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Abstract. In dimension n “ 2 and 3, we show that for any initial datum belonging to a
dense subset of the energy space, there exist infinitely many global-in-time admissible weak
solutions to the isentropic Euler system whenever 1 † � § 1` 2

n . This result can be regarded
as a compressible counterpart of the one obtained by Szekelyhidi–Wiedemann (ARMA, 2012)
for incompressible flows. Similarly to the incompressible result, the admissibility condition
is defined in its integral form. Our result is based on a generalization of a key step of the
convex integration procedure. This generalization allows, even in the compressible case, to
convex integrate any smooth positive Reynolds stress. A large family of subsolutions can
then be considered. These subsolutions can be generated, for instance, via regularization of
any weak inviscid limit of an associated compressible Navier–Stokes system with degenerate
viscosities.
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1. Introduction

The motion of a compressible fluid in gas dynamics with constant entropy in the periodic
box Tn :“ r0, 1sn for n “ 2 or 3 can be modeled by the isentropic Euler system consisting of
n ` 1 dynamical equations for the macroscopic state variables: the gas density ⇢ “ ⇢px, tq
and the fluid velocity v “ vpx, tq. The corresponding Cauchy problem reads

"Bt⇢ ` divp⇢vq “ 0,

Btp⇢vq ` divp⇢v b vq ` rpp⇢q “ 0
(1.1a)

with initial condition

⇢|t“0 “ ⇢0, ⇢v|t“0 “ V 0. (1.1b)
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In the isentropic regime, the pressure p is determined by an isentropic equation of state,
pp⇢q “ ⇢�, where � is the adiabatic constant of the gas. Throughout the paper, we will
assume that

1 † � § 1 ` 2

n
. (1.2)

In particular, it includes the shallow water equation in dimension 2 (�=2), and the monoatomic
ideal gas in dimension 3 (�=5/3).

1.1. Admissible weak solutions and main result. Solutions to (1.1a) carrying C1 reg-
ularity away from vacuum are known to uniquely exist at least locally in time provided
that the initial data are su�ciently smooth. On the other hand, it is well-known that such
solutions develop singularities (shock waves) in finite time for a generic class of data; see
[26, 14, 4, 6]. Understanding how solutions can be extended beyond singularities has been a
rich field of study.

Mathematically, to permit the continuation of solutions after the occurrence of singularity,
one is required to work with weak solutions, i.e. bounded solutions to (1.1a) in the sense of
distribution. To give a more precise definition, it is more convenient to reformulate (1.1a)
in terms of conservative variables p⇢, V q where V :“ ⇢v.

Definition 1.1 (Global weak admissible solutions for compressible Euler equations). We

say p⇢, V q P L8pR`;L�pTnqq ˆ L8pR`;L
2�
�`1 pTnqq is a weak solution of (1.1a) on R` if

‚ ⇢ • 0 a.e. and
ª 8

0

ª

Tn

p⇢Bt' ` V ¨ r'q dxdt “ ´
ª

Tn

⇢0'p¨, 0q dx (1.3a)

for any ' P C8
c pTn ˆ R`q.

‚ V “ 0 whenever ⇢ “ 0 and
ª 8

0

ª

Tn

ˆ
V ¨ Bt� ` V b V

⇢
: r� ` pp⇢qdiv�

˙
dxdt “ ´

ª

Tn

V 0 ¨ �p¨, 0q dx (1.3b)

for any � P C8
c pTn ˆ R`;Rnq, where V 0 :“ ⇢0v0.

‚ The following global energy inequality holds
ª

Tn

Ep⇢, V qp¨, tq dx §
ª

Tn

Ep⇢0, V 0q dx for all t • 0, (1.3c)

where Ep⇢, V q :“ ⇢�

�´1 ` |V |2
2⇢ is the total energy.

In the physical variables p⇢, V “ ⇢vq, Ep⇢, V q “ ⇢�

�´1 `⇢ |v|2
2 . The integral form of the global

energy inequality (1.3c) is enough to ensure the strong/weak uniqueness result for Lipschitz
solutions (see Dafermos [13] and Di Perna [20]). The solutions verifying this condition are
called admissible in the context of convex integration for incompressible flows (see for instance
[27]). We recall that Equations (1.1a), together with the a priori bounds from Definition
(1.1), imply that p⇢, V q is bounded in C0pR`, LqpTnq-weakq, for some q ° 1 depending on �.
Therefore the function p⇢, V q can be defined for all time t P R` (as a function in LqpTnq).
This justifies the fact that (1.3c) makes sense for every time t • 0. Note however that
the meaningful constraint of Inequality (1.3c) is that its right hand side corresponds to the
energy of the initial value. The convexity of the energy E in the variables p⇢, V q implies that

2



if the inequality (1.3c) holds for almost every t ° 0, then it holds actually for every time
t • 0. Let us now state the main result of this paper.

Theorem 1.1. Assume that � verifies (1.2). Then, for any " ° 0 and any p%0, U0q such
that %0 • 0 a.e. and Ep%0, U0q P L1pTnq, there exist infinitely many p⇢0, V 0q satisfying

⇢0 ° 0, Ep⇢0, V 0q P L1pTnq, }⇢0 ´ %0}�L�pTnq `
›››››
V 0

a
⇢0

´ U0

a
%0

›››››

2

L2pTnq
† ", (1.4)

such that, for each of such initial values p⇢0, V 0q, there exist infinitely many global admissible
weak solutions p⇢, V q to the compressible Euler equation (1.1) in the sense of Definition 1.1.

The above theorem provides a dense subset of the energy space, such that any initial value
in this set generates infinitely many energy decreasing global weak solution to the isentropic
system (1.1) defined on the whole space Tn ˆ R`. This result can be seen as a compressible
counterpart of Theorem 2 from Székelyhidi–Wiedemann [27] which considers incompressible
flows (see discussion in the next subsection). It shows that the isentropic system endowed
with the global energy criterion is definitively ill-posed for a dense family of initial values.

The proof relies on the convex integration machinery developed by De Lellis–Székelyhidi
[18, 19]. Although the focus of their work was first on the incompressible Euler equation,
a first application to the compressible isentropic Euler was already present in [19]. For
compressible flows, the general strategy always involves constructing global density functions
such that a convex integration process can be performed on the momentum field V . The
development of the technique for the isentropic case is following two main directions. One
direction, pioneered by Chiodaroli in [8], considers a wide class of initial densities. In this
situation, the set of initial momentum V 0 cannot be chosen a priori, but depends on the
convex integration procedure. The original result [8] treats general C1 initial densities, and
was later extended to the case of possibly discontinuous piecewise C1 functions by Luo–Xie–
Xin [25], and Feireisl [21]. The other direction, pioneered by Chiodaroli–De Lellis–Kreml [9],
focuses on initial values being Riemann data. They are piece-wise constant functions with a
unique planar set of discontinuities. The situation of a shock was first considered, and later
extended to other Riemann problems (see [7], [11]). Extensions of both strategies have been
studied for the full Euler system (see for instance Chiodaroli–Feireisl–Kreml [10], Al Baba–
Klingenberg–Kreml–Mácha–Markfelder [3], and Feireisl–Klingenberg–Markfelder [22]). A
natural problem consists in studying the size of the class of initial values leading to non-
unique solutions. Note that the energy condition (1.3c) is crucial. Without this admissibility
condition, non-unique solutions to (1.1) can be constructed for any fixed initial values (see
Abbatiello–Feireisl [1]).

1.2. The incompressible case. Let us now consider an incompressible ideal flow with
density being normalized to unity, whose dynamics is governed by the incompressible Euler
equations "Btv ` divpv b vq ` rp “ 0,

div v “ 0,
(1.5a)

with initial datum
v|t“0 “ v0, (1.5b)
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where now the pressure p arises as a Lagrange multiplier due to the incompressibility con-
dition. For an initial velocity field v0 P L2pTnq with div v0 “ 0, the corresponding notion of
global in time admissible weak solutions is given as follows.

Definition 1.2 (Global weak solutions for admissible incompressible Euler equations). We
say v P L8pR`;L2pTnqq is a weak solution of (1.5) if it is divergence-free in the sense of
distribution and

‚ for any � P C8
c pTn ˆ R`;Rnq with div� “ 0,

ª 8

0

ª

Tn

pv ¨ Bt� ` v b v : r�q dxdt “ ´
ª

Tn

v0 ¨ �p¨, 0q dx. (1.6a)

‚ The following global energy inequality holdsª

Tn

1

2
|vp¨, tq|2 dx §

ª

Tn

1

2
|v0p¨q|2 dx for every t • 0. (1.6b)

Similarly to the compressible case, any such solution actually lies in C0pR`;L2pTnq-weakq,
and so (1.6b) can be written for every time t • 0. However, still because of the convexity of
the energy, it is enough to check that Inequality (1.6b) is true for almost every t ° 0. We
now state our result in the incompressible case.

Theorem 1.2. For any " ° 0 and any u0 P L2pTnq, there exist infinitely many v0 P L2pTnq
satisfying

}v0 ´ u0}2L2pTnq † ", (1.7)

such that for each such initial value v0, there exist infinitely many global weak solutions v to
the incompressible Euler equation (1.5) in the sense of Definition 1.2.

We want to remark that the above result is not new in the context of incompressible Euler
equations. It was first proved in [27] by Székelyhidi–Wiedemann, and was later improved
with the construction of C1{5 solutions in Daneri–Runa–Székelyhidi [17], and to C↵ solutions
up to the Onsager range ↵ † 1{3 in Daneri–Székelyhidi [16]. We will nevertheless give a
proof of Theorem 1.2 which unifies the compressible and incompressible points of view in
the context of the L8 theory.

1.3. Main ideas of the proof. So far, all constructions of non-unique solutions for com-
pressible flows are done with the L8 theory of convex integration. The general strategy
follows two steps: the construction of subsolutions, and the convex integration of these
subsolutions to obtain actual solutions (see for instance [19]). In their more general form,
subsolutions are functions p⇢, V “ ⇢u,Rq solving the so-called “Euler–Reynolds” system

$
&

%

Bt⇢ ` divV “ 0,

BtV ` div

ˆ
V b V

⇢
` pp⇢qIn ` R

˙
“ 0,

(1.8)

where the compressible “Reynolds stress tensor” Rpt, xq is a positive semi-definite symmet-
ric matrix for every x, t. The family of subsolutions is stable under weak limit, or convex
combination, therefore it is far easier to construct subsolutions than solutions (which cor-
responds to R “ 0). The convex integration provides a way to construct infinitely many
solutions to the Euler equations, from a subsolution, for a certain family of Reynolds stresses
R. The more general the family of Reynolds stresses processable via the convex integration,

4



the easier it is to construct subsolutions, and the larger is the set of initial values which can
be reached. To the best of the authors’ knowledge, in the context of compressible fluids, the
convex integration technique used so far allows to deal with only diagonal Reynold stresses
(see [8, 9]). Such a method is a variant from the incompressible case [18]. It states that
for every open set P , and every ⇢, q positive real-valued functions, V vector-valued function,
and U traceless symmetric matrix-valued function (all smooth enough), through convex in-
tegration there exist infinitely many rV and traceless rU (as oscillatory perturbations), both
compactly supported in P , such that in Rn ˆ R`:

#
divrV “ 0,

Bt rV ` divrU “ 0,
(1.9)

while in P a nonlinear constraint

pV ` rV q b pV ` rV q
⇢

´ pU ` rUq “
ˆ |V |2

n⇢
` q

˙
In (1.10)

is achieved as to eliminate the Reynolds stress R :“ qIn. Therefore under the assumption
that there exists a smooth enough, energy-compatible subsolution p⇢, V, Rq of (1.8) and
denoting U :“ pV b V ´ In|V |2{nq{⇢, the oscillatory perturbations prV , rUq constructed from
(1.9)–(1.10) readily generate p⇢, V ` rV q as solutions to the the isentropic Euler system.
However, the requirement on the Reynolds stress that R “ qIn is stringent and prevents one
from generating a large class of initial values.

Convex integration with general Reynolds stresses. One of the main contributions of this
paper is the generalization of the key convex integration tool to accommodate any positive
definite Reynolds stresses (see Lemma 3.1) in the L8 framework. Namely, we show that we
can construct infinitely many solutions of (1.9), replacing the contraint (1.10) with

pV ` rV q b pV ` rV q
⇢

´ pU ` rUq “ |V |2
n⇢

In ` R, (1.11)

for any continuous strictly positive Reynolds stress R ° 0. We state and prove this result in
both Rn and Tn for future use.

As in the previous work, this result is obtained by partitioning the domain P in small areas
where ⇢, V and R are almost constant, and so considering the generation of highly oscillatory
perturbations for the constant case first. Denote Snˆn

0 the set of traceless symmetric matrices
in dimension n. In the previous case when R “ qIn, the generation of oscillations is based
on the study of the convex set:

Kco
d,r :“

"
pV, Uq P Rn ˆ Snˆn

0 : edpV, Uq § r2

2

*
, (1.12)

where edpV, Uq :“ pn{2q�maxpV b V ´ Uq, with �maxpwq denoting the largest eigenvalue of
the matrix w (see [19]). The oscillatory perturbations prV , rUq have to be constructed such
that for all time and space, pV ` rV , U ` rUq stay in the set Kco

d,r defined with r2 “ |V |2 ` trR.
The first observation is that oscillatory perturbations for a constant (but possibly non-
diagonal) Reynolds stress R “ R̊ ` InptrR{nq can be constructed similarly as in [19], using
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the “translation” of Kco
d,r:

Kco
r :“ p0, R̊q ` Kco

d,r.

This can be done in an admissible way as long as �minpRq, the smallest eigenvalue of R, is
positive.

The di�culty is then to integrate this building block through the general convex integration
scheme. In the classical situation, the problem (1.9)–(1.10) is replaced by a relaxed one
where (1.10) is replaced by a (matrix) inequality. That is, by the property that there exists
a positive semidefinite matrix-valued function S such that for all px, tq P P :

pV ` rV q b pV ` rV q
⇢

´ pU ` rUq ` S “
ˆ |V |2

n⇢
` q

˙
In. (1.13)

The general convex integration procedure (see [18]) ensures, via a topological Bairé category
argument, the existence of infinitely many solutions to the relaxed problem (1.9) and (1.13)
with the following property: each one of these solutions cannot be reached via a sequence
of oscillatory solutions to the same relaxed problem (namely, it is not possible to find a
sequence of solutions to (1.9) and (1.13) which converges weakly to this special solution, while
not converging strongly). For incompressible flows [18, 19], or “piece-wise incompressible”
flows (compressible flows with a piece-wise constant in space and time-independent density)
[19, 9], or “semi-stationary” flows (time-independent density) [8, 2], constraint (1.13) can
be designed in such a way that S takes the form of a multiple of the identity matrix. This
particularly allows one to derive, on those solutions, a “saturation” property of S in the sense
that �minpSq “ 0. Taking advantage of the form that S takes, this further concludes that
S ” 0, meaning that those infinitely many functions are actually solutions to (1.9)–(1.10).

On the other hand, the challenge in extending the framework of [18] to (1.9) and (1.11) is
apparent: when qIn in (1.13) is replaced by a general positive matrix R, the corresponding
S is generically non-diagonal. A näıve adaptation of the convex integration as indicated
above would still lead to a saturation in terms of �minpSq “ 0. However this is never strong
enough to imply the vanishing of S any more. The resolution we propose here is to exploit
the additional saturation in �maxpSq in the course of the convex integration. In particular,
when �minpSq ° 0 on P , we will construct oscillatory perturbations with oscillation strength
proportional to

≥
P trSpx, tq dx dt. This way, we will verify that the solutions selected by the

Bairé argument verify both �minpSq “ 0 on P and
≥
P trSpx, tq dx dt “ 0. The condition

on �minpSq indicates that all the eigenvalues of S are nonnegative, and from the condition
on the trS, their sum is 0 almost everywhere. This implies that S “ 0 on P and so these
subsolutions are actually solutions.

Density of wild initial data and double convex integration. When considering the Cauchy
problem (1.1), the initial data that can lead to infinitely many admissible weak solutions
are termed the “wild” initial data [19]. In the context of incompressible flows, it has been
shown that wild initial data are L2-dense for L8 weak solutions [27] as well as for Hölder C↵

weak solutions [17, 16]. One of the subtleties in dealing with the Cauchy problem is that the
subsolutions need to be adjusted to capture the full initial energy, and that the superimposed
oscillatory perturbations need to preserve the initial datum. This is achieved by the so-called
“double convex integration” first introduced in [19] for L8 solutions, and later extended to
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treat Hölder solutions [15, 17, 16]. Specifically, a time-localized convex integration is first
performed to construct a nontrivial subsolution with its wild initial datum, followed by a
second convex integration to pass from this subsolution to infinitely many weak solutions.
As is pointed out in [16], such a strategy is required in proving the density of the wild initial
data.

One of the key ingredients of the above strategy is to find an appropriate class of perturba-
tions in the scheme capable of generating su�ciently rich family of positive definite Reynolds
stresses, from which a suitable notion of subsolutions can be introduced to track the relation
between the size of the Reynolds stress and the loss of regularity. In the C↵ theory, a fairly
precise control of the Hölder norms at each iteration step is needed. In particular, the full
strength of the Reynolds stresses is used in the estimates. Mikado flows are thus used to
allow any positive definite Reynolds stresses throughout the iteration, since the Beltrami
flows are not su�cient [12]. In contrast, the notion of subsolutions in the L8 framework is
much less rigid and the solutions can be obtained implicitly via the Bairé argument. Only
a portion of the size of the Reynolds stresses is needed in the estimate and hence Beltrami
flows su�ce the role of fast oscillating perturbations.

For compressible flows with a varying density, on the other hand, as explained in the
earlier context of this subsection, the Reynolds stress R in the L8 scheme takes a general
form while the oscillations need to have strength proportional to the size of R measured
through its trace as

≥
P trRpx, tq dx dt. We want to emphasize that it is essential to allow a

general class of R in the convex integration in order to cover a large family of initial values.

To ensure a full saturation of the initial energy for the subsolutions, we follow a similar
version of the double convex integration on a small interval r0, T s first, and then, on rT,8q.
The weak solutions directly constructed by convex integration may not verify (1.3c). But
for each fixed one, its time shifts, usptq “ ups ` tq will verify it for almost every s ° 0.
Taking s small enough, we can show that this provides infinitely many initial value with
(at least) one admissible solution on an interval r0, T ´ ss. Considering the same time shift
on the functions obtained through convex integration on rT,8q provides infinitely many
continuation on rT ´ s,8q combined with each admissible solutions first constructed on
r0, T ´ ss. Note that by construction, the solutions are continuous in time at T ´ s (weakly
in x) and their value is exactly the value of the subsolution at this time. See Figure 1.

The above method works very e↵ectively on incompressible flows. However additional care
is needed in the compressible case. The total energy consists of both the kinetic and potential
parts. Moreover, the Reynolds stress, which can be thought of as a result of commuting weak
limits with nonlinearity of the Euler equations, also involves information about fluctuation
in both velocity (or momentum) and density components. Since our convex integration is
designed such that the “defect energy” of the subsolutions is injected into the kinetic energy,
it is possible that there is a loss of the total energy resulting from the potential energy.
Therefore before the first convex integration, some compensating potential energy should be
pumped into the Euler–Reynolds system. Such an energy requirement imposes the constraint
on the adiabatic exponent � § 1 ` 2

n (see below for more detailed explanation).
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Construction of energy-compatible subsolutions. Now that we are able to convex integrate
with any smooth positive Reynold stresses, the construction of subsolutions is highly simpli-
fied. We choose to construct them from the weak inviscid limit of Navier–Stokes equations.
For fixed viscosities ⌫, the standard existence theory requires � ° 3{2 (see Feireisl–Novotny–
Petzeltova [23]). For this reason, we are using instead a Navier–Stokes model with degenerate
viscosities constructed in [28, 24, 5] which allows � ° 1. We then modify the inviscid limit
obtained from this model to ensure that the density ⇢ and the Reynolds stress R are smooth
enough, and �minpRq ° 0 globally. Note that for compressible flows R consists of two parts
R and rIn arising from the averaging e↵ect on the velocity and on the density through the
pressure, respectively. Such a weak inviscid limit (together with the smoothing process)
results in an energy density

re :“ 1

2

ˆ |V |2
⇢

` trR
˙

` pp⇢q ` r

� ´ 1
,

where both the kinetic and potential energies are changed. On the other hand, our convex
integration produces subsolutions having energy density

ē :“ 1

2

ˆ |V |2
⇢

` trR

˙
` pp⇢q

� ´ 1
“ 1

2

ˆ |V |2
⇢

` trR ` nr

˙
` pp⇢q

� ´ 1
,

from which one sees that the entire defect energy is injected into the kinetic energy through
the convex integration (since the oscillations are imposed on velocity only). Clearly we need
ē § re, which results in (1.2). From (1.3c) we see that the energy compatibility require-
ment corresponds to asking

≥
Tn re dx §

≥
Tn Ep⇢0, V 0q dx. Therefore the construction of the

energy-compatible subsolutions involves careful adjustments on R through the regulariza-
tion, positivity enhancement, and energy compatibility procedures. We are able to show
that these adjustments can be done in a unified way using an abstract lemma about convex
combination of subsolutions, cf. Lemma 5.1 (and Lemma 4.1 for the incompressible case).

The rest of the paper is as follows. Section 2 is dedicated to the convex integration of
(1.9) (1.11) in the case where ⇢, V, U and R are constants. The general case is treated in
Section 3. Section 4 is dedicated to the proof of Theorem 1.2 for the incompressible case,
and Section 5 to the proof of Theorem 1.1 for the compressible case.

2. Building blocks for convex integration

Recall from the Introduction that our focus is to consider solutions to (1.8) with R ° 0
being positive definite in the interior region as the ‘subsolution’ to the isentropic Euler system
(1.1a). Note that equation (1.8) is equivalent to

$
&

%

Bt⇢ ` divV “ 0,

BtV ` divU ` r
ˆ
pp⇢q ` |V |2

n⇢

˙
` divR “ 0,

(2.1)

where V :“ ⇢v and U :“ V b V

⇢
´ |V |2

n⇢
In.

Consider a C0 solution p⇢0, V0, R0q to (2.1). Denote the bounds for ⇢0 to be

0 † 1

⇤2
§ ⇢0 § ⇤2. (2.2)

8



The goal is to construct infinitely many bounded solutions prV , rUq supported in a given
domain P satisfying #

divrV “ 0,

Bt rV ` divrU “ 0,
(2.3a)

with
pV0 ` rV q b pV0 ` rV q

⇢0
´ pU0 ` rUq “ |V0|2

n⇢0
In ` R0 a.e. in P, (2.3b)

where

U0 :“
V0 b V0

⇢0
´ |V0|2

n⇢0
In. (2.3c)

Notice that this way p⇢0, V0` rV
⇢0

q is then a solution to the Euler system (1.1a). The construction

of prV , rUq will be addressed in the next section. As a building block, we will start with a
simplified setting described below.

2.1. Constant states problem. We will first consider a simplified problem of (2.3), namely
when V0, ⇢0 and R0 are constant vector, constant scalar and constant symmetric matrix
respectively and satisfy ⇢0 ° 0, R0 ° 0. Therefore U0 P Snˆn

0 is also a constant matrix.
Apparently such a p⇢0, V0, R0q solves (2.1).

Introducing pV, Uqpx, tq :“
´

rV {?
⇢0, rU

¯
px, t?⇢0q, then pV, Uq satisfies

"
divV “ 0,

BtV ` divU “ 0,
(2.4a)

with

pV0 ` V q b pV0 ` V q ´ pU0 ` Uq “ C0

n
In ` R0 (2.4b)

where C0 :“ |V0|2
⇢0

° 0, R0 ° 0 is positive definite, and V0 is relabeled as V0{?
⇢0.

Following [19], for r • 0 we define the states of speed r

Kr :“
"

pV, Uq P Rn ˆ Snˆn
0 : U “ V b V ´ R0 ´ 1

n

`
r2 ´ trR0

˘
In, |V | “ r

*
.

Denote Kco
r the convex hull in Rn ˆ Snˆn of Kr. Also define

epV, Uq :“ n

2
�max pV b V ´ U ´ R0q

where �max denotes the largest eigenvalue. Then similar to [19, Lemma 3], we have the
following

Lemma 2.1. For pV, Uq P Rn ˆ Snˆn
0 it holds that

(i) e : Rn ˆ Snˆn
0 Ñ R is convex;

(ii)
1

2

`
|V |2 ´ trR0

˘
§ epV, Uq, with equality if and only if

U “ V b V ´ R0 ´ 1

n

`
|V |2 ´ trR0

˘
In;
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(iii) denote |U |8 the operator norm of U , then

|U |8 § 2pn ´ 1q
n

epV, Uq ` pn ´ 1q|R0|8;

(iv) the convex hull of Kr is

Kco
r “

"
pV, Uq P Rn ˆ Snˆn

0 : epV, Uq § 1

2
pr2 ´ trR0q

*
;

(v) for pv, uq P RnˆSnˆn
0 ,

a
2 repv, uq ` trR0s gives the smallest s for which pv, uq P Kco

s .

Proof. The proofs of (i), (ii) and (v) follows almost identically as in [19, Lemma 3]. So let’s
focus only on (iii) and (iv).

(iii) Let ⇠0 be a unit eigenvector of U associated to its smallest eigenvalue �minpUq. We
have by definition that

epV, Uq • n

2
max
⇠PSn´1

`
´ h⇠, pU ` R0q⇠i

˘

• n

2

`
´ h⇠0, U⇠0i

˘
´ n

2
h⇠0, R0⇠0i

• ´n

2
�minpUq ´ n

2
max
⇠PSn´1

`
h⇠, R0⇠i

˘

• ´n

2
�minpUq ´ n

2
�maxpR0q.

Thus since U is trace free, we have

|U |8 § pn ´ 1q
`

´ �minpUq
˘

§ 2pn ´ 1q
n

epV, Uq ` pn ´ 1q|R0|8.

(iv) Denote

Sr :“
"

pV, Uq P Rn ˆ Snˆn
0 : epV, Uq § 1

2
pr2 ´ trR0q

*
.

From definition we see that whenever pV, Uq P Kr we have epV, Uq “ 1
2pr2 ´ trR0q. Since e

is convex from (i), it follows that
Kco

r Ä Sr.

From (ii) and (iii) we know that Sr is compact. hence Sr equals the closed convex hull of its
extreme points.

From pV, Uq P SrzKr, we can without loss of generality assume that V b V ´ U ´ R0 is
diagonal with diagonal entries �1 • . . . • �n satisfying �1 § 1

npr2 ´ trR0q. From (ii) and the
fact that pV, Uq R Kr we conclude that �1 † 1

npr2 ´ trR0q.
Now we can continuously perturb such pV, Uq in Rn ˆ Snˆn

0 : write V “ ∞
i V

iei where
e1, . . . , en are the basis vectors. Pick a fixed pair pv, uq P Rn ˆ Snˆn

0 as

v “ en, u “
n´1ÿ

i“1

V ipei b en ` en b eiq.

This way

pV ` tvq b pV ` tvq ´ pU ` tuq “ pV b V ´ Uq ` p2tV n ` t2qen b en,
10



and therefore for |t| su�ciently small epV `tv, U`tuq § 1
2pr2´trR0q. Hence pV `tv, U`tuq P

Sr, and thus pV, Uq is not an extreme point of Sr. So all of the extreme points of Sr are
contained in Kr. ⇤

2.2. Oscillations. The construction of the needed oscillations in the interior of Kco
r is done

via seeking suitable plane-wave solutions. They correspond to the following admissible seg-
ments; see [19, Definition 6].

Definition 2.1. Given r ° 0, we call a line segment � Ä Rn ˆ Snˆn
0 an admissible segment

if it satisfies

(a) � Ä int Kco
r ,

(b) � is parallel to pa, ab aq ´ pb, bb bq for some a, b P Rn with |a| “ |b| “ r and b ‰ ˘a.

Similar to [18, Lemma 4.3] and [19, Lemma 6], we can first record the following geometric
property of Kco

r which provides the existence of su�cient large admissible segments.

Lemma 2.2 (Existence of large admissible segements). Set N0 :“ dimpRnˆSnˆn
0 q “ npn`3q

2 ´
1. For any r ° 0 and for any pV, Uq P int Kco

r there exists an admissible line segment

� :“
”
pV, Uq ´ pv, uq, pV, Uq ` pv, uq

ı
(2.5)

such that

|v| • 1

4N0r

`
r2 ´ |V |2

˘
and distp�, BKco

r q • 1

2
distppV, Uq, BKco

r q.

The proof of this lemma follows directly from [18, Lemma 4.3] applied on the translated
set Kco

r ´ p0, p1{nqptrR0qIn ´ R0q.
We now recall [9, Proposition 4.1] which provides the existence of localized plane waves

oscillating between two states of (2.4a) with equal speed.

Lemma 2.3 (Localized plane waves). Let a, b P Rn such that a ‰ ˘b and |a| “ |b|. For
a � ° 0 consider a segment � “ r´p, ps Ä Rn ˆ Snˆn

0 where p “ � rpa, a b aq ´ pb, b b bqs.
Then there exists a pair pv, uq P C8

c pB1p0q ˆ p´1, 1qq solving
"

divxv “ 0,

Btv ` divxu “ 0,
(2.6)

and such that

(i) the image of pv, uq is contained in an ✏-neighborhood of � and
≥
pv, uq dxdt “ 0;

(ii)
≥

|vpt, xq| dxdt • ↵�|b ´ a| where ↵ ° 0 is a geometric constant.

2.3. Perturbation property. In this subsection we will derive a key property which will
be used in Section 3.

Let C0 • 0 be a constant and R0 ° 0 be a symmetric positive definite matrix. Define a
subset of Rn ˆ Snˆn

0

U :“
"

pv, uq P Rn ˆ Snˆn
0 : v b v ´ u ´ R0 † C0

n
In

*
.

11



Also define a function space

Xc
0 :“

!
pV, Uq P C8

c pP ;Rn ˆ Snˆn
0 q : pV, Uq solves (2.4a) and

pV0 ` V q b pV0 ` V q ´ pU0 ` Uq † C0

n
In ` R0

*
.

(2.7)

Recasting Lemma 2.2 on U we have

Lemma 2.4 (Geometric property of U). There exists a positive geometric constant c0 such
that for any pṽ, ũq P U , there exists a segment � as in Lemma 2.3 with |a| “ |b| “ ?

C0 ` trR0,

pṽ, ũq ` � P U , and �|b ´ a| • c0
`
C0 ` trR0 ´ |ṽ|2

˘
.

Proof. From Lemma 2.1 we see that

U “ int Kco
r , where r2 “ C0 ` trR0.

The existence of the claimed segment � is a direct consequence of Lemma 2.2. Moreover
since the length of � is (up to a geometric constant, say, c0) comparable to �|b ´ a|, the
conclusion of the lemma holds. ⇤

Now we can conclude this section with the following L1-coercivity result.

Proposition 2.1 (L1-coercivity of the perturbation). There exists a constant c1 ° 0 such
that the following is true. Let pV, Uq P Xc

0 where Xc
0 is defined in (2.7). Then, for any open

set � Ä P , there exists a sequence tpVi, Uiqu Ä Xc
0 converging weak-˚ to pV, Uq such that

}Vi ´ V }L1p�q • c1
”
pC0 ` trR0q |�| ´ }V0 ` V }2L2p�q

ı
. (2.8)

Proof. Fix any point px0, t0q P � and note that pV, Uq ` pV0, U0q takes values in U . Applying
Lemma 2.4 yields the segment � with pṽ, ũq “ pV px0, t0q, Upx0, t0qq ` pV0, U0q. Choose r ° 0
such that pV px, tq, Upx, tqq ` pV0, U0q ` � Ä U for any px, tq P Brpx0q ˆ pt0 ´ r, t0 ` rq. It
exists thanks to the continuity of pV, Uq.

For any ✏ ° 0 consider a pair pv, uq as in Lemma 2.3 and define

pvx0,t0,r, ux0,t0,rqpx, tq :“ pv, uq
`
x´x0

r , t´t0
r

˘
.

Clearly, for ✏ small enough, pV, Uq ` pv0,r, u0,rq P Xc
0. Moreover

ª

Brpx0qˆpt0´r,t0`rq
|vx0,t0,r| dxdt • ↵c0

`
C0 ` trR0 ´ |V0 ` V px0, t0q|2

˘
rn`1. (2.9)

By continuity there exists an r0 such that for all r † r0 the above holds for every px, tq with
Brpxq ˆ pt ´ r, t ` rq Ä �.

Set r “ 1
k † r0 and pick finitely many points pxj, tjq such that Brpxjq ˆ ptj ´ r, tj ` rq Ä �

are pairwise disjoint and satisfy
ÿ

j

`
C0 ` trR0 ´ |V0 ` V px0, t0q|2

˘
rn`1 • c̄

ˆ
pC0 ` trR0q |�| ´

ª

�

|V0 ` V px, tq|2 dxdt
˙

(2.10)
for some geometric constant c̄ ° 0. So now we define

pVk, Ukq :“ pV, Uq `
ÿ

j

pvxj ,tj ,r, uxj ,tj ,rq.

12



It is clear that pVk, Ukq P Xc
0 since the supports of pvxj ,tj ,r, uxj ,tj ,rq are pairwise disjoint.

Moreover pVk, Ukq á˚ pV, Uq in L8. Finally we see that (2.8) follows from the above two
estimates (2.9) and (2.10). ⇤
Remark 2.1. Depending on the values of V0, U0, R0, the set Xc

0 may be empty. In this case
Proposition 2.1 is void, but still holds true.

Remark 2.2. Taking the trace of element Xc
0 shows that:

sup
P

|Vi| § 2|V0| ` 2pC0 ` trR0q.

3. Discretization and convex integration

Now let’s come back to the system (2.3), but with ⇢0, R0 being possibly non-constant
functions. At this point we do not restrict ourselves to only consider p⇢0, V0, U0, R0q to be a
solution to (2.1), but to be some general continuous functions such that on an open set P ,
(2.3c) holds true, R0 ° 0 as a matrix, and ⇢0 verifies a uniform condition as (2.2). The goal
is to construct infinitely many solutions prV , rUq to the problem (2.3).

Following [9] (and also [18]), we will achieve (2.3a) and (2.3b) by first considering the
relaxed condition

pV0 ` rV q b pV0 ` rV q
⇢0

´ pU0 ` rUq † |V0|2
n⇢0

In ` R0. (3.1)

Define the set

X0 :“
!

prV , rUq P C8
c pP ;Rn ˆ Snˆn

0 q : prV , rUq solves (2.3a) and (3.1)
)
. (3.2)

Obviously X0 is nonempty since 0 P X0 thanks to (2.3c) and R0 ° 0. Then we consider X
to be the closure of X0 in the L8 weak-˚ topology. The metrizability of such a topology
is ensured by the boundedness (in weak-˚) of X in L8, and hence it generates a complete
metric space pX, dq. Since elements of X solve (2.3a), therefore the goal is to show that the
saturation (2.3b) holds on a residual set so that a Bairé category argument applies.

The main result of this section is the following.

Lemma 3.1. Let p⇢0, V0, R0q P C0pRn ˆ R;R ˆ Rn ˆ Snˆnq be given with ⇢0 satisfying (2.2)
and R0 being positive definite in some open set P Ä Rn ˆ R. Let U0 be given as in (2.3c).
There exist infinitely many prV , rUq P L8pRn ˆ R;Rn ˆ Snˆn

0 q which are compactly supported
in P and satisfy (2.3a) and (2.3b).

The proof of the above lemma relies on the following procedure which involves discretiza-
tion of the problem and convex integration with a general non-diagonal Reynolds stress R0

as performed in the previous section.
Given p⇢0, V0, R0q P C0pRn ˆ R;R ˆ Rn ˆ Snˆnq which satisfy the assumption of Lemma

3.1, and for a fixed prV , rUq P X0 which is compactly supported in P , we denote

M :“ |V0|2
n⇢0

In ` R0 ´ pV0 ` rV q b pV0 ` rV q
⇢0

` U0 ` rU,

�minpMq :“ the smallest eigenvalue of M.

(3.3)

13



From (3.1) we see that M ° 0 is positive definite on P , and hence �minpMq ° 0 on P . Let
us consider ⌦1 Ä ⌦ two compact subsets of P such that for �1 ° 0 small enough any cube of
size �1 centered in ⌦1 is included in ⌦, and such that

ª

⌦1

trM dxdt • 1

2

ª

P

trM dxdt.

Because ⌦ is compact and M and R0 are continuous on P , we have

�˚ :“ min
⌦

rminp�minpMq,�minpR0qqs ° 0. (3.4)

With this setup, we first prove the following lemma.

Lemma 3.2 (L1-coercivity). For any prV , rUq P X0, there exists a sequence
!

prVi, rUiq
)

Ä X0

converging weak-˚ to prV , rUq such that
›››rVi ´ rV

›››
L1pP q

• c0
⇤

ª

P

trM dxdt (3.5)

for some geometric constant c0 ° 0, where ⇤ gives the bounds for ⇢0 as in (2.2).

Proof. Step 1. The idea is to perform a discretization. For that, let’s first consider a
localized problem. Take a fixed point px0, t0q P ⌦1 and choose a su�ciently small open cube
Q centered at px0, t0q (especially of size smaller than �1). Denote

V :“
 
Q

pV0 ` rV q dxdt, U :“
 
Q

pU0 ` rUq dxdt, R0 :“
 
Q

R0 dxdt. (3.6)

Consider

MQ :“ CQ

n
In ` RQ ´ V b V

⇢
` U P Snˆn, (3.7)

where

⇢ :“ min
Q

⇢0, CQ :“ min
Q

|V0|2
⇢0

• 0, RQ :“ ´ �˚
16n

In ` R0. (3.8)

The uniform continuity of ⇢0, V0, R0, prV , rUq in ⌦ implies that for any " ° 0 there exists some
� ° 0 independent of Q such that whenever |Q| † �, the fluctuation of these quantities over
Q is smaller than ". In particular choosing " small enough with respect to �˚, we can ensure
that for � small enough,

RQ ° 0, sup
Q

}M ´ MQ} † �˚
8n

, sup
Q

}R0 ´ R0} † �˚
64n

, sup
Q

ˇ̌
CQ ´ |V0|2{⇢0

ˇ̌
§ �˚

64n
,

where } ¨ } is the standard matrix norm. Together with (3.8) , we get

CQ

n
In ` RQ † |V0|2

n⇢0
In ` R0 ´ �˚

32n
In, (3.9)

and

MQ “ M ` pMQ ´ Mq ° M ´ �˚
8n

In ° 0, and hence trMQ ° 1

4
trM on Q. (3.10)
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Consider the rescaled set Q̊ :“ tpx, t{?⇢q : px, tq P Qu. We now consider Proposition 2.1
with the constants

pV0, U0, R0, C0q “
˜

V
?⇢

, U, RQ, CQ

¸
.

Denote XQ
0 the set Xc

0 defined in (2.7) on the set Q̊ (instead of P ). Thanks to (3.7) and
(3.10), p0, 0q P XQ

0 . Therefore, from Proposition 2.1, there exists a sequence pV̊i, Ůiq P XQ
0

converging weakly to 0, and such that for every i:

}V̊i}L1pQ̊q • c1pCQ ` trRQ ´ |V |2q|Q̊| • c1ptrMQq|Q̊|.

Since pV̊i, Ůiq P XQ
0 , it verifies (2.3a) and

˜
V

?⇢
` V̊i

¸
b

˜
V

?⇢
` V̊i

¸
´ U ` Ůi † CQ

n
In ` RQ.

Consider the change of variable pV̊i, Ůiqpx, tq :“
´
Vi{?⇢, Ui

¯
px, t?⇢q. The functions pVi, Uiq

are now compactly supported in Q, and they still verify (2.3a) and converges weakly to 0.
Moreover we have on Q the following list of inequality, where we use the definition of ⇢ for
the first inequality, and Remark 2.2 which ensures that the constant C is independent of the
sequence Vi for the second one. The constant C being fixed, we can get the third inequality
by taking � even smaller if needed. The last inequality follows from (3.8).

pV0 ` rV ` Viq b pV0 ` rV ` Viq
⇢0

´ pU0 ` rU ` Uiq

§ pV0 ` rV ` Viq b pV0 ` rV ` Viq
⇢

´ pU0 ` rU ` Uiq

§ pV ` Viq b pV ` Viq
⇢

´ pU ` Uiq ` Cp|V0 ` rV ´ V 0| ` |U0 ` rU ´ U0|qIn

§ CQ

n
In ` RQ ` �˚

64n
In

† |V0|2
n⇢0

In ` R0.

Hence, Vi ` rV P X0. And from the change of variables and (3.10):

}Vi}L1pQq • c1⇢ptrMQq|Q| • c1
4⇤

ª

Q

trM dxdt. (3.11)

Step 2. Note again that the uniform continuity of ⇢0, V0, R0, prV , rUq in ⌦ indicates that
the size of Q in Step 1 is independent of the choice of the point px0, t0q P ⌦1. So we can
repeat the argument of Step 1 at all points px, tq P ⌦1. Taking � † �1 small enough, we can
consider the grid of points of Rn ˆR`: pm1�, ¨ ¨ ¨,mn�, l�q, l P N, pm1, ¨ ¨ ¨,mnq P Zn. Consider
a finite set of cubes of size � with vertices on this grid covering ⌦1. Note that they have non-
overlapping interiors, and are all subsets of ⌦. Denote this list of cubes tQk : k “ 1, ¨¨, Nu.
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For each k, we denote tpV k
i , U

k
i qukPN the sequence of functions compactly supported in Qk

defined in Step 1, and define in P :

rVi :“ rV `
Nÿ

k“1

V k
i , rUi :“ rU `

Nÿ

k“1

Uk
i .

For i fixed, all the pV k
i , U

k
i q for k “ 1 ¨ ¨ ¨ N have disjoint supports. So from Step 1, rVi P X0.

For all k fixed, V k
i converges weakly to 0, so rVi converges weakly to 0 as i Ñ 8. Finally,

from (3.11), we get

}rVi´rV }L1pP q •
Nÿ

k“1

}V k
i }L1pQkq • c1

4⇤

Nÿ

k“1

ª

Qk

trM dxdt • c1
4⇤

ª

⌦1

trM dxdt • c1
8⇤

ª

P

trM dxdt.

This completes the proof of the lemma. ⇤
A direct consequence of the above lemma is the following.

Proposition 3.1 (Points of continuity of the identity map). Let ppV , pUq P X be a point of
continuity of the identity map I from pX, dq to L2pRn ˆ Rq. Then ppV , pUq satisfies (2.3b).

Proof. By definition, there exists a sequence pVj, Ujq P X0 converging weak-˚ to ppV , pUq with

the property that Vj Ñ pV strongly in L2pP q, and hence strongly in L1
locpP q. Lemma 3.2

implies that for each pVj, Ujq one may find a sequence tpVj,i, Uj,iqu converging weak-˚ to
pVj, Ujq, satisfying (2.3a), and

}Vj,i ´ Vj}L1pP q • c1
8⇤

ª

P

trMj dxdt

where Mj are given in (3.3) with prV , rUq being replaced by pVj, Ujq. Applying a diagonal

argument we obtain a subsequence pVj,ipjq, Uj,ipjqq that converges weak-˚ to ppV , pUq and such
that

lim
j

›››Vj,ipjq ´ pV
›››
L1pP q

• c1
8⇤

lim
j

ª

P

trMj dxdt,

which implies that

lim
j

ª

P

trMj dxdt “ 0. (3.12)

Consider

xM :“ |V0|2
n⇢0

In ` R0 ´ pV0 ` pV q b pV0 ` pV q
⇢0

` U0 ` pU.

We know that Mj á˚ xM . Since Mj ° 0, it follows that xM • 0 a.e.. From (3.12) and the

fact that trMj á˚ trxM we conclude that

lim
j

ª

P

trMj dxdt “
ª

P

trxM dxdt “ 0.

Therefore trxM “ 0 a.e., and thus xM “ 0 a.e., which means ppV , pUq satisfies (2.3b). ⇤
Proof of Lemma 3.1. With the help of Proposition 3.1, Lemma 3.1 follows from a Bairé
category argument. ⇤

From Lemma 3.1 we immediately obtain the following proposition.
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Proposition 3.2 (Reduction to subsolutions). If (2.1) has a solution p⇢0, V0, R0q P C0pRnˆ
R;R ˆ Rn ˆ Snˆnq with ⇢0 ° 0 and R0 ° 0 on a set P of positive measure, then there are
infinitely many bounded solutions p⇢, vq to (1.1a) with ⇢ “ ⇢0.

Proof. From Lemma 3.1 we know that under the assumption of Proposition 3.2 one can find
infinitely many bounded solutions prV , rUq P C8

c pP ;R2 ˆ Snˆn
0 q satisfying (2.3a) and (2.3b).

Now for any such prV , rUq define

Vnew :“ V0 ` rV .

Then

Bt⇢0 ` div Vnew “ Bt⇢0 ` div V0 ` div rV “ 0.

Applying (2.3b) and the definition (2.3c) that U0 :“
V0 b V0

⇢0
´ |V0|2

n⇢0
In we have

BtVnew ` div

ˆ
Vnew b Vnew

⇢0
` pp⇢0qIn

˙

“ BtV0 ` Bt rV ` div

ˆ
U0 ` rU ` |V0|2

2⇢0
In ` R0 ` pp⇢0qIn

˙

“ BtV0 ` div

ˆ
V0 b V0

⇢0
` pp⇢0qIn ` R0

˙
` Bt rV ` divrU

“ 0.

Taking v :“ Vnew

⇢0
we see that p⇢0, vq solves (1.1a). ⇤

Remark 3.1. At the energy level, taking trace in (2.3b) we see that after convex integration

|Vnew|2
⇢0

“ |V0|2
⇢0

` trR0. (3.13)

This is to say, the ‘defect energy’ of the subsolution due to the Reynolds tensor is injected
into the weak Euler solutions through the convex integration.

Remark 3.2. Notice that when p⇢0, V0, R0q is a piece-wise constant solution, like the ones
constructed in [9], it follows from (3.13) that

BtEp⇢0, Vnewq ` div rpEp⇢0, Vnewq ` pp⇢0qqVnews

“ div

„ˆ
Ep⇢0, V0q ` 1

2
trR0 ` pp⇢0q

˙ ´
V0 ` rV

¯⇢
“ 0,

leading to a local energy balance.

Proposition 3.2 motivates us to define the following notion of subsolutions.

Definition 3.1 (Subsolutions). A subsolution to the isentropic Euler system (1.1a) is a
triple p⇢0, V0, R0q P C0pRn ˆ R;R ˆ Rn ˆ Snˆnq that solves (2.1) with ⇢0 ° 0 and R0 ° 0 on
a set P of positive measure.

17



4. Application to incompressible flows

In this section we will apply the general scheme developed in Section 3 to treat the in-
compressible Euler equations. In this case, the system (1.8) for subsolutions changes to

"Btv ` divpv b v ` pIn ` Rq “ 0,

divv “ 0,
(4.1)

where now density is take to be ⇢ ” 1 and the pressure p becomes the Lagrange multiplier
due to the incompressibility constraint.

Our goal is to construct a large set of ‘wild’ initial data of the incompressible Euler
equations so that each such datum (1) generates infinitely many weak solutions and (2)
those weak solutions satisfy the energy criterion. We will appeal to our convex integration
scheme to handle the first part, provided that we are able to find a subsolution to (4.1) with
the Reynolds stress R being positive definite. Regarding (2), we will need to ensure that the
construction of the subsolutions is consistence with the energy law.

4.1. Energy compatible subsolutions. In this subsection we precisely define the class of
subsolutions we need for the convex integration and provide a way to construct them.

Definition 4.1 (Energy compatible subsolutions). Let E0, T ° 0, and M`pTn;Snˆnq be the
set of finite symmetric positive semidefinite matrix-valued (signed) Borel measures. We say
that

pv, Rq P L8pR`;L
2pTnqq ˆ L8

w˚pR`;M`pTn;Snˆnqq
is an pE0, T q-energy compatible subsolution of the incompressible Euler equations if the fol-
lowing conditions are satisfied

(I1) (Existence of pressure) There exists some p P D1pR` ˆTnq such that (4.1) is satisfied
in the sense of distribution on R` ˆ Tn.

(I2) (Short-time energy saturation) For almost every t P r0, T s it holds that
1

2

ª

Tn

`
|v|2 ` trR

˘
dx “ E0.

(I3) (Energy inequality) For almost every t • T it holds that

1

2

ª

Tn

`
|v|2 ` trR

˘
dx § E0.

One can show in the following proposition that for a smooth initial data, an energy com-
patible subsolution can be obtained through a classical vanishing viscosity limit.

Proposition 4.1. Let v0 P C1pTnq be divergence-free and for every ⌫ ° 0, consider v⌫ the
(global) Leray solution to the Navier–Stokes equation with initial data v0 which is divergence-
free. Denote E0 :“ 1

2

≥
Tn |v0|2 dx. Then there exist a T ° 0 and an pE0, T q-energy compatible

subsolution pv, Rq of the incompressible Euler equations such that up to a subsequence

v⌫ á v in D1 as ⌫ Ñ 0.

Moreover, v is a Lipschitz solution to the Euler equation on r0, T s with v|t“0 “ v0.
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Proof. From classical energy inequality for the Navier–Stokes equations we know that for
any ⌫ ° 0,

1

2

ª

Tn

|v⌫ |2 dx ` ⌫

ª t

0

ª

Tn

|rv⌫ |2 dxds § E0. (4.2)

Hence there exists

pv,Rq P L8pR`;L
2pTnqq ˆ L8

w˚pRn;M`pTn;Snˆnqq
such that up to a subsequence, as ⌫ Ñ 0,

v⌫ á v, v⌫ b v⌫ á v b v ` R in D1. (4.3)

Therefore passing to this limit in the Navier–Stokes equation gives (I1). It also implies that

1

2
trpv⌫ b v⌫q “ 1

2
|v⌫ |2 á 1

2

`
|v|2 ` trR

˘
in D1,

which, together with (4.2), yields (I3).
Finally the local energy equality (I2) follows from a classical weak-strong uniqueness ar-

gument. Recall that v0 P C1, and hence there exists some T ° 0 and a Lipschitz solution v
of the Euler equation on r0, T s. For any ⌫ ° 0 and t § T , following [14] we have

}v⌫pt, ¨q ´ vpt, ¨q}2L2pTnq ` ⌫

ª t

0

ª

Tn

|rv⌫ps, xq|2 dxds

§}rv}L8

ª t

0

ª

Tn

|v⌫ ´ v|2 dxds ` ⌫}rv}L2}rv⌫}L2

§}rv}L8

ª t

0

ª

Tn

|v⌫ ´ v|2 dxds ` ⌫

2

ª t

0

ª

Tn

|rv⌫ps, xq|2 dxds ` 2⌫T }rv}L8 .

Thus using Gronwall and that v|t“0 “ v⌫ |t“0 we have

}v⌫pt, ¨q ´ vpt, ¨q}2L2pTnq § 2⌫T }rv}L8eT }rv}L8 Ñ 0 as ⌫ Ñ 0.

This together with (4.3) implies that

v “ v for t P r0, T s.
Therefore on r0, T s

R ” 0 and
1

2

ª

Tn

|v|2 dx “ E0,

which gives (I2). ⇤
4.2. Convex integration. In this subsection we explain how one applies the convex inte-
gration framework to produce from an energy compatible subsolution pv,Rq infinitely many
weak Euler solutions emanating from an initial value which is, up to a defect energy, arbi-
trarily close to the initial value v0 of the subsolution.

Note that in order to apply our convex integration machinery, we need the Reynolds
stress tensor R to be positive definite. This would prohibit us from convex integrating the
subsolution from the initial time directly since there is an energy ‘bump-up’ at the initial
time coming from R, as can be seen in (3.13). Therefore the idea is to first convex integrate
pv, Rq from its initial value for a short time period r0, t0s, which generates a new ‘initial
value’ at some rt P p0, t0q carrying the full energy. Then convex integrate on rt0,`8q, and
finally stick together the two pieces.
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Theorem 4.1. Assume that pv, Rq is a smooth pE0, T q-energy compatible subsolution of the
incompressible Euler equations with initial value pv0, R0q such that v0 is divergence-free and
Rpx, tq ° 0 is positive definite for every px, tq P Tn ˆ R`. Then for any " ° 0, there exist
infinitely many divergence-free initial values rv0" P L2pTnq such that

1

2

ª

Tn

|rv0"pxq|2 dx “ E0 and

ª

Tn

|rv0" ´ v0|2 dx † " `
ª

Tn

trR0 dx, (4.4)

and for each of such initial values there exist infinitely many rv" P L8pR`;L2pTnqq which are
global weak solutions to the incompressible Euler equations with rv"|t“0 “ rv0" and

1

2

ª

Tn

|rv"pt, xq|2 dx § 1

2

ª

Tn

|rv0"pxq|2 dx “ E0 a.e. t ° 0. (4.5)

Proof. Since pv, Rq is smooth, so for any " ° 0 there exists some t0 † T
2 such that @ t † t0,

t0}rv0}L8E0 † "

4
. (4.6)

The positivity of R ensures that we can apply our convex integration result Proposition 3.2
(with density being constant) on r0, t0s. This provides infinitely many weak Euler solutions
v̂ on r0, t0s with

v̂|t“0 “ v0, v̂pt0, ¨q “ vpt0, ¨q,
and by (3.13),

1

2

ª

Tn

|v̂pt, xq|2 dx “ E0, a.e. t P r0, t0s. (4.7)

Denote the set T Ä r0, t0s to be the set of times such that the above equality holds. Then
T depends on the solution v̂, 0, t0 R T , and the measure Lpr0, t0szT q “ 0.

If there are only a finite number of L2 functions tv1, . . . , vNu such that for all the weak
solutions v̂ constructed above with the associated T , v̂ptq P tv1ptq, . . . , vNptqu. Then by the
weak continuity in time, we indeed have that

v̂ ” vj on r0, t0{2s for some j P t1, . . . , Nu.
But this would in turn imply that we can only construct N weak Euler solutions, which is a
contradiction with the fact that our convex integration scheme can produce infinitely many
weak solutions.

The above discussion allows us to choose infinitely many rt P T to define infinitely many
initial data

rv0" :“ v̂prt, ¨q.
Hence from the definition of T we see that 1

2

≥
Tn |rv0"pxq|2 dx “ E0. Moreover from (I2),

1

2
}rv0" ´ v0}2L2 “ 1

2
}rv0"}2L2 ` 1

2
}v0}2L2 ´

ª

Tn

rv0" ¨ v0 dx

“ E0 `
ˆ
E0 ´ 1

2

ª

Tn

trR0 dx

˙
´

ª

Tn

rv0" ¨ v0 dx
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Since v0 is divergence-free, by (4.6) and (4.7),
ˇ̌
ˇ̌
ª

Tn

v̂pt, xq ¨ v0pxq dx ´ }v0}2L2

ˇ̌
ˇ̌ §

ˇ̌
ˇ̌
ª t

0

ª

Tn

Btv̂ ¨ v0 dxds
ˇ̌
ˇ̌

§
ˇ̌
ˇ̌
ª t

0

ª

Tn

rv0 : pv̂ b v̂q dxds
ˇ̌
ˇ̌

§ 2t}rv0}L8E0 † "

2
.

Therefore from (I2) it follows that

1

2
}rv0" ´ v0}2L2 “ 1

2
}rv0"}2L2 ` 1

2
}v0}2L2 ´

ª

Tn

rv0" ¨ v0 dx

“ 1

2
}rv0"}2L2 ´ 1

2
}v0}2L2 ` }v0}2L2 ´

ª

Tn

rv0" ¨ v0 dx

† E0 ´
ˆ
E0 ´ 1

2

ª

Tn

trR0 dx

˙
` "

2

“ 1

2

ª

Tn

trR0 dx ` "

2
.

This proves (4.4).
Now for each of such (infinitely many) initial values rv0" we define rv✏ on R` ˆTn as follows:

rv"pt, ¨q “
"

v̂pt ` rt, ¨q, for t § t0 ´ rt,
v̆pt ` rt, ¨q, for t • t0 ´ rt,

where v̆ is any weak Euler solution on rt0,`8q constructed by convex integrating the original
energy compatible subsolution pv,Rq on rt0,`8q. Thus we know that

v̂pt0q “ vpt0q “ v̆pt0q.
This way we know that rv" is a weak solution to the incompressible Euler equations on
R` ˆ Tn. By construction we have rv✏|t“0 “ rv0" , and rv✏ satisfies (4.5). ⇤

The above construction can be illustrated in the following diagram.

(v0,R0)

Tt0

v̂ on [0, t0]

(v,R), R > 0

et

ev"(·)= v̂(·+et)

v̆ on [t0,+1)

ev"(·)= v̆(·+et)

Convex integration
from (v,R)

1
2kv̂(et)k2

L2 = E 0
0

Figure 1. Double convex integration of an pE0, T q-energy compatible subso-
lution with R ° 0.
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4.3. Construction of smooth energy compatible strict subsolutions. From Theorem
4.1 we see that in order to construct infinitely many weak solutions to the incompressible
Euler equation (1.5) with initial data being a small perturbation of a given L2 function, it
su�ces to find an energy compatible subsolution pv, Rq in the sense of Definition 4.1 which
further satisfies that R ° 0 is positive definite. We call such a pv,Rq an energy compatible
strict subsolution.

In this subsection we introduce a convex combination formalism to produce such energy
compatible strict subsolutions.

Let p⌦, µq be a probability space, that is, µ is a nonnegative measure on ⌦ such that
µp⌦q “ 1.

Lemma 4.1. Fix E0, T ° 0. Let pv, Rq be a measurable function from R` ˆ Tn ˆ ⌦ to
Rn ˆ Rnˆn such that for a.e. ! P ⌦, pv!, R!q :“ pvp¨,!q, Rp¨,!qq is an pE0, T q-energy
compatible subsolution to the incompressible Euler equations. Denote

v :“ Epv!q, R :“ EpR!q ` Epv! b v!q ´ v b v, (4.8)

where

Epf!q :“
ª

⌦

f!dµp!q.

Then pv, Rq is also an pE0, T q-energy compatible subsolution.

Remark 4.1. This lemma says that the set of energy compatible subsolutions is closed under
convex combination (discrete or continuous), and (4.8) gives the explicit formula for the new
‘Reynolds tensor’.

Proof of Lemma 4.1. Taking the expectation of (4.1) and using the definition (4.8) it follows
that pv, Rq and p :“ Epp!q satisfy (I1).

Note that for a.e. t P r0, T s, by (4.8)

E
ˆ
1

2
p|v!|2 ` trR!q

˙
“ 1

2
trE pv! b v! ` R!q

“ 1

2
tr

`
v b v ` R

˘
“ 1

2
p|v|2 ` trRq.

Taking the expectation of (I2) and (I3) for pv!, R!q proves (I2) and (I3) for pv, Rq. ⇤

Now we are ready to prove the main result of this subsection.

Theorem 4.2. Given E0, T ° 0, let pv, Rq be an pE0, T q-energy compatible subsolution to
the incompressible Euler equations with initial data v0 satisfying

1

2

ª

Tn

|v0|2 dx “ E0.

Then for any " ° 0 there exists a smooth pE0, T2 q-energy compatible subsolution prv, rRq with

initial data prv0, rR0q satisfying

rR ° 0,
1

2

ª

Tn

´
|rv0 ´ v0|2 ` tr rR0

¯
dx † ". (4.9)
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Remark 4.2. Note from ((I1)) in Definition 4.1 that for an energy compatible subsoltuion
pv, Rq we have v P CtD1. Therefore its initial value v0 is well-defined. However the same
cannot be applied to R.

Proof. First we know that pE0, T q-energy compatible subsolutions pv, Rq with 1
2

≥
Tn |v0|2 dx “

E0 are strongly continuous in L2 at t “ 0, that is, lim
tÑ0

}vptq ´ v0}L2 “ 0.

Indeed, for any " ° 0, there is a smooth divergence-free function v0" P C8pTnq such that

}v0 ´ v0"}L2 † "

12
?
2E0

,

together with some constant C" ° 0 such that
ˇ̌
ˇ̌ d
dt

ª

Tn

v0"pxq ¨ vpt, xq dx
ˇ̌
ˇ̌ §

ˇ̌
ˇ̌
ª

Tn

rv0" : pv b v ` Rq dx
ˇ̌
ˇ̌ § C".

From this it follows that there exists some t0 ° 0 such that C"t0 † "{12. Hence for a.e.
t P r0, t0s,

1

2
}vpt, xq ´ v0pxq}2L2 “ 1

2
}v}2L2 ` 1

2
}v0}2L2 ´

ª

Tn

pv0 ´ v0"q ¨ v dx ´
ª

Tn

v0" ¨ v dx

† 2E0 ` "

12
´

ª

Tn

v0" ¨ v0 dx `
ª t0

0

d

ds

ª

Tn

v0" ¨ v dxds

† "

12
`

ª

Tn

pv0" ´ v0q ¨ v0 dx ` C"t0 † "

4
.

Moreover for a.e. t • 0, recall from the definition of pE0, T q-energy compatible subsolution
that

1

2

ª

Tn

p|v|2 ` trRq dx § E0,

from which we have

0 § 1

2

ª

Tn

trRdx § E0 ´ 1

2

ª

Tn

|v|2 dx † "

4
a.e. t P r0, t0s.

Introducing a standard mollifier ' P C8pR ˆ Tnq with support in r0, 1s ˆ Tn, ' • 0 and≥
' “ 1. For ↵ ° 0 we define

'↵pt, xq :“ 1

↵n`1
'

ˆ
t

↵
,
x

↵

˙
.

Therefore we can find some 0 † ↵ † T {2 small enough such that '↵ ˚ pv, Rq satisfy

››p'↵ ˚ vq|t“0 ´ v0
››2
L2 † ",

ª

Tn

trp'↵ ˚ Rq|t“0 dx † ".

Then consider ⌦ :“ r0, T {2s ˆ Tn, dµps, yq :“ '↵ps, yqdsdy, and for any ! :“ ps, yq P ⌦ with
s † T {2,

pw,Rqp¨, ¨, s, yq :“ pv,Rq p¨ ` s, ¨ ` yq
on r0, T {2s ˆ Tn. Therefore pw,Rqp¨, ¨, s, yq is an pE0, T2 q-energy compatible subsolution.

Note that
Epwq “ '↵ ˚ w “: v↵, EpRq “ '↵ ˚ R.
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So, thanks to Lemma 4.1, pv↵, R↵q is still an pE0, T2 q-energy compatible subsolution with

R↵ :“ '↵ ˚ R ` '↵ ˚ pv b vq ´ v↵ b v↵.

It is obvious that pv↵, R↵q is smooth and by shrinking ↵ if necessary we have

1

2
}v0↵ ´ v0}2L2 ` 1

2

ª

Tn

trR0
↵ dx † ", (4.10)

where v0↵ :“ v↵|t“0 and R0
↵ :“ R↵|t“0 are the initial values of v↵ and R↵ respectively.

Now define

� :“ min

ˆ
"

3E0
,
1

2

˙
P p0, 1q.

Consider ⌦ :“ t1, 2u, µ being atomic as µ :“ ��!“1 ` p1 ´ �q�!“2, and

pw,Rqpt, x, 1q :“
ˆ
0,

2E0

n|Tn|In
˙
, pw,Rqpt, x, 2q :“ pv↵, R↵q .

Note that
´
0, 2E0

n|Tn|In
¯

is an pE0, T q-energy compatible subsolution. So for any ! P ⌦,

pw,Rqp¨, ¨,!q is an pE0, T2 q-energy compatible subsolution and

Epwq “ p1 ´ �qv↵, EpRq “ 2�E0

n|Tn|In ` p1 ´ �qR↵.

Therefore from Lemma 4.1,

prv, rRq :“
`
p1 ´ �qv↵,�p1 ´ �qv↵ b v↵ ` EpRq

˘

is an pE0, T2 q-energy compatible subsolution. Moreover prv, rRq is smooth and

rR • 2�E0

n|Tn|In ° 0.

Finally we check the initial value by recalling (4.10) to obtain

1

2
}rv0 ´ v0}2L2 “ 1

2
}v0↵ ´ v0 ´ �v0↵}2L2 † ",

1

2

ª

Tn

tr rR0 dx “ �E0 ` 1 ´ �

2

ª

Tn

trR0
↵ dx ` �p1 ´ �q

2
E0

§ 3

2
�E0 ` 1 ´ �

2
" † ".

Putting together we obtain (4.9). ⇤

4.4. Density of wild data for incompressible Euler equations. With all of the above
preparation, we are now in a position to prove Theorem 1.2.

Proof. We will first mollify u0 to a smooth u0
" P C8pTnq such that

}u0
" ´ u0}2L2pTnq † "

9
. (4.11)

Denote E0
" :“ 1

2

≥
Tn |u0

"|2 dx. Applying Proposition 4.1 yields the existence of some T ° 0 and
an pE0

" , T q-energy compatible subsolution pu", R"q with u"|t“0 “ u0
", and R" ” 0 for t P r0, T s.
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Next we can apply Theorem 4.2 so that pu", R✏q is upgraded to a smooth pE0
" ,

T
2 q-energy

compatible subsolution pru", rR"q with initial data pru0
", rR0

"q and satisfying the properties

rR" ° 0, and }ru0
" ´ u0

"}2L2pTnq `
ª

Tn

tr rR0
" dx † "

9
. (4.12)

Finally the positivity of rR0
" allows us to use Theorem 4.1. This produces infinitely many

v0 P L2pTnq each of which induces infinitely many weak solutions in the sense of Definition
1.2. Moreover from (4.4) we see that

}v0 ´ ru0
"}2L2pTnq † "

9
`

ª

Tn

tr rR0
" dx. (4.13)

Putting together (4.11)–(4.13) it follows that

}v0 ´ u0}2L2pTnq § 3
´

}v0 ´ ru0
"}2L2pTnq ` }ru0

" ´ u0
"}2L2pTnq ` }u0

" ´ u0}2L2pTnq
¯

† 3

ˆ
"

9
`

ª

Tn

tr rR0
" dx ` }ru0

" ´ u0
"}2L2pTnq ` "

9

˙
“ ",

leading to (1.7), and therefore the proof is completed. ⇤

5. Application to compressible flows

As a second application of our convex integration scheme, we consider the problem of con-
structing infinitely many admissible weak solutions of the compressible Euler equations (1.1)
in the sense of Definition 1.1. The basic strategy is similar to the incompressible case. For
a given data in the energy space, we first smooth it out, and build up an energy compatible
subsolution via vanishing viscosity. Before applying our convex integration scheme, we need
further regularize the energy compatible subsolution, and moreover to enhance the defect R
to be positive definite.

Compared with the incompressible case, a notable di↵erence for the compressible system
is the additional contribution to the defect from the density variable. Because of this, we
will modify our definition of the energy compatible subsolutions as follows.

Definition 5.1 (Energy compatible subsolutions). Let � ° 1, E0, T ° 0, and M` be the set
of finite nonnegative (signed) Borel measures on Tn. We say that

p⇢, V,R, rq P L8pR`;L
�q ˆ L8pR`;L

2�
�`1 q ˆ L8

w˚pR`;M`pTn;Snˆnqq ˆ L8
w˚pR`;M`q

is an pE0, T q-energy compatible subsolution of the compressible Euler equations if the follow-
ing conditions are satisfied.

(C1) (Weak subsolution) ⇢ • 0, V “ 0 whenever ⇢ “ 0, and the following system
$
&

%

⇢t ` divV “ 0,

Vt ` div

ˆ
V b V

⇢
` R ` rIn ` pp⇢qIn

˙
“ 0;

(5.1)

holds in the sense of distribution on R` ˆ Tn.
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(C2) (Short-time energy saturation) For almost every t P r0, T s it holds that
ª

Tn

ˆ
Ep⇢, V q ` 1

2
trR ` r

� ´ 1

˙
dx “ E0,

where

Ep⇢, V q :“ |V |2
2⇢

` pp⇢q
� ´ 1

(5.2)

is the associated entropy.
(C3) (Energy inequality) For almost every t • T it holds that

ª

Tn

ˆ
Ep⇢, V q ` 1

2
trR ` r

� ´ 1

˙
dx § E0.

Analogous to Proposition 4.1, we have the following result ensuring the existence of the
compressible energy compatible subsolutions.

Proposition 5.1. Let ⇢0, v0 P C1pTnq, ⇢0 ° 0. For any � ° 1 and ⌫ ° 0 consider p⇢⌫ , V⌫q
the (global) weak solution to the following compressible Navier–Stokes equation constructed
in [28, 5] with initial data p⇢0, V 0 :“ ⇢0v0q

$
&

%

Bt⇢⌫ ` divV⌫ “ 0,

BtV⌫ ` div

ˆ
V⌫ b V⌫

⇢⌫
` pp⇢qIn

˙
“ div p?

⌫⇢⌫S⌫q , (5.3)

where
?
⌫⇢⌫S⌫ :“ ⌫⇢⌫Dv⌫ with Dv⌫ :“

ˆ
rv⌫ ` rTv⌫

2

˙
and V⌫ “ ⇢⌫v⌫ .

Set

E0 :“
ª

Tn

Ep⇢0, V 0q dx “
ª

Tn

ˆ |V 0|2
2⇢0

` pp⇢0q
� ´ 1

˙
dx.

Then there exist a T ° 0 and an pE0, T q-energy compatible subsolution p⇢, V,R, rq of the
compressible Euler equations such that up to a subsequence

p⇢⌫ , V⌫q á p⇢, V q in D1 as ⌫ Ñ 0.

Moreover, p⇢, V q is a Lipschitz solution to the compressible Euler equation on r0, T s with
p⇢, V q|t“0 “ p⇢0, V 0q.
Remark 5.1. Here we follow the notation of [24] to use S⌫ in the dissipation term since the
a priori estimates do not seem to be su�cient to define rv⌫ .

Proof. Recall from [28, 5] that system (5.3) admits a global weak solution p⇢⌫ , V⌫q with ⇢⌫ • 0
and p⇢⌫ , V⌫q|t“0 “ p⇢0, V 0q and for a.e. t • 0,

ª

Tn

Ep⇢⌫ , V⌫q dx `
ª t

0

ª

Tn

|S⌫ |2 dxds §
ª

Tn

Ep⇢0, V 0q dx. (5.4)
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where the dissipation term
≥t
0

≥
Tn |S⌫ |2 dxds is formally ⌫

≥t
0

≥
Tn ⇢⌫ |Dv⌫ |2 dxds. 1 This clearly

yields that as ⌫ Ñ 0, up to a subsequence,

p⇢⌫ , V⌫q á p⇢, V q weakly in L8pR`;L
�pTnqq ˆ L8pR`;L

2�
�`1 pTnqq,

which defines

R :“ lim
⌫Ñ0

V⌫ b V⌫

⇢⌫
´ V b V

⇢
, r :“ lim

⌫Ñ0
pp⇢⌫q ´ pp⇢q in D1. (5.5)

Thanks to convexity we know that pR, rq P L8
w˚pRn;M`pTn;SnˆnqqˆL8

w˚pRn;M`q. There-
fore (C1) follows by sending ⌫ Ñ 0 in (5.3).

From (5.5) we see that
|V⌫ |2
⇢⌫

á |V |2
⇢

` trR,

which, together with (5.4), implies (C3).
Similar as in Proposition 4.1, (C2) follows from a weak-strong uniqueness argument. For

the sake of completeness we will briefly sketch the idea. Since p⇢0, v0q P C1pTnq, we know
that there exists a unique classical solution p⇢E, vEq to the Euler equations on some time
interval r0, T s with ⇢E ° 0.

Denote
U⌫ :“ p⇢⌫ , V⌫q, UE :“ p⇢E, VE :“ ⇢EvEq

The entropy for the Euler system is given by EpUq defined in (5.2), which is regular and
strictly convex for U P V :“ R` ˆ Rn. Recall the definition of the relative entropy Ep¨|¨q :
V ˆ V Ñ R

EpU1|U2q “ EpU1q ´ EpU2q ´ E 1pU2q ¨ pU1 ´ U2q. (5.6)

The convexity of E ensures that the relative entropy EpU1|U2q defines a pseudo-distance on
V , and hence EpU1|U2q “ 0 if and only if U1 “ U2.

Since U0
⌫ “ U0

E, direct computation yields that for t P r0, T s,
ª

Tn

EpU⌫ |UEq dx § ´
ª t

0

ª

Tn

rxE
1pUEq :

ˆ
0,

pV⌫ ´ VEq b pV⌫ ´ VEq
⇢⌫

` pp⇢⌫ |⇢Eq
� ´ 1

In

˙
dxds

´
ª t

0

ª

Tn

|S⌫ |2 dxds `
ª t

0

ª

Tn

?
⌫⇢⌫rvE : S⌫ dxds

§ C⌫

ª t

0

ª

Tn

EpU⌫ |UEq dxds ` 2⌫

ª t

0

ª

Tn

⇢⌫ |rvE|2 dxds

§ C⌫

ˆª t

0

ª

Tn

EpU⌫ |UEq dxds ` ⌫

˙
.

Sending ⌫ Ñ 0 and applying Gronwall it follows that

p⇢, V q “ p⇢E, VEq for t P r0, T s.
This further implies that R ” 0 and r ” 0 for a.e. t P r0, T s. ⇤

1Although (5.4) is not explicitly given in [28], one may easily obtain it from replacing the term≥t
0

≥
⌦ ⇢⌫ |Dv⌫ |2 dxds in [28, (1.7)] by

≥t
0

≥
⌦ |S⌫ |2 dxds, taking the limit as  Ñ 0, then r0, r1 Ñ 0, and us-

ing the weak lower semicontinuity of
≥t
0

≥
⌦ |S⌫ |2 dxds.
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5.1. Convex integration. Following the same procedure as in Section 4.2, we explain in
the following how to construct infinitely many energy weak solutions emanating from a small
neighborhood of a given subsolution data.

Theorem 5.1. For any given 1 † � § 1 ` 2
n , and E0, T ° 0, assume that p⇢, V,R, rq with

⇢ ° 0 is a smooth pE0, T q-energy compatible subsolution of the compressible Euler equations
with initial value p⇢0, V 0,R0, r0q such that Rpt, xq :“ Rpt, xq`rpt, xqIn ° 0 is positive definite
for every pt, xq P R` ˆ Tn. Then for any " ° 0, there exist infinitely many initial values
pr⇢0", rV 0

" q such that r⇢0" ° 0 and
ª

Tn

Epr⇢0", rV 0
" q dx “ E0, }r⇢0" ´ ⇢0}�L�pTnq `

›››››
rV 0
"a
r⇢0"

´ V 0

a
⇢0

›››››

2

L2pTnq
† " `

ª

Tn

trR0 dx, (5.7)

where R0 :“ R|t“0. For each of such initial values there exist infinitely many pr⇢", rV"q P
L8pR`;L�pTnqq ˆ L8pR`;L

2�
�`1 pTnqq which are global weak solutions to the compressible

Euler equations with pr⇢", rV"q|t“0 “ pr⇢0", rV 0
" q and

ª

Tn

Epr⇢", rV"q dx § E0 a.e. t ° 0. (5.8)

Proof. The proof follows the same idea as in Theorem 4.1. For the sake of completeness we
provide the detailed argument.

The smoothness of p⇢, V,R, rq and ⇢ ° 0 implies that for any any " ° 0 there exists some
small t0 † T

2 such that @ t † t0,

sup
0§t§t0

}⇢ ´ ⇢0}�L�pTnq † "

2
,

t0

»

– sup
0§t§t0

¨

˝}Btpp⇢q}L1pTnq
� ´ 1

` 4
`
E0

˘2
›››››

Bt?⇢a
⇢0

›››››
L8pTnq

˛

‚` 2E0

››››r
ˆ
V 0

⇢0

˙››››
L8pTnq

fi

fl † "

4
,

(5.9)

The positivity of R allows us to apply our convex integration program as in Proposition
3.2 on r0, t0s. However this could potentially lead to a loss of total energy resulting from the
potential energy part. To resolve this issue, we will introduce the ‘compensating potential
energy density’

rcptq :“
ˆ

2

np� ´ 1q

˙ 
Tn

rpt, xq dx. (5.10)

It is easy to see that rcptq only depends on time, and it satisfies

div prcptqInq “ 0,

rcptq • 0,
ª

Tn

rrpt, xq ` rcptqs dx “ 2

np� ´ 1q

ª

Tn

rpt, xq dx.
(5.11)

From the first and second properties above we can verify that p⇢, V,R, r ` rcq solves
$
&

%

⇢t ` divV “ 0,

Vt ` div

ˆ
V b V

⇢
` R ` pr ` rcqIn ` pp⇢qIn

˙
“ 0,

(5.12)
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with rR :“ R ` pr ` rcqIn ° 0.
Therefore we can perform convex integration for the above system (5.12) to produce

infinitely many weak Euler solutions p⇢̂, V̂ q on r0, t0s with
⇢̂ “ ⇢, V̂ |t“0 “ V 0, V̂ |t“t0 “ V |t“t0 .

At the energy level, from (3.13) and the third property of (5.11), we know that for a.e.
t P r0, t0s,

ª

Tn

Ep⇢, V̂ q dx “
ª

Tn

ˆ
Ep⇢, V q ` 1

2
tr rR

˙
dx

“
ª

Tn

ˆ
Ep⇢, V q ` 1

2
trR ` n

2
pr ` rcq

˙
dx

“
ª

Tn

ˆ
Ep⇢, V q ` 1

2
trR ` r

� ´ 1

˙
dx “ E0,

(5.13)

where the last equality follows from (C2).
Hence we can choose infinitely many rt P p0, t0q to define the initial data

pr⇢0", rV 0
" q :“ p⇢, V̂ q|t“rt.

Therefore ª

Tn

Epr⇢0", rV 0
" q dx § E0.

Meanwhile,

1

2

ª

Tn

ˇ̌
ˇ̌
ˇ

rV 0
"a
r⇢0"

´ V 0

a
⇢0

ˇ̌
ˇ̌
ˇ

2

dx “
ª

Tn

«
|rV 0

" |2
2r⇢0 ´ |V 0|2

2⇢0
` |V 0|2 ´ rV 0

" ¨ V 0

⇢0
`

rV 0
"a
r⇢0"

¨ V 0

a
⇢0

˜d
r⇢0"
⇢0

´ 1

¸�
dx

“
ª

Tn

|rV 0
" |2
2r⇢0 dx ´

ˆ
E0 ´

ª

Tn

ˆ
pp⇢0q
� ´ 1

` 1

2
trR0 ` r0

� ´ 1

˙
dx

˙

´
ª rt

0

ª

Tn

BtV̂ ¨ V
0

⇢0
dxdt `

ª

Tn

rV 0
"a
r⇢0"

¨ V 0

a
⇢0

˜d
r⇢0"
⇢0

´ 1

¸
dx

§ E0 ´
ª

Tn

ppr⇢0"q
� ´ 1

dx ´
ˆ
E0 ´

ª

Tn

ˆ
pp⇢0q
� ´ 1

` 1

2
tr

`
R0 ` r0In

˘˙
dx

˙

`
ˇ̌
ˇ̌
ˇ

ª rt

0

ª

Tn

˜
V̂ b V̂

⇢
` pp⇢q

¸
: r

ˆ
V 0

⇢0

˙
dxdt

ˇ̌
ˇ̌
ˇ ` 4

`
E0

˘2
›››››

d
r⇢0"
⇢0

´ 1

›››››
L8

§
ª

Tn

|pp⇢0q ´ ppr⇢0"q|
� ´ 1

dx ` 1

2

ª

Tn

tr
`
R0 ` r0In

˘
dx ` 2rtE0

››››r
ˆ
V 0

⇢0

˙››››
L8

` 4rt
`
E0

˘2
sup
0§t§rt

›››››
Bt?⇢a

⇢0

›››››
L8

† 1

2

ˆ
"

2
`

ª

Tn

trR0 dx

˙
by (5.9).

This together with (5.9) proves (5.7).
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For each of the above initial data pr⇢0", rV 0
" q we define on R` ˆ Tn

pr⇢", rV"qpt, ¨q “
"

p⇢, V̂ qpt ` rt, ¨q, for t § t0 ´ rt,
p⇢, V̆ qpt ` rt, ¨q, for t • t0 ´ rt,

where p⇢, V̆ q is any weak solution to the compressible Euler equations on rt0,8q constructed
from convex integrating the energy compatible subsolution p⇢, V,R, rq on rt0,8q (note that
our convex integration scheme leaves ⇢ unchanged). This way

p⇢, V̂ qpt0q “ p⇢, V qpt0q “ p⇢, V̆ qpt0q.
Therefore pr⇢", rV"q is indeed a weak solution to the compressible Euler equations on R` ˆTn,
and by construction we know that pr⇢", rV"q|t“0 “ pr⇢0", rV 0

" q and pr⇢", rV"q satisfies (5.8). ⇤

5.2. Smooth energy compatible strict subsolutions. The next step is to find a way
to construct a smooth energy compatible strict subsolution in the sense that R :“ R `
rIn ° 0 from an energy compatible subsolution. This can be achieved by a similar convex
combination technique as in Section 4.3. The di↵erence is that we will only apply the convex
combination on the density variable with a nontrivial constant state.

We first state the following lemma which is a compressible version of Lemma 4.1. The
proof follows along a very similar argument as before, and hence we omit it.

Lemma 5.1. Let p⌦, µq be a probability space, that is, µ is a nonnegative measure on ⌦ such
that µp⌦q “ 1. Fix E0, T ° 0. Let p⇢, V,R, rq be a measurable function from R` ˆ Tn ˆ ⌦
to Rn ˆ Rnˆn such that for a.e. ! P ⌦, p⇢!, V!,R!, r!q :“ p⇢p¨,!q, V p¨,!q,Rp¨,!q, rp¨,!qq is
an pE0, T q-energy compatible subsolution to the compressible Euler equations. Denote

p⇢, V q :“ Ep⇢!, V!q,

R :“ EpR!q ` E
ˆ
V! b V!

⇢!

˙
´ V b V

⇢
, r :“ Epr!q ` E ppp⇢!qq ´ pp⇢q,

(5.14)

where

Epf!q :“
ª

⌦

f!dµp!q.

Then p⇢, V ,R, rq is also an pE0, T q-energy compatible subsolution.

As indicated at the beginning of the subsection, here we are dealing with rough subsolu-
tions. It is natural to introduce a smoothing process to boost up the regularity. The next
lemma ensures that such a smoothing to the initial data can be made perturbative in the
energy space.

Lemma 5.2. Let p⇢0, V 0q : Tn Ñ R ˆ Rn be such that ⇢0 • 0 a.e. and Ep⇢0, V 0q P L1pTnq.
Then for any " ° 0 there exist ↵" ° 0 and p⇢0", V 0

" q P C8pTnq such that

⇢0" • ↵", }⇢0" ´ ⇢0}L1pTnq ` }V 0
" ´ V 0}L1pTnq † ",

››Ep⇢0, V 0q ´ Ep⇢0", V 0
" q

››
L1pTnq † "

16
,

}⇢0" ´ ⇢0}�L�pTnq `
›››››
V 0
"a
⇢0"

´ V 0

a
⇢0

›››››

2

L2pTnq
† "

9
.

(5.15)
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Proof. A usual regularization with a mollifier to the data p⇢0, V 0q leads to p⇢0", V 0
" q P C8pTnq

with the property that

}⇢0" ´ ⇢0}L1pTnq ` }V 0
" ´ V 0}L1pTnq † ". (5.16)

From Jensen’s inequality we have
ª

Tn

Ep⇢0", V 0
" q dx §

ª

Tn

Ep⇢0, V 0q dx.

In particular if we use a non-vanishing mollification kernel then we further conclude the
existence of an ↵" ° 0 such that ⇢0" • ↵".

On the other hand, defining ⌦� :“ tx P Tn : ⇢0pxq ° �u and ⌦0 :“ tx P Tn : ⇢0pxq “ 0u
we see that for a fixed � ° 0, as " Ñ 0

Ep⇢0", V 0
" q ›Ñ Ep⇢0, V 0q a.e. ⌦�.

Hence from Fatou’s lemma we have

lim sup
"Ñ0

ª

⌦�Y⌦0

Ep⇢0", V 0
" q dx •

ª

⌦�Y⌦0

Ep⇢0, V 0q dx Ñ
ª

Tn

Ep⇢0, V 0q dx as � Ñ 0.

Therefore for " su�ciently small

››Ep⇢0", V 0
" q ´ Ep⇢0, V 0q

››
L1pTnq “

ª

Tn

Ep⇢0, V 0q dx ´
ª

Tn

Ep⇢0", V 0
" q dx † "

16
. (5.17)

From (5.16) and (5.17), and further refining the mollification scale if necessary, we have

}⇢0" ´ ⇢0}�L�pTnq `
›››››
V 0
"a
⇢0"

´ V 0

a
⇢0

›››››

2

L2pTnq
† "

9
,

which completes the proof of the lemma. ⇤

With the above we are ready to state the main result of this subsection.

Theorem 5.2. Given E0, T ° 0, let p⇢, V,R, rq be an pE0, T q-energy compatible subsolution
to the compressible Euler equations and denote p⇢0, V 0q to be the initial data for p⇢, V q
satisfying ⇢0 ı 0 and

V 0 ı 0, or V 0 ” 0 but ⇢0 is not a constant,
ª

Tn

Ep⇢0, V 0q dx “ E0.
(5.18)

Then for any " ° 0 there exists a smooth pE0, T2 q-energy compatible subsolution pr⇢, rV , rR, rrq
with initial data pr⇢0, rV 0, rR0, rr0q satisfying

r⇢ ° 0, rR ` rrIn ° 0,
›››››

rV 0

a
r⇢0

´ V 0

a
⇢0

›››››

2

L2pTnq
`

››r⇢0 ´ ⇢0
››�
L�pTnq `

ª

Tn

ˆ
1

2
tr rR0 ` rr0

� ´ 1

˙
dx † ".

(5.19)
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Proof. Similarly as in the proof of Theorem 4.2, we know from Definition 5.1 that p⇢0, V 0q
are well-defined. Applying Lemma 5.2 we have for any " ° 0 the existence of ↵" ° 0 and
p⇢0", V 0

" q P C8pTnq such that (5.15) holds.
Using equation (5.1) it follows that there exists some C" ° 0 such that
ˇ̌
ˇ̌ d
dt

ª

Tn

⇢pt, xqBE
B⇢

`
⇢0"pxq, V 0

" pxq
˘
dx

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ d
dt

ª

Tn

V pt, xqBE
BV

`
⇢0"pxq, V 0

" pxq
˘
dx

ˇ̌
ˇ̌ § C". (5.20)

Recall (5.6) for the relative entropy. For t0 ° 0 su�ciently small so that C"t0 † "
16 , we have

that for a.e. t P r0, t0s,

0 §
ª

Tn

E
`
p⇢pt, xq, V pt, xqq

ˇ̌
p⇢0"pxq, V 0

" pxqq
˘
dx `

ª

Tn

ˆ
1

2
trR ` r

� ´ 1

˙
dx

§
ª

Tn

“
E p⇢pt, xq, V pt, xqq ´ E

`
⇢0"pxq, V 0

" pxq
˘‰

dx ` C"t0 `
ª

Tn

ˆ
1

2
trR ` r

� ´ 1

˙
dx

§
ª

Tn

“
E

`
⇢0pxq, V 0pxq

˘
´ E

`
⇢0"pxq, V 0

" pxq
˘‰

dx ` C"t0 † "

8
,

where the first inequality comes from the convexity of E, the second inequality is from (5.20),
the third inequality is due to (C2) and (5.18), and the last one follows from (5.15). The
above in particular implies that

ª

Tn

ˆ
1

2
trR ` r

� ´ 1

˙
dx † "

8
a.e. t P r0, t0s. (5.21)

Next we introduce a mollifier ' P C8pR ˆ Tnq with ' ° 0 and
≥
' “ 1. For ↵ ° 0 we

define the scaled mollifier

'↵pt, xq :“ 1

↵n`1
'

ˆ
t

↵
,
x

↵

˙
.

We will choose

⌦ :“ t! :“ ps, yq P R` ˆ Tnu, dµps, yq :“ '↵ps, yq ds dz, (5.22)

and for s † T {2, define
p⇢!, V!,R!, r!qp¨, ¨,!q :“ p⇢, V,R, rqp¨ ` s, ¨ ` yq

on r0, T {2s ˆ Tn. Thus p⇢!, V!,R!, r!qp¨, ¨,!q is an pE0, T2 q-energy compatible subsolution
for the compressible Euler equations.

From the definition of ⌦ and µ we see that

Epf!q “ '↵ ˚ f.
Applying Lemma 5.1 we obtain another pE0, T2 q-energy compatible subsolution p⇢, V ,R, rq,
where

p⇢, V q :“ '↵ ˚ p⇢, V q,

R :“ '↵ ˚
ˆ
R ` V b V

⇢

˙
´ V b V

⇢
,

r :“ '↵ ˚ pr ` pp⇢qq ´ pp⇢q.

(5.23)
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We further know that p⇢, V ,R, rq is a smooth energy compatible subsolution. The choice
of ' ensures that ⇢ ° 0. For any given " ° 0, by taking ↵ su�ciently small we have from
(5.21) that

››››››
V 0

b
⇢0

´ V 0

a
⇢0

››››››

2

L2pTnq

`
››⇢0 ´ ⇢0

››�
L�pTnq `

ª

Tn

ˆ
1

2
trR0 ` r0

� ´ 1

˙
dx † "

4
, (5.24)

where p⇢0, V 0,R0, r0q :“ p⇢, V ,R, rq|t“0 is the initial data.
Now we can apply the convex combination method. As in the proof of Theorem 4.2, we

will work with an atomic measure. For � P p0, 1q, set
⌦ :“ t1, 2u, µ :“ ��!“1 ` p1 ´ �q�!“2,

and consider two pE0, T2 q-energy compatible subsolutions

p⇢1, V1,R1, r1q “ p⇢̂, 0, 0, 0q, p⇢2, V2,R2, r2q “ p⇢, V ,R, rq,
where ⇢̂ is a constant such that

pp⇢̂q
� ´ 1

“ E0

|Tn| .

Applying Lemma 5.1 again yields a smooth pE0, T2 q-energy compatible subsolution pr⇢1, rV1, rR1, rr1q
with

pr⇢1, rV1q “
`
�⇢̂ ` p1 ´ �q⇢,�V

˘
,

rR1 “ p1 ´ �qR ` p1 ´ �q
ˆ
V b V

⇢

˙
´ p1 ´ �q2V b V

�⇢̂ ` p1 ´ �q⇢ ,

rr1 “ p1 ´ �qr ` �pp⇢̂q ` p1 ´ �qpp⇢q ´ p
`
�⇢̂ ` p1 ´ �q⇢

˘
“: p1 ´ �qr ` r̂.

From (5.24) and continuity it follows that for � su�ciently small
›››››

rV 0
1a
r⇢01

´ V 0

a
⇢0

›››››

2

L2pTnq
`

››r⇢01 ´ ⇢0
››�
L�pTnq `

ª

Tn

ˆ
1

2
tr rR0

1 ` rr01
� ´ 1

˙
dx † "

2
. (5.25)

Strict convexity of p indicates that

rr1 ” 0 ñ r “ r̂ ” 0.

We claim that
rr1 ı 0. (5.26)

If r ” 0, then from (5.23) we see that and convexity of p

r ” 0, '↵ ˚ pp⇢q ´ pp'↵ ˚ ⇢q ” 0.

The second identity yields that ⇢ is a constant, specifically,

⇢ “
 
Tn

⇢0 dx.

When r̂ ” 0, it again follows from the strict convexity of p that

⇢ “ ⇢̂.
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Comparing the above two conditions, using the definition of ⇢̂ and applying Jensen’s inequal-
ity we see that  

Tn

pp⇢0q dx • p

ˆ 
Tn

⇢0 dx

˙
“ pp⇢q “ pp⇢̂q “ p� ´ 1qE0

|Tn| . (5.27)

On the other hand, (5.18) implies that 
Tn

pp⇢0q dx § p� ´ 1qE0

|Tn| .

If V 0 ı 0 then the above must be a strict inequality, which contradicts (5.27). Therefore
V 0 ” 0 and equality in (5.27) must hold. Hence either ⇢0 is a constant or p is linear on
⇢0pTnq. The explicit form of p suggests the former, but this contradicts (5.18). Therefore
(5.26) holds.

Since we are using a nonvanishing mollifier, it is easy to see that

'↵ ˚ rr1 ° 0.

Therefore applying mollification to pr⇢1, rV1, rR1, rr1q yields the desired smooth pE0, T2 q-energy
compatible subsolution pr⇢, rV , rR, rrq with r⇢ ° 0. From (5.23) we know that they take the
form

pr⇢, rV q :“ '↵ ˚ pr⇢1, rV1q,

rR :“ '↵ ˚
˜

rR1 `
rV1 b rV1

r⇢1

¸
´

rV b rV
r⇢ ,

rr :“ '↵ ˚ prr1 ` ppr⇢1qq ´ ppr⇢q • '↵ ˚ rr1 ° 0.

By taking ↵ small enough and using (5.24) and (5.25) we prove (5.19). ⇤

5.3. Density of wild data for compressible Euler equations. We can now prove The-
orem 1.1.

Proof. The strategy is the same as in the incompressible case. We first apply Lemma 5.2 to
obtain the regularize the data p%0", U0

" q P C8pTnq satisfying (5.15). More specifically,

%0" ° 0, }%0" ´ %0}L1pTnq ` }U0
" ´ U0}L1pTnq † ",

››Ep%0", U0
" q ´ Ep%0, U0q

››
L1pTnq † "

16
,

}%0" ´ %0}�L�pTnq `
›››››
U0
"a
%0"

´ U0

a
%0

›››››

2

L2pTnq
† "

9
.

(5.28)

Denote

E0
" :“

ª

Tn

Ep%0", U0
" q dx.

We can apply Proposition 5.1 to find a T ° 0 and an pE0
" , T q-energy compatible subsolution

p%", U",R", r"q with initial data p%", U"q|t“0 “ p%0", U0
" q and satisfying

R" ” 0, r" ” 0 for t P r0, T s.
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Then we use Theorem 5.2 to produce from p%", U",R", r"q a smooth pE0
" ,

T
2 q-energy compatible

subsolution pr%", rU", rR", rr"q with initial data pr%0", rU0
" , rR0

", rr0"q and satisfying (from (5.19))

}r%0" ´ %0"}�L�pTnq `
›››››

rU0
"a
r%0"

´ U0
"a
%0"

›››››

2

L2pTnq
`

ª

Tn

ˆ
1

2
tr rR0

" ` rr0"
� ´ 1

˙
dx † "

9
. (5.29)

Using the positivity of rR" :“ rR" ` r"In we may employ Theorem 5.1 to convex integrate.

This way we obtain infinitely many initial data p⇢0, V 0q P L�pTnqˆL
2�
�´1 pTnq satisfying (from

(5.7))

}⇢0 ´ r%0"}�L�pTnq `
›››››
V 0

a
⇢0

´
rU0
"a
r%0"

›››››

2

L2pTnq
† "

9
`

ª

Tn

tr rR0
" dx, (5.30)

each of which induces infinitely many weak solutions infinitely many p⇢, V q P L8pR`;L�pTnqqˆ
L8pR`;L

2�
�`1 pTnqq to the compressible Euler equations such that

ª

Tn

Ep⇢, V q dx § E0
" “

ª

Tn

Ep⇢0, V 0q dx a.e. t ° 0.

Moreover for the initial data we have

}⇢0 ´ %0}�L�pTnq `
›››››
V 0

a
⇢0

´ U0

a
%0

›››››

2

L2pTnq

§ 3
`
}⇢0 ´ r%0"}�L� ` }r%0" ´ %0"}�L� ` }%0" ´ %0}�L�

˘

` 3

¨

˝
›››››
V 0

a
⇢0

´
rU0
"a
r%0"

›››››

2

L2

`
›››››

rU0
"a
r%0"

´ U0
"a
%0"

›››››

2

L2

`
›››››
U0
"a
%0"

´ U0

a
%0

›››››

2

L2

˛

‚

by (5.30) and (5.28) † 3

¨

˝"

9
`

ª

Tn

tr rR0
" dx ` }r%0" ´ %0"}�L� `

›››››
rU0
"a
r%0"

´ U0
"a
%0"

›››››

2

L2

` "

9

˛

‚† ",

where in the last inequality we used (5.29) and the fact that � § 1` 2
n . Therefore we obtain

(1.4), and hence complete the proof of the theorem. ⇤
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[11] E. Chiodaroli and O. Kreml, Non-uniqueness of admissible weak solutions to the Riemann problem
for isentropic Euler equations, Nonlinearity, 31 (2018), pp. 1441–1460.

[12] A. Choffrut, h-principles for the incompressible Euler equations, Arch. Rational. Mech. Anal., 210
(2013), pp. 133–163.

[13] C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70
(1979), pp. 167–179.

[14] , Hyperbolic conservation laws in continuum physics, vol. 3, Springer, 2005.
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