A Novel GCN-based Point Cloud Classification Model
Robust to Pose Variances

a,b,*

, Yaming Zhang?®, Wanquan Liu®, Xianfeng Gu¢, Xin Jing?,
Zicheng LiuP

Huafeng Wang

@School of Information Technology, North China University of Technology, Betjing, China
bSchool of Software, Beihang University, Beijing, China
¢ Department of Computing, Curtin University, WA, 6102, Australia
4 Department of Computer Science, Stony Brook, NY 11794-2424, USA

Abstract

Point cloud data can be produced by many depth sensors, such as Light De-
tection and Ranging (LIDAR) and RGB-D cameras, and they are widely used
in broad applications of robotic navigation and remote-sensing for the under-
standing of environment. Hence, new techniques for object representation and
classification based on 3D point cloud are becoming increasingly in high de-
mand. Due to the irregularity of the object shape, the point cloud-based object
recognition is a very challenging task, especially the pose variances of a point
cloud will impose many difficulties. In this paper, we tackle the challenge of
pose variances in object classification based on point cloud by developing a
novel end-to-end pose robust graph convolutional network. Technically, we first
represent the point cloud using the spherical system instead of the traditional
Cartesian system for simplicity of computation and representation. Then a pose
auxiliary network is constructed with an aim to estimate the pose changes in
terms of rotation angles. Finally, a graph convolutional network is constructed
for object classification against the pose variations of point cloud. The experi-
mental results show the new model outperforms the existing approaches (such

as PointNet and PointNet++) on the classification task when conducting ex-

*Corresponding author Email-Address, wanghuafengbuaa@gmail.com
Email addresses: wanghuafengbuaa@gmail.com (Huafeng Wang), yaming@ncut.edu.cn
(Yaming Zhang), W.Liu@curtin.edu.au (Wanquan Liu), gu@cs.stonybrook.edu (Xianfeng
Gu), Liuzicheng@buaa.edu.cn (Zicheng Liu), xin2856jing@126.com (Xin Jing)

Preprint submitted to Journal of Pattern Recognition September 21, 2020

20

periments on the ModelNet40 dataset with a series of random rotations of a 3D
point cloud. Specifically, we obtain 73.02% accuracy for classification task on
the ModelNet40 with delaunay triangulation algorithm, which is much better
than the current state of the art algorithms, such as Pointnet and Point CNN.
Keywords: Point Cloud, Pose robust, Graph Convolutional Network,

Classification

1. Introduction

Since point cloud can provide detailed information for representation, one
can extract more features from point cloud in comparison to 2D images for
object classification [1]. Therefore, point cloud is widely used in various appli-
cations such as digital preservation, reverse engineering, surveying, architecture,
3D gaming, robotics, and virtual reality. With the rapid development of artifi-
cial intelligence, it would be of great importance to develop new techniques for
object classification that can automatically process the spatial point cloud in-
formation. In response to this trend, the study of processing point cloud data is
also booming. Specifically, due to the particularity of point clouds, most previ-
ous studies have focused on 3D feature representation, high descriptiveness, and
efficient computation [2]. Until recent years, the research on the point cloud
based object recognition using the deep learning techniques is attracting more
and more researchers. Although deep learning methods have achieved better
results in some specific object detection, semantic segmentation and recognition
tasks based on point cloud data than traditional research [3], there are still
many challenges in this area.

First, the convolution operational structure for 2D ordered images are not
applicable to the unordered three-dimensional point cloud. In 2D image, the
convolutional operation is conducted on 2D image in a sequential order and
this can capture the shape representation effectively. However, one same point
cloud can be represented by two completely different matrices in a point cloud

library (PCL) [4], and this brings huge difficulty in processing point cloud

25

30

35

40

45

50

data. Furthermore, the traditional convolution structure strongly requires a
highly ordered data as the input format, but the point cloud data is generally
disordered in practice.

Second, the same point cloud with different rotations may have different
representations. In general, the rigid change (rotation or translation) [5] of
a given point cloud should not affect its representation of the overall shape in
the space. That is, a given point cloud data can be multiplied by different
rotation translation matrices, but eventually the shape they represent remains
the same. Therefore, the designed network is required to be robust to pose
variances brought by the point cloud rotation.

Third, as clustering methods (some commonly used clustering methods in-
clude K-means, Gaussian mixture model [6]) were adopted in the existing neural
networks, such PointNet and PointCNN [7] and these clustering methods for
point cloud would have significant impact on the performance. In fact, these
clustering methods in PointCNN correspond to the down-sampling and pool-
ing operations in a two-dimensional image convolution network. However, the
down-sampling and pooling operations for the regular 2D image data are not
applicable to the unordered point cloud. In literature, down-sampling of an un-
ordered point cloud in a deep neural network usually down-samples the points
regardless of their importance for the network output and often addresses down-
sampling the raw point cloud before processing. As a result, some important
points in the point cloud may be removed, while less significant points may be
passed to next layers [8]. Therefore, it is necessary to have a new method de-
signed specifically for the clustering of point cloud which can enable the network
to extract multi-dimensional representative features.

Next, we will present several related progress in this field, pinpoint some
critical issues in the current works and then propose our solutions. The remain-
der of this paper is organized as follows: Section II reviews some related works
of 3D object recognition based on the point cloud, and then analyze the possi-
ble problems in these works. Then, the detailed methodologies of our proposed

deep learning architecture are explained in Section II1. Experimental results and

55

60

65

70

75

80

discussions on future research are given in Section IV and V respectively.

2. Related Works

As this study mainly focus on object classification for point cloud, only
related literature on 3D object classification is reviewed here. So far, a few
methods have been proposed for the object classification of point cloud, accord-
ing to the principles and ideas of these methods, they can be roughly categorized

as the following groups.

e Multi-view based methods [9]. In this cluster, the 3D object classifica-
tion problem is transformed into multiple 2D object classification, so that
those existing 2D image classification models can be used. Since the ac-
curacy of this type of methods heavily depends on a number of typical
different views taken, they are actually regarded as non-3D approaches.
Also, such approaches require subsequent processing to resolve different
view inconsistencies as well as possible outliers of different views, they are

quite challenging in achieving high accuracy in general [9].

e Voxel-based 3D convolution methods [10]. In this group, 3D convolution
operation is defined and performed for representing an object as a voxel
in the space. Such representation allows us to use the convolution and
pooling operations for the processing efficiency. However, due to the spar-
sity of object features in point cloud and the computational cost of the 3D
convolution, the capacity of such voxel representation is strictly limited
by the actual voxel resolution. In addition, this type of methods require

a regular shape as a prior, thus limiting its further applications.

e Mesh-based non-Euclidean methods [11]. In this case, the 3D point cloud
can be represented as a mesh structure, and then feature extraction is
performed on the mesh which is used to construct the feature descriptors.
Since the actual unordered point clouds in most cases do not have the

connection information among their nodes, it is much difficult to obtain

85

90

95

100

105

110

the accurate mesh information by simply performing the surface recon-

struction.

Point cloud-based 3D classification neural networks, such as PointNet [12],
PointNet++ [13] and their variants. These approaches mainly focus on
extracting object shapes in point cloud directly. As an important end-to-
end 3D classification network based on point cloud, PointNet has taken
the rotation and disorder of point cloud data into consideration partially
with some extent. For example, they exploit the symmetric functions
such as the Maz and Average pooling to lessen the effects of disorder of
the input data. Basically, PointNet learns a global representation in point
cloud via computing individual point features from per-point Multi-Layer-
Perceptron (MLP) first and then aggregating all features of the given
object. As an improved version for the PointNet, PointNet++ presented
a new feature extraction method and implemented feature learning in a
different dimension. Unfortunately, PointNet++ has the difficulties for
learning the relationship between two points as it only uses the symmetric
functions to acquire the statistical characteristics of a multi-dimensional
point set. Also, its complicated architecture leads to slow speed and not
suitable for real-time applications. Zhang et al. [14] proposed a Graph-
CNN architecture called PointGCN for classifying objects in 3D point
cloud by exploring the existing graph convolution operation with two types
of specifically designed pooling layers. Since this approach lacks shape
alignments in the spectral domain, as previously addressed by Li et al.
[15], the performance is almost the same as PointNet [12]. Nonetheless, it
provides a GCN-based method for representing point cloud and thus has
instructive intuition for subsequent research. Recently, many researches
focus on the use of GCN for effective local feature extraction [16] and
GCN-based point cloud semantic segmentation [17] with certain progress.
However, the research based on GCN for object classification is still in

infancy as the challenges in data sparseness, disorder and noisy in point

115

120

125

130

135

140

cloud, have not been well addressed and also the weak adaptability of
the constructed graph network to diverse point cloud data has not fully
investigated. In other words, the framework of GCN only provides us
with a feasible intuition, it is still necessary to enhance the adaptability
of GCN via defining specific operations on point cloud as did in [14] for

complicated classification tasks, which is the specific aim of this paper.

As observed above, GCN-based method still has much room to improve
for complicated classification tasks. In this paper, we will focus on the object
classification for 3D point cloud with pose variances, and the original GCN will
be revised from different perspective for this task. Based on the experiments of
this paper, one can see that the original GCN has limited capability for this task
as evidenced with very low accuracy. In order to achieve this aim, as suggested
by Defferrard et al. [18], a revised GCN requires to address the following
fundamental issues for object classification for a poind cloud: (i) The graph
construction. For example, considering that the input is a point cloud, there is
no node connection information in this case, we need to build such connections.
(ii) The graph pooling. The reason for graph pooling is that the original GCN
itself does not change the number of nodes, but we need to propose a strategy of
selecting the nodes being retained and passed to the next layer; in addition, the
data on a graph cannot be operated with a conventional 3 x 3 pooling structure.
Like the graph construction process, a pooling domain and a pooling center
point should be determined, and then nodes can be retained accordingly. We
will investigate these two critical issues plus other technical innovations in the
remaining part of this paper.

The main contributions of this paper are:

e First, different from the point cloud representation of the Cartesian coor-
dinate system, a novel rotation-independent auxiliary network is proposed

with the aid of the spherical coordinate system;

e Second, in order to cope with the challenge of feature extraction caused by

the disorder of point cloud data itself, a novel graph convolution network

145

150

155

160

165

170

was proposed;

e Third, in view of the particularity of point cloud data, how to effectively
extract its global and local features and how to deal with the training

problem of point cloud unbalanced data are also considered in this study.

3. The Proposed Approach

The original GCN is a method to extract the spatial features of the topology
from the spectral domain [19], which can combine features on local surface
patches,and these features are robust to the deformations of those patches in
Euclidean space [20]. As addressed in [14], it is best to align the data for
GCN, so that the graph network can be insensitive to diverse data of inputs. As
we know, in an Euclidean space, if a picture in 3D point cloud is rotated, the
new point cloud is no longer the original picture for the conventional GCN. To
address this rotational problem, we propose a pose auxiliary network (PAN),
which is one of the most important contributions of this paper to adapt the
GCN to the point cloud classification task.

In general, there are three key aspects that need to be carefully considered
in designing the architecture of the new network. First, in order to solve the
problem brought by the rotations of the point cloud, a corresponding pose cor-
rection auxiliary network is designed first; second, a new set of convolution
operations are designed to achieve the aim of feature robust to pose changing
for the unordered points cloud; third, we design some new down-sampling or
pooling methods to enhance the network’s capacities for both global and local
feature extraction. Besides of these critical issues, some techniques on dropout
[21] to overcome over fitting and BatchNormalization [22] to mitigate gradient

diffusion, are also considered in this paper.

3.1. The Pose Auziliary Network (PAN)

In this section, we develop a pose auxiliary network to serve the purpose

of the rotation changes. Technically, we design a point cloud data coordinate

175

180

185

system transformation as part of the proposed PAN to achieve the rotation
robust based on the Euler’s rotation theorem [23]. In Comparison to PointNet
and PointNet+4-, our model is not a simply regression aiming at an intermediate
point cloud representation. Instead, we try to find a way to make the model
pose independent. Theoretically, the geometry for the three-dimensional object,
based on Euler’s rotation theorem for any displacement of a rigid body with a
point on the rigid body fixed, is equivalent to a single rotation about some axis
that runs through the fixed point [23]. Furthermore, the composition of two
rotations is also a rotation. Hence an arbitrary rotation could be described by
only three parameters. In general, the mathematical representation of a point

cloud rotation in a Cartesian coordinate system can be represented as follows,

|:xs o Zs:| _ [xt ot Zt} < R (1)

1 0 0 cosf, 0 sind,
R=|0 cosf, —sinb,| X 0 1 0

0 sinf, cosf, —sinfl, 0 cos0,
- : (2)

cosf, —sinf, 0

X [sinf, cosf, O

0 0 1

where [z, 4%, 2'] is the original coordinates, [x*,y*®, z°] is the rotated coordinates,
R is the spatial rotation matrix. Formula (2) represents the specific definition of
R, whose three matrices on the right side of the equation stand for the rotation
around the X, Y, Z axis respectively. And R is a square matrix with full rank
of 3. The spatial rotation matrix can be used to visually represent rotations
at any angle along each axis. However, the matrix requires nine elements to

perform a single rotation operation, and matrix multiplication may be compu-

190

195

200

205

tationally intensive. In order to reduce such computational costs, we will use
another coordinate system, which can help convert a space coordinate system
to a spherical coordinate system. The mathematical representation of the point

cloud rotation in the spherical coordinate system is as follows,

(00 o) =(r 00 o)+ (0 0 o) ®)

where (r%,0%,¢°) is the rotated coordinates, (r%,6%, ¢') is the original coordi-
nates, (0,6, ¢’) is the rotation angle. Apparently, in this spherical coordinate
system, only two parameters are required to determine a rotation operation.
There is no doubt that the calculation process will be significantly simplified
from a matrix multiplication to a vector addition. The point cloud view in both
Cartesian coordinate system and spherical coordinate system are shown in fig-
ure 1, and one can see that the object shape in the spherical coordinate system
is not as explicit as in the Cartesian coordinate system, however, its advantage

in computation of rotation representation is obvious as demonstrated above.

Y

Figure 1: The same point cloud view in two coordinate systems (left: spatial Cartesian
coordinate system; right: spherical coordinate system)

Furthermore, a point cloud on the spherical coordinate system can be equiv-
alently mapped to a unit spherical point cloud with texture information (gray-
scale), as shown in figure 1. That is, in the new coordinate system, (6,)

represents the angle at which any point exists in the unit sphere coordinate

210

215

220

225

system, and r is regarded as the gray level (pixel value) on the unit sphere.
On the basis that the spherical coordinate system is relatively convenient for
calculating the rotation of the point cloud, we propose a pose auxiliary network
which aims to learn the corresponding angle correction value (64, /) from the
point cloud data rotated at any angle along each axis. Then we use them as the
input to the future GCN as shown in the figure 2. In this case, the input data
format of the auxiliary network is the (6, ¢) part of the spherical coordinate
system. In order to accelerate the model convergence speed, we normalize the
point cloud input data in spherical coordinate format. The structure of the

auxiliary network is shown in figure 2 and the details can be referred to Alg.1.

B*N*3
(x,y,2)
B*N*3 .
(r.8,¢) MinPool
=<
AvgPool
B*N*1 B*N*2 B*N*2
o)) g g BT

MaxPool

Shared MLP

concat €—— +

l To GraphConv

Figure 2: A diagram of the auxiliary network structure

In summary, by mapping the 3D point cloud from the Cartesian coordinate
system to the spherical coordinate system, the new proposed auxiliary network
(PAN) can learn angle corrections for the new inputs. Then, the obtained
angle correction information will be concatenated with the original point cloud
data and entered into the subsequent graph convolution network for feature

extraction.

3.2. The Graph Representation Approach

As it is well-known that the loss of local geometry in 3D point cloud has

a negative impact on classification performance [12]. In this paper, we use a

10

230

235

240

245

graph convolution module to achieve the preserving the local geometric details
of 3D object that are conducive to the classification task.

For graph convolution, the input is a topological graph. In order to extract
the point cloud features using the graph convolution, an undirected weighting
map G = (V, E, W) needs to be constructed for the unordered point cloud data
X with N nodes/points, where V is the vertex set, F is the edge set, and W is
the weighted adjacency matrix that stands for the edge weight. The vertex set
V of the undirected weighted graph contains all nodes v; = z;,¢ € [0, N — 1] in
X, and the edge set E is built from the vertex set V' by applying the K nearest
neighbor (KNN) algorithm [24]. In the construction procedure, for each vertex
v;,1 € [0, N — 1] in the vertex set V', we select the K nodes (v;,j € [0, K —1])
with the smallest distances in terms of the Euclidean distance, and then build
the edge set (v;,v;) € E. The edge weights are calculated by the following radial

basis functions,

exp(—lzully (4, 0) € B
0, (visv;) ¢ E

W (vi, v;) = (4)

where § is the mean of the Euclidean distance between all connected nodes in

the edge set E:

1 N K
e ZZ lvi = v;1%, (vi,v)) € E (5)

Based on the adjacent matrix W, we can choose the symmetrically normal-
ized Laplace matrix of L = I, — D~Y2WD~1/2 to perform a spectral field
operation on the graph as did in [25], where D is the degree (out-degree and
in-degree) matrix and I,, is the identity matrix. In fact, the graph convolution
method is inspired by the Fourier transformation on a graph, and the essence

of such operation is to convert the convolution of graph signals in the time

11

250

255

260

domain into products on the spectral domain according to the graph Fourier

transformation, which can be represented as follows,

(fxh)e =U(UTh) ® (U f)) (6)

where © is the Hadamard product, which means the element by element mul-
tiplication of the corresponding positions of two vectors, matrices and tensors
with the same dimensions, U is the eigenvector of the Laplace matrix L. f is
the feature map, and h is the convolution kernel. In order to reduce both the
network complexity and training time, we will choose the convolution formula
based on the Chebyshev polynomial fitting in this paper, which is defined as

follows,

K-1
Youtput = C(U Z ﬁka(A)CE),
k=0

2A

max

A= - L AC LTy = 1T = & "

Ti(A) = 20T, (M) — Ty _o(M)z

where (is the activation function, k£ is the number of terms of Chebyshev
polynomials [18], T} is the Chebyshev polynomials, 8 is the trainable weight,
I, is the identity matrix, A is the eigenvalue matrix of normalized Laplace
polynomials. In order to reduce the number of network parameters, we choose
the Chebyshev polynomials with k¥ = 3 (Please refer to Fig. 3, which shows the
different computational scopes when different k values are selected). Meantime,
for speeding up the convergence of the model, we select Relu as the activation

function. Finally, the mathematical expression of the convolution layer we use

12

25 is as follows,

270

275

280

Youtput—new :Relu(ﬂoif + ﬂli + ﬂ2(2i2 - 1)17 + b),
9L (8)

L= —1I,

A’VVLD,I

In the above formula, b is the bias of the convolution layer and L is the
normalized Laplace matrix. Mgz is the maximum eigenvalue of I:, and I, is
the identity matrix with the same rank as L. The above formula can intuitively
explain the purpose of the graph convolution proposed in this paper, that is, the
weighted summation of the feature information of the third-order neighbor nodes
for each node in the graph is taken as the new feature information of the node.
Compared to traditional convolutions, in addition to the feature information of
each node as input, graph convolution also requires information of the symmetric

normalized Laplacian matrix constructed based on the previous nodes.

Figure 3: The illustration for calculation ranges with different k£ values

The adaptive design of the graph convolution (GraphConv) operation can
be referred to figure 4. The GraphConv operation will not change the number
of nodes in the graph, only changes the feature dimension of the nodes. The
subsequent graph pooling operation (GraphPool) mainly obtains the pooled
node feature matrix by selecting the appropriate pooling function according to

the pooling domain range of each pooling center point. Please refer to figure 5

13

285

290

and details will be provided in the next section.

GraphConv

Node
Number (N)

I Message pass

Feature -m\-‘ -

Channel (€ '/
Graph Pooling

N XC,

N xC,

Figure 4: The structure of the graph convolution operation (GraphConv)

GraphPooling

|/

w(nvgmnax) | .' . ../
| A

Number (N) o @9 - @ \
Farthest Point Sampling(SampleRate: k)
Center Nodes
Feature \'
Channel (G} - T
y

') i ‘ Neighbor Nodes o ‘1! | Y
K- Nearest i e | N
Neighbor (K) . .H . . || g xuxc)

g < ! 7‘7 |

Exc
k

Figure 5: The structure of the graph pooling operation (GraphPool)

8.8. Graph based down-sampling and pooling operations

According to the descriptions in last section, we know that the graph con-
volution will not change the number of nodes, but only the feature channels of
each node. Therefore, we need to design a down-sampling method to reduce the

number of nodes, and premeditate using pooling method to obtain the suitable

dimension of the features for those selected nodes.

Different from regular data, which utilizes the uniform sampling to reduce
the amount of data, the unordered sparse feature of point cloud data requires
that the selected down-sampling method not only can reduce the amount of node

data, but also retain the spatial features of the origin cloud data. Therefore,

14

295

300

305

310

we choose the FPS (farthest point sampling) as the down-sampling algorithm
for unordered point cloud since this technique can yield an elegant result with
efficient implementation as its complexity remains tractable even when we are
modeling a non-uniform data [23]. The specific procedure of this algorithm is
described as follows:

(1) Randomly select a point v; from the origin cloud data X first, and add
it to the resulted set Y; (2) Then delete this point v; from set X and select the
farthest point from the origin cloud data to join in the resulted set, and delete
this point again from the origin cloud data X; (3) By iterating the process until
the number of points in the resulted set reaches a given threshold, and the final
result set will be the point cloud data after sampling.

The comparison for one poind cloud before and after sampling is shown in
figure 6, which illustrates that the point cloud data after FPS retains the sparse

and spatial features of the origin point cloud.

Figure 6: Farthest point sampling (left:origin cloud, 2048 points; right:after sampling, 128
points))

Before the pooling operation, we need to determine the pooling center for
each point and the pooling scope. Of course, we can take the FPS sampling
result set Y as the centers of the pooling point set, and the sphere space with
the pooling center as the spherical center and the radius of R as the pooling
scope (as shown in figure 7). Finally, we can obtain the K nearest neighbor for
each pooling center.

The whole process can be referred to Alg.2 in Appendix. What needs to
be emphasized is that down-sampling is conducive to the reduction of vertex

number, and pooling is conducive to the extraction of vertex features.

15

315

320

325

center point index and neighbor

point index per center point

Figure 8: Multi-dimensional feature extraction network structure diagram

8.4. The Pipelined Architecture of the New Model

As detailed in Section 3.1, we exploit the point cloud coordinate system
transformation and PAN to solve the robust problem of point cloud rotation.
Then, with the help of FPS and proposed pooling method, one can finally extract
the features of unordered point clouds on a multi-dimensional level. With these
preparations, we can propose the following network architecture (as shown in
Fig.9) to solve the classification problem for the unordered point cloud.

The overall network architecture (as shown in figure.9) consists of a pose aux-
iliary network (RotateBlock), three feature extraction units: Parallel Block and
two fully connected layers (Dense_1 and Dense_2). Among them, RotateBlock
is a new designed PAN module as described previously; Parallel Block is the fea-
ture extraction module, which includes two BasicBlocks. And the BasicBlock
consists of the graph convolution operations and the corresponding pooling op-
erations; the FPS module and graph generator module provide Parallel Block

with the required graph data.

16

330

335

340

!

v

._L BasicBlock L BasicBlock

(MaxPool) (AvgPool)
L) Concat 4J
BasicBlock ——— ParallelBlock
———Pipelined—
i = -
Coordinate |
RotateBlock Dense 3
FarthestPoint - _, Graph 3/ b jaiBlock 1 Dense 2
Sampling Generator
¥ ¥ 4
Farthesﬂ?oim > Graph > ParallelBlock 2 D 1
Sampling Generator
¥ ¥]‘
FarthestPomt _,, Graph 5" poallelRlock 3
Sampling Generator

Figure 9: Architecture of point cloud classification network based on graph convolution

Technically, ParallelBlock is a feature extraction unit, which contains two
sets of parallel BasicBlocks (basic feature extraction modules), which respec-
tively extract features on the spatial information and texture information of
point cloud data. Each BasicBlock consists of two GraphConv (graph convo-
lution module, please refer to figure 4), one Conv3D_1 x 1 (1 x 1 convolution
module) and one GraphPool (graph convolution pooling module, please refer
to figure 5). The combined structure of two GraphConv and one Conv3D_1 x 1
enlarges the convolution receptive field of the graph while making the network
parameter increase less, that is, a small amount of network complexity increases
in exchange for a stronger network generalization ability. At the same time, the
BasicBlock uses GraphPool to implement graph convolution operations based
on two kinds of features, as well as corresponding to the maximum pooling
(texture information) and the average pooling (spatial information) operations.

As we pointed out in the subsequent experimental section, the ModelNet40

[26] dataset used in the experiment has an uneven distribution of sample cat-

17

345

350

355

360

egories. In fact, the data of the real scenarios will also face this situation.
Therefore, in order to solve the problem of uneven distribution of sample cate-
gories in the data set, a penalty weight for the sample categories is constructed.
That is to say, there are K point cloud samples in the point cloud dataset A, and
the number of samples of each type is n1,no, ...nk, then the weight calculation

formula of the kth sample is as follows,

Weighty, = T, i I XK +1 9)
N

In the above formula, multiplying the coefficient K and adding the value 1
makes Weighty, > 1,k € [1, K]. That is, the weight will not reduce the size of

the original loss value, nor will it affect the original convergence speed.
As illustrated in figure 9, the new model exploits the Softmax and a combined
loss function. The first term is the Softmax cross entropy loss, which represents
the accuracy of the point cloud classification based on probability and its cross

entropy. The loss term is expressed by minimizing the negative log-likelihood,

L, = Z% In i = (10)
1 €*y
where y; is the probability distribution of the true sample labels, and ¢; is the
probability distribution of the normalized prediction output.
To prevent the network from over-fitting during the training, the weight of
L2 regularization as the second term for the combined loss, is expressed as

follows,

1 M

i=1

where M is the number of trainable weights in the network, and w; is a trainable

18

365

370

375

380

385

weight value. Then, the combined Loss for this network is as follows,

Loss = L%, x Weighty + nL5** k € [1, K] (12)

where the first term is the loss of the Softmax cross entropy with penalty weights,

and second term is Ly regularization multiplied by learning rate .

4. Experimental Results and Analysis

4.1. Point cloud dataset preparation

For training the proposed model and comparison with others, we conduct
experiments on the well-known ModelNet40 dataset [26]. This dataset is a
collection of CAD models with 40 object categories. The dataset includes 9,840
objects for training and 2,468 objects for testing. Each CAD model in the
ModelNet40 dataset is stored in an object file format (OFF). The OFF file
stores the vertex, face, and edge information of the CAD model. This study is
based on point cloud data, so only the vertex information of the model in the
ModelNet40 dataset is used.

With the given setup for training and testing samples, the object types in
training set and testing set are not evenly distributed To cope with this uneven
distribution of the object categories in the dataset, we introduce a penalty weight
for object categories in training. In the training stage, different categories are
given different weights according to their number of samples, which implies
that the category with smaller number of samples will assign the larger weight,
and the category with larger number of samples will have the smaller weight.
Then the weighted loss function is calculated according to the weight as did in
[27]. Also, as for the evaluation, in order to reduce the impact of the uneven
distribution of sample categories in the dataset, we use the Receiver Operating
Characteristic Curve (ROC) and Precision Recall Curve (PR) as evaluation

indicators.

19

390

395

400

405

410

415

4.2. Training Procedure and Hyper-parameters Tuning

The training configuration is detailed as follows.

Loss Function. The soft-max cross entropy is used as the loss function defined

in formula 10.

Regularization . In order to prevent the over-fitting in the training process, a
term with Lo regularization of all weights is added to the original loss function.
In the same time, the dropout of keep_prob = 0.9 is used in the convolution

layer and full connection layer respectively.

KNN parameters. The graph of the point cloud data is constructed by the k-
nearest neighbor algorithm. In order to balance the training time and network
performance, we use 20 nearest neighbors of each point as the input of graph

convolution.

Points’ number . A single point cloud in the ModelNet40 dataset contains 2048
points. We use the FPS to reduce the number of points in a point cloud to 512,

and then use them for training.

Rotation of testing and Training epoches . In order to make the network robust
to the pose variances of the point cloud, we rotate the point cloud of all the
inputs around the three spatial coordinate axes of x, y, z respectively in the range
of (—m,) angle randomly (only applied to testing set). Since we observed that
the network has converged when the process iterates 50 epochs, 50 is used as

the training epoch.

Learning rate. The initial learning rate is 0.01, the decay period is 100 batches,
and the decay rate is 0.97.

4.8. Evaluation

In the literature, some typical end-to-end network models for the object
classification with point clouds are: PointEdge[28], PointNet, PointNet++,
PointCNN.

20

4.3.1. Ezxperiments on the point cloud input without rotation

According to the experimental setup, the input point cloud is not rotated,
and the fixed pose given in the data set is maintained (as shown in figure 10
and refer to figure 10.a). The results of this new model compared with other

20 point cloud classification models are shown in figure 11.

~N A N

(a) Samples without rotation

(b) Samples with random rotation

Figure 10: The demonstration of dataset with rotation or without rotation

ROC PR

true positives rate
precision
1

— Ours (1024,40) \
—— Ours (1024,40) 03 — Ours (512,20) \
— Ours (512,20) —— PointNet++ (1024) \
o —— PointNet++ (1024) PointNet++ (512) \
Pointhet++ (512) 02 POINtCNN (1024)
PoINtCNN (1024) —— PoIntCNN (512)
—— PointCNN (512) PointEdge (1024)
PointEdge (1024) s PointEdge (512)
;Z::tiiﬁ]‘;;; PointNet (1024)
—— PointNet (512) a0f — Peinthet (512)
false positives rate recall
(a) ROC (b) PR

Figure 11: ROC and PR curves for the classification task on the pose-fixed point cloud
In figure 11, the performances of PointNet, PointNet ++, PointEdge, Point CNN,

21

425

430

435

and the new model under the input point cloud points of 1024 and 512 are com-
pared respectively. It can be seen that the new method performs the best in
all these experiments. At the same time, we explored the impact of point cloud
sparseness and node connectivity on the new model. As shown in figure 11,
the performance of the proposed model with the number of input point cloud
nodes 1024 and the node connectivity 40 is much better than the model with
number of input point cloud nodes 512, and the node connectivity 20. This
demonstrates that the performance of the proposed method is better than other
models in the case of fixed pose. This is due to the fact that we considered the
uneven distribution of the training and testing samples in our model besides of

the new features we extracted.

4.8.2. Experiments on the point cloud input with random rotations

In this experiment, the input point cloud has been randomly rotated in pose
(as shown in figure 10.b). But the hyper-parameters are exactly the same as
the last experiment. The performance of the corresponding methods after the

point cloud rotations is shown in figure 12.

ROC PR

— Ours(s12)
—— Ours(1024)

our
— ours(1024)

false positives rate

(a) ROC

Figure 12: ROC and PR Curve

As shown in figure. 12, the new model’s performance is much superior to

other network models such as PonitNet, PointNet++ and so forth. The better

22

440

445

450

455

460

performance can be contributed to the strategy of providing the network with
both the robust pose transformation and the much more comprehensive feature
extraction structure. At the same time, it can be noticed that the new model
tends to achieve better classification performance for the node-intensive point
clouds and the graphs with high node connectivity according to the Fig. 12. It
is worth pointing out that by observing the PR curves of Fig. 12 and Fig. 11,
we can intuitively see that the rotation of the point cloud has a greater impact
on all methods. However, the proposed model is relatively quite stable on the

PR curve.

Table 1: Test accuracy

Model Test Auccary
PointEdge 23.46%
PointNet 57.38%
PointNet++ 46.92%
PointCNN 47.16%
Ours(512,K=20) 69.24%

Ours(1024,K=20) 73.07%

In addition, as can be seen from the table. 1, the network is superior to other
models in terms of recognition accuracy. It is worth noting that the accuracy
for PointNet is the second best to our method since it takes into account the
random rotation by using an STN network [12]. Also, we noticed that our model
can achieve even better accuracy by increasing the density of the input point
cloud. However, for describing the same object, an increase with the number
of point cloud nodes implies an increasing amount of workload for calculation,
which leads to a slower network training. How to make a balance between speed

and performance will be our future research.

4.8.3. Visualizing the features generated by GCN with PAN and without PAN

As shown in the previous experiments, the proposed approach can achieve
much better performance, especially in the case with pose rotations. We believe
this contributes to the PAN in the proposed approach. In this section, we
denote the network without PAN as GCN and the proposed whole network

23

465

470

475

480

as GCN+4PAN. In this experiment, the features extracted by GCN only and
GCN+PAN were visualized, where the feature dimension was reduced to 2D by
using t-SNE algorithm [29] in order to visualize the distribution of feature space
properly (as shown in figure 13). Experimental results show that the GCN has
a relatively poor differentiating capacity on ModelNet40 dataset. Conversely,
due to the addition of the PAN module, GCN’s feature expression capabilities

have been greatly enhanced.

t-SNE for GCN Without PAN {-SNE for GCN + PAN

1.0 P ;g - . [
Yot ey e s o 116188 2630 .
3 v 1627 1000 : 377 4
21 318 7 18 i 45, 16 AF6 1
e 25 ’ 5y s w2 i g
3)14 o 99 4 41 A
08 LA VI b 1, H 08 A ,‘\ p 2 21
13 957 12131 3¢
a6. 228 15212321
IR S TR Y 2t ‘1%%%
» w s, S 7 r 37 4 Er) 737
16 8 28 21177 3 s 7 7
pt. £ S 12 30 17
06 P55 804 73077 855 061 B 5, R 28 e o agh e
274, 28 12 . 300 3 » 33302 1
4L 7 2.® i 12 o 18 355
¥osn 2 1 » T 3 ¥ 238
2 5 12 8 $§
2 2 sl 2 s
04{ 82 5 s 04 5 Z
= 12
7 231
22

0.0 0.2 04 06 038 10 0.0 0.2 0.4 0.6 08 1.0

(a) GCN without PAN on ModelNet40 (b) GCN with PAN on ModelNet40 dataset
dataset

Figure 13: The features after t-SNE for GCN without PAN or with PAN under random pose
changing

4.8.4. Experiments on the efficiency of the model

Based on the results in Table 2, one can find that graphs with higher node-
intensive point clouds and higher node connectivity tend to achieve better per-
formance for point cloud object classification. By contrast, some relatively
sparse point clouds and graphs with low connectivity can increase the efficiency.
However, dense point clouds and highly connected graphs would significantly
reduce model training speed.

Therefore, we infer that there is redundancy in dense point clouds and highly
connected graphs. Then, in order to obtain a network model with better per-
formance and faster training speed, the nodes and graphs in the training data

need to be streamlined and optimized. Specifically, we use the FSP to reduce

24

485

490

495

the number of nodes for the point set in the training data. Though the KNN ap-
proach is used to build a graph in many papers including our paper, it will cause
the edges that are not on the surface of the point cloud, thus they may not meet
the conditions required by the point on a real point cloud surface. In general,
point cloud surface reconstruction algorithms, such as Poisson Reconstruction
(POR), Delaunay Triangulation (DT), etc. would behave differently in terms
of computing resource consumption. In this section, we use the DT method to
replace the KNN approach since DT has a much lower time complexity. The

reconstruction result by DT randomly increment method is shown in figure 14.

Figure 14: Unordered point cloud (left) and undirected weighted graph constructed by De-
launay Triangulation method (right)

Table 2: Performance comparison of the different graph construction algorithms

Vertex number Type Edge number Time/epoch* Test accuracy
KNN(K=40) 11471 904.59ms 70.87%
512 KNN(K=20) 5633 888.71ms 69.27%
Delaunay Triangulation 3012 873.26ms 70.20%
KNN(K=40) 22971 1248.65ms 73.25%
1024 KNN(K=20) 10969 1193.25ms 73.07%
Delaunay Triangulation 6150 1097.85ms 73.02%
* Run time measured on the configuration: Intel Xeon(R)CPU E5-2683v3,GeForce GTX
1080 Ti

As can be seen in the table 2, DT can construct a graph with fewer connected
edges than the K-nearest neighbor algorithm, thereby it can increase the speed
of network training and reduce the complexity of building the model, while
keeping the similar performance. Because the DT’s edge set can be regarded as
a subset of the edge set obtained by the K nearest neighbor algorithm, there

are not much differences between the K nearest neighbor composition algorithm

25

500

505

510

515

520

and DT with a node connectivity of 40.

5. Conclusion and Discussion

In this paper, we propose an end-to-end cloud point classification model
based on graph convolution networks. The network model architecture mainly
includes the following aspects: (1) A pose correction auxiliary network is de-
signed for rotation invariances based on the rigid body transformation theory
in the spherical coordinate system when extracting point cloud convolution fea-
tures; (2) Graph convolution operation based on the KNN method combined
with Chebyshev polynomial fitting strategy is proposed to achieve the extraction
of global and local features on unordered point clouds; (3) Based on the FPS
and mapping the spherical coordinate system to the gray scale image, a con-
volution pooling structure of the graph is developed in order to further extract
multi-dimensional features from the unordered point cloud. The PR curves in
Fig. 11 and Fig. 12 respectively visually and quantitatively show the classifica-
tion performances of different models when the point cloud target is rotated or
not. By observing the different presentations of the PR curves in Fig. 11 and
Fig. 12, two conclusions could be reached: one is that many existing point cloud
classification models are actually sensitive to the target rotation represented by
the 3D point cloud; the other is that our new model exhibits strong robustness
to point cloud rotations as expected.

In general, the new network model can accurately recognize 40 types of point
cloud objects, but there are still a large gap errors for a few classes. For exam-
ple, the flower_pot class is more likely to be identified as plant and vase. By
observing the original flower_pot point cloud model, we know that flower_pot
consists of two parts, plant and vase. Therefore, this kind of misidentification
reflects the problem that the point clouds for these two classes are not fine-
grained in the ModelNet40 dataset. It also further validates the effectiveness of
the new model for point cloud classification tasks corresponding to other single

objects.

26

525

530

535

540

545

550

555

Currently, GCNs are mainly used to predict individual relations in social
networks, model proteins for drug discovery, enhance predictions of recommen-
dation engines, efficiently segment large point clouds, etc. The increasing pro-
liferation of non-Euclidean data in real-world applications will give us more
chances for applying GCNs in different domains, as the limited performance of
CNNs when dealing with such data [30].

Moreover, as mentioned in the experiments, we found that the training re-
sults are better for the graphs with the dense point cloud and high connectivity,
but the performance improvement is not very significant compared with the
graph with sparse point cloud and low connectivity. This shows that there are a
lot of redundant points and edges in the graph for training and we will explore
a balance strategy in the future study.

In order to leverage the advantage of convolutional networks such as weight
sharing and local connectivity, the raw point clouds are usually converted to
some other representation, such as 3D occupancy grids or rendered 2D images.
However, these conversions are often irreversible, and destroy the local geo-
metric structure of the original point cloud. In this paper, we explored a new
way of converting point clouds to a representation suitable for deep learning,
without destroying any geometric information. Specifically, our new proposed
method focusd on solving the three major problems in point cloud object clas-
sification: unordered, rotation sensitive and multi-dimensional feature learning.
The experimental results illustrate that the new graph based CNN architecture
performs better than other recent models in dealing with the classifications for
random rotations of point cloud. As can be seen from figure 15 , our new model
serves as a uniform feature extractor for the same object with different poses,
which can be observed from the feature distribution after concatenation on fig-
ure 15. In the future, we will give much efforts on presenting a more feasible
representation for the input topology graph by implementing much efficient sur-
face reconstruction methods to obtain an even better classification performance.
In addition, the down-sampling method proposed in this paper still has a lot of

room for improvement in our future research work.

27

560

R_Feature 1 R_Feature 2 R_Feature_3 ol T 1
R - R_Feature : [rlin|r.0.¢]
Angle_Feature : [0, ¢] in [r.0,¢]

-’ * -
=
- Concat_Feature 3
-]
0 Angle_Feature_1 Angle_Feature 2 Angle_Feature_3 ‘
] ‘ " -y
| 5
- -
= - o
R_Feature_1 R_Feature 2 R_Feature_3
= Concat_Feature_3
-
)
-]
1]
]
| Angle_Feature 1 Angle_Feature 2 Angle_Feature 3
- e
From ParallerBlock 1 From ParallerBlock 2 From ParallerBlock_3 Frem Concatenation

Figure 15: The visualization for the extracted critical feature of the new model under different

poses

6. Acknowledgment

The authors would like to thank Mr. Haoyang Ma and Mr. Xin Jing for their
help on the point cloud dataset preparation and thank Mr. Qi Zhang and Mr.
Hanlin Li for their help on validating our new model. This work was partially
supported by a grant from the National Natural Science Foundation of China
(No0.61573019, No.61703006, and No.61602321) and 2020 Hebei Provincial Sci-
ence and Technology Plan Project (No. 203777116D). Also we would appreciate
the support of campus funding in North China University of Technology.

28

7. Appendix

ss 7.1. Algorithms for angle correction and multi-dimensional feature extraction

Algorithm 1 Angle correction algorithm for rotating auxiliary network

Require: (z;,y;,2;)p: Point cloud data as [B, N, 3],i € [1,N],b € [1, B;
Ensure: (1,0}, ¢.)p: Point cloud data in the modified spherical coordinate for-
mat [B, N, 3],i € [1,N],b € [1, B];
1: forb=1,2,...,B do
2. fori=1,2,...,N do

3: (ri,0;, §i)p < SphericalCoordinate((x;, i, 2i)p)
4: (rs, 07, ¢™)p < Normalization((r;, 0;, ¢i)p);
5: (Ti)bv (9?7 Qs?)b — Spth((Tv 977,7 ¢n))a

6: end for

70 (Qavgs Pavg)s < Average((ri, 07, d7)p),

i €[1,N];

8 (Omins Pmin)p < Minimum((r;, 07, 47)p),
i €[1,N];

9 (Omaz, Pmaz)b < Mazimum((ry, 07, ¢;')p),
i€[l,N];

100 (07,07)y < X2 Shared MLP((0:, ¢:)s),

i€ {cwg,mirz7 max};
1 (0,00 + (07, ¢7), + (87, ¢7), for each i € [1, NJ;
12: (rg, 05, ¢L)p = Concat((r;)p, (0%, $5)p)

13: end for

29

Algorithm 2 Algorithm for multi-dimensional feature extraction of point cloud

data

Require:

(4,94, 2:)p: Point cloud data of spatial rectangular coordinate system as

;3 € [1,N], b e [1, B];

[b, N
(Pily 32y -« oy Tims Qil, Qi2, - - ., Qi)p: Point cloud feature as [B, N,2C1]i €

[1, N],
be [LBL” € [1301]7
Ensure:
(z;,yj,2;)p: Point cloud data [B, %3], j € [1, %],
b e [1,B|,R;
(7515 T2 o s Ty @15 oy ooy @0)0 [B % 2C5),
€1, %],be[1,B],me[1,Co)R
1: forb=1,2,...,B do
2. GP*" < GraphGenerator((x;, i, zi)p), t € [1, NJ;

3: (rit, miz, - oy Tin)by (@41, Gaz, - o oy Qin) = SPUE((T31, T2, -+« 3 Tic, Qi1 Qa2 - - -

i€[l,N],ne€[l,C);

4 (Pl Thgs oy Th)b < GraphConv((rs1, 742, - - - s Tin)b, GE*™),
i€[l,N],ne[l,Ci],m € [1,Cs];

5. (alq,aly, ..., a5, < GraphConv((ai1, iz, - . - Gin)e, GE*™),
i €[1,N],n€[l,Ci],m € [1,Cs];

6: (P, 7oy T)b = MazPool((1]y,7g; -+, 75)b), 0 € [1, N,
jel,¥lme1,C

7: (a}l, agg, A _]m)b «— AvgPool((a}y,alg, ..., a5)b), 1 € [1, N,
Jj e, %},m € [1,Csl;

8 (j,95,2)b < FPS((@i, i, zi)v), i € [1,N],

e [1, %)

9 aic)b)»

. / / / ! !/ / / / /! /
9 (151, Moy ooy Ty @1, @y @)p = Comeat (151, 7oy o3 5)b, @1, @y - 0

€ [13 %}7m € [1702]

10: end for

30

570

575

580

585

590

References

[1]

L. W. H. T. W. P. Liu W, Sun J, Deep learning on point clouds and its
application: A survey, Sensors (19) (2019) 4188-4207.

H. Zhao, M. Tang, H. Ding, Hoppf: A novel local surface descrip-
tor for 3d object recognition, Pattern Recognition 103 (2020) 107272.
doi:https://doi.org/10.1016/j.patcog.2020.107272.

URL http://www.sciencedirect.com/science/article/pii/

50031320320300777

A. M. Aradjo, M. M. Oliveira, A robust statistics approach for plane
detection in unorganized point clouds, Pattern Recognition 100 (2020)
107115. doi:https://doi.org/10.1016/j.patcog.2019.107115.

URL http://www.sciencedirect.com/science/article/pii/

S50031320319304169

R. B. Rusu, S. Cousins, 3d is here: Point cloud library (pcl), in: 2011 IEEE

international conference on robotics and automation, IEEE, 2011, pp. 1-4.

T. D. Barfoot, State Estimation for Robotics, Cambridge University Press,
2017.

C. E. Rasmussen, The infinite gaussian mixture model, in: Advances in

neural information processing systems, 2000, pp. 554-560.

Y. Li, R. Bu, M. Sun, W. Wu, X. Di, B. Chen, Pointcnn: Convolution
on x-transformed points, in: Advances in Neural Information Processing

Systems, 2018, pp. 820-830.

E. Nezhadarya, E. Taghavi, R. Razani, B. Liu, J. Luo, Adaptive hier-
archical down-sampling for point cloud classification, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

31

http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2020.107272
http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://www.sciencedirect.com/science/article/pii/S0031320320300777
http://www.sciencedirect.com/science/article/pii/S0031320319304169
http://www.sciencedirect.com/science/article/pii/S0031320319304169
http://www.sciencedirect.com/science/article/pii/S0031320319304169
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.107115
http://www.sciencedirect.com/science/article/pii/S0031320319304169
http://www.sciencedirect.com/science/article/pii/S0031320319304169
http://www.sciencedirect.com/science/article/pii/S0031320319304169

595

600

605

610

615

[9]

[13]

[14]

[15]

M. Gadelha, R. Wang, S. Maji, Multiresolution tree networks for 3d
point cloud processing, in: The European Conference on Computer Vision

(ECCV), 2018.

J. Wu, C. Zhang, T. Xue, W. T. Freeman, J. B. Tenenbaum, Learning
a probabilistic latent space of object shapes via 3d generative-adversarial
modeling, in: NIPS’16: Proceedings of the 30th International Conference
on Neural Information Processing, 2016, pp. 82-90.

M. Simonovsky, N. Komodakis, Dynamic edge-conditioned filters in con-
volutional neural networks on graphs, in: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 29-38. doi:
10.1109/CVPR.2017.11.

C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point
sets for 3d classification and segmentation, in: The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

C.R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, in: Advances in neural information

processing systems, 2017, pp. 5099-5108.

Y. Zhang, M. Rabbat, A graph-cnn for 3d point cloud classification, in:
2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), IEEE, 2018, pp. 6279-6283.

L. Yi, H. Su, X. Guo, L. Guibas, Syncspeccnn: Synchronized spectral cnn
for 3d shape segmentation, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 6584-6592.

G. Qian, A. Abualshour, G. Li, A. Thabet, B. Ghanem, Pu-gcn: Point
cloud upsampling using graph convolutional networks (2019). arXiv:1912.

03264.

32

http://dx.doi.org/10.1109/CVPR.2017.11
http://dx.doi.org/10.1109/CVPR.2017.11
http://dx.doi.org/10.1109/CVPR.2017.11
http://arxiv.org/abs/1912.03264
http://arxiv.org/abs/1912.03264
http://arxiv.org/abs/1912.03264

620

625

630

635

640

[17]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

L. Wang, Y. Huang, Y. Hou, S. Zhang, J. Shan, Graph attention convolu-
tion for point cloud semantic segmentation, in: The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019.

M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-
works on graphs with fast localized spectral filtering, in: Advances in neural

information processing systems, 2016, pp. 3844-3852.

F.R. Chung, F. C. Graham, Spectral graph theory, no. 92, American Math-
ematical Soc., 1997.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The
graph neural network model, IEEE Transactions on Neural Networks 20 (1)

(2008) 61-80.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The

journal of machine learning research 15 (1) (2014) 1929-1958.

S. Toffe, C. Szegedy, Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

Y. Eldar, M. Lindenbaum, M. Porat, Y. Y. Zeevi, The farthest point strat-
egy for progressive image sampling, IEEE Transactions on Image Process-

ing 6 (9) (1997) 1305-1315. doi:10.1109/83.623193.

S. A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Trans-
actions on Systems, Man, and Cybernetics (4) (1976) 325-327.

I. S. Dhillon, Y. Guan, B. Kulis, Weighted graph cuts without eigenvectors
a multilevel approach, IEEE transactions on pattern analysis and machine

intelligence 29 (11) (2007) 1944-1957.

Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, J. Xiao, 3d shapenets: A deep representation for volumetric shapes,

33

http://dx.doi.org/10.1109/83.623193

645

650

655

[28]

[29]

in: 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 1912-1920. doi:10.1109/CVPR.2015.7298801.

G. Lemaitre, F. Nogueira, C. K. Aridas, Imbalanced-learn: A Python Tool-
box to Tackle the Curse of Imbalanced Datasets in Machine Learning, Jour-
nal of Machine Learning Research 18 (2017) 1 — 5.

URL https://hal.inria.fr/hal-01516244

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon,
Dynamic graph cnn for learning on point clouds, ACM Transactions on

Graphics 38 (2019) 146:1-146:12.

L. van der Maaten, G. Hinton, Visualizing high-dimensional data using
t-sne, Journal of Machine Learning Research 9 (nov) (2008) 2579-2605,
pagination: 27.

A. T. B. G. Guohao Li, Matthias Muller, Deepgcns: Can gens go as deep
as cnns?, in: Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 2019, pp. 9267-9276.

34

http://dx.doi.org/10.1109/CVPR.2015.7298801
https://hal.inria.fr/hal-01516244
https://hal.inria.fr/hal-01516244
https://hal.inria.fr/hal-01516244
https://hal.inria.fr/hal-01516244

	Introduction
	Related Works
	The Proposed Approach
	The Pose Auxiliary Network (PAN)
	The Graph Representation Approach
	Graph based down-sampling and pooling operations
	The Pipelined Architecture of the New Model

	Experimental Results and Analysis
	Point cloud dataset preparation
	Training Procedure and Hyper-parameters Tuning
	Evaluation
	Experiments on the point cloud input without rotation
	Experiments on the point cloud input with random rotations
	Visualizing the features generated by GCN with PAN and without PAN
	Experiments on the efficiency of the model

	Conclusion and Discussion
	Acknowledgment
	Appendix
	Algorithms for angle correction and multi-dimensional feature extraction

