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Abstract. Optimal transport plays a fundamental
role in deep learning. Natural datasets have intrinsic
patterns, which can be summarized as the manifold
distribution principle: a natural class of data can
be treated as a probability distribution on a
low dimensional manifold, embedded in a high
dimensional ambient space. A deep learning system
mainly accomplishes two tasks: manifold learning
and probability distribution transformation.

Given a manifold X, all the probability measures
on X form an infinite dimensional manifold P(X).
Optimal transport assigns a Riemannian metric on
P(X), the so-called Wasserstein metric, and defines
Otto’s calculus, such that variational optimization
can be carried out in P(X). A deep learning system
learns the distribution by optimizing some functional
in P, therefore optimal transport lays down the
theoretic foundation for deep learning.

This work introduces the theory of optimal transport
and the profound relation between Brenier’s theorem
and Alexandrov’s theorem in differential geometry
via Monge-Ampeére equation. We give a variational
proof for Alexandrov’s theorem, and convert the
proof to a computational algorithm to solve the
optimal transport map. The algorithm is based on
computational geometry and can be generalized to
general manifold setting.

Optimal transport theory and algorithms have been
extensively applied in the models of Generative
Adversarial Networks (GANs). In a GAN model,
the generator computes the OT map, while the
discriminator computes the Wasserstein distance
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between the generated data distribution and the
real data distribution. The optimal transport theory
shows the competition between the generator and
the discriminator is completely unnecessary and
should be replaced by collaboration. Furthermore, the
regularity theory of optimal transport map explains
the intrinsic reason for mode collapsing.

A novel generative model is introduced, which uses
an autoencoder (AE) for manifold learning and OT
map for probability distribution transformation. This
AE-OT model improves the theoretical rigor and
transparency, as well as the computational stability
and efficiency; in particular, it eliminates the mode
collapse.

1. Introduction

Deep learning is the mainstream technique for
many machine learning tasks, including image recog-
nition, machine translation, speech recognition, and
so on. Despite its great success, the theoretical un-
derstanding on how it works remains primitive. Many
fundamental open problems need to be solved, and
many profound questions need to be answered.

In this chapter, we focuses on a geometric view
of optimal transport (OT) to understand deep learn-
ing models, such as generative adversarial networks
(GANSs). Especially, we aim at answering the following
basic questions:

1. What does a deep learning system really learn?

The system learns the probability distributions on
manifolds. Each natural class of data set can be
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treated as a point cloud in the high dimensional ambi-
ent space, and the point cloud approximates a special
probability measure defined on a low dimensional
manifold. The system learns two things: one is the
manifold structure, the other is the distribution on
the manifold. The manifold structure is represented
by the encoding and decoding maps, which map be-
tween the manifold and the latent space. In generative
models, such as GANs, the probability distributions
are represented by the transport mappings from a
predefined white noise (such as a Gaussian distribu-
tion, which can be easily generated from a uniform
distribution) to the data distribution either in the la-
tent space or on the data manifold.

2. How does a deep learning system really learn?

All the probability distributions on a manifold = form
an infinite dimensional space P(X). A deep learn-
ing system performs optimization in the space of
P(Z). For example, the principle of maximum entropy
searches for a distribution in P(X) by optimizing the
entropy functional with some constraints obtained by
observations. The optimal transport theory defines
a Riemannian metric on the probability distribution
space P(X) and Otto’s calculus, such that the Wasser-
stein distance between measures can be computed ex-
plicitly, the variational optimizations can be carried
out by these theoretic tools. For example, the discrim-
inator in the WGAN model computes the Wasserstein
distance between the real data distribution and the
generated data distribution, the training process fol-
lows the Wasserstein gradient flow on P(X).

3. How well does a deep learning system really
learn?

Current deep learning system designs have funda-
mental flaws, most generative models suffer from
mode collapsing. Namely, they keep forgetting some
knowledge already learned at the intermediate stage,
or they generate unrealistic samples. This can be ex-
plained by the regularity theory of optimal transport
maps, basically the transport maps are discontinu-
ous, whereas the deep neural networks can only rep-
resent continuous maps, therefore either the map
misses some connected components of the support
of data distribution or covers all the components but
also the gaps among them.

From the above short answers, we can see the
importance of the theories of manifold and opti-
mal transport for deep learning. In the following,

we will briefly review the most related works in sec-
tion 2; briefly introduce the theory of optimal trans-
port in section 3; explain the computational algo-
rithms for optimal transport in details in section 4;
after the preparation, we explain the manifold distri-
bution principle in deep learning and manifold learn-
ing by auto-encoder in section 5 and 6 respectively;
then we use optimal transport view to analyze GAN
model, explain the reason for mode collapse and the
novel design to eliminate mode collapse in section 7;
finally, we conclude the work in section 8.

2. Related Works

The literature of optimal transport and genera-
tive models is huge. Here, we only review the most
directly related works.

2.1 Optimal Transportation Map

Monge-Kantorovich theory has been applied to
solve optimal transportation problem via linear pro-
gramming technique [30, 29]. The method was intu-
itively applied for image registration and warping in
early research works. This approach was proposed
in [55], however due to the expensive computational
cost, the method can hardly handle the 3D image reg-
istration problem efficiently. Optimal transportation
map was also applied for texture mapping purposes
in [16], where the surface is intially mapped to the
unit sphere conformally, then the mapping is opti-
mized by a gradient flow with multiple level of reso-
lutions to accelerate the convergence. Since the exact
evaluation of Wasserstein distance is expensive, the
heat kernel method was applied to approximate it in
[50, 49]. In order to extend the problem into large data
set, [12] added an entropic regularizer into the origi-
nal Linear Programming problem and as a result, the
regularized problem can be quickly computed with
the Sinkhorn algorithm. Then Solomon et al. [49] im-
proved the computational efficiency by the introduc-
tion of fast convolution.

Recent research works are more based on Monge-
Brenier theory [9]. Gu et al. used a geometric varia-
tional approach to prove Alexandrov theorem in [20],
which is equivalent to the discrete Brenier theorem.
The method leads to a constructive algorithm for
computing optimal transportation maps in general
settings. In [15], De Goes et al. proposed to use OT for
2D shape reconstruction and simplification, later on
they generalized to use capacity-constrained Voronoi
tessellation to deal with blue noise processing prob-
lem [14]. [40] proposed a multi-scale approach to ac-
celerate the computation for large scale problems.
Most of the early works focus on 2D image registra-
tion and processing, recent works generalized them
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to deal with 3D surfaces by using computational geo-
metric approaches. By incorporating with conformal
mapping methods, optimal transportation maps are
applied to obtain area-preserving maps in [53]. The
methods in [61] can simultaneously balance the area
and the angle distortion. Su et al. generalized the al-
gorithm to three dimensional case and presented a
volume-preserving maps in [51] and then in [52] they
further gave a volumetric controllable algorithm by
OT map.

While most of the research works deal with op-
timal transport problems with Euclidean metric, [58,
11] focused on the solving the optimal transportation
problems in the spherical domain. The method has
also been applied for area-preserving brain mapping
in [54], which maps the cortical surface onto the unit
sphere conformally then onto the extended complex
plane by the stereographic projection. The method
has been improved in [44] by using conformal weld-
ing method.

Recent research works also introduce optimal
transportation theory in optical design field. Reflec-
tor design problem was summarized as a group of
Monge-Ampere equation problem in [57, 21, 58]. The
correspondence between Monge-Ampeére equations
and reflector design problems was listed as one of the
open problems in [60], and can further be related to
optimal transportation theory. Similar researches in
lens design situation were introduced in [23]. Numer-
ical methods and simulation results of these optical
design problems were proposed in [42].

2.2 Generative Models

Encoder-Decoder Architecture A breakthrough for
image generating comes from the scheme of Varia-
tional Autoencoders (VAESs) (e.g. [31]), where the de-
coders approximate real data distributions from a
Gaussian distribution in a variational approach (e.g.
[31] and [47]). Latter Yuri Burda et al. [62] lower
the requirement of latent distribution and propose
the importance weighted autoencoder (IWAE) model
through a different lower bound. Bin and David [13]
propose that the latent distribution of VAE may not
be Gaussian and improve it by firstly training the
original model and then generating new latent code
through the extended ancestral process. Another im-
provement of the VAE is the VQ-VAE model [1], which
requires the encoder to output discrete latent codes
by vector quantisation, then the posterior collapse
of VAEs can be overcome. By multi-scale hierarchi-
cal organization, this idea is further used to gener-
ate high quality images in VQ-VAE-2 [46]. In [24], the
authors adopt the Wasserstein distance in the latent
space to measure the distance between the distribu-
tion of the latent code and the given one and generate

images with better quality. Different from the VAEs,
the AE-OT model [3] firstly embed the images into
the latent space by autoencoder, then an extended
semi-discrete OT map is computed to generate new
latent code based on the fixed ones. Decoded by the
decoder, new images can be generated. Although the
encoder-decoder based methods are relatively simple
to train, the generated images tend to be blurry.

Generative Adversarial Networks The GAN model
[19] tries to alternatively update the generator, which
maps the noise sampled from a given distribution
to real images, and the discriminator differentiates
the difference between the generated images and the
real ones. If the generated images successfully fool
the discriminator, we say the model is well trained.
Later, [45] proposes a deep convolutional neural net-
work (DCGAN) to generate images with better qual-
ity. While being a powerful tool in generating realistic
samples, GANs can be hard to train and suffer from
mode collapse problem [18]. After delicate analysis,
[6] points out that it is the KL divergence the original
GAN used causes these problems. Then the authors
introduce the celebrated WGAN, which makes the
whole framework easy to converge. To satisfy the Lip-
schitz continuity required by WGAN, a lot of methods
are proposed, including clipping [6], gradient penalty
[22], spectral normalization [43] and so on. Later, Wu
et al. [28] use the Wasserstein divergence objective,
which get rid of the Lipschitz approximation prob-
lem and gets a better result. Instead L; cost adopted
by WGAN, Liu et al. [37] propose the WGAN-QC by
taking the L, cost into consideration. Though various
GANSs can generate sharp images, they will theoreti-
cally encounter the mode collapse or mode mixture
problem [18, 3].

Hybrid Models To solve the blurry image problem
of encoder-decoder architecture and the mode col-
lapse/mixture problems of GANs, a natural idea is to
compose them together. Larsen et al. [32] propose to
combine the variational autoencoder with a genera-
tive adversarial network, and thus generate images
better than VAEs. [39] matches the aggregated pos-
terior of the hidden code vector of the autoencoder
with an arbitrary prior distribution by a discrimina-
tor and then applies the model into tasks like semi-
supervised classification and dimensionality reduc-
tion. BiGAN [27] uses the discriminator to differen-
tiate both the generated images and the generated
latent code. Further, by utilizing the BigGAN gener-
ator [4], the BigBiGAN [17] extends this method to
generate much better results. Here we also treat the
BourGAN [59] as a hybrid model, because it firstly em-
beds the images into latent space by Bourgain theo-
rem, then trains the GAN model by sampling from the
latent space using the GMM model.
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Conditional GANs are another kind of hybrid
models that can also be treated as image-to-image
transformation. For example, using an encoder-
decoder architecture to build the connection between
paired images and then differentiating the decoded
images with the real ones by a discriminator, [25]
is able to transform images of different styles. Fur-
ther, SRGAN [33] uses similar architecture to get su-
per resolution images from their low resolution ver-
sions. The SRGAN model utilizes the content loss and
adversarial loss. It uses the paired data and the vi-
sually meaningful features used by SRGAN are ex-
tracted from the pre-trained VGG19 network [48],
which makes it not so reasonable under the scenes
where the datasets are not included in those used to
train the VGG.

Optimal Transport Based Generative Model In [35]
Lei et al. first gave a geometric interpretation to the
Generative Adversarial Networks (GANSs). By using
the optimal transportation view of GAN model, they
showed that the discriminator computes the Wasser-
stein distance via the Kantorovich potential, the gen-
erator calculates the transportation map. For a large
class of transportation costs, the Kantorovich po-
tential can give the optimal transportation map by
a close-form formula. Therefore, it is sufficient to
solely optimize the discriminator. This shows the ad-
versarial competition can be avoided, and the compu-
tational architecture can be simplified. In [34] the au-
thors pointed out that GANs mainly accomplish two
tasks: manifold learning and probability distribution
transformation. The latter can be carried out using
the classical OT method. Then in [3] a new genera-
tive model based on extended semi-discrete optimal
transport was proposed, which avoids representing
discontinuous maps by DNNs, therefore effectively
prevents mode collapse and mode mixture.

Numerical Method In this work, we show that the
reason that causes the mode collapse in deep learning
is indeed the discontinuity of optimal transport map
in general. It is very similar to the situation when us-
ing the classic numerical method to solve OT map.
For instance, the Brenier potential in OT satisfies the
Hamiltonian- Jacobi equation which could be con-
tinuous. However, its velocity (corresponding to the
OT map) satisfying the conservation law is generally
discontinuous. For examples, the Benamou-Brenier
method [7] and Haker-Tannenbaum-Angent method
[5] compute the optimal transport maps based on
fluid dynamics.

3. Optimal Transport Theory

In this subsection, we will introduce basic con-
cepts and theorems in classic optimal transport the-

ory, focusing on Brenier’s approach, and their gener-
alization to the discrete setting. Details can be found
in Villani’s book [56].

3.1 Monge Problem

Suppose X c R4, Y c R¢ are two measurable sub-
sets of d-dimensional Euclidean space R4, u, v are two
probability measures defined on X and Y respectively,
with density functions

Suppose their total measures are equal, u(X) = v(Y),
namely

(1) /Xf(x)dx:‘/yg(y)dy.

We only consider maps which preserve the measure.

Definition 1 (Measure-Preserving Map). A mapT : X —
Y is measure preserving if for any measurable set B C
Y, the set T~'(B) is u-measurable and u(T~'(B)) = v(B),
ie.

@ S T2 = [ ga

Measure-preserving condition is denoted as Tuu =
v, where T;u is the push forward measure induced
by 7. Suppose T : X — Y is differentiable, T € C!(X),
then the measure-preserving map satisfies the Jaco-
bian equation:

f(x)
goT(x)’

Definition 2 (Transport Cost). Given a cost function
c(x,y) : X xY — R, which indicates the cost of moving
each unit mass from the source to the target, the total
transport cost of the map T : X — Y is defined to be

3) detDT (x) =

) o(T) = /X (6, T(x))du ().

The Monge’s problem of optimal transport arises
from finding the measure-preserving map that mini-
mizes the total transport cost.

Problem 1 (Monge’s Optimal Transport [8] (MP)).
Given a transport cost function ¢ : X xY — R, find the
measure preserving map T : X — Y that minimizes the
total transport cost

5) (MP)  min /X (6, T(x))du ().

Tyu=v

Definition 3 (Optimal Transport Map). The solutions
to the Monge’s problem is called the optimal transport
map, whose total transport cost defines the Wasser-
stein distance between u and v.
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If ¢(x,y) = 3 [x—y|?, the Wasserstein distance is de-
noted as W»(u,v), then

(6) W2(i,v) = min 1/\x—T(x)|2du(x).
2 Jx

Tyu=v

3.2 Kantorovich’s Approach

Depending on the cost function and the mea-
sures, the optimal transport map between (X,u) and
(Y,v) may not exist. For example, suppose u is atomic
u=38(x—xp),and v=y* v;8(y—y;) with3¥  v;=1, then
the mass concentrated on x, has to be split and sent
to different y;’s. Kantorovich relaxed transport maps
to transport plans or transport schemes. A transport
plan is represented by a joint probability measure
p: X XY — Rsg, such that the marginal probability
of p equals to u and v respectively. Formally, let the
projection maps be z.(x,y) = x, m,(x,y) =y, then define
joint measure class

(7)) T, v):={p: X xY¥ = R:(m)sp = 1, (m)sp = v}

Problem 2 (Kantorovich). Given a transport cost func-
tion c: X xY — R, find the joint probability measure
p : X — Y with marginals u and v that minimizes the
total transport cost

®) (kP)  min [ c(ny)dplxy).
pell(u,v) JXxY
Kantorovich’s problem can be solved using linear
programming method. Due to the duality of lineary
programming, the (KP) Eqn. 8 can be reformulated as
the duality problem (DP) as follows:

Problem 3 (Kantorovich Dual). Given a transport cost
function ¢ : X x Y — R, find the function ¢ € L'(X) and
v € L'(Y), such that

9)

0F) max{ [LoWau+ [worav : o0+ v0) < el

The maximum value of Eqn. 9 gives the Wasser-
stein distance. Most existing Wasserstein GAN mod-
els are based on the duality formulation under the L!
cost function.

Definition 4 (c-transform). The c-transform of ¢ : X —
R is defined as ¢° : Y — R:

(10) ¢°(3) = inf () ~ 9(x).

Assume c(x,y) and ¢ are with C! continuity, then
the necessary condition for c-transform is given by

(11) V.e(x,y(x)) —Veo(x) =0.

Then the Kantorovich dual problem can be rewrit-
ten as

a2)  (oP) Wiu.v)=max [ px)du+ [ o ()av.

where ¢ is called the Kantorovich'’s potential.

3.3 Brenier’s Approach

Given a strictly ¢! convex function 4 : Q — R,
where Q is a convex domain in R”, the gradient map-
ping x — Vh(x) is invertible. The inverse mapping is
denoted as (Vh)~'.

Suppose the cost function c¢(x,y) = h(x —y) where
h is a strictly ¢! convex function, then the solution
to Kantorovich’s dual problem Eqgn. 12 satisfies the
c-transform condition Eqn. 11, hence we obtain the
formula for the optimal transport map 7T,

(13) T(x) =x—(Vh)"' (Vo(x)).

This leads to the following theorem,

Theorem 1 (Villani [56]). Given u and v on a com-
pact domain Q C R" there exists an optimal transport
plan p for the cost c(x,y) = h(x—y) with h strictly con-
vex. It is unique and of the form (id, Ty)u, provided u is
absolutely continuous and 0Q is negligible. More over,
there exists a Kantorovich potential ¢, and T can be
represented as

T(x) =x—(Vh)~ (Vo (x)).

For quadratic Euclidean distance cost, h(x) =
1 {x,x), (Vh)~!(x) = x, then Eqn. 13 becomes

14 79— Vol = () - o)) = Vu

where the function u: X — R is called the Brenier
potential. In this case, the Brenier’s potential » and
the Kantorovich’s potential ¢ is related by Eqn. 14.
Assume the Brenier potential is €% convex, by Jaco-
bian equation Eqn. 3, it satisfies the following Monge-
Ampeére equation:

9*u it))
(15) det (axiaxj) () = goVu(x)

The existence, uniqueness and the intrinsic structure
of the optimal transport map were proven by Brenier
[9].

Theorem 2 (Brenier [9]). Suppose X andY are measur-
able subsets of the Euclidean space R¢ and the trans-
port cost is the quadratic Euclidean distance c(x,y) =
1/2||x — y||>. Furthermore p is absolutely continuous
with respect to Lebesgue measure and yu and v have
finite second order moments,

(16) Awwmm+éw%ww<&

Jury 2022

Norices oF THE ICCM 5



then there exists a convex function u: X — R, the so-
called Brenier potential, its gradient map Vu gives the
solution to the Monge'’s problem,

(17) (Vu)#ll =V.

The Brenier potential is unique upto a constant, hence
the optimal mass transport map is unique.

Therefore, finding the optimal transport map is
reduced to solving the Monge-Ampere equation.

Problem 4 (Brenier). Suppose X and Y are subsets of
the Euclidean space R? and the transport cost is the
quadratic Euclidean distance. Furthermore u is abso-
lutely continuous with respect to Lebesgue measure
and u and v have finite second order moments, find a
convex function u : X — R, satisfies the Monge-Ampeére
equation Eqn. 15.

For quadratic Euclidean distance cost c(x,y) =
1/2||x—y|> in R*, the c-transform and the classical Leg-
endre transform have special relations.

Definition 5 (Legendre Transform). Given a function
o0 :R" - R, its Legendre transform is defined as

(18) 0 (y) = sgp(<x,y> — o).

We can show the following relation holds for
quadratic Euclidean cost,

19 b= (GhP-ow)

3.4 McCann’s Displacement

We consider all the probability measures u de-
fined on X with finite second order moment, u is
absolutely continuous with respect to Lebesgue mea-
sure,

(20) PX) = {u:/x\x|2d,u(x) <ooll a.c.}

Then according to Brenier’s theorem, for any pair
u,v € P(X), there exists a unique optimal transport
map T : X — X, Tzu = v, furthermore T = Vu for
some Brenier potential , which satisfies the Monge-
Ampere equation 15. The transportation cost gives
the Wasserstein distance between u and v in Eqn. 6.

Definition 6. Given a path p : [0,1] — P(X) in the
(P(X),W,), if it satisfies the condition
21) Walp(s),p(r)) =t = sWa(p(0),p(1))  Vs,1 €[0,1],

then we say p is a geodesic.

McCann gives the geodesic formula in the dis-
tance space (P(X),W,).

Theorem 3 (McCann). Given u,v € (P(X),W,) and u is
the corresponding Brenier potential, then the geodesic
connecting u and v is given by

p(t):=((1—0)ld+tVu)su t€]0,1],

which is called McCann’s displacement.

3.5 Benamou-Brenier Dynamic Fluid

Brenier-Benamou gives another formulation of
geodesic using fluid dynamic. Let X = R", consider
a flow field in X, represented by the density field
p(t,x) and the flow velocity field v(z,x). We denote
p(t,-) as py, v(t,-) as v,. We define =(u, v) as set of flows
(p,v)=(ps,vs), 0 <t <1, satisfying the following condi-
tions:

1. p; is continuous with respect to r and p;(x) is ab-
solutely continuous with respect to the Lebesgue
measure in X;

2. v(t,x) is L? integrable with respect tot he measure
dpy(x)dt,

/01 /X [v(t,x)|>dp; (x)dt < .

3. The union of the support of p, is bounded,

U Supp(p;) bounded.

0<r<1

4. By mass conservation law, the pair (p,v) satisfy
the continuity equation,

0
(22) §+V~(ptv,):o
t
in the distributional sense.
5. Furthermore, the flow satisfies the boundary
condition pyp =y and p; = v.

Problem 5 (Benamous-Brenier). Find the flow (p,v) €
(u,v) that minimizes the total kinetic energy,

(23) Alp.v] = /01 (/X p,(x)|v,(x)|2dx) dr.

Benamou-Brenier proves kinetic energy of the solu-
tion to Eqn. 23 equals to the square of Wasserstein
distance in Eqn. 6, namely Benamou-Brenier prob-
lem is equivalent to Brenier problem, furthermore the
geodesic is given by the solution to the Benamou-
Brenier problem,

min{%/ol/x|v(x,t)|2dp(x,t)dt:(p,,vl) ez(u,v)}.
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3.6 Otto’s Calculus

Suppose v is the optimal flow, given any diver-
gence field V-w =0,

W\ oo
_VP<V+SE)7—VPV7 or

therefore v+ew/p € £(u,v). By the optimality of v, we

have
[olvP< [

therefore we have
/ (v,w) =0.

Because w is an arbitrary divergence free vector field,
by Hodge decomposition theorem, we have v is the
gradient field of some function ¢, v= V¢. Benamou-
Brenier problem is reduced to

2

I

w
V+E—
p

1
sz(,u,v) = mln{/ / |V1/l|2dpfdt7p0 =U,p1 =V,
(phu) 0 X

J
—V~(p,Vu):£}.

Given two geodesics p(t),p2(t) C P(X), p1(0) = p2(0) =
p, their tangent vectors at p € P(X) are

9P _ I _ .

Er =-V-(p1Ver), e (P2V ),

the Riemannian metric is defined as

apr dp2\
<8t’8t>p —/X<V(PlaV(P2>P(x)dx-

Otto’s calculus provides a theoretic tool for opti-
mization in (P(X),W,). For example, we can show the
Wasserstein gradient flow of entropy is equivalent to
the classical heat flow. Given a domain X c R? with
smooth boundary JX, and a measure p € P(X), its en-
tropy is defined as

Ent(p) ::/plogp dx.
X
Given a path p(¢) C P(X),
d e p ' .
—Ent(p(z)):/ <p10gp +p—) dx:/ (1+logp)p dx.
dt X p X

By continuity equation p = -V - (vp),

/pdx:f/V-(vp) dx:f/ vp dx=0.
X X X

and

V- (plogpv) =logpV(pv)+(Vlogp,pv).

we obtain

SEnt(p(1) = [ (Viogp.v)p dx
dt X

This shows the Wasserstein gradient of entropy
equals to Vlogp. We plug it into the continuity equa-
tion and obtain

apt VP: 79[)[ _

This shows that the Wasserstein gradient flow of the
entropy is equivalent to the classical heat flow.

3.7 Regularity of Optimal Transportation Maps

Let Q and A be two bounded smooth open sets in
R4, let u = fdx and v = gdy be two probability measures
on R’ such that f|gs o =0 and g|ga\ , = 0. Assume that
f and g are bounded away from zero and infinity on
Q and A, respectively.

3.7.1 Convex Target Domain

Definition 7 (Holder continuous). A real or complex-
valued function f on d-dimensional Euclidean space
satisfies a Holder condition, or is Holder continuous,
when there are non-negative real constants C, o > 1,
such that

[f(x) = fFO)] < Clx—y[*
for all x and y in the domain of f.

Definition 8 (Holder Space). The Holder space C*%(Q),
where Q is an open subset of some Euclidean space
and k > 0 an integer, consists of those functions on Q
having continuous derivatives up to order k and such
that the k-th partial derivatives are Holder continuous
with exponent o, where 0 < o < 1.

Consider the optimal transport map
Vu : (Q,f(x)dx) — (A, g(y)dy), the following theo-
rems give the regularity of the Brenier potential u.
Caffarelli’'s theorem addresses the cases with the
cost function c(x,y) = 1/2|x —y|%.

Theorem 4 (Caffarelli [10]). If A is convex, then the
Brenier potential u is strictly convex, furthermore

1. If 2 < f, g <1/A for some A >0, then u € C};%(Q).
2.If feC2(Q) and g € C;%(A), with f,g > 0, then

ueCHQ), (k>0,a € (0,1))

loc

Ma-Trudinger-Wang’s theorem [38] handles gen-
eral cost functions c(x,y). In the following theorem,

Pq = axpayq sij,p - 3xi3xj8yp7 1],pq *— aXiaxj()ypayq7

and (¢7) is the inverse matrix of ¢, .
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Figure 1. Singularity structure of an optimal transportation map [63].

Theorem 5 (Ma-Trudinger-Wang). The potential func-
tion u is C*> smooth if the cost function c is smooth, f,g
are positive, f € C2(Q), g € C*(A), and

o Al Vx,& e R", Jly € R", s.t. £ = Dyc(x,y) (for exis-
tence)

o A2 |D§yc| #0.

e A33cy>0st.VENeR, E LN

N (cijrs — P 4cij peq ) EE i > col &P .
e Bl A is c-convex w.r.t. Q, namely Vxy € Q,
Axy = Dxc(x0,A)
is convex.

3.7.2 Non-Convex Target Domain

If A is not convex, there exist f and g smooth such
that « ¢ C'(Q), the optimal transportation map Vu is
discontinuous at singularities.

Definition 9 (subgradient). Given an open set Q c R¢
and u: Q — R a convex function, for x € Q, the subgra-
dient (subdifferential) of u at x is defined as

du(x):={p e R":u(z) > u(x)+ (p,z—x) Vz€Q}.

It is obvious that du(x) is a closed convex set. Ge-
ometrically, if p € du(x), then the hyper-plane

Lp(2) = u(x) +(p,z—x)

touches « from below at x, namely 7, <« in Q and
Iy p(x) = u(x), I, , is a supporting plane to u at x.

The Brenier potential « is differentiable at x if its
subgradient Jdu(x) is a singleton. We classify the points
according to the dimensions of their subgradients,
and define the sets

S(u) i= {xeRd| dim(au(x)):k}, k=0,1,2....d.

It is obvious that Zy(«) is the set of regular points,
% (u), k> 0 are the set of singular points. We also de-
fine the reachable subgradients at x as

V.u(x) = {gEEOVu(xk)|xk € Xo, X — x} .

It is well known that the subgradient equals to the
convex hull of the reachable subgradient,

du(x) = Convex Hull(V.u(x)).

Theorem 6 (Figalli [63]). | Let QA c R? be two
bounded open sets, let f,g: RY — R* be two probability
densities, that are zero outside Q, A and are bounded
away from zero and infinity on Q, A, respectively. De-
note by T = Vu: Q — A the optimal transport map pro-
vided by theorem 2. Then there exist two relatively
closed sets 3o C Q and 2, C A with |Zq| = |Z4]| =0 such
that T : Q\ Zq — A\ X, is a homeomorphism of class
cY for some o > 0.

We call o as singular set of the optimal trans-
portation map Vu: Q — A. Fig. 1 illustrates the sin-
gularity set structure, computed using the algorithm
based on theorem 8. We obtain

3

Z0 = Q\{Zl U22}7 2l = U yka 22 = {X(),X]}.
k=0

The subgradient of xj, du(xy) is the entire inner hole
of A, du(x;) is the shaded triangle. For each point on
1 (¢), du(y(¢)) is a line segment outside A. x; is the bi-
furcation point of vy, and ;. The Brenier potential
on X; and X, is not differentiable, the optimal trans-
portation map Vu on them are discontinuous.

Fig. 2 shows the singularity structure of an opti-
mal transport map between the uniform distribution
inside a solid ball to that of the solid Stanford bunny.
Since the target domain is non-convex, the boundary
surface has complicated folding structure, which is
the singularity of the map.
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Figure 2. Singularity structure of an optimal transportation map.

4. Computational Algorithm
4.1 Semi-Discrete Optimal Transport Map

Brenier’s theorem can be directly generalized to
the discrete situation. The source measure u is abso-
lutely continuous with respect to Lebesgue measure,
defined on a convex compact domain Q; the target
measure v is the summation of Dirac measures

(24) v= ivzﬁ(y—yi),
i=1

where Y = {y1,y2,---,y,} are training samples. The
source and the target measures have equal total mass
>, vi = u(Q). Each sample y; corresponds to a sup-
porting plane of the Brenier potential, denoted as

(25) () == (x,i) + hi,

where the height #; is an unknown variable. We repre-
sent all the height variables as h = (hy,hy, -, hy,).

An envelope of a family of hyper-planes in the
Euclidean space is a hyper-surface that is tangent to
each member of the family at some point, and these
points of tangency together form the whole envelope.
As shown in Fig. 3, the Brenier potential u;, : Q —+ R
is a piecewise linear convex function determined by
h, which is the upper envelope of all its supporting

planes,
(26)  up(x) = max{m,(x)} = max {(x.yi) + i}

The graph of Brenier potential is a convex polytope.
Each supporting plane ,; corresponds to a facet of
the polytope. The projection of the polytope induces
a cell decomposition of Q, each supporting plane 7;(x)
projects onto a cell w;(h),

@7) @={JWmne, Wih):={peRVuy(p) = ).

i=1

the cell decomposition is a power diagram.
The p-measure of W;NQ is denoted as w;(h),

(28) wi(h) = w(Wi(h) N Q) = / du.

Wi(h)NQ
The gradient map Vu, : Q — Y maps each cell W;(h) to
a single point y;,

(29) Vuy, : Wi(h) — yi,i=1,2,....n.

Given the target measure v in Eqn. 24, there ex-
ists a discrete Brenier potential in Eqn. 26, whose pro-
jected u-volume of each facet w;(h) equals to the given
target measure v;. This was proved by Alexandrov in
convex geometry.

Jury 2022
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Figure 3. PL Brenier potential (left) and its Legendre dual (right).

Theorem 7 (Alexandrov [2]). Suppose Q is a com-
pact convex polytope with non-empty interior in R",
ny,...,m C R agre distinct k unit vectors, the (n+
1)-th coordinates are negative, and vi,...,v; > 0 so that
S vi = vol(Q). Then there exists a convex polytope
P C R**! with exact k codimension-1 faces Fi,...,Fy, SO
that n; is the normal vector to F; and the intersection
between Q and the projection of F; is with volume v;.
Furthermore, such P is unique up to vertical transla-
tion.

Alexandrov’s proof for the existence is based
on algebraic topology, which is not constructive. Re-
cently, Gu et al. [20] gave a constructive proof based
on the variational approach.

Theorem 8 (Gu-Luo-Yau [20]). Let u a probability
measure defined on a compact convex domain Q in
RY, Y = {y1,y2,...,ya} be a set of distinct points in R¢.
Then for any vi,va,...,v, >0 with I, v; = u(Q), there
exists h= (hy,hy, ..., h,) € R", unique up to adding a con-
stant (c,c,...,c), so that w;(h) = v;, for all i. The vector
h is the unique minimum argument of the following
convex energy

h n n
(30) E(h) = /0 wi(n)dni — 3 hivi,
i=1 i=1
defined on an open convex set
31 H={heR":wi(h)>0,i=1,2,...,n}.

Furthermore, Vu;, minimizes the quadratic cost

1
(32) 3 [ =T P
Q
among all transport maps T:u = v, where the Dirac
measure v =737, v;0(y —yi)-

The gradient of the above convex energy in
Eqgn. 30 is given by:

(33)  VE(h) = (w1 (h) — vi,wa(h) — Va, ..., wa(h) — )T

The Hessian of the energy is given by

ow; wwiNnw;NQ)  dw; ow;

B4 - m Sy
8hj |y,~—yj| 8h,- g‘i&hj

As shown in Fig. 3, the Hessian matrix has explicit
geometric interpretation. The left frame shows the
discrete Brenier potential u;, the right frame shows
its Legendre transformation u«; using definition 18.
The Legendre transformation can be constructed ge-
ometrically: for each supporting plane m,;, we con-
struct the dual point z;;; = (y;, —h;), the convex hull of
the dual points {n;lﬂl,n,’[;z,...77r;,n} is the graph of the
Legendre transformation u;. The projection of u} in-
duces a triangulation of Y = {y1,y2,...,y.}, which is the
weighted Delaunay triangulation. As shown in Fig. 4,
the power diagram in Egn. 27 and weighted Delau-
nay triangulation are Poincare dual to each other: if
in the power diagram, W;(h) and W;(h) intersect at a
(d — 1)-dimensional cell, then in the weighted Delau-
nay triangulation y; connects with y;. The element of
the Hessian matrix Eqn. 34 is the ratio between the
u-volume of the (d —1) cell in the power diagram and
the length of dual edge in the weighted Delaunay tri-
angulation.

The conventional power diagram can be closely
related to the above theorem.

Definition 10 (power distance). Given a point y; € R¢
with a power weight y;, the power distance is given by

(35) pow(x,y;) = \x—yi\z—q/,-.

Definition 11 (power diagram). Given weighted points
O1,v),---, 0k, W), the power diagram is the cell de-
composition of R4,

(36) Rd:U{'{:I‘%(W)>
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Figure 4. Power diagram (blue) and its dual weighted Delaunay triangulation (black).

where each cell is a convex polytope
(37) Wi(y) ={xeR’ | pow(x,yi) <pow(x,y;),1 <j<k}.

The weighted Delaunay triangulation, denoted as
T(y), is the Poincare dual to the power diagram, if
Wi(w) NW;(y) # 0 then there is an edge connecting y;
and y; in the weighted Delaunay triangulation. Note
that pow(x,y;) < pow(x,y;) is equivalent to

1 1
(38) (o) 5 (W= i) > () + 5 (v~ Ly P):
Let ; = 1/2(y; — |yi|*) then we re-write definition of
Wiy) as

(39) VVI(W) = {x € Rd | <xayi> +hl > <xay_i> +h.fa V]}

4.2 Damping Newton’s Method

Initially, we set h® = (|2 [y2/%,...,|ya[?), where
y; represents the coordinates of the i-th sample in
the target domain. The initial power diagram and
Weighted Delaunay triangulation are conventional
Voronoi diagram and Delaunay triangulation. This
guarantees the initial Brenier potential and its Legen-
dre dual are strictly convex, namely the initial height
vector belongs to the admissible space, h? € H.

Assume at the k-th step, we have got h*, the Bre-
nier potential u, and its Legendre dual «;,, the power
diagram {Wlik}l’f:l. We compute the gradient of Alexan-
drov energy Eqn. (33) and Hessian matrix H as de-
scribed in Eqn. (34). Then we solve the linear system:

VE (h*) = Hess(h*)d.

Next, we need to determine the step length A. We ini-
tialize A as one, and compute the convex hull of the
points

{(yhh]]( +ldl)a(y27h§+7bd2)7 7(yn7hﬁ+2’dn)}

If the convex hull misses any point, then h* + Ad is
outside the admissible space, the corresponding Bre-
nier potential is not strictly convex. Then we reduce

the step length A by half, A <+ %)L and repeat the trial.
We repeat this procedure and find the minimal /, such
that

rnlinhk +27dex.

By iterating this procedure, we reduce the Alexandrov
energy monotonously, until the difference between
the target measure and the current (measured by the
norm of the gradient of the Alexandrov’s potential,
Eqgn. (33)) is less than a prescribed threshold £ > 0.

Algorithm 1 Geometric Variational Method for Opti-
mal Transportation Map

1: Input: Convex domain Q with measure u; Dis-
crete samples Y := {y;,y2,---,y,} with measures
Vi, Vo, , vy, With equal measures p(Q) =37, v;.
2: Output: Optimal transport map 7: Q — Y.
3: Initialize h° = (h1,ha, ... hy) —
1/2(y1 s y2 o nl?)-
4: while true do
5:  Compute the Brenier potential u,« and its Leg-
endre dual u};
6: Project u and u, to obtain the power diagram
and weighted De}launay triangulation;
7:  Compute the gradient VE(h*) of Alexandrov en-
ergy Eqn. (33);
8: if |VE(h")| is less than ¢ then
o: return 7 = V.
10:  endif
11: Compute the Hessian matrix of Alexandrov en-
ergy Eqn. (34) and (30);
12:  Solve linear system VE(h*) = Hess(h¥)d;
13:  Set the step length 4 « 1;

14:  repeat
150 A< A/
16: Construct the convex hull of {(y;, ¥ +Ad;)}";

17:  until all sample points are on the convex hull;
18: update height vector h*t! « h¥+ Ad;
19: end while

As shown in Fig. 5, given a genus zero surface
with a single boundary S, it has an induced Euclidean
metric g, which induces the surface area element dA,.
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e. Brenier potential

f. Legendre dual

Figure 5. The optimal transportation map for a male face.

After the normalization, the total surface area is =.
The Riemann mapping ¢ : (S,g) — (D, du® + dv*) maps
the surface onto the unit disk, and pushes the area
element to the disk, denoted as @dA,. Since Riemann
mapping is conformal, the surface area element can
be written as

dAg(u,v) = M) dudy,

where ¢2*(“") s the area distortion function, can be
treated as the target density function.

On the disk, the Lebesgue measure, or equiva-
lently the Euclidean metric du® + dv? induces the Eu-

clidean area element dudv. We compute the optimal
transportation 7 : (D, dudv) — (D, pydA,) using the geo-
metric variational method. The optimal mapping re-
sult is shown between the two planar images. The
composition between the Riemann mapping ¢ and
the inverse of the optimal transportation map 7!
gives an area-preserving mapping

T '0q:(S,g) — (D,dudv), (T o@)sdAg= dudv.

In order to visualize the mapping 7! o ¢ is area-
preserving, we put circle packing texture on the pla-
nar unit disk, and pull it back to the original surface
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a. angle distortion of
conformal mapping

c. angle distortion of
optimal transport map

b. area distortion of
conformal mapping

d. area distortion of
optimal transort map

Figure 6. Angle distortion and area distortion histograms of the male surface in Fig. 5.

as shown in the top right frame Fig. 5, we can see that
the small circles are mapped to ellipses with similar
area.

As shown in Fig. 6, we compute the histograms to
measure the distortions. The top row shows the his-
tograms of conformal mapping of Fig. 5, the bottom
row show those of optimal transportation map. The
left column shows the angle distortion histogram,
the right column the area distortion histogram. The
angle distortion histogram is calculated as follows:
the triangle mesh § in R? and its planar image share
the same triangulation, each corner angle in S corre-
sponds to a planar corner angle. We compute the log-
arithm of the ratio between the corresponding cor-
ner angles, and construct the histograms. From Fig. 6
left column, it is obvious that the angle distortion his-
togram of conformal mapping highly concentrates in
the zero point, this shows the conformal mapping in-
duces very small angle distortions, in contrast, the
optimal transportation map induces large angle dis-
tortions. The right column shows the area distortion
histograms, which is obtained by computing the log-
arithm of the ration between corresponding face ar-
eas. It can be seen that the optimal transport mapping
induces very small area distortions, whereas the con-
formal mapping induces large area distortions.

Fig. 8 shows the computation process of the Bud-
dha surface model. The conformal mapping is com-
puted first, then the optimal transport map is ob-
tained by finding the Brenier potential. The interme-
diate maps are shown in the figure.

4.3 Monte-Carlo Method

In practice, our goal is to compute the discrete
Brenier potential in Eqn. (26) by optimizing the con-

vex energy in Egn. (30). For low dimensional cases,
we can directly use Newton’s method by computing
the gradient Eqn. (33) and Hessian matrix Eqn. (34).
For deep learning applications, direct computation
of Hessian matrix is unfeasible, instead we can use
gradient descend method or quasi-Newton’s method
with super-linear convergence. The key of the gradi-
entis to estimate the y-volume w; (k). This can be done
use Monte-Carlo method: we draw » random sam-
ples from the distribution u, and counts the number
of samples falling in W;(h), the ratio converge to the
u-volume. This method is purely parallel and can be
implemented using GPU. Furthermore, we can use hi-
erarchical method to further improve the efficiency:
first we classify the target samples to clusters, and
compute the optimal transportation map to the mass
centers of the clusters; second, for each cluster, we
compute the OT map from the corresponding cell to
the original target samples within the cluster.

In order to avoid mode collapse, we need to find
the singularity sets in Q. As shown in Fig. 7, the target
Dirac measure has two clusters, the source is the uni-
form distribution on the unit planar disk. The graph
of the Brenier potential function is a convex polyhe-
dron with a ridge in the middle. The projection of
the ridge on the disk is the singularity set X;(u), the
optimal mapping is discontinuous on X;. In general
cases, if two cells W;(h) and W;(h) are adjacent, then we
compute the angle between the normals to the corre-
sponding support planes,

1 Onyp)

0;; .= cos
Y yil - |yj|

if 6;; is greater than a threshold, then the common
facet W;(h) "\W;(h) is in the discontinuity singular set.
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Figure 7. Singularity set of the Brenier potential
function, discontinuity set of the optimal
transportation map.

5. Manifold Distribution Principle

We believe the great success of deep learning can
be partially explained by the well accepted manifold
distribution principle.

Manifold Distribution Principle

A natural class of data can be treated as a probabil-
ity distribution on a low dimensional manifold (data
manifold) embedded in the high dimensional ambient
space (image space).

Furthermore, the distances among the probability
distributions of subclasses on the manifold are far
enough to distinguish them.

As shown in Fig. 9, the MNIST data set is a col-
lection of hand written images. Each image is 28 x 28,
which can be treated as a single point in the im-
age space R¥x28 the MNIST data set is treated as a
point cloud. Using Hinton’s t-SNE embedding method,
we can map the point cloud onto a planar domain,
such that each image is mapped to a single point,
the mapping is bijective. The images of the same
digit are mapped to the same cluster. As shown in
the right frame, there are ten clusters on the plane,
corresponding to the ten hand written digits. This
shows the MNIST point cloud is close to a two dimen-
sional surface embedded in the 784 dimensional im-
age space. We recall the concept of manifold:

Definition 12 (Manifold). Suppose M is a topological
space, covered by a set of open sets M C | J,, Uy For each
open set U, there is a homeomorphism ¢, : Uy, — R",
the pair (Uy, @) form a chart. The union of charts
form an atlas A = {(Uq,9a)}. If UoNUg # 0, then the
chart transition map is given by @,g : ¢o(Us NUpg) —
Pp (Ua N Uﬁ);

Qop ‘= (PﬁO(PEzl-

The MNIST data set is treated as the data manifold
%; the space of all possible images is the image space
R7%4: the plane is the latent space Z; the mapping from
the data manifold to the latent space ¢ : £ — Dis called
the encoding map; the inverse mapping ¢~!: D — X
is called the decoding map. Each hand written digit
image p € X is a training sample on the data manifold,
its image of the encoding map ¢(p) is called the latent
code of p. The data set can be treated as a probability
distribution y defined on the data manifold X, which
is called data distribution.

Main Tasks In general, deep learning systems have
two major tasks:

1. Learn the manifold structure X, represented as
encoding and decoding maps.

2. Learn the data distribution u on X.

We use manifold view to explain how the de-
noising is accomplished by a Deep Learning system.
Traditional methods Fourier transform the noisy im-
age, filter out the high frequency component, inverse
Fourier transform back to the denoised image. Deep
learning methods use the clean facial images to train
the neural network, obtain a representation of the
manifold, then project the noisy image to the man-
ifold, the projection image point is the denoised im-
age. As shown in Fig. 11 left frame, we use a deep
learning system to learn the data manifold X of clean
human facial images. An facial image with noise is
p, which is not on X but close to the manifold. We
project P to X using the Riemannian metric in the im-
age space R”, the closest point on X to p is p, then p
is the denoised image.

Traditional method is independent of the content
of the image; ML method heavily depends on the con-
tent of the image. The prior knowledge is encoded
by the manifold. If the wrong manifold is chosen,
then the denoising result is of non-sense. As shown
in Fig. 12 right frame, we use the cat face manifold to
denoise a human face image, the result looks like a
cat face.

6. Manifold Learning

Learning data manifold structure is equivalent to
learning the encoding and decoding maps. The en-
coding mapping ¢ : £ — Z maps the data manifold to
the latent space. It push-forwards u to the latent dis-
tribution, denoted as ¢su. Given the data manifold =
and the latent space Z. There are infinite many en-
coding mappings. In practice, it is crucial to choose
the appropriate mapping, that preserves the data dis-
tribution. We use a low dimensional example to il-
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b. Buddha surface back

Figure 8. Buddha surface, the last two rows show the intermediate computational results during the optimization.

lustrate the concepts as shown in Fig. 13. The Bud-
dha surface represents the data manifold X, u is the
uniform distribution on X. Each row shows one en-
coding map. In the top row, if we uniformly sam-
ple the unit disk in the latent space, the samples are
pulled back to the surface by the decoding map, then
the pullback samples on X are highly non-uniform.
In contrast, in the bottom row, the uniform latent
samples are pulled back to uniform samples on the
surface. This shows the encoding map in the bottom
row preserves the data distribution u in the latent
space.

In practice, many methods have been proposed to
compute the encoding/decoding maps, such as VAE
(variational auto-encoder), [31, 26], WAE (Wasserstein
auto-encoer) [24], adversarial auto-encoder [39] and
SO on.

6.1 ReLu Deep Neural Network

In deep learning, the deep neural networks are
used to approximate mappings between Euclidean
spaces. One of the most commonly used activation
function is the ReLU function, o(x) = max{x,0}. When
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Figure 11. Image denoising as projecting to a
manifold.

x is positive, we say the neuron is activated. One neu-
ron represents a function o(3%, Ax; — b;), where 2,’s
are weights, b; the bias. Many neurons are connected
to form anetwork. A ReLU deep neural network (DNN)
represents a piecewise linear map.

Definition 13 (ReLU DNN). For any number of hidden
layers k € N, input and output dimensions wy,wiy €N,
a R* — R"+1 ReLU DNN is given by specifying a se-
quence of k natural numbers wi,w,,...,w; representing

widths of the hidden layers, a set of k affine transfor-
mations T; : R¥i-1 —RYi fori=1,...,k and a linear trans-
formation T, : R — R"+1 corresponding to weights
of hidden layers.

The mapping ¢g : R"0 — R"+! represented by this
ReLU DNN is

(40) @9 =Tiy100r0Tjo---0Tho010T7,

where o denotes mapping composition, 6 represent
all the weight and bias parameters, o; represents the
mapping o; : RVt — R" ¢; = (6},062,---,0,""),

(g

, Wil ,
o/=0 (Z kak—b{) :

k=1

Definition 14 (Activated Path). Given a point x € X
in the input space X, the activated path of x consists
all the activated neurons when @y (x) is evaluated, and
denoted as p(x). Then the activated path defines a set-
valued function p : X — 2° (S is the set of all neurons,
29 are all the subsets of S).

Fixing the parameter 6, the map ¢y induces cell
decomposition for the input space and the output
space.

Definition 15 (Cell Decomposition). Fix a map @g rep-
resented by a ReLU DNN, two data points x;,x, € X are
equivalent, denoted as x| ~ x, if they share the same
activated path, p(x;) = p(xz). Then each equivalence
relation partitions the ambient space X into cells,

D(gg) : X = UUoc,

each equivalence class corresponds to a cell: x;,x, € Uy,
if and only if x| ~x3. D(@g) is called the cell decomposi-
tion induced by the encoding map ¢g. The number of
cells is denoted as |D(@g)|.
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Figure 12. Human facial image denoising by projection to the data manifold.

Figure 13. Different encoding mappings from the manifold to the planar disk.

Furthermore, ¢y maps the cell decomposition in
the ambient space D(gg) to a cell decomposition in
the latent space. The restriction of ¢y on each cell is
a linear map. The number of cells in D(¢py) describes
the capacity of the network, namely the learning ca-
pability of the network.

Definition 16 (Learning Capability). Given a ReLU
DNN N with fixed architecture, the complexity of the
network N'(N) is defined as the maximal number of

cells of D(pq),
N(N) = max|D(¢o)].

We can explicitly estimate the upper bound of
the network capacity A (N). The maximum number of
parts one can get when cutting d-dimensional space
R¢ with n hyperplanes is denoted as C(d,n), then by
induction, one can easily show that

@) cdn)= (8) + @ + (Z) A (Z)
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Figure 15. Manifold embedding computed by an Auto-encoder.

We can easily get the upper bound estimation,

Theorem 9. Given a ReLU DNN N(wy,...,wki1), ¥ep-
resenting PL mappings @ : R*0 — R+ with k hidden
layers of widths {w;}*_,, then the linear rectified com-
plexity of N has an upper bound,

42) N(N) < H]FifC(W,;hWi).

15

6.2 AutoEncoder

One of the most popular model for learning
the encoding and decoding maps is AutoEncoder as
shown in Fig. 14. The AutoEncoder model consists
two symmetric Deep Neural Networks, the first net-
work represents the encoder, the second network rep-
resents the decoder. The number of nodes in the in-
put and the output layers equals to the dimension of
the ambient space. Between the encoder and decoder,
there is a bottle neck layer. The number of nodes in
the bottle neck layer equals to the dimension of the
latent space.

We denote the ambient space as X, latent space as
Z,encoding map ¢g : X — Z, decoding map vy : Z — X.
We sample the data manifold £ c X to get training
samples {x;,x,---,x,} C X, and apply the L>-norm as
the loss function £g. The training process is the opti-
mization

(43) rneinﬁe(xl,u-,xn):H{oingilxi—llleofpe(xi)|2~

Fig. 15 shows one example of surface embedding
using an Auto-encoder. We uniformly sample the Bud-
dha surface X in (a), then train an Auto-encoder using
formula Eqn. 43, the latent codes of the samples are
shown in (b), the decoded surface £ is shown in (c).
We can see the reconstructed surface is very similar
to the input surface, with user controlled Hausdorff
distance. Fig. 16 shows the cell decomposition of the
ambient space X and the latent space Z induced by
the encoding map ¢y and the decoding map .

In the following, we analyze the accuracy of mani-
fold learning using a surface example. Given the input
surface = embedded in R3, given any point p € R3, the
closest point on X to p is defined as

n(p,X) = argminq62|p — q\z.
The medial axis of the surface ¥ is defined as
I :={pek’:|n(p,2)|>1}.

where |-| represents the cardinality of the set. For any
point p € 3, the local feature size of p is the distance
from p to the medial axis I'(Z). Suppose the samplings
onZXareX = {x;,x,...,%}, such that for any point q € %,
the geodesic disk c(gq,8) intersects X is non-empty,
and the geodesic distance between any pair of sam-
plesis greater than ¢, then X is called a (8, ¢) sampling.
Given such a sampling, we can compute the geodesic
Delaunay triangulation of X, this induces a polyhe-
dral surface £. By geometric approximation theory,
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Figure 16. The cell decompositions induced by the Auto-encoder.
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Figure 17. The framework of a GAN model.

suppose X is C? smooth, we can determine the param-
eters 8, ¢ by the injective radius, the principle curva-
ture and the local feature size, such that £ approxi-
mates the original surface T with arbitrary precision
in terms of Hausdorff distance, Riemannian metric,
Laplace-Beltami operator, curvature measures and so
on.

Assume the network capacity for the auto-
encoder is big enough, the (6, ¢) samples are the train-
ing set and the optimization reduces the loss func-
tion to be 0, then the restriction of yy o @y equals to
identity, then the auto-encoder recovers £. By the con-
struction, the decoded surface approximates the orig-
inal surface with user desired accuracy. This argu-
ment can be generalized to higher dimensional man-
ifolds. In reality, the data manifold is unknown and
it is hard to figure out its injective radius, curvatures
and local feature size, the optimization of deep net-
works often gets stuck at the local optima. There are
many widely open challenges for learning the mani-
fold structure.

7. Generative Adversarial Networks

Generative Adversarial Networks (GAN) is one of
the most popular generative model in deep learning.
It has many merits, such as it can automatically gen-
erate samples, the requirement for the data samples

is reduced; it can model arbitrary data distribution
without closed form expression. As shown in Fig. 17,
a GAN model includes two deep neural networks, the
generator and the discriminator. The generator con-
verts a white noise (user prescribed distribution in
the latent space) to generated samples, the discrimi-
nator takes both the real data samples and the fake
generated samples and verify whether the current
sample is authentic or fake.

7.1 Competition vs. Collaboration

The generator and the discriminator competes
with each other, the generator improves the quality
of the generated samples to confuse the discrimina-
tor, and the discriminator improves the discriminat-
ing capability and detect the fake samples. Eventually,
the system reaches the Nash equilibrium, the discrim-
inator can not differentiate the generated ones from
the real samples, then the generated samples can be
applied to real applications, such as training other
recognition systems and so on.

Wasserstein GAN applies optimal transport
method as shown in Fig. 18. The generator G com-
putes the optimal transport map gy : Z — X, which
transforms the white noise { in the latent space
Z to the generated distribution ug = (gg)#{. The
discriminator D computes the Kantorovich potential
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Figure 18. The framework of a GAN model, Z is the latent space, { the white noise, X the image space, X the data
manifold, G generator, D discriminator.

@¢, then compute the Wasserstein distance between
U and the real data distribution v,

Welto,v) = max | ¢ (st (x) + | gE(¥)av(y),

where X and Y should be the data manifold X, in prac-
tice, they are replaced by the image space X in [6]. The
whole training process of WGAN model is a min-max
optimization,

meinm?x/xqoi(x)due(x)-ﬁ-/};(l’g()’)dv()’)-

One can choose L!-cost, then c(x,y) = [x—y|, ¢¢ = —o,
given ¢ is 1-Lipsitz, then the WGAN model optimizes

ngnméax/x(p;;Oge(z)dC(Z)—/Y(Pg()’)dV(Y)a
namely
meinméax E, ¢(@z0g6(2)) — Eyov(@e(y)),

with the constraint that ¢ is 1-Lipsitz.

If we use L? cost, then the discriminator com-
putes the Kantorovich potential ¢: for the purpose of
Wasserstein distance W;(ug,v), then the Brenier po-
tential »: and the optimal transport map 7; can be
derived directly

1
ug = §\x|2—(p5(x), T§ = Vué

T transforms the generated distribution ug to the
real data distribution v. The generator gg transforms
¢ to ug, then the composition Vug o g maps the latent
white noise ¢ to the data distribution v, as shown in
the following commutative diagram,

Vué ogg

§——— v

DS

Ug

The generator seeks a measure preserving map to
transform ¢ to v. In each optimization step, the gener-
ator finds the current gy, which gives a transport map
from ¢ to i, the discriminator computes ug, which
transport ug to v. The composition Vug o g gives a
transport map from ¢ to v. Therefore, we can use
Vug 0 gg to update the generator gg, this will improve
the convergence rate. Currently, the generator and
the discriminator do not share intermediate compu-
tational results, which make the system highly ineffi-
cient. The competition between the generator and the
discriminator should be replaced by collaboration.

7.2 Memorization vs. Learning

In general deep neural networks have huge
amount of parameters, such that their capacities are
big enough to memorize all the training samples. So
the following question is naturally raised:

Memorization vs. Learning

Does a deep learning system really learn something
or just memorize all the training samples?

Generally speaking, in deep learning applica-
tions, the real data distribution v is approximated by
the empirical distribution: V = %2;':1 8(y —yi), where
{y1,¥2,...,yn} are the training samples, either the raw
samples on the data manifold or the latent codes in
the latent space. If we use the quadratic Euclidean dis-
tance as the cost function, then both the generator
and the discriminator compute the optimal transport
maps, or equivalently the Brenier potentials. From the
formula of the semi-discrete Brenier potential,

u= I?Eif({@vyi) —hi}

we can tell that the system really memorizes all the
training samples {y;}; but also learns the probability
for each sample represented by {#;}, which are ob-
tained by non-linear optimization.
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Figure 19. Comparison between conventional models VAE and WGAN with our model AE-OT using MNIST data
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Figure 20. Mode collapsing in WGAN-GP and WGAN-div model on CelebA data set.

Hence deep learning systems both memorize the
training samples and learn the probability measure.

7.3 Mode Collapsing

GANSs are sensitive to hyper-parameters and no-
toriously difficult to train. The training process is
highly unstable, and often diverge. GANs suffer from
mode collapsing, the generated distributions often
miss some modes in the training data set. For exam-
ple, if a GAN model is trained to learn the MNIST data
sets, which has multiple modes representing the ten
hand written digits, then the GAN model may only
learn 6 of them and forget the other 4 modes, or it
captures some modes in the intermediate stage, but
forgets part of them in the final stage. GANs also
suffer from mode mixture, they generate unrealistic
samples mixing different modes. As shown in Fig. 19,
VAE [31] or WGAN [6] models suffer from mode mix-
ture, they generate unrecognizable hand written digit
images, which look like the interpolation/mixture of
some digits. Fig. 20 shows mode collapsing on CelebA
data setusing WGAN-GP [22] and WGAN-div [28] mod-
els.

Mode collapsing can be explained using the regu-
larity theory of optimal transport maps. As shown in
Fig. 21, we use Monte-Carlo method to compute the
optimal transport map between the uniform distri-
bution defined on a rectangle to that on a dumb bell
shape. Even the target domain is simply connected,
because it is concave, the OT map is discontinuous at
the singular sets y; and 9, as shown in the left frame.

As we analyzed before, deep neural networks can
only represent continuous mappings, but the optimal
transport map is discontinuous given the target sup-
port is concave, this intrinsic conflict causes mode
collapse and mode mixture.

If the target measure v has multiple modes, its
support has multiple connected components, then
the continuous map may cover one connected com-
ponent and miss the other modes, this induces mode
collapse; or the continuous map covers all the modes
but also the gaps among the modes, then the samples
generated in the gap area will mix samples from dif-
ferent modes, hence this induces mode mixture. As
shown in Fig. 22, each orange spot represents a mode
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Figure 23. Singularity set detection.

in frame (a); the GAN model [19] misses some modes
and also covers the gaps among the modes in frame
(b); the pacgan model [36] covers all the modes but
also covers the gaps among them. Hence GAN model
and pacgan model suffer from both mode collapse
and mode mixture.

In order to verify our hypothesis that the trans-
port map is discontinuous on the singularity sets in
real applications, we design and perform a experi-
ment using human facial image data set celebA. As
shown in Fig. 23, we use an auto-encoder to encode
the data manifold X to the latent space, ¢ : X — 2, ¢
push-forwards the data distribution u to the latent
code distribution @su; then in the latent space, we
compute an optimal transport map from a uniform
distribution on the unit ball to the latent code dis-
tribution @su; we draw line segments in the unit ball,
which are maps to curves on the data manifolds, each
curve is a interpolation in the facial image set. As
shown in Fig. 24, each role is an interpolation curve
on the human facial image manifold.

As shown in Fig. 23, there are singularity sets
in the unit ball and a blue line segment intersects
the singularity sets at p, then T(p) is outside the la-
tent code set ¢(X), the decoded image ¢! (T(p)) is
outside the data manifold X. In this way, we can de-
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Figure 25. Facial images generated by an AE-OT
model, the central image shows the boundary of the
facial photo manifold.

tect the boundary of the data manifold X. An image
on the human facial image manifold means a human
face, which is physically “allowable”, satisfies all the
anatomically, biologically laws, but with zero proba-
bility to appear in reality. As shown in Fig. 25, we start
from a boy image with brown eyes and end at a girl
image with blue eyes. In the middle of the interpola-
tion, we generate a facial image with one blue eye and
one brown eye. This type of human faces exist in real
world, but the probability to encounter such a person
is almost zero in practice. All the training facial im-
ages are either brown eyes or blue eyes, the generated
facial image with different eye colors is on the bound-
ary of the data manifold. This demonstrates that the
existence of singularity set I, and the transport map
T is discontinuous at the T.

w=(fo)uv

nnnnn

Figure 26. The framework of AE-OT model.

7.4 AE-OT Model

In order to eliminate mode collapse, improve the
stability and make the whole model more under-
standable, we propose a novel generative model: AE-
OT model. As shown in Fig. 26, the model consists two
parts AE and OT. The AE network is an auto-encoder,
which focuses on manifold learning and computes
the encoding map fy : £ — Z and the decoding map
g¢ : T — Z; the OT module is in charge of probabil-
ity distribution transformation and finds the opti-
mal transport map using our geometric variational
approach. The OT module can be implemented ei-
ther using a deep neural network and optimized by
training or directly using geometric method, such as
Monte Carlo OT algorithm on GPU.

The mode collapses in conventional generative
models are mainly caused by the step of comput-
ing transport map, because the transport map is dis-
continuous but DNNs can only represent continuous
maps. The AE-OT model conquers this fundamental
difficulty in the following way: observe Fig. 27, in the
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Figure 28. Comparison between CRGAN [41] and our model.

latent space the latent code distribution has multiple
clusters, the support rectangle of the white noise is
partitioned into 10 cells as well, each cell is mapped
to a cluster with the same color. Therefore, the op-
timal transport map between the noise and the la-
tent code is discontinuous across the cell boundaries.
Instead of computing the OT map itself, the AE-OT
model computes the Brenier potential (lower-left cor-
ner), which is continuous (but not globally differen-
tiable) and representable by neural networks. Since
the OT map covers all the clusters of the latent code
distribution, and skips all the gaps among the clus-
ters, no mode collapse or mode mixture can happen.

Furthermore, the AE-OT model has the merits:
solving Monge-Ampeére equation is reduced to a con-
vex optimization, which has unique solution due to
the Brenier theorem 2. The optimization won’t be
trapped in a local optimum; the Hessian matrix of
the energy has explicit formulation. The Newton’s
method can be applied with second order conver-
gence; or the quasi-Newton’s method can be used
with super-linear convergence. Whereas conventional

gradient descend method has linear convergence; the
approximation accuracy can be fully controlled by the
density of the sampling density by using Monte-Carlo
method; the algorithm can be refined to be hierar-
chical and self-adaptive to further improve the effi-
ciency; the parallel algorithm can be implemented us-
ing GPU. By comparing Fig. 20 and Fig. 28, we can see
that the AE-OT model greatly reduces the mode col-
lapse and mode mixture. Fig. 29 shows the generated
facial images by training our model on the CelebAHQ
data set.

8. Conclusion

This work focuses on a geometric view of optimal
transport to understand deep learning models, such
as generative adversarial networks (GANSs). By man-
ifold distribution principle, deep learning systems
learn probability distributions on manifolds, there-
fore they have two major tasks: one is manifold learn-
ing, the other is probability measure learning.
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Figure 29. Human facial images generated by our model.

Manifold learning is reduced to construct encod-
ing and decoding maps between the data manifold
and the latent space. The probability distribution
learning can be achieved by optimal transport meth-
ods. The Brenier theory in optimal transport has in-
trinsic relation with Alexandrov theorem in convex
geometry via Monge-Ampeére equation. This leads to a
geometric variational algorithm to compute optimal
transport maps. By applying OT theory, we analyze
the conventional generative models, and find that the
generator and discriminator in a GAN model should
collaborate instead of compete with each other; the
GAN model both memorizes all the training samples
and learns the probability measure; furthermore, the
regularity theory of Monge-Ampeére equation explains
the intrinsic reason for mode collapse. In order to
eliminate mode collapse, a novel AE-OT model is in-
troduced, which computes the continuous Brenier po-
tential instead of the discontinuous transport maps.

Optimal transport theory and Riemannian geom-
etry lay down the theoretic foundation of deep learn-
ing. In the future, we will explore further to use mod-
ern geometry theories to understand deep learning
algorithms and design novel models.
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