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Abstract
In this paper we study the problem of approximating the general solution to an optimal control
problem whose dynamics arise from a 2 x 2 skew-symmetric evolutionary game with arbitrary
initial condition. Our approach uses a Fourier approximation method and generalizes prior work
in the use of orthogonal function approximation for optimal control. At the same time we cast
the fitting problem in the context of a non-standard feedforward neural network and derive the
back-propagation operator in this context. An example of the efficacy of this approach is provided

and generalizations are discussed.
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I. INTRODUCTION

Optimal control and variational problems have been studied extensively, see [IH3] among
numerous other texts. Control of evolutionary game dynamics is a relatively recent problem
in the area of non-linear dynamics and non-linear control. In [4] Pantoja and Quijano
investigate a distributed optimization problem on a network with the replicator. More
recently [5] studies convergence of best-response strategies on graphs. Fan and Griffin [6]
study optimal control of odd circulant games generalizing work in [7] in which control of the
Bass model is considered. At the same time, there has been extensive work on reinforcement
learning (RL) based methods for control of dynamical systems [§, 9] with more recent work
in (deep) neural network based methods coming to the fore [10]. Optimal control is a natural
component of this broader area of RL research [11].

In this paper, we consider the problem of optimal control of evolutionary game dynamics
through the lens of Fourier analysis. We note this area has been widely studied in con-
trol theory [I2HI9] and has found applications in physics, chemistry and materials science
[20, 21]. The general area falls under the use of orthogonal functions in the context of direct
collocation methods for trajectory optimization and optimal control [22H24]. Orthogonal
functions in systems and control are summarized in [25] with more recent work by Ragazzi
focusing on Legendre polynomials rather than trigonometric polynomials [26H3T]. The pre-
vious methods focus on methods of integration using orthogonal polynomial methods for
solving the Riccati equations and two-point boundary value problems that emerge as a
result of optimal control problems.

We vary this approach inspired both by the Fourier methods and methods for approxi-
mating solutions to the corresponding Hamilton-Jacobi-Bellman (HJB) equations that arise
from optimal control problems [32H36]. These methods attempt to approximate the value
function of the HJB equation and then use it to construct an optimal controller. In contrast,

in this paper we consider an optimal control problem of Lagrange type

T
min / flx,u)dt
v 0
9

sit. &= g(x,u) (1)
z(0) = xg
u € Lo([0,T7]).



where f : R x Ly([0,T]) - R, z € X C R. In what follows, we will assume that g(x,u)
will be constructed from a two-strategy skew-symmetric evolutionary game. For fixed x,
the open loop optimal controller is the function wu(t) solving Eq. . In this paper, we
focus specifically on the open-loop optimal control problem, leaving the closed-loop control
problem, i.e., a control of the type u = u(z,t, x¢), for future work. If z(0) =z is unknown
a priori and ¢ € [0, L], then our objective is to approximate an optimal control surface
u(t, ) so that for fixed xg, u(t, zo) is the optimal open-loop controller given the fixed initial
condition xy. That is, instead of approximating the solution to the non-linear HJB equation
and using this approximation to construct an optimal control for arbitrary initial condition,
we approximate the optimal control surface directly. The main contributions of this paper

are:

1. We extend the work in [I12HI9] to approximate not only the optimal control for a fixed
initial condition but for an arbitrary initial condition making the approach more like

the approximation to the HJB [35].

2. Unlike work in [I4], which specifically eschews a gradient based method, we construct
an explicit gradient descent method that can be used like back-propagation in a neural

network.

3. The approach to estimating an optimal control surface is applied to non-linear dynam-
ics arising from a two-strategy evolutionary game where we show excellent performance

for reasonably small size approximations.

The remainder of this paper is organized as follows: In Section [[I] we layout the proposed
structure of the optimal control surface u(t,z,) and show its relation to a non-standard
neural network problem. We also discuss the assumed evolutionary game dynamics that
govern the state equation. Construction of the back-propagation operator is provided in
Section [[I]] along with the optimization algorithm for approximating the optimal control
surface. In Section [[V] we provide experimental results. Generalizations are discussed in

Section [V} Conclusions and future directions are provided in Section [V1]



II. PROBLEM CONSTRUCTION AND PRELIMINARIES

We assume an approximation of u(t,zq) as

W=l 303 g cos (mef) cos ("7 2)

Using this construction, our problem reduces to identifying the finite set of Fourier coef-

ficients of true (hidden) optimal control surface wu(t,xy). Unlike an ordinary Fourier ap-
proximation, our goal is not to find u(¢,zo) and then build a,,, but rather to build the
coefficients directly from the primal problem Eq. . This structure can be represented as a
non-standard feedforward neural network (Fig. . We note that optimal control problems
have been addressed using standard neural network architectures in [37] with some suc-

cess. Phrasing this approximation problem in the context of a non-standard neural network

FIG. 1: The formulation of the optimal control surface as a non-standard feedforward

neural network inspires the use of the construction of the back-propagation operator.

inspires our construction of a back-propagation operator.

Suppose we have a finite sample X, of initial conditions. Let a be a vector composed of



the Fourier coefficients. Then define

J(z0,a) = /0 Fla,u) dt (3)

s.t. &= g(r,u) (4)
z(0) = zo (5)
M X mmt nmwIg
u(t, zo) ~ mzz%;amn cos (T) cos ( 7 > (6)
The objective function and its constraints are then given by
J(a) = Z J(zo;a) s.t. Eqgs. () to (6) hold V zo € X. (7)
20€Xo

We have now converted the time continuous problem in Eq. into a nonlinear programming

problem with finite decision variables
min J(a). (8)

Problem Eq. can be solved using a direct optimization technique (e.g., LGBFS, conjugate
gradient, etc.) However, the remainder of this paper will be dedicated to casting this into
a non-standard neural network architecture for a specific class of optimal control problems

and then constructing the back-propagation operator for this neural network structure.

A. Evolutionary Game Dynamics

In deriving a back-propagation operation to solve Eq. , we assume the equations of
motion are given by the replicator dynamics. Let A € R™*" be a (payoff) matrix. The

replicator dynamics are given by
Lt’i =T; (ei — X)T AX7

where x = (x1,...,2,) € A,_1 and e; is the i'" standard unit vector . Here A,_; is the unit

simplex. We focus on the case when

0 —p
p 0



The resulting replicator dynamics

T1 = —pPT1T2

Ty = PT1T2

describes rumor spreading [38], susceptible-infected (SI) epidemic dynamics [39], the aspa-
tial component of Fisher’s equation [40] and the Bass model of social science [41]. Game
theoretic analysis of epidemic dynamics have been studied previously from a game-theoretic
and socio-physics context [42H44]. The donor/recipient approach studied by Tanimoto has
particular relevance to this problem [45]. In this paper, we focus on the problem of con-
trolling the trajectories of evolutionary game dynamics when the pay-off matrix itself is
being manipulated. Recently this approach has found interest in the biomedical commu-
nity [46], 47], where empirical methods are being used to produce control strategies. Since
this problem is inherently non-linear this paper develops an approximation method for the
optimal controller that while simultaneously reducing the infinite dimensional optimization
problem to a finite dimensional problem in the spirit of [I2H19]. We illustrate this approach
on a two-strategy game because we can simplify the dynamics by setting zo = 1 — x;. We

can replace the two equations of the replicator dynamics with the single equation of motion
T = pz(l —x).

More general classes of problems are discussed in future work. If we assume parameter p in

the payoff matrix is a (linear) function of the control u so that
p=pu—¢g, (9)
then the equations of motion become
& =x(l—x)(Pu—-g). (10)
The specific variation of Eq. is then

min / —x° 4+ Rzu + —u“dt
0 2 2

st. & =x(l —x)(Bu—§) (11)
z(0) = xg
u € L2([O’T])



With R, k; and ks being real valued constants. In Eq. , a quadratic objective function
is suitably chosen to frame this problem in the general context of linear quadratic control
problems. Even though this is the choice of objective function for this paper, the back-
propagation operation defined in Section [[I]]is extended to any other objective function as

long as its derivative can be computed analytically.

III. CONSTRUCTION OF THE BACK-PROPAGATION OPERATION

Back-propagation is simply a computational application of the chain rule combined with
gradient descent [48]. Our objective is to construct V.J(a). Let ¢, (t) be the flow satisfying

the dynamics
i = a(1 - ) (Bu— &) (12)
with £(0) = xo. Then
J(a) = Z ?goxo(t) + Ry, (t)u + U dt (13)
xo€Xo 0
with u given by Eq. . Differentiating with respect to a,,, yields

oJ T 0P, 0P, ou ou
= 9 =0 —_— . 14
B Z ( /0 K1 O + R (u Oy, + Pao 8amn> + k2u8amn dt) (14)

roEXo

Factoring yields

a.J T 0, 0
= Z (/ Pz (k1pzo + Ru) + aau (Rpa, + kou) dt) : (15)
0 mn

a a
a mn 20€X0 8 mn

By assumption, u is given by Eq. and consequently

ou mat <n7r:1:0 )
= cos [ —— | cos )
Otmn T L

An expression for ¢,,(t) can be obtained by integrating Eq. , where u is given by the

Fourier approximation in Eq.

[ it = [oue-9 o (16)

We then obtain a closed-form expression for ¢,, in terms of the same coefficients a,,, in u

1

P = T Koy oo (VD) a7
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where K, given by
1-— Zo

Klo = €xp (Vlo (0)) (18>

Zo

is the constant of integration in Eq. and V, (t) is written as

in which U, (t) is the integral fg u(T, xo)dT of the control approximation given by Eq.

MY mnmt\ T nmwx al nmwx
U (t) = ZZamn sin (—) —— COS < 0) +Za0n cos ( 0> t. (20)
—— T ) mm L —~ L

1n

0

By the chain rule, an expression for a;&ﬁ can be written as
mn

890960 _ 890960 8V$O aUaﬁo

Ot Vg OUy, Oty (21)
where the right-hand side derivatives are computed as
Opuy _ Ky exp(Viy (1)) (22)
Ot (K + exp(Viy(1)))?
T =)
o, [ () cos (52) 2 itm £ 0 "
O cos (2220 ) ¢ ifm=0

Substituting Eq. into Eq. we obtain a closed-form expression for V.J(a), allowing
for the minimization of the functional J(a) by performing gradient descent over the space

spanned by the Fourier coefficients in a.

A. Gradient Descent Over the Space of Fourier Coefficients

A solution to Eq. is then made possible by performing the following procedure
described in Algorithm [Il We note the parallels of Algorithm [I] with the back-propagation
operation present in traditional neural networks [49]. In our case, instead of the traditionally
employed loss functions (e.g. quadratic, logistic, ... ), the objective function being minimized
is represented by the objective functional itself (Eq. ) This expression is implicitly
parameterized by the Fourier coefficients in a through the approximated control and its

integrated state trajectory arising from the dynamical (control dependent) state constraint.

8



ALGORITHM 1: Minimization of J(a) by Gradient Descent

Require: Initialize the coefficients a°, initial control u = u(a%) and state ¢ = ¢(a°), gradient
tolerance € and descent (learning) rate «;
k + 0;
Compute V.J(a%);
while V.J(a¥) > ¢ do
Update coefficients a < a — aV.J(a¥)
Update control approximation u = u(a¥) and trajectory ¢ = p(ak)
Compute V.J(ak)
k< Fk+1

end while

Thus, computing V.J(a) requires the computation of 85“ and af“a , the latter requiring
a chain of intermediate derivatives (Egs. (22)) to (24)), similar to the traditional neural
network setting wherein a chain of derivatives is constructed and the weights (coefficients)

are adjusted through back-propagation.

IV. EXPERIMENTAL RESULTS

In this Section, we apply the procedure described above to obtain an approximated solu-
tion to an example problem and discuss interpretable conclusions from the approximation.
Consider a simplistic epidemic model in which the two strategies of the evolutionary game
are susceptible and infected. In the absence of a treatment (intervention) the dynamics are

given by:

T = —§r119

Ty = £x179,

where x; is the proportion of the population that is susceptible and x5 is the proportion of

the population who are infected. The parameter £ is the standard infection rate. This is



consistent with the work in [42H45]. Intervention leads to the controlled dynamics:

il = (ﬁu — 5)[[’11‘2
Ty = (§ — Bu)zi2,

where u is a measure of the effort (input) made in providing the treatment. This yields the
skew-symmetric evolutionary game dynamics given in Eq. . We assume the intervention
has a quadratic cost Cu? (that should be minimized) and that societal benefit arises not
only from x5 being minimized but also from the interaction of the treatment effort u with z;.
That is, high-impact treatment efforts will lead to improved public health outputs. Letting

xr = x1 and x5 = 1 — x, the optimal control problem to be considered is

u

T
max / azxu — Cu? dt
0

st. & =ax(1—z)(fu—§) (25)
x(O) = Zo
u >0

In this problem « is the conversion factor measuring societal benefit from the interaction
of individuals with the susceptible strategy and the treatment effort. It is interesting to note
that the structure of this problem is similar to the software maintenance problem explored in
[7] and the cyber-bullying problem explored in [50]. By exploiting the concavity of Eq. (25),
an analytical solution can be obtained for the closed-loop controller [7]. In contrast our
approximation builds an open-loop controller for the evolutionary system.

To solve Eq. for a set of distinct initial conditions and find the (approximated)
optimal control surface u* = u*(¢,z0), we formulate Eq. as in Eq. and choose a
set of distinct zg € Xy (approximation points). We assue the following parameter values:
azQ,C’zl,ﬁ:%,ﬁz}l.

Results are shown in Figs. 2]to[d In Fig. 2 and Fig. 3 two instances of the approximated
optimal control and corresponding approximated optimal state surfaces are presented, each
considering coefficients M = N =1 and M = N = 5, respectively.

Fig. [2| shows two approximated surfaces for M = N =1 and M = N = 5, respectively.

The control surface on the right is a close approximation to the actual control surface

derived from the analytical solution of Eq. , presenting a mean absolute percentage error

10
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FIG. 2: (Left) Control surface approximation using a single Fourier term. (Right) Control

surface approximation using 5 Fourier terms for each variable.

Exact and Approx. State Surfaces M= N=1 Exact and Approx. State Surfaces M= N=5
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FIG. 3: (Left) State surface approximation using a single Fourier term. (Right) State

surface approximation using 5 Fourier terms for each variable.
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Fourier Terms M, N Fourier Terms M, N

FIG. 4: Mean Absolute Percentage Error for the control (left) and state (right)
approximation for t € {0,0.05,...,4.0} and x4 € {0.05,0.10,...,0.95}, with gradient

tolerance € = 10~%.
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FIG. 5: Comparison of computational time of Gradient Descent in Algorithm . Analytical

gradient (purple line) versus approximated (finite differences) gradient (yellow line).

(MAPE) of 6.57%. State trajectories derived from the control approximations in Fig. [2| are
shown in Fig. [3|

The state trajectory (Fig. shows the non-equilibrium transition behavior caused by
control inputs. For the two-strategy game under consideration the two equilibria are pure
strategies. When the system is initialized at a mixed strategy the control can be used to
switch among these two strategy equilibria or to drive the system toward a specific strategy
equilibrium based on the objective function. In this case, the controller is being used to
push the system toward an equilibrium that would not naturally occur without a control
input. The system does not settle into an equilibrium in the finite time horizon [0, T7].

Additionally, Fig. 4] presents MAPESs obtained for other choices for the number of Fourier
terms, both for the control (left) and state (right) approximations. In [7], it is shown that the
optimal controller is always a decreasing function of time. This is also clearly shown in Fig. 2]
showing that an interpretable theoretical result can be derived from the approximation.
Lastly, Fig. [5] shows the computational time, in seconds, of Algorithm [I] when the gradient
is provided analytically (purple line) and when the descent procedure uses finite differences
approximations for the gradient (yellow line) when solving the problem defined by Eq. .
As expected, as the number of Fourier terms increases, Algorithm [1|is seen to benefit from

the analytical gradient, justifying the back-propagation operation discussed in Section [[II]
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V. GENERALIZATIONS

The fact that the dynamics in Eq. substantially simplified the construction of the
back-propagation operator also suggests that this method is generalizable. A fundamental
assumption of this paper is that the state evolution is represented by a closed form integrable

differential equation. Therefore assume for a general problem that the state constraint in

Eq. (1) can be solved as
V(z(t)) = /0 w(u(T)) dr + V(xo). (26)

Such an example occurs when

(27)

so that we can rewrite it as

v(x) de = w(u(t)) dt, (28)

as we have in Eq. . However, more complex examples leading to Eq. are possible.

If we can write
t
r(t) =V (/ w (u(r)) dr + V(xo)) (29)
0
where u(7), in the context of this paper, is actually u(7;a), then as a consequence, this

equation for x(t) explicitly is also a function of the Fourier coefficients a,,,, so one can

compute its partial derivative %. As we saw in Section the gradient of the objective

functional VJ

Amn

will be also computed explicitly. Following the notation in Eq. , we

oJ _/T {8}” Ox +8f ou } 0t (30)
0

Omn oz OGmn u O

In Eq. , 82‘;” is computed directly from the approximated controller by the proposed

write

ox

amn

truncated Fourier series in Eq. . Similarly, a closed form of can also be computed

from the obtained z(¢;a) in Eq. 1’ In this manner, Bf:m is

0 _ 8 [V—l (/Ot w (u(r; ) dr + V(xo)ﬂ . (31)

OGmn  OQmn

This can be used explicitly in the construction of back-propagation operators for more

general problems.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we used a Fourier approximation approach to derive a back-propagation
operator to numerically construct approximate optimal control surfaces for non-linear control
problems arising from two-strategy evolutionary games. Our formulation is phrased as a
non-standard feedforward neural network approximation method, justifying the use of the
back-propagation construction. We showed empirically that this method works well for
constructing high quality control surfaces in an example control problem on evolutionary
games dynamics. We also showed that this method is generalizable when the resulting
controlled state dynamics are integrable.

In future work we will generalize the evolutionary game problems we consider to more
strategies in an attempt to analyze the control problems found in [6]. In particular, this
will require dealing with non-integrable dynamical systems. The work in [6] shows that
the general non-linear controller in cyclic games with an odd number of strategies exhibit
oscillations whose properties may be elucidated by this Fourier approximation method. In
addition, we will consider control problems for evolutionary games on graphs where chaos
can emerge [51]. This will provide an interesting case study for the numerical stability of
this approach and may shed further light on these newly emerging problems in non-linear

dynamics.
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