∣∣
z=κ̃

)
> 0.

16Technically, we need to handle zero eigenvalues (in which case the inverse 1/λ̃i becomes undefined). But such eigenvalues do not
contribute to the definition (13) and thus may safely be ignored. That is, we assume without loss of generality that λi > 0 for all i.
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Lastly, we confirm κ̃ extends continuously to a map U → R, which lets us conclude that κ̃ extends to w = t − iη with
η < 0 by the Schwarz reflection principle. For t0 ∈ U and κ̃ > 0 such that κ̃ = φλ,t(κ̃), the same implicit function theorem
argument shows that κ̃ extends to a holomorphic function κ̃(z) in a neighborhood of t0. The fixed point condition implies κ̃
decreases in t, i.e., κ̃′(t0) < 0. Thus, κ̃(w) ∈ H for all w = t− iη with η > 0 in a neighborhood of t0. Uniqueness then
implies this κ̃(w) is consistent with the definition of κ̃ above, so our definition extends continuously to U .

Lemma 20. Suppose βTΣβ ≤ 1. Then functions f and g satisfy the bounds

E

[
sup

Re(w)∈U

|f(w)|

]
≲

1

λ
and sup

Re(w)∈U

|g(w)| ≲ 1

λ
.

Before proving Lemma 20, we prove a lemma about symmetric matrices with positive definite real part. In analogy to how
positive definite matrices generalize positive numbers and how symmetric matrices generalize real numbers, we establish
how symmetric matrices with positive definite real part generalize complex numbers in the right half-plane.

Lemma 21. Suppose Q ∈ CP×P is such that A := Re(Q) is positive definite and B := Im(Q) is symmetric. Then:

(i) Q is invertible, with its inverse Q−1 also being symmetric and having positive definite real part;

(ii) the spectrum σ(Q) of Q satisfies σ(Q) ⊆ {z ∈ C : Re(z) ≥ ∥A−1∥−1
op };

(iii) the operator norm of Q−1 is bounded as ∥Q−1∥op ≤ ∥A−1∥op.

Proof. For (i), let T = A− 1
2BA− 1

2 and write Q = A
1
2 (I + iT )A

1
2 . Note that T 2 ⪰ 0 and so I + T 2 is invertible. Thus, we

may compute (I + iT ) · (I − iT )(I + T 2)−1 = I to see that (I + iT )−1 = (I − iT )(I + T 2)−1. It follows that

Q−1 = A− 1
2 (I − iT )(I + T 2)−1A− 1

2

= A− 1
2 (I + T 2)−1A− 1

2 − i ·A− 1
2 (I + T 2)−

1
2T (I + T 2)−

1
2A− 1

2

= (A+BA−1B)−1 − i · (A2 +A
1
2BA−1BA

1
2 )−

1
2B(A2 +A

1
2BA−1BA

1
2 )−

1
2 .

For (ii), observe that if λ < ∥A−1∥−1
op , then A ≻ λI . Applying (i), we have that Q− λI + iηI is invertible for all η ∈ R. It

follows that λ− iη ̸∈ σ(Q) for all such λ and η. In other words, σ(Q) ⊆ {z ∈ C : Re(z) ≥ ∥A−1∥−1
op }.

For (iii), note that S := QTQ is normal and Re(S) = A2 +B2 ⪰ A2. Hence S−1 is normal and its operator norm equals
its spectral radius. We thus have

∥Q−1∥2op = ∥S−1∥op = sup
z∈σ(S−1)

|z| = sup
z∈σ(S)

1

|z|
≤ sup

z∈σ(S)

1

|Re(z)|
≤ ∥Re(S)−1∥op ≤ ∥A−1∥2op,

where the penultimate inequality applies (ii) to S.

Proof of Lemma 20. We start by bounding E
[
supRe(w)∈U |f(w)|

]
. Let w = t− iη, for t ∈ U and η ∈ R. Let Q := I +wΣ.

(Note that Q is a matrix with complex-valued entries.) By the Woodbury matrix identity,

f(w) = βTQ−1β − βT
(
λ−1Σ̂ +Q

)−1
β = βTQ−1Σ̂

1
2

(
λI + Σ̂

1
2Q−1Σ̂

1
2

)−1
Σ̂

1
2Q−1β.

We first bound the norm of Σ̂
1
2Q−1β uniformly over w; then, we bound the operator norm of

(
λI + Σ̂

1
2Q−1Σ̂

1
2

)−1
.

Let u := Σ̂
1
2Q−1β. In addition, define u0 := Σ̂

1
2Q−1

0 β, where t0 = inf U and Q0 := I + t0Σ. I claim that ∥u∥2 ≤ ∥u0∥2,
which we will show as Lemma 22, whose proof we defer:

Lemma 22. If u = Σ̂
1
2Q−1β and u0 = Σ̂

1
2Q−1

0 β, then ∥u∥2 ≤ ∥u0∥2.

Supposing Lemma 22, it thus suffices to bound ∥u0∥2 to get a uniform bound over all w. We have, since Q0 ⪰ 1
2I ,

E
[

sup
Re(w)∈U

∥u∥2
]
≤ E

[
∥u0∥2

]
= E

[
βTQ−1

0 Σ̂Q−1
0 β

]
= βTQ−1

0 ΣQ−1
0 β = βTΣ

1
2Q−2

0 Σ
1
2 β ≤ ∥Q−1

0 ∥2op ≤ 4.
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To bound the operator norm of
(
λI + Σ̂

1
2Q−1Σ̂

1
2

)−1
, note that λI + Σ̂

1
2Q−1Σ̂

1
2 can be written as C + iD with C ⪰ λI .

Thus, by Lemma 21, ∥∥∥(λI + Σ̂
1
2Q−1Σ̂

1
2

)−1
∥∥∥
op

≤ 1

λ
.

Putting everything together, we obtain

E

[
sup

Re(w)∈U

|f(w)|

]
= E

[
sup

Re(w)∈U

uT
(
λI + Σ̂

1
2Q−1Σ̂

1
2

)−1
u

]
≤ E

[
∥u0∥22 ·

∥∥∥(λI + Σ̂
1
2Q−1Σ̂

1
2

)−1
∥∥∥
op

]
≤ 4

λ
.

We now move to bounding |g(w)|. By the Woodbury matrix identity,

g(w) = βTQ−1β − βT
(
κ̃−1Σ+Q

)−1
β = βTQ−1Σ

1
2

(
κ̃I +Σ

1
2Q−1Σ

1
2

)−1
Σ

1
2Q−1β.

Since Q and Σ commute,

|g(w)| =
∣∣βTΣ

1
2Q−1

(
κ̃I +Σ

1
2Q−1Σ

1
2

)−1
Q−1Σ

1
2 β
∣∣ ≤ ∥∥(κ̃I +Σ

1
2Q−1Σ

1
2

)−1∥∥
op

· ∥Q−1∥2op ≤ 4

Re(κ̃)
≤ 4

λ
,

where for the penultimate inequality we applied Lemma 21 and ∥Q−1∥op ≤ w.

Proof of Lemma 22. Write Q−1 = A+Bi and Q−1
0 = A0 +B0i for real matrices A,A0 ≻ 0 and B,B0 symmetric, which

we can do by Lemma 21. Then,

∥u∥22 = βTQ−1Σ̂Q−1β = βT(A−Bi)Σ̂(A+Bi)β = βT
(
AΣ̂A+BΣ̂B

)
β.

Let ⟨·, ·⟩F denote the Frobenius inner product on RP×P . And let A⊗A denote the operator given by S 7→ A · ⟨A,S⟩F on
RP×P , with B ⊗B denoting the same for B. Then, we may further rewrite

∥u∥22 = βT
(
AΣ̂A+BΣ̂B

)
β =

N∑
i=1

λ̂i

(
(βTAv̂i)

2 + (βTBv̂i)
2)
)
=

N∑
i=1

λ̂i

〈
βv̂Ti ,

(
A⊗A+B ⊗B

)(
βv̂Ti

)〉
F
.

We likewise have for u0 that

∥u0∥22 =

N∑
i=1

λ̂i

〈
βv̂Ti ,

(
A0 ⊗A0 +B0 ⊗B0

)(
βv̂Ti

)〉
F
.

To show that ∥u∥2 ≤ ∥u0∥2, it therefore suffices to show A⊗A+B ⊗B ⪯ A0 ⊗A0 +B0 ⊗B0 in the Loewner order on
operators RP×P → RP×P .

We show A⊗A+B ⊗B ⪯ A0 ⊗A0 +B0 ⊗B0 by computing A and B explicitly. From Lemma 21 (and using the fact
that I + tΣ and ηΣ commute),

A = (I + tΣ)
(
(I + tΣ)2 + η2Σ2

)−1
and B = iηΣ

(
(I + tΣ)2 + η2Σ2

)−1
.

Note that A, B, A0, B0 are all diagonalized in the eigenbasis of Σ. The operators A⊗A+B⊗B and A0 ⊗A0 +B0 ⊗B0

can thus be seen as diagonal (P × P )× (P × P ) matrices in this basis. The viv
T
j diagonal entry of A⊗A+B ⊗B is

(1 + tλi)(1 + tλj) + η2λiλj

((1 + tλi)2 + η2λ2
i )((1 + tλj)2 + η2λ2

j )
.

We first show that this quantity is decreasing in η for all i, j when η > 0. Thus, for a given t, it is maximized at η = 0. We
then show that this quantity, at η = 0, is decreasing in t for all i, j. Taking t → t+0 , we conclude that

A⊗A+B ⊗B ⪯ A0 ⊗A0 +B0 ⊗B0.
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We now verify the numerical claims above. We have, for ai = λ−1
i + t ≥ 0 and x = η2, that

(1 + tλi)(1 + tλj) + η2λiλj

((1 + tλi)2 + η2λ2
i )((1 + tλj)2 + η2λ2

j )
=

1

λiλj

aiaj + x

(a2i + x)(a2j + x)
.

When x increases by δ, the numerator increases by δ and the denominator increases by δ2 + δ(a2i + a2j + 2x). Since

δ

δ2 + δ(a2i + a2j + 2x)
≤ 1

a2i + a2j + 2x
≤ aiaj + x

(a2i + x)(a2j + x)
,

the mediant inequality implies the right-hand side is decreasing in x. Thus, for a given t, A⊗A+B ⊗B is maximized (in
the Loewner order) at η = 0. Supposing η = 0, the viv

T
j diagonal entry becomes (1 + tλi)

−1(1 + tλj)
−1, which is clearly

decreasing in t.

The next lemma calculates ∂m̃
∂t (0), which appears in g′(0).

Lemma 23. Let m̃(t) = 1/κ̃(t, λ,N) and κ = κ(λ,N). Then,

∂m̃

∂t
(0) =

∂κ

∂λ
− 1.

Proof. Note that m̃ := κ̃−1 satisfies

1 = λm̃+
1

N

P∑
i=1

(
1− 1 + tλi

1 + tλi + m̃λi

)
.

By the implicit function theorem,

0 = λ
∂m̃

∂t
+

1

N

P∑
i=1

(1 + tλi)(λi + λi
∂m̃
∂t )− λi(1 + tλi + m̃λi)

(1 + tλi + m̃λi)2
= λ

∂m̃

∂t
+

1

N

P∑
i=1

(1 + tλi)λi
∂m̃
∂t − m̃λ2

i

(1 + tλi + m̃λi)2
.

Solving for ∂m̃
∂t at t = 0, we have that

∂m̃

∂t
(0) =

(
λ+

1

N

P∑
i=1

λi

(1 + m̃λi)2

)−1

1

N

P∑
i=1

m̃λ2
i

(1 + m̃λi)2

=

(
λ

κ
+

1

N

P∑
i=1

κλi

(κ+ λi)2

)−1

1

N

P∑
i=1

λ2
i

(κ+ λi)2

=
1

1− 1
N

∑P
i=1

λ2
i

(κ+λi)2

− 1

=
∂κ

∂λ
− 1

where the last equality follows from Lemma 14.

A.4.2. PROOF OF PROPOSITION 10

Proof of Proposition 10. Recall that f ′(0) = R(β̂λ). And by Lemma 23,

g′(0) =

(
1 +

∂m̃

∂t

)
κ2βT

(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β =

∂κ

∂λ
κ2βT

(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β = Rλ

omni.

To bound |f ′(0)− g′(0)|, we apply Lemma 13 to h and U := {t : |t| < 1
2∥Σ∥

−1
op }. Note that h extends by Lemma 19 to

{w ∈ C : Re(w) ∈ U}. We have that

|f(0)− g(0)| ≲ N− 1
2+o(1) · 1

κ̃

√
∂κ̃

∂λ
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by Lemma 18 and |g(w)| ≲ 1/λ uniformly over {w ∈ C : Re(w) ∈ U} by Lemma 20. Setting M := ND/λ, we get from
Markov’s inequality and Lemma 20 the high probability bound

P

[
sup

Re(w)∈U

|f(w)| ≥ M

]
≤ N−D.

Hence, by Lemma 13 applied to h,∣∣∣R(β̂λ)−Rλ
omni

∣∣∣ = |f ′(0)− g′(0)| = |h′(0)| ≲ δ

∥Σ∥−1
op

log

(
M

δ

)
≲ N− 1

2+o(1) · ∥Σ∥op
κ̃

√
∂κ̃

∂λ
≤ N− 1

2+o(1) · ∥Σ∥op
λ

.

The last inequality above follows Lemma 14.

B. Reducing Noise and Misspecification to the Noiseless Case
In this appendix, we elaborate on how noisy (or misspecified) linear regression in high dimensions can be embedded into
the noiseless model introduced in Section 2, making precise the discussion in Section 3.3. Specifically, we will show that
ridge regression on any noisy (or misspecified) instance can be uniformly approximated for all λ ≥ 0 by ridge regression on
a noiseless approximating instance when P > N . The intuition for this approximation is that, when P > N , a noisy (or
misspecified) problem is indistinguishable from a problem where the ground truth β is “complex” and has large norm.

Given this approximation, our subsequent analyses hold whenever the distribution of the approximating instance satisfies
Hypothesis 1. In the case of noise, we will in fact show that Hypothesis 1 holds for the approximating instance if it holds
for the original covariate distribution. In particular, while the approximating instance may involve a poorly conditioned
covariance matrix or a large ∥β∥2, they need not pose challenges for our random matrix hypothesis (or our subsequent
analysis). (On the other hand, as discussed in Section 3, the poor conditioning of the covariance matrix and the large norm
of β can challenge typical approaches to analyzing ridge regression.)

B.1. Model

Consider the more general model in which labels y′ ∈ R are given by y′ = βTx + ξ, where the covariate vector x and
the linear approximation error ξ are drawn jointly, as (x, ξ) ∼ D′, from a distribution D′ over Rp × R. We assume that β
provides the best approximation to y′ given x among linear functions RP → R for x drawn according to D′. This implies
the approximation error ξ satisfies

E
(x,ξ)∼D′

[ξx] = E
(x,ξ)∼D′

[(y′ − βTx)x] = 0.

Finally, let σ2 := E(x,ξ)∼D′ [ξ2] be the squared error of the linear approximation.

We highlight two special cases of this model. If E[ξ |x] = 0, then ξ can be thought of as observation noise on βTx. On the
other hand, if ξ is constant conditioned on x, then we have a noiseless, but misspecified, linear model. This setup can also
capture combinations of these two extremes, involving both observation noise and misspecification.

Slightly abusing notation, we also use ξ to denote the vector [ ξ1 ξ2 ··· ξN ]
T ∈ RN of approximation errors for the dataset X .

The “type” of ξ will be clear from the context in which it is used.

B.2. The Approximating Instance

We embed this more general instance of linear regression into our noiseless setup by introducing an extra dimension that
captures the contribution of the noise and/or misspecification. Let t > 0 be a small constant (which we will consider in the
limit t → 0+). We reparameterize y′ as y′ = β′Tx′, where

x′ =

[
x

t
1
2 ξ

]
and β′ =

[
β

t−
1
2

]
.

Because E(x,ξ)∼D′ [ξx] = 0, note that x′ has second moment matrix

Σ′ := E
[
x′x′T] = [Σ 0

0 tσ2

]
.
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While ∥β′∥2 does not converge as t → 0+, note that β′TΣ′β′ = βTΣβ + σ2 has no dependence on t.

Let β̂λ be the ridge regression estimator for the original problem, and let β̂′
λ be the ridge regression for the modified problem

with parameter t. We show the following:

Proposition 24. For each fixed λ > 0, the ridge regression estimator β̂′
λ converges to

[
β̂λ

0

]
as t → 0+. If P > N and D′ is

non-degenerate17, then this convergence is uniform over all λ ≥ 0 almost surely.

Proof. Let Σ̂′ := 1
NX ′TX ′. Recall that the estimators β̂λ and β̂′

λ can be expressed in the closed forms,

β̂λ = (Σ̂ + λI)−1 1

N
XTy′ and β̂′

λ = (Σ̂′ + λI)−1 1

N
X ′Ty′,

respectively. It suffices to show that

β̂′
λ −

[
β̂λ

0

]
=

t
1
2

N + tξT(Q+ λI)−1ξ

[
t
1
2

1
NXT(Q+ λI)−1ξξT(Q+ λI)−1

ξT(Q+ λI)−1

]
y′, (20)

where Q := 1
NXXT is the normalized kernel matrix: for any fixed λ > 0, it is clear that taking t → 0+ makes the difference

converge to 0. Moreover, when P > N , Q is almost surely non-singular under the non-degeneracy assumption. Hence we
may bound the right-hand side in terms of the smallest eigenvalue of Q, giving us uniform convergence over all λ ≥ 0.

It remains to show (20). Note that

Σ̂′ =

[
Σ̂ t

1
2

1
NXTξ

t
1
2

1
N ξTX t 1

N ξTξ

]
The Schur complement of the top-right block of Σ̂′ + λI is

λ+
t

N
ξTξ − t

1
2

N
ξTX · (Σ̂ + λI)−1 · t

1
2

N
XTξ = λ+

t

N
ξTξ − t

N
ξT(Q+ λI)−1Qξ = λ

(
1 +

t

N
ξT(Q+ λI)

−1
ξ

)
.

Therefore, the block matrix inversion formula gives us

(
Σ̂′ + λI

)−1−
[(
Σ̂ + λI

)−1

0

]
(21)

=
1

λ

1

1 + t
N ξT(Q+ λI)−1ξ

[
t

N2

(
Σ̂ + λI

)−1
XTξξTX

(
Σ̂ + λI

)−1 −t
1
2

1
N

(
Σ̂ + λI

)−1
XTξ

−t
1
2

1
N ξTX

(
Σ̂ + λI

)−1
1

]

=
1

λ

1

1 + t
N ξT(Q+ λI)−1ξ

[
t

N2X
T
(
Q+ λI

)−1
ξξT
(
Q+ λI

)−1
X −t

1
2

1
NXT

(
Q+ λI

)−1
ξ

−t
1
2

1
N ξT

(
Q+ λI

)−1
XT 1

]
.

Multiplying by 1
NX ′Ty′, we recover (20):

β̂′
λ −

[
β̂λ

0

]
=

1

λ

1

1 + t
N ξT(Q+ λI)−1ξ

[
t

N2X
T
(
Q+ λI

)−1
ξξT
(
Q+ λI

)−1
Q− t

N2X
T
(
Q+ λI

)−1
ξξT

−t
1
2

1
N ξT

(
Q+ λI

)−1
Q+ t

1
2

1
N ξT

]
y′

=
t
1
2

N + tξT(Q+ λI)−1ξ

[
t
1
2

1
NXT

(
Q+ λI

)−1
ξξT
(
Q+ λI

)−1

ξT
(
Q+ λI

)−1

]
y′.

B.3. The Random Matrix Hypothesis for Noisy Labels

For the theory of Section 5 to apply, the random matrix hypothesis (Hypothesis 1) should hold for the approximating instance
of noiseless regression derived from the reduction. Thus, we study when the reduction preserves Hypothesis 1, given that it
holds for the marginal distribution D of x. For fully general ξ, which may be arbitrarily correlated with x, we note that the

17It suffices that P(x,ξ)∼D′ [x ∈ U ] = 0 for any N -dimensional subspace U ⊆ RP . Some assumption is necessary here to rule out
“effectively” low-dimensional distributions that lie in a P ′-dimensional subspace of RP for some P ′ ≤ N .
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error introduced by the reduction can be bounded in σ (but this bound does not improve with N ). We can say more when ξ
is noise such that E[ξ |x] = 0 for all x. In this case, we show that the reduction preserves the local Marchenko-Pastur law, in
the sense that the approximation error increases additively by ≲ N− 1

2 (Proposition 25).

For our analysis, we bound the additional error introduced by the reduction to the two approximate equalities posited by
Hypothesis 1. Specifically, we compare, as t → 0+, the errors of these approximations for the original and the approximating
instances. It is not hard to see that the “averaged” law (5), given by

1

N

N∑
i=1

1

λ̂i + λ
≈ 1

κ
,

is preserved exactly as t → 0+: this approximate equality relates a continuous function of Σ̂′ to a continuous function of Σ′,
and we have the convergences

lim
t→0+

Σ̂′ =

[
Σ̂

0

]
and lim

t→0+
Σ′ =

[
Σ

0

]
.

Thus, we focus on the “local” law (6), given by

vTλ
(
λI + Σ̂

)−1
v ≈ vTκ

(
κI +Σ

)−1
v.

The next proposition bounds the approximation error of (6) when moving from the original instance to the approximating
instance in the case where ξ is noise. We give our bound assuming the formal version Hypothesis 6 of Hypothesis 1 for the
marginal distribution D of x.

Proposition 25. Suppose E[ξ |X] = 0 and 1
σ

(
E[|ξi|p |xi]

) 1
p ≤ Cp < ∞ almost surely for all p ∈ N. If βTΣβ + σ2 ≤ 1

and λ > N− 3
2+o(1) is such that Hypothesis 6 holds for the marginal distribution D of x over S = ( 12λ,

3
2λ), then

lim
t→0+

∣∣∣β′Tλ
(
Σ̂′ + λI

)−1
β′ − β′Tκ

(
Σ′ + κI

)−1
β′
∣∣∣ ≲ N− 1

2+o(1) · 1
κ

√
∂κ

∂λ
.

Proof. For the approximating instance, we have that

lim
t→0+

β′Tκ
(
Σ′ + κI

)−1
β′ − 1

t
= βTκ

(
Σ+ κI

)−1
β,

and by (21), that

lim
t→0+

β′Tλ
(
Σ̂′ + λI

)−1
β′ − 1

t
= βTλ

(
Σ̂ + λI

)−1
β − 2

N
ξTX

(
Σ̂ + λI

)−1
β.

The triangle inequality therefore implies that the approximation error increases by at most

lim
t→0+

∣∣∣β′Tλ
(
Σ̂′ + λI

)−1
β′ − β′Tκ

(
Σ′ + κI

)−1
β
∣∣∣− ∣∣∣βTλ

(
Σ̂ + λI

)−1
β − βTκ

(
Σ+ κI

)−1
β
∣∣∣

≲
1

N

∣∣∣ξTX(Σ̂ + λI
)−1

β
∣∣∣. (22)

It thus suffices to bound 1
N

∣∣ξTu∣∣, where u := X
(
Σ̂ + λI

)−1
β. This follows from a standard moment bounding argument

after conditioning on X . Let ∥·∥p denote the Lp-norm of a random variable. Conditioning on a fixed X , note that the entries
of ξ are independent, mean 0 random variables by assumption. Thus, for any deterministic vector v ∈ RN and any p ∈ N, it
follows from the Marcinkiewicz-Zygmund inequality and the triangle inequality that

∥∥ξTv∥∥
p
=

∥∥∥∥∥
N∑
i=1

ξivi

∥∥∥∥∥
p

≲

√√√√p ·

∥∥∥∥∥
N∑
i=1

ξ2i v
2
i

∥∥∥∥∥
p
2

≤

√√√√p
N∑
i=1

∥ξ2i ∥p
2
v2i =

√
pCp · σ∥v∥2,

where all Lp norms are taken conditional on X . Thus, by Markov’s inequality, conditional on X ,

P
[
1

N

∣∣ξTv∣∣ ≥ t√
N

]
≤

(∥∥ξTv∥∥
p

t
√
N

)p

≤
(
∥v∥2√
N

·
√
pCp · σ
t

)p

. (23)
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We now set v = u and bound 1√
N
∥u∥2. By (19) in the argument of Proposition 9 and Lemma 14,

1

N
∥u∥22 = βT

(
Σ̂ + λI

)−1
Σ̂
(
Σ̂ + λI

)−1
β

≲
∂κ

∂λ
βT
(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β + βTΣβ ·N− 1

2+o(1) 1

λκ

√
∂κ

∂λ

≤ βTΣβ · 1

κ2

∂κ

∂λ

(
1 +N− 1

2+o(1)Tr(Σ)

Nλ

)
≲ βTΣβ · 1

κ2

∂κ

∂λ
.

For any constant ε > 0, we may set p := ⌈D/ε⌉ and

t := Nε · √pCp · σ
√
βTΣβ · 1

κ

√
∂κ

∂λ
≤ Nε · √pCp ·

1

κ

√
∂κ

∂λ
.

By (23), this implies that P
[
1
N

∣∣ξTu∣∣ ≥ t√
N

]
≲ N−D over the randomness of X . Taking ε → 0+ slowly in N , we therefore

obtain the high probability bound
1

N

∣∣ξTu∣∣ ≲ N− 1
2+o(1) · 1

κ

√
∂κ

∂λ
.

Combining with Hypothesis 6 now yields the desired result.

Finally, we note that, with the weaker assumption that ξ1 ≲ σ and y1 ≲ 1, equation (22) can also be bounded as

1

N

∣∣∣ξTX(Σ̂ + λI
)−1

β
∣∣∣ ≤ 1

N
∥ξ∥2

∥∥∥X(Σ̂ + λI
)−1

β
∥∥∥
2
≤ 1

λ
· ∥ξ∥2√

N
· ∥y∥2√

N
≲

σ

λ
.

While this bound limits the error in terms of σ for very general misspecification, and thus is useful when σ is small, it does
not improve as N increases.

B.4. Theorem 8 and Proposition 10 for Noisy Labels

An immediate consequence of Propositions 24 and 25 is that our analysis of GCV applies to ridge regression with noisy
labels, since any instance with noisy labels can be seen as a limit of noiseless approximating instances that preserve the local
Marchenko-Pastur law.

As another application of our reduction, we recover without further work the formula for the generalization risk of ridge
regression with noisy labels, in greater generality than previously known (Canatar et al., 2021; Hastie et al., 2020).

Corollary 26. Suppose E[ξ |X] = 0 and 1
σ

(
E[|ξi|p |xi]

) 1
p ≤ Cp < ∞ almost surely for all p ∈ N. If λ > N− 3

2+o(1) is
such that Hypothesis 7 holds for the marginal distribution D of x over S = ( 12λ,

3
2λ), then∣∣∣Rλ,σ

omni −R(β̂λ)
∣∣∣ ≲ N− 1

2+o(1) ·
(
βTΣβ + σ2

)∥Σ∥op
λ

,

where Rλ,σ
omni is defined to be

Rλ,σ
omni :=

∂κ

∂λ
· κ2

P∑
i=1

(
λi

(κ+ λi)2
(
βTvi

)2)
+

∂κ

∂λ
· σ2 = Rλ

omni +
∂κ

∂λ
· σ2.

Proof. Combining Propositions 24 and 25 with Proposition 10, it suffices to compute the limit as t → 0+ of Rλ
omni(t) for

the approximating instance with parameter t. Indeed, we have that

lim
t→0+

Rλ
omni(t) =

∂κ

∂λ
κ2βT

(
Σ+ κI

)−1
Σ
(
Σ+ κI

)−1
β + lim

t→0+

∂κ

∂λ
· κ2 tσ2

(κ+ tσ2)2

(
t−

1
2

)2
= Rλ

omni +
∂κ

∂λ
· σ2.
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C. Proofs for Section 6
In this section, we prove Propositions 4 and 5. We also formalize the notation: we write A ≍ B if there exists a constant
C > 0 (fixed throughout) such that C−1A ≤ B ≤ CA.

Proof of Proposition 4. Let κ = κ(0, N). Applying the Marchenko-Pastur law (5) at λ = 0, we have that

Tr
(
(XXT)−1

)
=

1

N

N∑
i=1

1

λ̂i

≈ 1

κ
.

Moreover, κ satisfies N =
∑P

i=1
λi

κ+λi
by (4). Let i∗ be the smallest index i such that κ > λi. Then, κ ≍ (i∗)−1−γ by the

eigenvalue decay assumption. Therefore,

N =
P∑
i=1

λi

κ+ λi
≍ i∗ +

1

κ

P∑
i=i∗

λi ≍ i∗ +
1

κ

∫ P

i∗
x−1−γ dx ≍ i∗ +

1

κ
(i∗)−γ ≍ i∗.

It follows that κ ≍ N−1−γ and N−1 Tr
(
(XXT)−1

)
≍ 1

Nκ ≍ Nγ .

Proof of Proposition 5. Let κ = κ(λ,N). By the fact that y = Xβ and the local Marchenko-Pastur law (6), we have that

yT
(
XXT +NλI

)−1
y = βTΣ̂(Σ̂ + λI)−1β ≈ βTΣ(Σ + κI)−1β =

P∑
i=1

λi

λi + κ
(βTvi)

2.

Let i∗ be the smallest index i such that κ > λi. Then, κ ≍ (i∗)−1−γ by the eigenvalue decay assumption. Therefore, we
may approximate the right-hand side as

P∑
i=1

λi

λi + κ
(βTvi)

2 ≍
i∗∑
i=1

(βTvi)
2 +

1

κ

P∑
i=i∗

λi(β
Tvi)

2 ≍
∫ i∗

1

x−δ dx+
1

κ

∫ P

i∗
x−1−γ−δ dx.

Using the fact that δ < 1, we further approximate∫ i∗

1

x−δ dx+
1

κ

∫ P

i∗
x−1−γ−δ dx ≍ (i∗)1−δ +

1

κ
(i∗)−γ−δ ≍ (i∗)1−δ ≍ κ− 1−δ

1+γ .

Composing the above approximations proves the proposition.

D. Characterizing Classical vs. Non-classical Ridge Regression via the Train-Test Gap
Building on our theoretical analysis of Section 5 and Appendix A, we identify a precise and intuitive separation between
the “classical” and “non-classical” regimes of ridge regression: we argue that the separation is characterized by the ratio
between the generalization and empirical risks of the estimator β̂λ. We then discuss how our empirical setting belongs to the
non-classical regime, whereas many previous non-asymptotic analyses of GCV (and ridge regression) (Golub et al., 1979;
Hsu et al., 2014; Jacot et al., 2020b) only apply in the classical regime.

A salient feature of overparameterized machine learning environments is the possibility of a large gap between the empirical
and generalization risks. Thus, this gap serves as a natural candidate for characterizing “non-classical” learning problems.
For ridge regression, our developments in Section 5 and Appendix A let us precisely discuss this gap. Theorem 2 implies
that the ratio between the generalization and empirical risks of β̂λ can be approximated as

R(β̂λ)

Rempirical(β̂λ)
≈ GCVλ

Rempirical(β̂λ)
=

(
N∑
i=1

λ

λ+ λ̂i

)−2

≈
(κ
λ

)2
,

where the last approximation follows from (5) of Hypothesis 1. In particular, the ratio κ/λ between the effective and the
explicit regularizations determines the (multiplicative) train-test gap.



Random Matrix Models Predict How Real-World Neural Representations Generalize

We say that a ridge regression instance is non-classical if κ/λ ≫ 1, for κ = κ(λ,N), and classical otherwise. (Note that
Lemma 14 implies κ/λ ≥ 1 always.) Thus, non-classical instances are characterized by having a large train-test gap. The
quantity κ/λ shows up in several places besides the train-test gap: it arises in the definition (13) of κ, and also in our bound
for Proposition 9 relating GCVλ and Rλ

omni
18. Generally, it appears that problems with a larger κ/λ are more challenging

to understand: this ratio determines the “constant” factor as N grows in our bounds; for other analyses, we will observe that
that they in fact do not apply once κ/λ exceeds a constant and thus are limited to the classical regime.

Remark. Note that while P ≥ N is necessary for a problem to lie in the non-classical regime, it is not sufficient. Even in
high dimensions, if we take λ to be sufficiently large, we will find ourselves back in the classical regime. However, this can
be far from optimal in terms of generalization (see, e.g., Figure 1).

The quantity κ/λ connects to our empirical setting via the train-test gap. As can be seen from the empirical and general-
ization risk curves for eNTK regression on pretrained ResNet-34 representations of CIFAR-100 in Figure 1, the optimal
regularization is such that ratio between generalization and empirical risk is much larger than 1 (meaning that κ/λ is large
as well), with this trend holding consistently across models and datasets. Thus, for a theoretical analysis to be applicable to
our empirical setting, it should work when κ/λ is large.

We next discuss how this feature of large κ/λ can be challenging for more “classical” analyses of GCV and ridge regression:

Fixed design. The first analyses of GCV (and ridge regression) (Craven & Wahba, 1978; Golub et al., 1979) were for the
setting of fixed design, where the estimator β̂λ is both trained and evaluated on the same dataset x1, . . . , xN ∈ RP , but
with noisy labels yi = βTxi + εi resampled between train and evaluation time. Without noise, the generalization risk
would simply be the empirical risk. Thus, when specialized to the noiseless case, such arguments for the consistency of
the GCV estimator would imply the empirical risk approximates the generalization risk, which we know to be false.

To concretely see which assumption fails in such an analysis, we note that Golub et al. (1979) require in their proof of
the consistency of GCV that 1

N Tr
(
Σ̂(Σ̂ + λI)−1

)
→ 0. However, we also have that

1

N
Tr
(
Σ̂(Σ̂ + λI)−1

)
=

1

N

N∑
i=1

λ̂i

λ̂i + λ
= 1− λ · 1

N

N∑
i=1

1

λ̂i + λ
≈ 1− λ

κ
,

where the last approximation follows from (5) of Hypothesis 1. Thus, their assumption also implies κ/λ → 1.

Convergence of Σ̂ → Σ. One approach to bounding generalization in the setting of random design (i.e., as described in
Section 2.1) is to show Σ̂ ≈ Σ in an appropriate sense (Hsu et al., 2014; Steinhardt, 2021; Bach, 2023). Being able to
do so, however, often implies that Rempirical(β̂λ) ≈ R(β̂λ), since the formulas for empirical and generalization risk
can be obtained from each other by swapping a Σ̂ for a Σ.

Concretely, the analyses of Hsu et al. (2014) and Steinhardt (2021) assume N ≥ 2
∑P

i=1
λi

λ+λi
. Now, since κ ≥ λ, we

have by (13) that these analyses apply only when

κ

λ
=

(
1− 1

N

P∑
i=1

λi

κ+ λi

)−1

≤

(
1− 1

N

P∑
i=1

λi

λ+ λi

)−1

≤ 2.

Similarly, Bach (2023) assumes Nλ ≥ 2Tr(Σ), in which case κ
λ ≤ 1 + Tr(Σ)

Nλ < 2 by Lemma 14.

Classical random matrix theory. Finally, we note that more classical random matrix theory techniques, e.g., those used
by Jacot et al. (2020b), which were originally developed for asymptotic analyses in the fixed dimensional ratio limit
(Marchenko & Pastur, 1967), can also struggle in the κ/λ ≫ 1 regime. For instance, the bounds of Jacot et al. (2020b)
are only non-vacuous when Tr(Σ)

Nλ ≤ 1, in which case κ
λ ≤ 2 by Lemma 14. (In contrast, Hypothesis 1 is motivated by

recent developments in random matrix theory (Erdős & Yau, 2017; Knowles & Yin, 2017) that provide fine-grained
control over the resolvent via fluctuation averaging arguments.)

18Note that the multiplier on N− 1
2
+o(1) in the error bound can also be bounded by (κ/λ)3/2.
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E. Details of the Experimental Setup
E.1. Computing eNTKs

To compute eNTKs, we pursue a very simple high-level strategy: we compute the N0 × P Jacobian matrix, where N0 is the
dataset size and P is the number of model parameters and multiply it with its transpose to obtain the kernel K ∈ RN0×N0

described in Section 2.3. Naively, this approach is infeasible for large datasets and models. (E.g., for a ResNet-101 (44M
parameters) over the Food-101 dataset (75750 images), storing the Jacobian matrix would require over 10TB.) Our approach
thus computes this Jacobian in chunks that fit into RAM, performing compute intensive operations on the GPU.

Empirically, the bottleneck for computation time comes from multiplying the Jacobian with itself, which has complexity
O(N2

0P ). With GPU acceleration and optimized data transfer, this approach is nonetheless relatively efficient: on a machine
with four A100 GPUs and 755GB RAM, we can compute the 60000 × 50000 eNTK of a ResNet-18 over CIFAR-10 at
float32 precision in 43 minutes, at a rate of less than 10−6 seconds per NTK entry. This performance compares favorably
to existing approaches for computing eNTKs (Novak et al., 2020; 2022), despite being algorithmically simple: for instance,
the recent work of Novak et al. (2022) achieves a rate ∼ 3 · 10−6 seconds per NTK for the same task on TPU v4.

For further implementation details, refer to the code released at https://github.com/aw31/empirical-ntks.

E.2. Evaluating GCV

Recall from Section 2.3 that, for each model-dataset pair, we compute a kernel K ∈ RN0×N0 , where N0 is the dataset size,
from the model’s eNTK representations of the dataset, and that we approximate the full eNTK by I⊗K ∈ R(N0×C)×(N0×C).
To solve our classification tasks, we perform kernel regression on the one-hot labels yi ∈ RC corresponding to each data
point xi, after normalizing each label to have mean 0. Using our approximation, we have the decomposition of this task into
C independent kernel regression problems, one for each class.

To aggregate risk, we simply sum the mean squared error over the C output dimensions. Observe that the normalization is
such that predicting 0 trivially obtains risk ≤ 1. To implement GCV for C-dimensional output, we do the same, summing
independent estimates of generalization risk for each of the C output dimensions.

For consistent comparisons across dataset sizes, we evaluate for each dataset size N the λ values {λ0/N : λ0 ∈ Λ0} for
each N , where Λ0 ⊆ R≥0 is a set of base values chosen in proportion to ∥Σ̂∥op. The range of Λ0 is chosen to be the smallest
one so that the generalization risk approximately converges at both extremes across all dataset sizes.

To solve the kernel regression problems for many regularization levels λ, we first diagonalize the kernel matrix. Doing so
also allows for efficient computation of GCVλ over multiple values of λ. The largest kernel matrices that we work with are
obtained from the Food-101 dataset and have size 75750 × 75750. We note that, while these matrices are substantial in
size, they are much smaller than the eNTK representations before applying the kernel trick: a ResNet-101 has 44 million
parameters, and thus, the matrix of eNTK representations would be of size approximately 75750× 44 · 106.

E.3. Comparing GCV to Alternate Approaches

To estimate α and σ for R̂spec, we first note that the risk estimate is linear in α2 and σ2. Thus, we fit α2 and σ2 to minimize
the mean squared error of the estimates over the set of (N,λ) pairs considered. We use these estimated α and σ for all
downstream evaluations.

For the correlation benchmark, we simply compute the Pearson correlation coefficient between each set of predictions over
all pairs (N,λ) and corresponding values observed for generalization risk. Observe that correlation is (up to sign) invariant
under affine transformations of the predictions.

For the scaling law benchmark, we first find for each N the λ∗
N that minimizes the generalization risk of ridge regression.

Given a predictor, let R̂∗
N be the risk prediction corresponding to N and λ∗. To estimate the rate α̂ of optimal scaling from

each predictor, we fit the slope of the pairs (N, R̂∗) on a log-log plot. To estimate the true scaling rate, we apply the same
procedure to the observed generalization risks R(β̂λ∗

N
).

https://github.com/aw31/empirical-ntks
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F. Deriving the Spectrum-only Estimate
The result of Dobriban & Wager (2018) can be recovered from Corollary 26 by assuming an isotropic prior N (0, α2I) over
β. Indeed, we have that

E
β∼N (0,α2I)

[
Rλ,σ

omni

]
= α2 · ∂κ

∂λ
κ2

P∑
i=1

λi

(κ+ λi)2
+ σ2 · ∂κ

∂λ
.

To obtain an estimate for the first term, by Theorem 8, we can use the GCV estimate for the noiseless case:

α2 · ∂κ
∂λ

κ2
P∑
i=1

λi

(κ+ λi)2
= α2 · κ2 ∂

∂λ

(
−Tr

(
Σ
(
Σ+ κI

)−1
))

≈ α2 · κ̂2 ∂

∂λ

(
−Tr

(
Σ̂
(
Σ̂ + λI

)−1
))

= α2 · κ̂2
N∑
i=1

λ̂i

(λ+ λ̂i)2
.

And for the second term, using the fact that κ ≈ κ̂, we have

σ2 · ∂κ
∂λ

≈ σ2 · ∂κ̂
∂λ

=
σ2

N
· κ̂2

N∑
i=1

1

(λ+ λ̂i)2
.

This recovers the expressions used in Section 4.2.
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Figure 6. Plotting (κ̂(λ,N), f(λ,N) · κ̂(λ,N)) for varying values of λ and N

G. Empirical Evidence for the Local Marchenko-Pastur Law
In this section, we present evidence for the validity of Hypothesis 1 in our empirical setting. Our findings here give further
support to random matrix effects being a central driver of the phenomena surrounding overparameterized generalization.

While it is impossible to directly verify Hypothesis 1 due to the high dimensionality of our empirical setting, we can still
check whether direct consequences of this hypothesis hold. In particular, consider

f(λ,N) := yT
(
XXT +NλI

)−1
y = βTΣ̂(Σ̂ + λI)−1β ≈ βTΣ(Σ + κI)−1β,

where the approximate equality holds by (6). Thus, if Hypothesis 1 holds, then f(λ,N) should be determined by κ(λ,N).
By (5) of Hypothesis 1, we may also estimate κ(λ,N) as

κ(λ,N) ≈

(
N∑
i=1

1

λ+ λ̂i

)−1

=: κ̂(λ,N).

To check the consistency of Hypothesis 1, we can therefore examine whether the curves traced out by (κ̂(λ,N), f(λ,N))
for varying λ coincide across values of N . We plot a version of this in Figure 6, where we multiply f by κ̂ for normalization.

Examining Figure 6, we find that the curves traced out for different values of N almost coincide, as predicted by Hypothesis 1,
with this holding across a range of models and datasets. Thus, we find support for the local Marchenko-Pastur law being
valid in our empirical setting.
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H. Additional Experiments and Figures

H.1. Growth of ∥β̂0∥2/
√
N in N

In this section, we provide additional examples of when the norm-based estimate ∥β̂0∥2/
√
N increases as N increases and

the generalization risk decreases in Figure 7, showing that this observation is consistent across models and datasets.

Figure 7. Additional plots showing the growth of the norm ∥β̂0∥2/
√
N for ridge regression on the eNTKs additional models and datasets.
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H.2. Spectrum Comparisons

In this section, we provide additional examples of the slow convergence of the spectrum (Figure 8) and of pretrained models
having higher effective dimension (Figure 9), showing that these trends also hold over a variety of datasets and models.

Figure 8. Additional plots showing the slow convergence of the empirical eigenvalue spectrum to the population eigenvalue spectrum.
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Figure 9. Additional plots showing that pretrained representations have slower eigendecay and thus higher effective dimension.
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H.3. Regression on Last Layer Activations

In this section, we consider predicting the generalization risk of ridge regression on the last layer activations of pretrained
models. Figure 10 plots the results of these experiments. These plots show that, in this lower-dimensional setting that spans
the under- and overparameterized regimes, the GCV estimator continues to perform well.

Figure 10. Generalization risk vs. the GCV prediction for regression on the last-layer activations, for various datasets and networks, across
sample sizes N and regularization levels λ



Random Matrix Models Predict How Real-World Neural Representations Generalize

H.4. Plots for the Norm- and Spectrum-Based Predictors

To provide further intuition about the predictors R̂norm and R̂spec, we provide plots of the predictions that they make for
our empirical setting in Figures 11 and 12.

Figure 11. Plots of the norm-based predictor ∥β̂λ∥2/
√
N against the generalization risk for various datasets and architectures. We

normalize the predictions so that the maximum prediction in any graph is 1. Note that the prediction tends to be negatively correlated with
the actual test risk when N · λ is small.

Figure 12. Plots of the R̂α,σ
spec for α, σ fitted as per Appendix E against the generalization risk for various datasets and architectures. Note

that this approach has trouble in particular fitting the randomly initialized setting.
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H.5. Comparing GCV to the Naive Risk Estimate

To show the necessity of the GCV correction, we consider attempting to estimate Romni by plugging in Σ̂ as an estimate for
Σ, following Loureiro et al. (2021). We plot the result of doing so in Figure 13 for a pretrained ResNet-34 applied over
CIFAR-100, where Σ̂ is estimated using the full training set of 50000 images. As can be seen from the plot, the estimates of
generalization risk obtained from the naive method diverge badly in the regime of small N · λ even for moderate values of
N ; thus, the GCV correction is needed to accurately reliably estimate generalization risk.

Figure 13. Comparing GCV to the naive risk estimate that does not correct for Σ vs. Σ̂, for Σ̂ estimated on 50000 samples.
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H.6. Verifying the Power Law Ansatz

In this section, we verify that a power law—as studied in Sections 4.2 and 6—meaningfully approximates the scaling of
generalization risk in our empirical setting. Figure 14 plots the generalization risk of optimally tuned ridge regression for
each dataset-model pair from Table 2 against varying values of N on a log-log scale. We find that, for each dataset-model
pair, the generalization risk curve becomes roughly linear once N ≫ C (for C the number of classes). That is, generalization
risk can indeed be approximated as a power law in N .

Figure 14. Plot of the generalization risk of optimally tuned ridge regression against N for each dataset-model pair in Table 2.


