
Optimal Transport for Generative

Models

by Xianfeng Gu* and Shing-Tung Yau†

Abstract. Optimal transport plays a fundamental

role in deep learning. Natural datasets have intrinsic

patterns, which can be summarized as the manifold

distribution principle: a natural class of data can

be treated as a probability distribution on a

low dimensional manifold, embedded in a high

dimensional ambient space. A deep learning system

mainly accomplishes two tasks: manifold learning

and probability distribution transformation.

Given a manifold X , all the probability measures

on X form an infinite dimensional manifold P(X).

Optimal transport assigns a Riemannian metric on

P(X), the so-called Wasserstein metric, and defines

Otto’s calculus, such that variational optimization

can be carried out in P(X). A deep learning system

learns the distribution by optimizing some functional

in P, therefore optimal transport lays down the

theoretic foundation for deep learning.

This work introduces the theory of optimal transport

and the profound relation between Brenier’s theorem

and Alexandrov’s theorem in differential geometry

via Monge-Ampère equation. We give a variational

proof for Alexandrov’s theorem, and convert the

proof to a computational algorithm to solve the

optimal transport map. The algorithm is based on

computational geometry and can be generalized to

general manifold setting.

Optimal transport theory and algorithms have been

extensively applied in the models of Generative

Adversarial Networks (GANs). In a GAN model,

the generator computes the OT map, while the

discriminator computes the Wasserstein distance
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between the generated data distribution and the

real data distribution. The optimal transport theory

shows the competition between the generator and

the discriminator is completely unnecessary and

should be replaced by collaboration. Furthermore, the

regularity theory of optimal transport map explains

the intrinsic reason for mode collapsing.

A novel generative model is introduced, which uses

an autoencoder (AE) for manifold learning and OT

map for probability distribution transformation. This

AE-OT model improves the theoretical rigor and

transparency, as well as the computational stability

and efficiency; in particular, it eliminates the mode

collapse.

1. Introduction

Deep learning is the mainstream technique for

many machine learning tasks, including image recog-

nition, machine translation, speech recognition, and

so on. Despite its great success, the theoretical un-

derstanding on how it works remains primitive. Many

fundamental open problems need to be solved, and

many profound questions need to be answered.

In this chapter, we focuses on a geometric view

of optimal transport (OT) to understand deep learn-

ing models, such as generative adversarial networks

(GANs). Especially, we aim at answering the following

basic questions:

1. What does a deep learning system really learn?

The system learns the probability distributions on

manifolds. Each natural class of data set can be
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treated as a point cloud in the high dimensional ambi-

ent space, and the point cloud approximates a special

probability measure defined on a low dimensional

manifold. The system learns two things: one is the

manifold structure, the other is the distribution on

the manifold. The manifold structure is represented

by the encoding and decoding maps, which map be-

tween themanifold and the latent space. In generative

models, such as GANs, the probability distributions

are represented by the transport mappings from a

predefined white noise (such as a Gaussian distribu-

tion, which can be easily generated from a uniform

distribution) to the data distribution either in the la-

tent space or on the data manifold.

2. How does a deep learning system really learn?

All the probability distributions on a manifold Σ form

an infinite dimensional space P(Σ). A deep learn-

ing system performs optimization in the space of

P(Σ). For example, the principle of maximum entropy

searches for a distribution in P(Σ) by optimizing the

entropy functional with some constraints obtained by

observations. The optimal transport theory defines

a Riemannian metric on the probability distribution

space P(Σ) and Otto’s calculus, such that the Wasser-

stein distance betweenmeasures can be computed ex-

plicitly, the variational optimizations can be carried

out by these theoretic tools. For example, the discrim-

inator in the WGAN model computes the Wasserstein

distance between the real data distribution and the

generated data distribution, the training process fol-

lows the Wasserstein gradient flow on P(Σ).

3. How well does a deep learning system really

learn?

Current deep learning system designs have funda-

mental flaws, most generative models suffer from

mode collapsing. Namely, they keep forgetting some

knowledge already learned at the intermediate stage,

or they generate unrealistic samples. This can be ex-

plained by the regularity theory of optimal transport

maps, basically the transport maps are discontinu-

ous, whereas the deep neural networks can only rep-

resent continuous maps, therefore either the map

misses some connected components of the support

of data distribution or covers all the components but

also the gaps among them.

From the above short answers, we can see the

importance of the theories of manifold and opti-

mal transport for deep learning. In the following,

we will briefly review the most related works in sec-

tion 2; briefly introduce the theory of optimal trans-

port in section 3; explain the computational algo-

rithms for optimal transport in details in section 4;

after the preparation, we explain the manifold distri-

bution principle in deep learning and manifold learn-

ing by auto-encoder in section 5 and 6 respectively;

then we use optimal transport view to analyze GAN

model, explain the reason for mode collapse and the

novel design to eliminate mode collapse in section 7;

finally, we conclude the work in section 8.

2. Related Works

The literature of optimal transport and genera-

tive models is huge. Here, we only review the most

directly related works.

2.1 Optimal Transportation Map

Monge-Kantorovich theory has been applied to

solve optimal transportation problem via linear pro-

gramming technique [30, 29]. The method was intu-

itively applied for image registration and warping in

early research works. This approach was proposed

in [55], however due to the expensive computational

cost, the method can hardly handle the 3D image reg-

istration problem efficiently. Optimal transportation

map was also applied for texture mapping purposes

in [16], where the surface is intially mapped to the

unit sphere conformally, then the mapping is opti-

mized by a gradient flow with multiple level of reso-

lutions to accelerate the convergence. Since the exact

evaluation of Wasserstein distance is expensive, the

heat kernel method was applied to approximate it in

[50, 49]. In order to extend the problem into large data

set, [12] added an entropic regularizer into the origi-

nal Linear Programming problem and as a result, the

regularized problem can be quickly computed with

the Sinkhorn algorithm. Then Solomon et al. [49] im-

proved the computational efficiency by the introduc-

tion of fast convolution.

Recent research works are more based on Monge-

Brenier theory [9]. Gu et al. used a geometric varia-

tional approach to prove Alexandrov theorem in [20],

which is equivalent to the discrete Brenier theorem.

The method leads to a constructive algorithm for

computing optimal transportation maps in general

settings. In [15], De Goes et al. proposed to use OT for

2D shape reconstruction and simplification, later on

they generalized to use capacity-constrained Voronoi

tessellation to deal with blue noise processing prob-

lem [14]. [40] proposed a multi-scale approach to ac-

celerate the computation for large scale problems.

Most of the early works focus on 2D image registra-

tion and processing, recent works generalized them
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to deal with 3D surfaces by using computational geo-

metric approaches. By incorporating with conformal

mapping methods, optimal transportation maps are

applied to obtain area-preserving maps in [53]. The

methods in [61] can simultaneously balance the area

and the angle distortion. Su et al. generalized the al-

gorithm to three dimensional case and presented a

volume-preserving maps in [51] and then in [52] they

further gave a volumetric controllable algorithm by

OT map.

While most of the research works deal with op-

timal transport problems with Euclidean metric, [58,

11] focused on the solving the optimal transportation

problems in the spherical domain. The method has

also been applied for area-preserving brain mapping

in [54], which maps the cortical surface onto the unit

sphere conformally then onto the extended complex

plane by the stereographic projection. The method

has been improved in [44] by using conformal weld-

ing method.

Recent research works also introduce optimal

transportation theory in optical design field. Reflec-

tor design problem was summarized as a group of

Monge-Ampère equation problem in [57, 21, 58]. The

correspondence between Monge-Ampère equations

and reflector design problems was listed as one of the

open problems in [60], and can further be related to

optimal transportation theory. Similar researches in

lens design situation were introduced in [23]. Numer-

ical methods and simulation results of these optical

design problems were proposed in [42].

2.2 Generative Models

Encoder-Decoder Architecture A breakthrough for

image generating comes from the scheme of Varia-

tional Autoencoders (VAEs) (e.g. [31]), where the de-

coders approximate real data distributions from a

Gaussian distribution in a variational approach (e.g.

[31] and [47]). Latter Yuri Burda et al. [62] lower

the requirement of latent distribution and propose

the importance weighted autoencoder (IWAE) model

through a different lower bound. Bin and David [13]

propose that the latent distribution of VAE may not

be Gaussian and improve it by firstly training the

original model and then generating new latent code

through the extended ancestral process. Another im-

provement of the VAE is the VQ-VAE model [1], which

requires the encoder to output discrete latent codes

by vector quantisation, then the posterior collapse

of VAEs can be overcome. By multi-scale hierarchi-

cal organization, this idea is further used to gener-

ate high quality images in VQ-VAE-2 [46]. In [24], the

authors adopt the Wasserstein distance in the latent

space to measure the distance between the distribu-

tion of the latent code and the given one and generate

images with better quality. Different from the VAEs,

the AE-OT model [3] firstly embed the images into

the latent space by autoencoder, then an extended

semi-discrete OT map is computed to generate new

latent code based on the fixed ones. Decoded by the

decoder, new images can be generated. Although the

encoder-decoder based methods are relatively simple

to train, the generated images tend to be blurry.

Generative Adversarial Networks The GAN model

[19] tries to alternatively update the generator, which

maps the noise sampled from a given distribution

to real images, and the discriminator differentiates

the difference between the generated images and the

real ones. If the generated images successfully fool

the discriminator, we say the model is well trained.

Later, [45] proposes a deep convolutional neural net-

work (DCGAN) to generate images with better qual-

ity. While being a powerful tool in generating realistic

samples, GANs can be hard to train and suffer from

mode collapse problem [18]. After delicate analysis,

[6] points out that it is the KL divergence the original

GAN used causes these problems. Then the authors

introduce the celebrated WGAN, which makes the

whole framework easy to converge. To satisfy the Lip-

schitz continuity required by WGAN, a lot of methods

are proposed, including clipping [6], gradient penalty

[22], spectral normalization [43] and so on. Later, Wu

et al. [28] use the Wasserstein divergence objective,

which get rid of the Lipschitz approximation prob-

lem and gets a better result. Instead L1 cost adopted

by WGAN, Liu et al. [37] propose the WGAN-QC by

taking the L2 cost into consideration. Though various

GANs can generate sharp images, they will theoreti-

cally encounter the mode collapse or mode mixture

problem [18, 3].

Hybrid Models To solve the blurry image problem

of encoder-decoder architecture and the mode col-

lapse/mixture problems of GANs, a natural idea is to

compose them together. Larsen et al. [32] propose to

combine the variational autoencoder with a genera-

tive adversarial network, and thus generate images

better than VAEs. [39] matches the aggregated pos-

terior of the hidden code vector of the autoencoder

with an arbitrary prior distribution by a discrimina-

tor and then applies the model into tasks like semi-

supervised classification and dimensionality reduc-

tion. BiGAN [27] uses the discriminator to differen-

tiate both the generated images and the generated

latent code. Further, by utilizing the BigGAN gener-

ator [4], the BigBiGAN [17] extends this method to

generate much better results. Here we also treat the

BourGAN [59] as a hybridmodel, because it firstly em-

beds the images into latent space by Bourgain theo-

rem, then trains the GANmodel by sampling from the

latent space using the GMM model.
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Conditional GANs are another kind of hybrid

models that can also be treated as image-to-image

transformation. For example, using an encoder-

decoder architecture to build the connection between

paired images and then differentiating the decoded

images with the real ones by a discriminator, [25]

is able to transform images of different styles. Fur-

ther, SRGAN [33] uses similar architecture to get su-

per resolution images from their low resolution ver-

sions. The SRGANmodel utilizes the content loss and

adversarial loss. It uses the paired data and the vi-

sually meaningful features used by SRGAN are ex-

tracted from the pre-trained VGG19 network [48],

which makes it not so reasonable under the scenes

where the datasets are not included in those used to

train the VGG.

Optimal Transport Based Generative Model In [35]

Lei et al. first gave a geometric interpretation to the

Generative Adversarial Networks (GANs). By using

the optimal transportation view of GAN model, they

showed that the discriminator computes the Wasser-

stein distance via the Kantorovich potential, the gen-

erator calculates the transportation map. For a large

class of transportation costs, the Kantorovich po-

tential can give the optimal transportation map by

a close-form formula. Therefore, it is sufficient to

solely optimize the discriminator. This shows the ad-

versarial competition can be avoided, and the compu-

tational architecture can be simplified. In [34] the au-

thors pointed out that GANs mainly accomplish two

tasks: manifold learning and probability distribution

transformation. The latter can be carried out using

the classical OT method. Then in [3] a new genera-

tive model based on extended semi-discrete optimal

transport was proposed, which avoids representing

discontinuous maps by DNNs, therefore effectively

prevents mode collapse and mode mixture.

Numerical Method In this work, we show that the

reason that causes themode collapse in deep learning

is indeed the discontinuity of optimal transport map

in general. It is very similar to the situation when us-

ing the classic numerical method to solve OT map.

For instance, the Brenier potential in OT satisfies the

Hamiltonian- Jacobi equation which could be con-

tinuous. However, its velocity (corresponding to the

OT map) satisfying the conservation law is generally

discontinuous. For examples, the Benamou-Brenier

method [7] and Haker-Tannenbaum-Angent method

[5] compute the optimal transport maps based on

fluid dynamics.

3. Optimal Transport Theory

In this subsection, we will introduce basic con-

cepts and theorems in classic optimal transport the-

ory, focusing on Brenier’s approach, and their gener-

alization to the discrete setting. Details can be found

in Villani’s book [56].

3.1 Monge Problem

Suppose X ⊂ Rd , Y ⊂ Rd are two measurable sub-

sets of d-dimensional Euclidean space Rd , µ,ν are two

probability measures defined on X and Y respectively,

with density functions

µ(x) = f (x)dx, ν(y) = g(y)dy.

Suppose their total measures are equal, µ(X) = ν(Y ),
namely

(1)

∫
X

f (x)dx =
∫

Y
g(y)dy.

We only consider maps which preserve the measure.

Definition 1 (Measure-PreservingMap). Amap T : X→
Y is measure preserving if for any measurable set B⊂
Y , the set T−1(B) is µ-measurable and µ(T−1(B)) = ν(B),
i.e.

(2)

∫
T−1(B)

f (x)dx =
∫

B
g(y)dy.

Measure-preserving condition is denoted as T#µ =

ν , where T#µ is the push forward measure induced

by T . Suppose T : X → Y is differentiable, T ∈ C1(X),

then the measure-preserving map satisfies the Jaco-

bian equation:

(3) detDT (x) =
f (x)

g◦T (x)
.

Definition 2 (Transport Cost). Given a cost function

c(x,y) : X×Y →R≥0, which indicates the cost of moving

each unit mass from the source to the target, the total

transport cost of the map T : X → Y is defined to be

(4) C(T ) :=
∫

X
c(x,T (x))dµ(x).

The Monge’s problem of optimal transport arises

from finding the measure-preserving map that mini-

mizes the total transport cost.

Problem 1 (Monge’s Optimal Transport [8] (MP)).

Given a transport cost function c : X ×Y → R, find the

measure preserving map T : X →Y that minimizes the

total transport cost

(5) (MP) min
T#µ=ν

∫
X

c(x,T (x))dµ(x).

Definition 3 (Optimal Transport Map). The solutions

to the Monge’s problem is called the optimal transport

map, whose total transport cost defines the Wasser-

stein distance between µ and ν .
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If c(x,y) = 1
2‖x−y‖2, the Wasserstein distance is de-

noted as W2(µ,ν), then

(6) W2
2 (µ,ν) = min

T#µ=ν

1
2

∫
X
|x−T (x)|2dµ(x).

3.2 Kantorovich’s Approach

Depending on the cost function and the mea-

sures, the optimal transport map between (X ,µ) and

(Y,ν)may not exist. For example, suppose µ is atomic

µ = δ (x−x0), and ν =∑
k
i=1 νiδ (y−yi)with ∑

k
i=1 νi = 1, then

the mass concentrated on x0 has to be split and sent

to different yi’s. Kantorovich relaxed transport maps

to transport plans or transport schemes. A transport

plan is represented by a joint probability measure

ρ : X ×Y → R≥0, such that the marginal probability

of ρ equals to µ and ν respectively. Formally, let the

projection maps be πx(x,y) = x, πy(x,y) = y, then define

joint measure class

(7) Π(µ,ν) := {ρ : X×Y → R : (πx)#ρ = µ,(πy)#ρ = ν}

Problem 2 (Kantorovich). Given a transport cost func-

tion c : X ×Y → R, find the joint probability measure

ρ : X → Y with marginals µ and ν that minimizes the

total transport cost

(8) (KP) min
ρ∈Π(µ,ν)

∫
X×Y

c(x,y)dρ(x,y).

Kantorovich’s problem can be solved using linear

programming method. Due to the duality of lineary

programming, the (KP) Eqn. 8 can be reformulated as

the duality problem (DP) as follows:

Problem 3 (Kantorovich Dual). Given a transport cost

function c : X ×Y → R, find the function ϕ ∈ L1(X) and

ψ ∈ L1(Y ), such that

(9)

(DP) max
ϕ,ψ

{∫
X

ϕ(x)dµ +
∫

Y
ψ(y)dν : ϕ(x)+ψ(y)≤ c(x,y)

}
The maximum value of Eqn. 9 gives the Wasser-

stein distance. Most existing Wasserstein GAN mod-

els are based on the duality formulation under the L1

cost function.

Definition 4 (c-transform). The c-transform of ϕ : X→
R is defined as ϕc : Y → R:

(10) ϕ
c(y) = inf

x∈X
(c(x,y)−ϕ(x)).

Assume c(x,y) and ϕ are with C1 continuity, then

the necessary condition for c-transform is given by

(11) ∇xc(x,y(x))−∇ϕ(x) = 0.

Then the Kantorovich dual problem can be rewrit-

ten as

(12) (DP) Wc(µ,ν) = max
ϕ

∫
X

ϕ(x)dµ +
∫

Y
ϕ

c(y)dν ,

where ϕ is called the Kantorovich’s potential.

3.3 Brenier’s Approach

Given a strictly C1 convex function h : Ω → R,
where Ω is a convex domain in Rn, the gradient map-

ping x 7→ ∇h(x) is invertible. The inverse mapping is

denoted as (∇h)−1.

Suppose the cost function c(x,y) = h(x− y) where
h is a strictly C1 convex function, then the solution

to Kantorovich’s dual problem Eqn. 12 satisfies the

c-transform condition Eqn. 11, hence we obtain the

formula for the optimal transport map T ,

(13) T (x) = x− (∇h)−1(∇ϕ(x)).

This leads to the following theorem,

Theorem 1 (Villani [56]). Given µ and ν on a com-

pact domain Ω ⊂ Rn there exists an optimal transport

plan ρ for the cost c(x,y) = h(x− y) with h strictly con-

vex. It is unique and of the form (id,T#)µ , provided µ is

absolutely continuous and ∂Ω is negligible. More over,

there exists a Kantorovich potential ϕ , and T can be

represented as

T (x) = x− (∇h)−1(∇ϕ(x)).

For quadratic Euclidean distance cost, h(x) =
1
2 〈x,x〉, (∇h)−1(x) = x, then Eqn. 13 becomes

(14) T (x) = x−∇ϕ(x) = ∇

(
1
2
〈x,x〉−ϕ(x)

)
= ∇u,

where the function u : X → R is called the Brenier

potential. In this case, the Brenier’s potential u and

the Kantorovich’s potential ϕ is related by Eqn. 14.

Assume the Brenier potential is C2 convex, by Jaco-

bian equation Eqn. 3, it satisfies the followingMonge-

Ampère equation:

(15) det

(
∂ 2u

∂xi∂x j

)
(x) =

f (x)
g◦∇u(x)

The existence, uniqueness and the intrinsic structure

of the optimal transport map were proven by Brenier

[9].

Theorem 2 (Brenier [9]). Suppose X and Y aremeasur-

able subsets of the Euclidean space Rd and the trans-

port cost is the quadratic Euclidean distance c(x,y) =
1/2‖x− y‖2. Furthermore µ is absolutely continuous

with respect to Lebesgue measure and µ and ν have

finite second order moments,

(16)

∫
X
|x|2dµ(x)+

∫
Y
|y|2dν(y)< ∞,
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then there exists a convex function u : X → R, the so-

called Brenier potential, its gradient map ∇u gives the

solution to the Monge’s problem,

(17) (∇u)#µ = ν .

The Brenier potential is unique upto a constant, hence

the optimal mass transport map is unique.

Therefore, finding the optimal transport map is

reduced to solving the Monge-Ampère equation.

Problem 4 (Brenier). Suppose X and Y are subsets of

the Euclidean space Rd and the transport cost is the

quadratic Euclidean distance. Furthermore µ is abso-

lutely continuous with respect to Lebesgue measure

and µ and ν have finite second order moments, find a

convex function u : X → R, satisfies the Monge-Ampère

equation Eqn. 15.

For quadratic Euclidean distance cost c(x,y) =

1/2‖x−y‖2 in Rn, the c-transform and the classical Leg-

endre transform have special relations.

Definition 5 (Legendre Transform). Given a function

ϕ : Rn→ R, its Legendre transform is defined as

(18) ϕ
∗(y) := sup

x
(〈x,y〉−ϕ(x)) .

We can show the following relation holds for

quadratic Euclidean cost,

(19)
1
2
|y|2−ϕ

c(y) =

(
1
2
|x|2−ϕ(x)

)∗
.

3.4 McCann’s Displacement

We consider all the probability measures µ de-

fined on X with finite second order moment, µ is

absolutely continuous with respect to Lebesgue mea-

sure,

(20) P(X) :=

{
µ :
∫

X
|x|2dµ(x)< ∞,µ a.c.

}
Then according to Brenier’s theorem, for any pair

µ,ν ∈ P(X), there exists a unique optimal transport

map T : X → X , T#µ = ν , furthermore T = ∇u for

some Brenier potential u, which satisfies the Monge-

Ampère equation 15. The transportation cost gives

the Wasserstein distance between µ and ν in Eqn. 6.

Definition 6. Given a path ρ : [0,1] → P(X) in the

(P(X),W2), if it satisfies the condition

(21) W2(ρ(s),ρ(t)) = |t− s|W2(ρ(0),ρ(1)) ∀s, t ∈ [0,1],

then we say ρ is a geodesic.

McCann gives the geodesic formula in the dis-

tance space (P(X),W2).

Theorem 3 (McCann). Given µ,ν ∈ (P(X),W2) and u is

the corresponding Brenier potential, then the geodesic

connecting µ and ν is given by

ρ(t) := ((1− t)Id + t∇u)#µ t ∈ [0,1],

which is called McCann’s displacement.

3.5 Benamou-Brenier Dynamic Fluid

Brenier-Benamou gives another formulation of

geodesic using fluid dynamic. Let X = Rn, consider

a flow field in X , represented by the density field

ρ(t,x) and the flow velocity field v(t,x). We denote

ρ(t, ·) as ρt , v(t, ·) as vt . We define Σ(µ,ν) as set of flows

(ρ,v) = (ρt ,vt), 0≤ t ≤ 1, satisfying the following condi-
tions:

1. ρt is continuous with respect to t and ρt(x) is ab-
solutely continuous with respect to the Lebesgue

measure in X ;
2. v(t,x) is L2 integrable with respect tot he measure

dρt(x)dt, ∫ 1

0

∫
X
|v(t,x)|2dρt(x)dt < ∞.

3. The union of the support of ρt is bounded,

⋃
0≤t≤1

Supp(ρt) bounded.

4. By mass conservation law, the pair (ρ,v) satisfy
the continuity equation,

(22)
∂ρt

∂ t
+∇ · (ρtvt) = 0

in the distributional sense.

5. Furthermore, the flow satisfies the boundary

condition ρ0 = µ and ρ1 = ν .

Problem 5 (Benamous-Brenier). Find the flow (ρ,v) ∈
Σ(µ,ν) that minimizes the total kinetic energy,

(23) A[ρ,v] =
∫ 1

0

(∫
X

ρt(x)|vt(x)|2dx

)
dt.

Benamou-Brenier proves kinetic energy of the solu-

tion to Eqn. 23 equals to the square of Wasserstein

distance in Eqn. 6, namely Benamou-Brenier prob-

lem is equivalent to Brenier problem, furthermore the

geodesic is given by the solution to the Benamou-

Brenier problem,

min

{
1
2

∫ 1

0

∫
X
|v(x, t)|2dρ(x, t)dt : (ρt ,vt) ∈ Σ(µ,ν)

}
.
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3.6 Otto’s Calculus

Suppose v is the optimal flow, given any diver-

gence field ∇ ·w = 0,

−∇ ·ρ
(

v+ ε
w
ρ

)
=−∇ ·ρv =

∂ρ

∂ t
,

therefore v+εw/ρ ∈ Σ(µ,ν). By the optimality of v, we
have ∫

ρ|v|2 ≤
∫

ρ

∣∣∣∣v+ ε
w
ρ

∣∣∣∣2 ,
therefore we have ∫

〈v,w〉= 0.

Because w is an arbitrary divergence free vector field,

by Hodge decomposition theorem, we have v is the

gradient field of some function ϕ , v = ∇ϕ . Benamou-

Brenier problem is reduced to

W2
2 (µ,ν) = min

(ρt ,u)

{∫ 1

0

∫
X
|∇u|2dρtdt,ρ0 = µ,ρ1 = ν ,

−∇ · (ρt∇u) =
∂ρt

∂ t

}
.

Given two geodesics ρ1(t),ρ2(t) ⊂ P(X), ρ1(0) = ρ2(0) =
ρ , their tangent vectors at ρ ∈ P(X) are

∂ρ1

∂ t
=−∇ · (ρ1∇ϕ1),

∂ρ2

∂ t
=−∇ · (ρ2∇ϕ2),

the Riemannian metric is defined as〈
∂ρ1

∂ t
,

∂ρ2

∂ t

〉
ρ

=
∫

X
〈∇ϕ1,∇ϕ2〉ρ(x)dx.

Otto’s calculus provides a theoretic tool for opti-

mization in (P(X),W2). For example, we can show the

Wasserstein gradient flow of entropy is equivalent to

the classical heat flow. Given a domain X ⊂ Rd with

smooth boundary ∂X , and a measure ρ ∈ P(X), its en-

tropy is defined as

Ent(ρ) :=
∫

X
ρ logρ dx.

Given a path ρ(t)⊂ P(X),

d
dt

Ent(ρ(t)) =
∫

X

(
ρ̇ logρ +ρ

ρ̇

ρ

)
dx =

∫
X
(1+ logρ)ρ̇ dx.

By continuity equation ρ̇ =−∇ · (vρ),∫
X

ρ̇ dx =−
∫

X
∇ · (vρ) dx =−

∫
∂X

vρ dx = 0.

and

∇ · (ρ logρv) = logρ∇(ρv)+ 〈∇ logρ,ρv〉.

we obtain

d
dt

Ent(ρ(t)) =
∫

X
〈∇ logρ,v〉ρ dx

This shows the Wasserstein gradient of entropy

equals to ∇ logρ . We plug it into the continuity equa-

tion and obtain

∂ρt

∂ t
+∇ ·

(
−∇ρt

ρt
ρt

)
=

∂ρt

∂ t
−∆ρt = 0.

This shows that the Wasserstein gradient flow of the

entropy is equivalent to the classical heat flow.

3.7 Regularity of Optimal Transportation Maps

Let Ω and Λ be two bounded smooth open sets in

Rd , let µ = f dx and ν = gdy be two probabilitymeasures

on Rd such that f |Rd\Ω = 0 and g|Rd\Λ = 0. Assume that

f and g are bounded away from zero and infinity on

Ω and Λ, respectively.

3.7.1 Convex Target Domain

Definition 7 (Hölder continuous). A real or complex-

valued function f on d-dimensional Euclidean space

satisfies a Hölder condition, or is Hölder continuous,

when there are non-negative real constants C, α > 1,
such that

| f (x)− f (y)| ≤C|x− y|α

for all x and y in the domain of f .

Definition 8 (Hölder Space). The Hölder spaceCk,α(Ω),

where Ω is an open subset of some Euclidean space

and k ≥ 0 an integer, consists of those functions on Ω

having continuous derivatives up to order k and such

that the k-th partial derivatives are Hölder continuous

with exponent α , where 0 < α ≤ 1.

Consider the optimal transport map

∇u : (Ω, f (x)dx) → (Λ,g(y)dy), the following theo-

rems give the regularity of the Brenier potential u.
Caffarelli’s theorem addresses the cases with the

cost function c(x,y) = 1/2|x− y|2.

Theorem 4 (Caffarelli [10]). If Λ is convex, then the

Brenier potential u is strictly convex, furthermore

1. If λ ≤ f , g≤ 1/λ for some λ > 0, then u ∈C1,α
loc (Ω).

2. If f ∈ Ck,α
loc (Ω) and g ∈ Ck,α

loc (Λ), with f ,g > 0, then

u ∈Ck+2,α
loc (Ω), (k ≥ 0,α ∈ (0,1))

Ma-Trudinger-Wang’s theorem [38] handles gen-

eral cost functions c(x,y). In the following theorem,

cp,q :=
∂ 2c(x,y)
∂xp∂yq

,ci j,p :=
∂ 3c(x,y)

∂xi∂x j∂yp
,ci j,pq :=

∂ 4c(x,y)
∂xi∂x j∂yp∂yq

,

and (cp,q) is the inverse matrix of cp,q.
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Figure 1. Singularity structure of an optimal transportation map [63].

Theorem 5 (Ma-Trudinger-Wang). The potential func-

tion u is C3 smooth if the cost function c is smooth, f ,g
are positive, f ∈C2(Ω), g ∈C2(Λ), and

• A1 ∀x,ξ ∈ Rn, ∃!y ∈ Rn, s.t. ξ = Dxc(x,y) (for exis-

tence)

• A2 |D2
xyc| 6= 0.

• A3 ∃c0 > 0 s.t. ∀ξ ,η ∈ Rn, ξ ⊥ η

∑(ci j,rs− cp,qci j,pcq,rs)c
r,kcs,l

ξiξ jηkηl ≥ c0|ξ |2|η |2.

• B1 Λ is c-convex w.r.t. Ω, namely ∀x0 ∈Ω,

Λx0 := Dxc(x0,Λ)

is convex.

3.7.2 Non-Convex Target Domain

If Λ is not convex, there exist f and g smooth such

that u 6∈ C1(Ω), the optimal transportation map ∇u is

discontinuous at singularities.

Definition 9 (subgradient). Given an open set Ω⊂ Rd

and u : Ω→ R a convex function, for x ∈Ω, the subgra-

dient (subdifferential) of u at x is defined as

∂u(x) := {p ∈ Rn : u(z)≥ u(x)+ 〈p,z− x〉 ∀z ∈Ω}.

It is obvious that ∂u(x) is a closed convex set. Ge-

ometrically, if p ∈ ∂u(x), then the hyper-plane

lx,p(z) := u(x)+ 〈p,z− x〉

touches u from below at x, namely lx,p ≤ u in Ω and

lx,p(x) = u(x), lx,p is a supporting plane to u at x.
The Brenier potential u is differentiable at x if its

subgradient ∂u(x) is a singleton. We classify the points

according to the dimensions of their subgradients,

and define the sets

Σk(u) :=
{

x ∈ Rd | dim(∂u(x)) = k
}
, k = 0,1,2 . . . ,d.

It is obvious that Σ0(u) is the set of regular points,

Σk(u), k > 0 are the set of singular points. We also de-

fine the reachable subgradients at x as

∇∗u(x) :=

{
lim
k→∞

∇u(xk)|xk ∈ Σ0,xk→ x

}
.

It is well known that the subgradient equals to the

convex hull of the reachable subgradient,

∂u(x) = Convex Hull(∇∗u(x)).

Theorem 6 (Figalli [63]). ] Let Ω,Λ ⊂ Rd be two

bounded open sets, let f ,g : Rd→R+ be two probability

densities, that are zero outside Ω, Λ and are bounded

away from zero and infinity on Ω, Λ, respectively. De-

note by T = ∇u : Ω→ Λ the optimal transport map pro-

vided by theorem 2. Then there exist two relatively

closed sets ΣΩ ⊂Ω and ΣΛ ⊂ Λ with |ΣΩ|= |ΣΛ|= 0 such

that T : Ω \ΣΩ → Λ \ΣΛ is a homeomorphism of class

C0,α
loc for some α > 0.

We call ΣΩ as singular set of the optimal trans-

portation map ∇u : Ω→ Λ. Fig. 1 illustrates the sin-

gularity set structure, computed using the algorithm

based on theorem 8. We obtain

Σ0 = Ω\{Σ1∪Σ2}, Σ1 =
3⋃

k=0

γk, Σ2 = {x0,x1}.

The subgradient of x0, ∂u(x0) is the entire inner hole

of Λ, ∂u(x1) is the shaded triangle. For each point on

γk(t), ∂u(γk(t)) is a line segment outside Λ. x1 is the bi-

furcation point of γ1,γ2 and γ3. The Brenier potential

on Σ1 and Σ2 is not differentiable, the optimal trans-

portation map ∇u on them are discontinuous.

Fig. 2 shows the singularity structure of an opti-

mal transport map between the uniform distribution

inside a solid ball to that of the solid Stanford bunny.

Since the target domain is non-convex, the boundary

surface has complicated folding structure, which is

the singularity of the map.
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Figure 2. Singularity structure of an optimal transportation map.

4. Computational Algorithm

4.1 Semi-Discrete Optimal Transport Map

Brenier’s theorem can be directly generalized to

the discrete situation. The source measure µ is abso-

lutely continuous with respect to Lebesgue measure,

defined on a convex compact domain Ω; the target

measure ν is the summation of Dirac measures

(24) ν =
n

∑
i=1

νiδ (y− yi),

where Y = {y1,y2, · · · ,yn} are training samples. The

source and the target measures have equal total mass

∑
n
i=1 νi = µ(Ω). Each sample yi corresponds to a sup-

porting plane of the Brenier potential, denoted as

(25) πh,i(x) := 〈x,yi〉+hi,

where the height hi is an unknown variable. We repre-

sent all the height variables as h = (h1,h2, · · · ,hn).

An envelope of a family of hyper-planes in the

Euclidean space is a hyper-surface that is tangent to

each member of the family at some point, and these

points of tangency together form the whole envelope.

As shown in Fig. 3, the Brenier potential uh : Ω→ R
is a piecewise linear convex function determined by

h, which is the upper envelope of all its supporting

planes,

(26) uh(x) =
n

max
i=1
{πh,i(x)}=

n
max
i=1
{〈x,yi〉+hi} .

The graph of Brenier potential is a convex polytope.

Each supporting plane πh,i corresponds to a facet of

the polytope. The projection of the polytope induces

a cell decomposition of Ω, each supporting plane πi(x)
projects onto a cell Wi(h),

(27) Ω =
n⋃

i=1

Wi(h)∩Ω, Wi(h) := {p ∈ Rd |∇uh(p) = yi}.

the cell decomposition is a power diagram.

The µ-measure of Wi∩Ω is denoted as wi(h),

(28) wi(h) := µ(Wi(h)∩Ω) =
∫

Wi(h)∩Ω

dµ.

The gradient map ∇uh : Ω→ Y maps each cell Wi(h) to
a single point yi,

(29) ∇uh : Wi(h) 7→ yi, i = 1,2, . . . ,n.

Given the target measure ν in Eqn. 24, there ex-

ists a discrete Brenier potential in Eqn. 26, whose pro-

jected µ-volume of each facet wi(h) equals to the given
target measure νi. This was proved by Alexandrov in

convex geometry.
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Figure 3. PL Brenier potential (left) and its Legendre dual (right).

Theorem 7 (Alexandrov [2]). Suppose Ω is a com-

pact convex polytope with non-empty interior in Rn,

n1, ...,nk ⊂ Rn+1 are distinct k unit vectors, the (n +

1)-th coordinates are negative, and ν1, ...,νk > 0 so that

∑
k
i=1 νi = vol(Ω). Then there exists a convex polytope

P ⊂ Rn+1 with exact k codimension-1 faces F1, . . . ,Fk, so

that ni is the normal vector to Fi and the intersection

between Ω and the projection of Fi is with volume νi.

Furthermore, such P is unique up to vertical transla-

tion.

Alexandrov’s proof for the existence is based

on algebraic topology, which is not constructive. Re-

cently, Gu et al. [20] gave a constructive proof based

on the variational approach.

Theorem 8 (Gu-Luo-Yau [20]). Let µ a probability

measure defined on a compact convex domain Ω in

Rd , Y = {y1,y2, . . . ,yn} be a set of distinct points in Rd .

Then for any ν1,ν2, . . . ,νn > 0 with ∑
n
i=1 νi = µ(Ω), there

exists h = (h1,h2, . . . ,hn)∈Rn, unique up to adding a con-

stant (c,c, . . . ,c), so that wi(h) = νi, for all i. The vector

h is the unique minimum argument of the following

convex energy

(30) E(h) =
∫ h

0

n

∑
i=1

wi(η)dηi−
n

∑
i=1

hiνi,

defined on an open convex set

(31) H= {h ∈ Rn : wi(h)> 0, i = 1,2, . . . ,n}.

Furthermore, ∇uh minimizes the quadratic cost

(32)
1
2

∫
Ω

|x−T (x)|2dµ(x)

among all transport maps T#µ = ν , where the Dirac

measure ν = ∑
n
i=1 νiδ (y− yi).

The gradient of the above convex energy in

Eqn. 30 is given by:

(33) ∇E(h) = (w1(h)−ν1,w2(h)−ν2, . . . ,wn(h)−νn)
T

The Hessian of the energy is given by

(34)
∂wi

∂h j
=−

µ(Wi∩Wj ∩Ω)

|yi− y j|
,

∂wi

∂hi
= ∑

j 6=i

∂wi

∂h j

As shown in Fig. 3, the Hessian matrix has explicit

geometric interpretation. The left frame shows the

discrete Brenier potential uh, the right frame shows

its Legendre transformation u∗h using definition 18.

The Legendre transformation can be constructed ge-

ometrically: for each supporting plane πh,i, we con-

struct the dual point π∗h,i = (yi,−hi), the convex hull of

the dual points {π∗h,1,π∗h,2, . . . ,π∗h,n} is the graph of the

Legendre transformation u∗h. The projection of u∗h in-

duces a triangulation of Y = {y1,y2, . . . ,yn}, which is the

weighted Delaunay triangulation. As shown in Fig. 4,

the power diagram in Eqn. 27 and weighted Delau-

nay triangulation are Poincarè dual to each other: if

in the power diagram, Wi(h) and Wj(h) intersect at a
(d− 1)-dimensional cell, then in the weighted Delau-

nay triangulation yi connects with y j. The element of

the Hessian matrix Eqn. 34 is the ratio between the

µ-volume of the (d−1) cell in the power diagram and

the length of dual edge in the weighted Delaunay tri-

angulation.

The conventional power diagram can be closely

related to the above theorem.

Definition 10 (power distance). Given a point yi ∈ Rd

with a power weight ψi, the power distance is given by

(35) pow(x,yi) = |x− yi|2−ψi.

Definition 11 (power diagram). Givenweighted points

(y1,ψ1), . . . ,(yk,ψk), the power diagram is the cell de-

composition of Rd ,

(36) Rd = ∪k
i=1Wi(ψ),
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Figure 4. Power diagram (blue) and its dual weighted Delaunay triangulation (black).

where each cell is a convex polytope

(37) Wi(ψ) = {x ∈Rd | pow(x,yi)≤ pow(x,y j),1≤ j ≤ k}.

The weighted Delaunay triangulation, denoted as

T (ψ), is the Poincare dual to the power diagram, if

Wi(ψ)∩Wj(ψ) 6= /0 then there is an edge connecting yi

and y j in the weighted Delaunay triangulation. Note

that pow(x,yi)≤ pow(x,y j) is equivalent to

(38) 〈x,yi〉+
1
2
(ψi−|yi|2)≥ 〈x,y j〉+

1
2
(ψ j−|y j|2).

Let hi = 1/2(ψi − |yi|2) then we re-write definition of

Wi(ψ) as

(39) Wi(ψ) = {x ∈Rd | 〈x,yi〉+hi ≥ 〈x,y j〉+h j, ∀ j}.

4.2 Damping Newton’s Method

Initially, we set h0 = 1
2 (|y1|2, |y2|2, . . . , |yn|2), where

yi represents the coordinates of the i-th sample in

the target domain. The initial power diagram and

Weighted Delaunay triangulation are conventional

Voronoi diagram and Delaunay triangulation. This

guarantees the initial Brenier potential and its Legen-

dre dual are strictly convex, namely the initial height

vector belongs to the admissible space, h0 ∈H.

Assume at the k-th step, we have got hk, the Bre-

nier potential uhk and its Legendre dual u∗hk , the power

diagram {W i
hk}n

i=1. We compute the gradient of Alexan-

drov energy Eqn. (33) and Hessian matrix H as de-

scribed in Eqn. (34). Then we solve the linear system:

∇E(hk) = Hess(hk)d.

Next, we need to determine the step length λ . We ini-

tialize λ as one, and compute the convex hull of the

points

{(y1,h
k
1 +λd1),(y2,h

k
2 +λd2), · · · ,(yn,h

k
n +λdn)}.

If the convex hull misses any point, then hk + λd is

outside the admissible space, the corresponding Bre-

nier potential is not strictly convex. Then we reduce

the step length λ by half, λ ← 1
2 λ and repeat the trial.

We repeat this procedure and find the minimal l, such
that

min
l

hk +2−ld ∈ Σ.

By iterating this procedure, we reduce the Alexandrov

energy monotonously, until the difference between

the target measure and the current (measured by the

norm of the gradient of the Alexandrov’s potential,

Eqn. (33)) is less than a prescribed threshold ε > 0.

Algorithm 1 Geometric Variational Method for Opti-

mal Transportation Map

1: Input: Convex domain Ω with measure µ ; Dis-

crete samples Y := {y1,y2, · · · ,yn} with measures

ν1,ν2, · · · ,νn, with equal measures µ(Ω) = ∑
n
i=1 νi.

2: Output: Optimal transport map T : Ω→ Y .
3: Initialize h0 = (h1,h2, . . . ,hn) ←

1/2(|y1|2, |y2|2, · · · , |yn|2).
4: while true do

5: Compute the Brenier potential uhk and its Leg-

endre dual u∗hk ;

6: Project uhk and u∗hk to obtain the power diagram

and weighted Delaunay triangulation;

7: Compute the gradient ∇E(hk) of Alexandrov en-
ergy Eqn. (33);

8: if ‖∇E(hk)‖ is less than ε then

9: return T = ∇uhk .

10: end if

11: Compute the Hessian matrix of Alexandrov en-

ergy Eqn. (34) and (30);

12: Solve linear system ∇E(hk) = Hess(hk)d;
13: Set the step length λ ← 1;
14: repeat

15: λ ← λ/2;
16: Construct the convex hull of {(yi,hk

i +λdi)}n
i=1;

17: until all sample points are on the convex hull;

18: update height vector hk+1← hk +λd;
19: end while

As shown in Fig. 5, given a genus zero surface

with a single boundary S, it has an induced Euclidean

metric g, which induces the surface area element dAg.
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Figure 5. The optimal transportation map for a male face.

After the normalization, the total surface area is π .

The Riemann mapping ϕ : (S,g)→ (D,du2 + dv2) maps

the surface onto the unit disk, and pushes the area

element to the disk, denoted as ϕ#dAg. Since Riemann

mapping is conformal, the surface area element can

be written as

dAg(u,v) = e2λ (u,v)dudv,

where e2λ (u,v) is the area distortion function, can be

treated as the target density function.

On the disk, the Lebesgue measure, or equiva-

lently the Euclidean metric du2 + dv2 induces the Eu-

clidean area element dudv. We compute the optimal

transportation T : (D,dudv)→ (D,ϕ#dAg) using the geo-

metric variational method. The optimal mapping re-

sult is shown between the two planar images. The

composition between the Riemann mapping ϕ and

the inverse of the optimal transportation map T−1

gives an area-preserving mapping

T−1 ◦ϕ : (S,g)→ (D,dudv), (T ◦ϕ)#dAg = dudv.

In order to visualize the mapping T−1 ◦ ϕ is area-

preserving, we put circle packing texture on the pla-

nar unit disk, and pull it back to the original surface
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Figure 6. Angle distortion and area distortion histograms of the male surface in Fig. 5.

as shown in the top right frame Fig. 5, we can see that

the small circles are mapped to ellipses with similar

area.

As shown in Fig. 6, we compute the histograms to

measure the distortions. The top row shows the his-

tograms of conformal mapping of Fig. 5, the bottom

row show those of optimal transportation map. The

left column shows the angle distortion histogram,

the right column the area distortion histogram. The

angle distortion histogram is calculated as follows:

the triangle mesh S in R3 and its planar image share

the same triangulation, each corner angle in S corre-

sponds to a planar corner angle. We compute the log-

arithm of the ratio between the corresponding cor-

ner angles, and construct the histograms. From Fig. 6

left column, it is obvious that the angle distortion his-

togram of conformal mapping highly concentrates in

the zero point, this shows the conformal mapping in-

duces very small angle distortions, in contrast, the

optimal transportation map induces large angle dis-

tortions. The right column shows the area distortion

histograms, which is obtained by computing the log-

arithm of the ration between corresponding face ar-

eas. It can be seen that the optimal transport mapping

induces very small area distortions, whereas the con-

formal mapping induces large area distortions.

Fig. 8 shows the computation process of the Bud-

dha surface model. The conformal mapping is com-

puted first, then the optimal transport map is ob-

tained by finding the Brenier potential. The interme-

diate maps are shown in the figure.

4.3 Monte-Carlo Method

In practice, our goal is to compute the discrete

Brenier potential in Eqn. (26) by optimizing the con-

vex energy in Eqn. (30). For low dimensional cases,

we can directly use Newton’s method by computing

the gradient Eqn. (33) and Hessian matrix Eqn. (34).

For deep learning applications, direct computation

of Hessian matrix is unfeasible, instead we can use

gradient descend method or quasi-Newton’s method

with super-linear convergence. The key of the gradi-

ent is to estimate the µ-volume wi(h). This can be done

use Monte-Carlo method: we draw n random sam-

ples from the distribution µ , and counts the number

of samples falling in Wi(h), the ratio converge to the

µ-volume. This method is purely parallel and can be

implemented using GPU. Furthermore, we can use hi-

erarchical method to further improve the efficiency:

first we classify the target samples to clusters, and

compute the optimal transportation map to the mass

centers of the clusters; second, for each cluster, we

compute the OT map from the corresponding cell to

the original target samples within the cluster.

In order to avoid mode collapse, we need to find

the singularity sets in Ω. As shown in Fig. 7, the target

Dirac measure has two clusters, the source is the uni-

form distribution on the unit planar disk. The graph

of the Brenier potential function is a convex polyhe-

dron with a ridge in the middle. The projection of

the ridge on the disk is the singularity set Σ1(u), the
optimal mapping is discontinuous on Σ1. In general

cases, if two cellsWi(h) andWj(h) are adjacent, then we

compute the angle between the normals to the corre-

sponding support planes,

θi j := cos−1 〈yi,y j〉
|yi| · |y j|

if θi j is greater than a threshold, then the common

facet Wi(h)∩Wj(h) is in the discontinuity singular set.
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Figure 7. Singularity set of the Brenier potential

function, discontinuity set of the optimal

transportation map.

5. Manifold Distribution Principle

We believe the great success of deep learning can

be partially explained by the well accepted manifold

distribution principle.

Manifold Distribution Principle

A natural class of data can be treated as a probabil-

ity distribution on a low dimensional manifold (data

manifold) embedded in the high dimensional ambient

space (image space).

Furthermore, the distances among the probability

distributions of subclasses on the manifold are far

enough to distinguish them.

As shown in Fig. 9, the MNIST data set is a col-

lection of hand written images. Each image is 28×28,
which can be treated as a single point in the im-

age space R28×28, the MNIST data set is treated as a

point cloud. Using Hinton’s t-SNE embeddingmethod,

we can map the point cloud onto a planar domain,

such that each image is mapped to a single point,

the mapping is bijective. The images of the same

digit are mapped to the same cluster. As shown in

the right frame, there are ten clusters on the plane,

corresponding to the ten hand written digits. This

shows the MNIST point cloud is close to a two dimen-

sional surface embedded in the 784 dimensional im-

age space. We recall the concept of manifold:

Definition 12 (Manifold). Suppose M is a topological

space, covered by a set of open sets M⊂
⋃

α Uα . For each

open set Uα , there is a homeomorphism ϕα : Uα → Rn,

the pair (Uα ,ϕα) form a chart. The union of charts

form an atlas A = {(Uα ,ϕα)}. If Uα ∩Uβ 6= /0, then the

chart transition map is given by ϕαβ : ϕα(Uα ∩Uβ )→
ϕβ (Uα ∩Uβ ),

ϕαβ := ϕβ ◦ϕ
−1
α .

TheMNIST data set is treated as the datamanifold

Σ; the space of all possible images is the image space

R784; the plane is the latent space Z; the mapping from

the datamanifold to the latent space ϕ : Σ→D is called

the encoding map; the inverse mapping ϕ−1 : D→ Σ

is called the decoding map. Each hand written digit

image p∈ Σ is a training sample on the data manifold,

its image of the encoding map ϕ(p) is called the latent

code of p. The data set can be treated as a probability

distribution µ defined on the data manifold Σ, which

is called data distribution.

Main Tasks In general, deep learning systems have

two major tasks:

1. Learn the manifold structure Σ, represented as

encoding and decoding maps.

2. Learn the data distribution µ on Σ.

We use manifold view to explain how the de-

noising is accomplished by a Deep Learning system.

Traditional methods Fourier transform the noisy im-

age, filter out the high frequency component, inverse

Fourier transform back to the denoised image. Deep

learning methods use the clean facial images to train

the neural network, obtain a representation of the

manifold, then project the noisy image to the man-

ifold, the projection image point is the denoised im-

age. As shown in Fig. 11 left frame, we use a deep

learning system to learn the data manifold Σ of clean

human facial images. An facial image with noise is

p̃, which is not on Σ but close to the manifold. We

project P̃ to Σ using the Riemannian metric in the im-

age space Rn, the closest point on Σ to p̃ is p, then p
is the denoised image.

Traditional method is independent of the content

of the image; ML method heavily depends on the con-

tent of the image. The prior knowledge is encoded

by the manifold. If the wrong manifold is chosen,

then the denoising result is of non-sense. As shown

in Fig. 12 right frame, we use the cat face manifold to

denoise a human face image, the result looks like a

cat face.

6. Manifold Learning

Learning data manifold structure is equivalent to

learning the encoding and decoding maps. The en-

coding mapping ϕ : Σ→ Z maps the data manifold to

the latent space. It push-forwards µ to the latent dis-

tribution, denoted as φ#µ . Given the data manifold Σ

and the latent space Z. There are infinite many en-

coding mappings. In practice, it is crucial to choose

the appropriate mapping, that preserves the data dis-

tribution. We use a low dimensional example to il-
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Figure 8. Buddha surface, the last two rows show the intermediate computational results during the optimization.

lustrate the concepts as shown in Fig. 13. The Bud-

dha surface represents the data manifold Σ, µ is the

uniform distribution on Σ. Each row shows one en-

coding map. In the top row, if we uniformly sam-

ple the unit disk in the latent space, the samples are

pulled back to the surface by the decoding map, then

the pullback samples on Σ are highly non-uniform.

In contrast, in the bottom row, the uniform latent

samples are pulled back to uniform samples on the

surface. This shows the encoding map in the bottom

row preserves the data distribution µ in the latent

space.

In practice, manymethods have been proposed to

compute the encoding/decoding maps, such as VAE

(variational auto-encoder), [31, 26], WAE (Wasserstein

auto-encoer) [24], adversarial auto-encoder [39] and

so on.

6.1 ReLu Deep Neural Network

In deep learning, the deep neural networks are

used to approximate mappings between Euclidean

spaces. One of the most commonly used activation

function is the ReLU function, σ(x) = max{x,0}. When
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Figure 9. The MNIST data set is a two dimensional surface in the image space.

Figure 10. The concept of manifold.

Figure 11. Image denoising as projecting to a

manifold.

x is positive, we say the neuron is activated. One neu-

ron represents a function σ(∑k
i=1 λixi− bi), where λi’s

are weights, bi the bias. Many neurons are connected

to form a network. A ReLU deep neural network (DNN)

represents a piecewise linear map.

Definition 13 (ReLU DNN). For any number of hidden

layers k ∈ N, input and output dimensions w0,wk+1 ∈ N,
a Rw0 → Rwk+1 ReLU DNN is given by specifying a se-

quence of k natural numbers w1,w2, . . . ,wk representing

widths of the hidden layers, a set of k affine transfor-

mations Ti :Rwi−1→Rwi for i= 1, . . . ,k and a linear trans-
formation Tk+1 : Rwk → Rwk+1 corresponding to weights

of hidden layers.

The mapping ϕθ : Rw0 → Rwk+1 represented by this

ReLU DNN is

(40) ϕθ = Tk+1 ◦σk ◦Tk ◦ · · · ◦T2 ◦σ1 ◦T1,

where ◦ denotes mapping composition, θ represent

all the weight and bias parameters, σi represents the

mapping σi : Rwi−1 → Rwi σi = (σ1
i ,σ

2
i , · · · ,σ

wi
i ),

σ
j

i = σ

(
wi−1

∑
k=1

λ
jk

i xk−b j
i

)
.

Definition 14 (Activated Path). Given a point x ∈ X
in the input space X , the activated path of x consists

all the activated neurons when ϕθ (x) is evaluated, and
denoted as ρ(x). Then the activated path defines a set-

valued function ρ : X → 2S (S is the set of all neurons,

2S are all the subsets of S).

Fixing the parameter θ , the map ϕθ induces cell

decomposition for the input space and the output

space.

Definition 15 (Cell Decomposition). Fix a map ϕθ rep-

resented by a ReLU DNN, two data points x1,x2 ∈X are

equivalent, denoted as x1 ∼ x2, if they share the same

activated path, ρ(x1) = ρ(x2). Then each equivalence

relation partitions the ambient space X into cells,

D(ϕθ ) : X =
⋃
α

Uα ,

each equivalence class corresponds to a cell: x1,x2 ∈Uα

if and only if x1 ∼ x2. D(ϕθ ) is called the cell decomposi-

tion induced by the encoding map ϕθ . The number of

cells is denoted as |D(ϕθ )|.
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Figure 12. Human facial image denoising by projection to the data manifold.

Figure 13. Different encoding mappings from the manifold to the planar disk.

Furthermore, ϕθ maps the cell decomposition in

the ambient space D(ϕθ ) to a cell decomposition in

the latent space. The restriction of ϕθ on each cell is

a linear map. The number of cells in D(ϕθ ) describes

the capacity of the network, namely the learning ca-

pability of the network.

Definition 16 (Learning Capability). Given a ReLU

DNN N with fixed architecture, the complexity of the

network N (N) is defined as the maximal number of

cells of D(ϕθ ),

N (N) := max
θ

|D(ϕθ )|.

We can explicitly estimate the upper bound of

the network capacity N (N). The maximum number of

parts one can get when cutting d-dimensional space

Rd with n hyperplanes is denoted as C(d,n), then by

induction, one can easily show that

(41) C(d,n) =
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
d

)
.
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Figure 14. Auto-encoder architecture.

Figure 15. Manifold embedding computed by an Auto-encoder.

We can easily get the upper bound estimation,

Theorem 9. Given a ReLU DNN N(w0, . . . ,wk+1), rep-

resenting PL mappings ϕθ : Rw0 → Rwk+1 with k hidden

layers of widths {wi}k
i=1, then the linear rectified com-

plexity of N has an upper bound,

(42) N (N)≤Π
k+1
i=1 C(wi−1,wi).

6.2 AutoEncoder

One of the most popular model for learning

the encoding and decoding maps is AutoEncoder as

shown in Fig. 14. The AutoEncoder model consists

two symmetric Deep Neural Networks, the first net-

work represents the encoder, the second network rep-

resents the decoder. The number of nodes in the in-

put and the output layers equals to the dimension of

the ambient space. Between the encoder and decoder,

there is a bottle neck layer. The number of nodes in

the bottle neck layer equals to the dimension of the

latent space.

We denote the ambient space as X , latent space as

Z, encoding map ϕθ :X →Z, decoding map ψθ :Z→X .

We sample the data manifold Σ ⊂ X to get training

samples {x1,x2, · · · ,xn} ⊂ Σ, and apply the L2-norm as

the loss function Lθ . The training process is the opti-

mization

(43) min
θ

Lθ (x1, . . . ,xn) = min
θ

n

∑
i=1
|xi−ψθ ◦ϕθ (xi)|2.

Fig. 15 shows one example of surface embedding

using an Auto-encoder. We uniformly sample the Bud-

dha surface Σ in (a), then train an Auto-encoder using

formula Eqn. 43, the latent codes of the samples are

shown in (b), the decoded surface Σ̃ is shown in (c).

We can see the reconstructed surface is very similar

to the input surface, with user controlled Hausdorff

distance. Fig. 16 shows the cell decomposition of the

ambient space X and the latent space Z induced by

the encoding map ϕθ and the decoding map ψθ .

In the following, we analyze the accuracy of mani-

fold learning using a surface example. Given the input

surface Σ embedded in R3, given any point p ∈R3, the

closest point on Σ to p is defined as

π(p,Σ) := argminq∈Σ|p−q|2.

The medial axis of the surface Σ is defined as

Γ(Σ) := {p ∈ R3 : |π(p,Σ)|> 1}.

where | · | represents the cardinality of the set. For any
point p ∈ Σ, the local feature size of p is the distance

from p to the medial axis Γ(Σ). Suppose the samplings

on Σ are X = {x1,x2, . . . ,xn}, such that for any point q∈Σ,

the geodesic disk c(q,δ ) intersects X is non-empty,

and the geodesic distance between any pair of sam-

ples is greater than ε , then X is called a (δ ,ε) sampling.

Given such a sampling, we can compute the geodesic

Delaunay triangulation of X , this induces a polyhe-

dral surface Σ̃. By geometric approximation theory,
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Figure 16. The cell decompositions induced by the Auto-encoder.

Figure 17. The framework of a GAN model.

suppose Σ isC2 smooth, we can determine the param-

eters δ ,ε by the injective radius, the principle curva-

ture and the local feature size, such that Σ̃ approxi-

mates the original surface Σ with arbitrary precision

in terms of Hausdorff distance, Riemannian metric,

Laplace-Beltami operator, curvature measures and so

on.

Assume the network capacity for the auto-

encoder is big enough, the (δ ,ε) samples are the train-

ing set and the optimization reduces the loss func-

tion to be 0, then the restriction of ψθ ◦ϕθ equals to

identity, then the auto-encoder recovers Σ̃. By the con-

struction, the decoded surface approximates the orig-

inal surface with user desired accuracy. This argu-

ment can be generalized to higher dimensional man-

ifolds. In reality, the data manifold is unknown and

it is hard to figure out its injective radius, curvatures

and local feature size, the optimization of deep net-

works often gets stuck at the local optima. There are

many widely open challenges for learning the mani-

fold structure.

7. Generative Adversarial Networks

Generative Adversarial Networks (GAN) is one of

the most popular generative model in deep learning.

It has many merits, such as it can automatically gen-

erate samples, the requirement for the data samples

is reduced; it can model arbitrary data distribution

without closed form expression. As shown in Fig. 17,

a GAN model includes two deep neural networks, the

generator and the discriminator. The generator con-

verts a white noise (user prescribed distribution in

the latent space) to generated samples, the discrimi-

nator takes both the real data samples and the fake

generated samples and verify whether the current

sample is authentic or fake.

7.1 Competition vs. Collaboration

The generator and the discriminator competes

with each other, the generator improves the quality

of the generated samples to confuse the discrimina-

tor, and the discriminator improves the discriminat-

ing capability and detect the fake samples. Eventually,

the system reaches the Nash equilibrium, the discrim-

inator can not differentiate the generated ones from

the real samples, then the generated samples can be

applied to real applications, such as training other

recognition systems and so on.

Wasserstein GAN applies optimal transport

method as shown in Fig. 18. The generator G com-

putes the optimal transport map gθ : Z → Σ, which

transforms the white noise ζ in the latent space

Z to the generated distribution µθ = (gθ )#ζ . The

discriminator D computes the Kantorovich potential

JULY 2022 NOTICES OF THE ICCM 19



Figure 18. The framework of a GAN model, Z is the latent space, ζ the white noise, X the image space, Σ the data

manifold, G generator, D discriminator.

ϕξ , then compute the Wasserstein distance between

µθ and the real data distribution ν ,

Wc(µθ ,ν) = max
ϕξ

∫
X

ϕξ (x)dµθ (x)+
∫

Y
ϕ

c
ξ
(y)dν(y),

where X and Y should be the data manifold Σ, in prac-

tice, they are replaced by the image space X in [6]. The

whole training process of WGAN model is a min-max

optimization,

min
θ

max
ξ

∫
X

ϕξ (x)dµθ (x)+
∫

Y
ϕ

c
ξ
(y)dν(y).

One can choose L1-cost, then c(x,y) = |x− y|, ϕc = −ϕ ,

given ϕ is 1-Lipsitz, then the WGAN model optimizes

min
θ

max
ξ

∫
X

ϕξ ◦gθ (z)dζ (z)−
∫

Y
ϕξ (y)dν(y),

namely

min
θ

max
ξ

Ez∼ζ (ϕξ ◦gθ (z))−Ey∼ν(ϕξ (y)),

with the constraint that ϕξ is 1-Lipsitz.

If we use L2 cost, then the discriminator com-

putes the Kantorovich potential ϕξ for the purpose of

Wasserstein distance W2(µθ ,ν), then the Brenier po-

tential uξ and the optimal transport map Tξ can be

derived directly

uξ =
1
2
|x|2−ϕξ (x), Tξ = ∇uξ .

Tξ transforms the generated distribution µθ to the

real data distribution ν . The generator gθ transforms

ζ to µθ , then the composition ∇uξ ◦gθ maps the latent

white noise ζ to the data distribution ν , as shown in

the following commutative diagram,

ζ ν

uθ

gθ

∇uξ ◦gθ

∇uξ

The generator seeks a measure preserving map to

transform ζ to ν . In each optimization step, the gener-

ator finds the current gθ , which gives a transport map

from ζ to µxi, the discriminator computes uξ , which

transport µξ to ν . The composition ∇uξ ◦ gθ gives a

transport map from ζ to ν . Therefore, we can use

∇uξ ◦gθ to update the generator gθ , this will improve

the convergence rate. Currently, the generator and

the discriminator do not share intermediate compu-

tational results, which make the system highly ineffi-

cient. The competition between the generator and the

discriminator should be replaced by collaboration.

7.2 Memorization vs. Learning

In general deep neural networks have huge

amount of parameters, such that their capacities are

big enough to memorize all the training samples. So

the following question is naturally raised:

Memorization vs. Learning

Does a deep learning system really learn something

or just memorize all the training samples?

Generally speaking, in deep learning applica-

tions, the real data distribution ν is approximated by

the empirical distribution: ν̂ = 1
n ∑

n
i=1 δ (y− yi), where

{y1,y2, . . . ,yn} are the training samples, either the raw

samples on the data manifold or the latent codes in

the latent space. If we use the quadratic Euclidean dis-

tance as the cost function, then both the generator

and the discriminator compute the optimal transport

maps, or equivalently the Brenier potentials. From the

formula of the semi-discrete Brenier potential,

u =
n

max
i=1
{〈x,yi〉−hi}

we can tell that the system really memorizes all the

training samples {yi}; but also learns the probability

for each sample represented by {hi}, which are ob-

tained by non-linear optimization.
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Figure 19. Comparison between conventional models VAE and WGAN with our model AE-OT using MNIST data

set.

Figure 20. Mode collapsing in WGAN-GP and WGAN-div model on CelebA data set.

Hence deep learning systems both memorize the

training samples and learn the probability measure.

7.3 Mode Collapsing

GANs are sensitive to hyper-parameters and no-

toriously difficult to train. The training process is

highly unstable, and often diverge. GANs suffer from

mode collapsing, the generated distributions often

miss some modes in the training data set. For exam-

ple, if a GAN model is trained to learn the MNIST data

sets, which has multiple modes representing the ten

hand written digits, then the GAN model may only

learn 6 of them and forget the other 4 modes, or it

captures some modes in the intermediate stage, but

forgets part of them in the final stage. GANs also

suffer from mode mixture, they generate unrealistic

samples mixing different modes. As shown in Fig. 19,

VAE [31] or WGAN [6] models suffer from mode mix-

ture, they generate unrecognizable hand written digit

images, which look like the interpolation/mixture of

some digits. Fig. 20 showsmode collapsing on CelebA

data set usingWGAN-GP [22] andWGAN-div [28]mod-

els.

Mode collapsing can be explained using the regu-

larity theory of optimal transport maps. As shown in

Fig. 21, we use Monte-Carlo method to compute the

optimal transport map between the uniform distri-

bution defined on a rectangle to that on a dumb bell

shape. Even the target domain is simply connected,

because it is concave, the OT map is discontinuous at

the singular sets γ1 and γ2 as shown in the left frame.

As we analyzed before, deep neural networks can

only represent continuous mappings, but the optimal

transport map is discontinuous given the target sup-

port is concave, this intrinsic conflict causes mode

collapse and mode mixture.

If the target measure ν has multiple modes, its

support has multiple connected components, then

the continuous map may cover one connected com-

ponent and miss the other modes, this induces mode

collapse; or the continuous map covers all the modes

but also the gaps among the modes, then the samples

generated in the gap area will mix samples from dif-

ferent modes, hence this induces mode mixture. As

shown in Fig. 22, each orange spot represents a mode
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Figure 21. Discontinuous Optimal transportation map, produced by a GPU implementation of algorithm based

on regularity theorem. γ1 and γ2 are two singularity sets.

Figure 22. Comparison between conventional models with AE-OT.

Figure 23. Singularity set detection.

in frame (a); the GAN model [19] misses some modes

and also covers the gaps among the modes in frame

(b); the pacgan model [36] covers all the modes but

also covers the gaps among them. Hence GAN model

and pacgan model suffer from both mode collapse

and mode mixture.

In order to verify our hypothesis that the trans-

port map is discontinuous on the singularity sets in

real applications, we design and perform a experi-

ment using human facial image data set celebA. As

shown in Fig. 23, we use an auto-encoder to encode

the data manifold Σ to the latent space, ϕ : Σ→ Z, ϕ

push-forwards the data distribution µ to the latent

code distribution ϕ#µ ; then in the latent space, we

compute an optimal transport map from a uniform

distribution on the unit ball to the latent code dis-

tribution ϕ#µ ; we draw line segments in the unit ball,

which are maps to curves on the data manifolds, each

curve is a interpolation in the facial image set. As

shown in Fig. 24, each role is an interpolation curve

on the human facial image manifold.

As shown in Fig. 23, there are singularity sets

in the unit ball and a blue line segment intersects

the singularity sets at p, then T (p) is outside the la-

tent code set ϕ(Σ), the decoded image ϕ−1(T (p)) is

outside the data manifold Σ. In this way, we can de-
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Figure 24. Interpolation curves on facial photo manifold.

Figure 25. Facial images generated by an AE-OT

model, the central image shows the boundary of the

facial photo manifold.

tect the boundary of the data manifold Σ. An image

on the human facial image manifold means a human

face, which is physically “allowable”, satisfies all the

anatomically, biologically laws, but with zero proba-

bility to appear in reality. As shown in Fig. 25, we start

from a boy image with brown eyes and end at a girl

image with blue eyes. In the middle of the interpola-

tion, we generate a facial image with one blue eye and

one brown eye. This type of human faces exist in real

world, but the probability to encounter such a person

is almost zero in practice. All the training facial im-

ages are either brown eyes or blue eyes, the generated

facial image with different eye colors is on the bound-

ary of the data manifold. This demonstrates that the

existence of singularity set Γ, and the transport map

T is discontinuous at the Γ.

Figure 26. The framework of AE-OT model.

7.4 AE-OT Model

In order to eliminate mode collapse, improve the

stability and make the whole model more under-

standable, we propose a novel generative model: AE-

OTmodel. As shown in Fig. 26, themodel consists two

parts AE and OT. The AE network is an auto-encoder,

which focuses on manifold learning and computes

the encoding map fθ : Σ→ Z and the decoding map

gξ : Σ→ Z; the OT module is in charge of probabil-

ity distribution transformation and finds the opti-

mal transport map using our geometric variational

approach. The OT module can be implemented ei-

ther using a deep neural network and optimized by

training or directly using geometric method, such as

Monte Carlo OT algorithm on GPU.

The mode collapses in conventional generative

models are mainly caused by the step of comput-

ing transport map, because the transport map is dis-

continuous but DNNs can only represent continuous

maps. The AE-OT model conquers this fundamental

difficulty in the following way: observe Fig. 27, in the
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Figure 27. AE-OT model for MNIST data set.

Figure 28. Comparison between CRGAN [41] and our model.

latent space the latent code distribution has multiple

clusters, the support rectangle of the white noise is

partitioned into 10 cells as well, each cell is mapped

to a cluster with the same color. Therefore, the op-

timal transport map between the noise and the la-

tent code is discontinuous across the cell boundaries.

Instead of computing the OT map itself, the AE-OT

model computes the Brenier potential (lower-left cor-

ner), which is continuous (but not globally differen-

tiable) and representable by neural networks. Since

the OT map covers all the clusters of the latent code

distribution, and skips all the gaps among the clus-

ters, no mode collapse or mode mixture can happen.

Furthermore, the AE-OT model has the merits:

solving Monge-Ampère equation is reduced to a con-

vex optimization, which has unique solution due to

the Brenier theorem 2. The optimization won’t be

trapped in a local optimum; the Hessian matrix of

the energy has explicit formulation. The Newton’s

method can be applied with second order conver-

gence; or the quasi-Newton’s method can be used

with super-linear convergence. Whereas conventional

gradient descend method has linear convergence; the

approximation accuracy can be fully controlled by the

density of the sampling density by using Monte-Carlo

method; the algorithm can be refined to be hierar-

chical and self-adaptive to further improve the effi-

ciency; the parallel algorithm can be implemented us-

ing GPU. By comparing Fig. 20 and Fig. 28, we can see

that the AE-OT model greatly reduces the mode col-

lapse and mode mixture. Fig. 29 shows the generated

facial images by training our model on the CelebAHQ

data set.

8. Conclusion

This work focuses on a geometric view of optimal

transport to understand deep learning models, such

as generative adversarial networks (GANs). By man-

ifold distribution principle, deep learning systems

learn probability distributions on manifolds, there-

fore they have twomajor tasks: one is manifold learn-

ing, the other is probability measure learning.
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Figure 29. Human facial images generated by our model.

Manifold learning is reduced to construct encod-

ing and decoding maps between the data manifold

and the latent space. The probability distribution

learning can be achieved by optimal transport meth-

ods. The Brenier theory in optimal transport has in-

trinsic relation with Alexandrov theorem in convex

geometry via Monge-Ampère equation. This leads to a

geometric variational algorithm to compute optimal

transport maps. By applying OT theory, we analyze

the conventional generative models, and find that the

generator and discriminator in a GAN model should

collaborate instead of compete with each other; the

GAN model both memorizes all the training samples

and learns the probability measure; furthermore, the

regularity theory of Monge-Ampère equation explains

the intrinsic reason for mode collapse. In order to

eliminate mode collapse, a novel AE-OT model is in-

troduced, which computes the continuous Brenier po-

tential instead of the discontinuous transport maps.

Optimal transport theory and Riemannian geom-

etry lay down the theoretic foundation of deep learn-

ing. In the future, we will explore further to use mod-

ern geometry theories to understand deep learning

algorithms and design novel models.
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