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Summary 38 

 39 

The worldwide endosymbiosis between arthropods and Wolbachia bacteria is an 40 

archetype for reproductive parasitism. This parasitic strategy rapidly increases the 41 

proportion of symbiont-transmitting mothers, and the most common form, 42 

cytoplasmic incompatibility (CI), impacts insect evolution and arboviral control 43 

strategies. During CI, sperms from symbiotic males kill embryos of aposymbiotic 44 

females via two nuclear-targeting proteins, CifA and CifB, that alter sperm 45 

chromatin organization in Drosophila melanogaster. Here we hypothesize that Cif 46 

proteins metabolize nucleic acids of developing sperm to initiate genome integrity 47 

changes. Using in vitro and in situ transgenic, mutant, enzymatic, and cytochemical 48 

assays, we show that CifA is a previously-unrecognized DNase and RNase, and 49 

CifB is a DNase. Notably, in vitro nuclease activity translates to in situ spermatid 50 

DNA damage at the canoe stage of spermiogenesis. Evolution-guided mutations 51 

ablate Cif enzymatic activity. Nucleic acid metabolism by Cif enzymes expands a 52 

fundamental understanding of the mechanism of symbiont-mediated reproductive 53 

parasitism. 54 

 55 
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Introduction 69 

 70 

Wolbachia are maternally inherited, obligate intracellular bacteria that occur 71 

worldwide in 40-65% of arthropod species (Hilgenboecker et al., 2008; Kaur et al., 72 

2021; Weinert et al., 2015; Zug and Hammerstein, 2012). Many Wolbachia strains 73 

selfishly alter host reproduction to increase the relative number of symbiotic 74 

females that transmit the bacteria to the next generation (Hoffmann et al., 1990; 75 

Hoffmann and Turelli, 1997; Kriesner et al., 2013). Cytoplasmic incompatibility (CI) 76 

is the most studied reproductive phenotype with major impacts on arthropod 77 

evolution and vector control. Specifically, CI results in embryonic death when 78 

symbiotic males mate with aposymbiotic females. Nullification of death, and thus 79 

rescue of CI, occurs when transmitting females harbor the same strain of 80 

Wolbachia (Shropshire et al., 2020). CI-causing mosquitoes are released in both 81 

population suppression (Caputo et al., 2020; Mains et al., 2016; Puggioli et al., 82 

2016; Zheng et al., 2019) and population replacement strategies (Flores and 83 

O’Neill, 2018; Indriani et al., 2020; Nazni et al., 2019; Ryan et al., 2020) to curb 84 

arbovirus transmission of Dengue, Zika, and Chikungunya (Caragata et al., 2016; 85 

Crawford et al., 2020; Dobson et al., 2002; Hoffmann et al., 2011; Moreira et al., 86 

2009; O’Neill, 2018; O’Neill et al., 2018). Thus, CI is at the forefront of controlling 87 

mosquito-borne diseases globally (Bourtzis et al., 2014; O’Neill et al., 2018; Utarini 88 

et al., 2021). 89 

CI is caused by the germline expression of two cytoplasmic incompatibility 90 

factor genes, cifA and cifB, in wMel-infected Drosophila melanogaster testes 91 

(Beckmann et al., 2017; LePage et al., 2017), and cifA expression in ovaries 92 

rescues CI (Shropshire et al., 2018). Thus, CI is governed by the Two-by-One 93 

genetic model demonstrated in various systems (Beckmann et al., 2019; Chen et 94 

al., 2019; LePage et al., 2017; Shropshire et al., 2021b; Shropshire and 95 

Bordenstein, 2019). cifB alone can also cause cifA-rescuable CI under a One-by-96 

One genetic model (Adams et al., 2021; Sun et al., 2021). Therefore, deciphering 97 

the Cif molecular mechanism(s) and potentially universal features of CI and rescue 98 

remains a central goal for understanding how sexual reproduction serves as a 99 

battleground for host-Wolbachia interactions.  100 

CifA and CifB proteins from wMel of D. melanogaster and wPip of Culex 101 

pipiens were recently found to invade the nuclei of developing sperm (Horard et al., 102 
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2022; Kaur et al., 2022). Specifically, dual expression of wMel CifA and CifB alters 103 

sperm chromatin integrity before fertilization via modulating the histone-protamine 104 

transition of spermiogenesis (Kaur et al., 2022), and wPip CifB expression impacts 105 

sperm DNA stress in the embryo (Horard et al., 2022). Sperm nuclear access by 106 

wMel Cifs indicates that Cifs may directly interact with sperm DNA and/or RNA to 107 

modify sperm genome integrity and contribute to the CI mechanism. Thus, we 108 

hypothesized that Cifs may metabolize sperm nucleic acids by their enzymatic 109 

properties.  110 

Enzymatic functions of CifA have not been tested, while in vitro enzymatic 111 

properties of some of the CifB variants have been evaluated. T1 wPip CifB is a 112 

deubiquitinase (DUB) that cleaves poly-ubiquitin chains in vitro to cause CI 113 

(Beckmann et al., 2017). However, mutating the catalytic residue in CifB’s DUB 114 

domain ablated CI in one study (Beckmann et al., 2017) and maintains CI in 115 

another (Horard et al., 2022), suggesting that DUB enzymatic function may not be 116 

essential for CI. T4 wPip CifB is a DNase with active PDDEXK nuclease domains 117 

that cleave DNA substrates (Chen et al., 2019). Presumptive activation of PDDEXK 118 

nuclease sites with artificial amino acid substitutions in T1 wPip CifB did not 119 

degrade DNA in vitro (Chen et al., 2019), suggesting these domains are inactive in 120 

T1 CifB variants. Notably, the enzymatic activity of wild-type T1 wMel CifB remains 121 

untested to date. Mutating conserved amino acid residues in the nuclease and 122 

other domains of wMel CifB ablates CI (Shropshire et al., 2020), suggesting that 123 

nuclease domains and various other sites throughout CifB are crucial for CI, thus 124 

warranting in vitro and in situ enzymatic characterization. 125 

CifA is weakly predicted to encode a domain of unknown function 126 

(DUF3243) with homology to a Puf-family RNA-binding domain found throughout 127 

eukaryotes, and mutating conserved residues in this domain notably ablates CI but 128 

not rescue (Shropshire et al., 2020). In contrast, mutating the conserved residues 129 

of the sterile-like transcription factor (STE) domain of CifA had no impact on CI 130 

(Shropshire et al., 2020), establishing the hypothesis that these domains and 131 

residues may possess a molecular function relevant to CI. Moreover, a nuclear 132 

localization sequence is necessary for CifA-mediated CI, rescue and maintaining 133 

sperm genome integrity (Kaur et al., 2022), thus motivating interest to understand 134 

CifA’s enzymatic roles in nucleotide metabolism. 135 
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Here, we performed in vitro and in situ biochemical assays with wild type, 136 

transgenic, and mutant proteins to determine the nuclease capabilities of T1 wMel 137 

CifA and CifB proteins. We demonstrate that (i) both CifA and CifB are in vitro 138 

nucleases, where CifA cleaves single-stranded (ss) DNA, double-stranded (ds) 139 

DNA and ssRNA substrates, and CifB cleaves both DNA substrates, (ii) 140 

Evolutionary-guided substitutions and truncations ablate nuclease functions, (iii) 141 

wMel Wolbachia and transgenic cif expression causes in situ spermatid DNA 142 

fragmentation in D. melanogaster. We discuss the importance of these findings to 143 

the mechanism of the Cif proteins in inducing CI. 144 

 145 

Results 146 

 147 

Type 1 CifB protein is an in vitro DNase. 148 

To test nuclease activity of T1 wMel CifB, we first generated CifB 149 

recombinant proteins for in vitro enzyme assays against DNA and RNA 150 

oligonucleotide substrates. The full CifB protein is too large to recombinantly 151 

express in E. coli (Wang et al., 2022; Xiao et al., 2021). As such, we generated 152 

proteins spanning the unannotated amino terminus (A), the N-terminal nuclease 153 

domain (NTND) and C-terminal nuclease domain (CTND) (labeled as CifBΔD, 1-796 154 

aa), both nuclease domains only (CifBΔAΔD, 277-796 aa) (Fig. 1A), and A-terminus 155 

alone (CifBΔNΔCΔD, 1-276 aa) (Fig. S1). We previously demonstrated that mutations 156 

in highly conserved residues across CifB, including both nuclease domains 157 

(labeled CifB2 and CifB3), ablate transgenic CI (Shropshire et al., 2020), suggesting 158 

these domains are crucial for the CI mechanism. Therefore, we generated CifB 159 

recombinants with the same substitutions in the NTND (CifB2;ΔD) and CTND 160 

(CifB3; ΔD) (Fig. 1A) to test if these same mutants ablate nuclease activity in vitro. 161 

We report four key outcomes: 162 

First, CifBΔD with the amino terminus and both nuclease domains cleaved 163 

ssDNA and dsDNA substrates similar to the control DNase enzyme (Fig. 1B). As 164 

expected, ethylenediaminetetraacetic acid (EDTA) ablated the nuclease activity 165 

since it chelates divalent cations required for nuclease activity. We, therefore, 166 

conclude that T1 CifBΔD (referred to as CifB hereafter) encodes DNase enzymatic 167 

function, which is contrary to previous claims that tested recombinant protein with 168 
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of the intact amino terminus together with both nuclease domains. Intact CifB’s 199 

DNase activity was substantiated once more against a ssDNA substrate using a 200 

range of protein concentrations and reaction incubation periods in which enzymatic 201 

activity decreases with lower enzyme concentration and shorter incubation time 202 

(Fig. S2), as expected.  203 

Third, mutant CifB proteins with substitutions in each nuclease domain 204 

(CifB2;ΔD and CifB3;ΔD) that ablate transgenic CI in flies (Shropshire et al., 2020) also 205 

abolished ssDNA cleavage here in vitro (Fig. 1B). Findings suggest that 206 

substitutions in these negatively-selected residues (Shropshire et al., 2020) are 207 

important for the ss-DNase activity of CifB. Moreover, incubation of these proteins 208 

with dsDNA revealed that CifB2;ΔD ablates ds-DNase activity, whereas CifB3;ΔD did 209 

not. 210 

 Fourth, we investigated if CifB is a RNase and found that CifB variants did 211 

not cleave ssRNA oligonucleotide substrates (Fig. 1B and SI). We also performed 212 

mass spectrometry of the purified CifB protein to rule out the alternative 213 

explanation that co-purified E. coli nucleases with the CifB protein confound the 214 

CifB nuclease activity observed. We detected no contaminating DNase enzymes 215 

(Table S1).  216 

Taken together, CifB is a DNase, and the CifB2 sites in the NTND are crucial 217 

for both ssDNA and dsDNA cleavage, whereas CifB3 sites in CTND are substrate-218 

specific as the mutated residues only ablate cleavage of ssDNA. These data are 219 

semi-consistent with crystal structures of Cif proteins (Xiao et al., 2021) that 220 

showed the NTND of T4 CifB from wPip strain is the main catalytic center, and the 221 

CTND may be involved in specific substrate binding. 222 

 223 

Type 1 CifA protein is an in vitro DNase and RNase. 224 

Purified full-length CifA was incubated with the same DNA and RNA 225 

substrates as above. We report that CifA cleaved the ssDNA, dsDNA, and ssRNA 226 

substrates in the absence of EDTA (Fig. 1B, Fig. S2). Notably, CifA’s nuclease 227 

activity is never reported before. Mass spectrometry of the CifA protein once again 228 

indicated there was no co-purified DNase from E. coli that could alternatively 229 

explain CifA’s DNase function (Table S1). However, there was a very low 230 

abundance of ribonuclease peptides from E. coli in the purified CifA construct 231 
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(Table S1). To test if the E. coli RNase contaminant contributed to CifA’s RNase 232 

activity, we performed nuclease activity assays by incubating RNA substrate with 233 

various concentrations of CifA protein diluted up to 16-fold to eliminate the rare 234 

contaminant. CifA RNase activity persisted upto 8-fold enzyme dilutions (Fig. 235 

S2A). Moreover, the same low abundant E. coli RNase contaminant was also 236 

detected in the purified CifB sample (Table S1) that notably lacked RNase activity. 237 

These results support the RNase properties of CifA and that the minute traces of 238 

randomly distributed E. coli contaminants are irrelevant. CifA’s RNase function is 239 

consistent with predictive CifA annotations for RNA binding and transcription. 240 

CifA has low sequence similarity to a domain of unknown function 241 

(DUF3243) with structural homology to a RNA-binding domain (Lindsey et al., 242 

2018). We previously showed that mutating conserved residues in the T1 CifA DUF 243 

(labeled CifA3) ablated CI but not rescue in transgenic flies (Shropshire et al., 244 

2020). Thus, we tested here whether CifA3 (Fig. 1A) cleaves DNA and/or RNA. 245 

CifA3 retained nuclease activity (Fig. 1B), suggesting that the conserved residues 246 

in the DUF are crucial to CI but do not contribute to CifA’s in vitro nuclease activity. 247 

In contrast, CifAΔC protein with a 40 amino acid truncation inclusive of the predicted 248 

STE transcription factor at the C-terminus ablated ss-DNase and ss-RNase 249 

function, but dsDNA cleavage remained (Fig. 1B). These findings suggest that the 250 

C-terminus of CifA contributed to substrate specificity for ssDNA and ssRNA. 251 

Notably, this region is proposed to be disordered based on the crystal structure of 252 

CifA (Wang et al., 2022; Xiao et al., 2021). Disordered regions can regulate ssDNA 253 

binding in Escherichia coli (Kozlov et al., 2015), facilitate post-translational 254 

modifications, and often regulate key protein functions (Sharma and Schiller, 255 

2019). 256 

In D. melanogaster, dual expression of wMel CifA with CifB is required to 257 

induce CI (Beckmann et al., 2017; Kaur et al., 2022; LePage et al., 2017; 258 

Shropshire and Bordenstein, 2019). To examine if T1 wMel CifA and CifB have any 259 

impact on their independent nuclease activities, we co-incubated the proteins with 260 

dsDNA or ssRNA substrates as described earlier (Chen et al., 2019). We found 261 

that DNA and RNA cleavage continued upon co-incubation of CifA variants with 262 

different active and inactive CifB variants (Fig. 2).  263 

 264 
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DNase activity. CifB initiated significantly higher DNA damage in single expressing 311 

lines than CifA and negative control lines (Fig. 3; Kruskal-Wallis test, p<0.0001, 312 

Table S2), suggesting CifB with and without the DUB domain can cleave DNA in 313 

situ and in vitro, respectively. Notably, transgenic expression of individual CifB from 314 

wMel does not cause CI in D. melanogaster (Fig. S4, Table S3) (LePage et al., 315 

2017; Shropshire and Bordenstein, 2019). CifB-mediated in situ DNase activity 316 

alone is therefore insufficient to induce CI. CifA did not cause in situ DNase 317 

activity, which contrasted with the in vitro data above. We hypothesize that CifA’s 318 

ability to cleave spermatid nuclear DNA may depend on the co-expression of CifB, 319 

or CifA’s RNase activity in the testes (not observable by TUNEL here) may be 320 

relevant to CI (Fig. 5). 321 

Most, but not all, of the conserved residues that were mutated in CifA and 322 

CifB ablated or decreased CI strength in flies (Shropshire et al., 2020). To check if 323 

these same variants contribute to in situ DNA damage of the developing 324 

spermatids, we first performed TUNEL assays using transgenic expression of CifA 325 

mutants alone or together with intact CifB in the testes. Similar to individual CifA 326 

mutant expressing lines, there were very few or no sperm bundles with DNA 327 

damage in CifA mutant lines upon the individual (Fig. S5A) or dual expression with 328 

CifB (Fig. S5D; p>0.05, Kruskal-Wallis test, Table S2). This result indicated that 329 

CifA protein mutants inhibit the in situ DNA cleavage activity mediated by CifB 330 

because dual expression of intact CifAB cleaved spermatid DNA at the canoe 331 

stage (Fig. 3). Inhibition of such activity could occur because of mutated CifA 332 

residues hampering proper CifB binding, which may impact downstream spermatid 333 

DNA cleavage. For example, the CifA3 mutant residue is near the binding interface 334 

for CifA and CifB (Xiao et al., 2021). Interestingly, despite mutated residues in 335 

CifA4B (with substituted residues in the predicted STE domain) that did not 336 

apparently cleave spermatid DNA in situ (Fig. S5D, S6), this mutant caused strong 337 

transgenic CI (Fig. S5F), suggesting the CifA4 mutant sites are important for 338 

DNase activity in the canoe-stage spermatids but not CI. Similar to the CifA mutant 339 

findings, single expression of CifB mutants and dual expression of CifB mutants 340 

with wild type CifA generally ablated spermatid DNase activity (Fig. S5B; S5E 341 

p<0.0001, Kruskal-Wallis test, Table S2) as well as CI (Fig. S5C, S5F, Table S3). 342 

Overall, amino acid substitutions throughout the length of the T1 CifA and CifB 343 
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proteins ablated CI and in situ DNase function at the canoe stage of 344 

spermiogenesis. 345 

 346 

QxxxY motif associates with CifA and CifB nuclease activity. 347 

T1 CifB lacks the canonical PDDEXK catalytic residues (Beckmann et al., 348 

2017; LePage et al., 2017; Lindsey et al., 2018; Wang et al., 2022; Xiao et al., 349 

2021), and CifA lacks any similarity to PDDEXK nuclease domains. As such, the 350 

nuclease data above lead to a hypothesis that there may be an alternative catalytic 351 

site for nuclease activity of the wMel Cif proteins. Either the PDDEXK-like domain 352 

in CifB is active, or the Cif proteins encode alternative catalytic sites or motifs to 353 

cleave DNA and RNA. Both explanations are equally viable, though several 354 

mutants within and outside the PDDEXK domains can ablate in vitro and in situ 355 

DNase function (Fig. 1B, Fig. S1, Fig. S5). Interestingly, T1 CifB of wMel 356 

possesses a QxxxY motif within a region of predicted α-helices at the CTND (Fig. 357 

4A). The QxxxY motif is characteristic of RecB-family nucleases with HsdR 358 

subunits of Escherichia coli that also encode a canonical PDDEXK domain 359 

(Singleton et al., 2004). Mutating Q and Y residues impairs EcoR124I DNA 360 

cleavage, possibly by stabilizing the catalytic pocket of the PDDEXK domain or 361 

modulating the binding efficacy of this domain to the DNA (Šišǎkovǎ et al., 2008).  362 

Notably, the QxxxY motif is also present in T4 CifB of wPip characterized as 363 

a DNase, present in T3 CifB of wNo (Adams et al., 2021; Sun et al., 2021) and 364 

missing in T1 CifB of wPip previously deemed to lack nuclease function (Chen et 365 

al., 2019). Thus, it is tentatively possible that the QxxxY motif may assist CifB 366 

DNase activity since it is localized in CTND, and the sites in CTND are proposed to 367 

be involved in substrate binding or catalytic regulation (Xiao et al., 2021). Notably, 368 

CifA also possesses the QxxxY motif in one of its predicted α-helices (Fig. 4B), 369 

emphasizing the potential association of this motif in mediating nuclease activity. 370 

While this motif’s presence and predicted structure correlated with the in vitro 371 

DNase activity data of CifA and CifB homologs tested thus far, it is not possible to 372 

prescribe relative importance over the PDDEXK-like motifs since various mutants 373 

beyond these sites ablated DNase function. 374 

 375 
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sperms in flies; and CifA harbors a nuclear localization sequence that is 400 

functionally required for nuclear entry in developing fly sperm cells and the 401 

recapitulation of CI and rescue (Kaur et al., 2022). Based on these premises, we 402 

hypothesized that the two Cif proteins metabolize nucleic acids. We thus set out to 403 

evaluate their enzymatic properties using in vitro and in situ assays. We describe 404 

five key results: (i) T1 CifB is a DNase, (ii) T1 CifA is both a DNase and RNase, (iii) 405 

Wolbachia and transgenic CifAB expression causes DNA damage at the canoe 406 

stage of spermiogenesis, but in situ DNase activity of CifB alone is insufficient to 407 

cause CI, (iv) truncations and conserved site-directed mutagenesis establish the 408 

dependency of Cif nuclease functions across the length of the proteins, and (v) a 409 

QxxxY motif in both CifA and CifB associates with observed nuclease activity. 410 

Notably, this is the first report to demonstrate nuclease functions of the CifA 411 

protein. Below, we discuss the relevance of Cif nuclease findings to the molecular 412 

bases of CI, the Host Modification model, and cif gene nomenclature. 413 

Previous work showed that the T1 and T4 phylogenetic clades of CifB 414 

biochemically act as in vitro deubiquitinases (DUBs) and DNases, respectively. 415 

These findings led to a proposal of an enzyme-dependent gene nomenclature and 416 

mechanistic narrative of CI (Beckmann et al., 2017; Chen et al., 2019). Structural 417 

homology-based annotations reveal that DUB-encoding T1 CifBs also contain 418 

PDDEXK-like nuclease dimers (Beckmann et al., 2017; LePage and Bordenstein, 419 

2013; Lindsey et al., 2018) - however, due to the absence of canonical catalytic 420 

residues, T1 CifBs were deemed non-nucleases (Chen et al., 2019). Notably, 421 

PDDEXK nuclease family enzymes vary substantially in sequence and structure 422 

while retaining DNase activity (Knizewski et al., 2007; Steczkiewicz et al., 2012). 423 

Indeed, CifB nuclease domains across all CI Types show homology to not only the 424 

PDDEXK family but also to the restriction endonucleases HsdR (Lindsey et al., 425 

2018). HsdR is a subunit of type I restriction-modification enzymes (Obarska-426 

Kosinska et al., 2008) that carries a unique and conserved QxxxY motif sequence 427 

located in the α-helix immediately C-terminal to the PDDEXK motifs (Šišǎkovǎ et 428 

al., 2008). Mutated Q and Y residues hamper the DNA cleaving efficiency in the 429 

EcoR124I restriction enzyme, indicating their contribution to DNase activity 430 

(Šišǎkovǎ et al., 2008). Interestingly, both CifA and CifB of wMel possess the 431 

QxxxY motif in a predicted α-helix region, and in CifB, they are present in the C-432 
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terminus preceded by the PDDEXK motif. Thus, future CI studies may consider 433 

association of the QxxxY motif with DNase activity by the CifA and CifB proteins. 434 

In situ assays at the canoe stage of development notably revealed 435 

spermatid DNA damage in both Wolbachia and dual CifAB expressing lines, thus 436 

demonstrating the Cif enzymes are responsible for metabolizing DNA. DNA 437 

damage and repair are typical features facilitating the histone-to-protamine 438 

transition during the canoe stage of spermiogenesis to tightly pack the sperm 439 

chromatin (Rathke et al., 2007). However, excessive DNA breaks result in 440 

abnormal sperm chromatin packaging that can impact male fertility and embryonic 441 

viability in mammals (Agarwal and Said, 2003; Hosen et al., 2015; Sakkas and 442 

Alvarez, 2010). Wolbachia-induced oxidative DNA damage was previously 443 

reported in an early spermatogenesis stage of D. simulans (Brennan et al., 2012) 444 

suggesting that modifications to developing sperm contribute to CI. Therefore, 445 

detection of Cif-mediated DNA cleavage of spermatids is noteworthy here as DNA 446 

damage can adversely impact Histone modifications that hampers the histone 447 

removal process from chromatin (Bannister and Kouzarides, 2011; Tjeertes et al., 448 

2009). Indeed, the nuclear-targeting CifA and CifB proteins alter sperm chromatin 449 

integrity by increased histone retention and decreased protamine deposition during 450 

sperm development (Kaur et al., 2022). Moreover, mutant males with protamine 451 

knockouts enhance wild type Wolbachia CI levels (Kaur et al., 2022). Taken 452 

together, our data suggests that Cifs promote spermatid DNA damage to alter 453 

sperm genome integrity and paternally bestow a long lasting modification which 454 

underpins CI.  455 

While dual expression of intact CifA and CifB promotes DNA damage, CifA 456 

mutants expressed with intact CifB inhibit spermatid DNA cleavage. These findings 457 

suggest nuclear-targeting CifA is central to metabolizing spermatid nucleotides, 458 

and mutations and deletions in CifA may hinder the proper binding and/or 459 

localization of CifA and CifB (Horard et al., 2022; Kaur et al., 2022; Wang et al., 460 

2022) in testes so that they cannot access target substrates to mediate cleavage. 461 

Ablation of spermatid DNase action by dual expression of CifB and CifA4 (with 462 

substituted residues in the predicted Sterile transcription factor domain (STE)) is 463 

particularly notable as it induces CI. CifA’s STE domain is highly conserved across 464 

the phylogenetic Types (Lindsey et al., 2018). Crystal structure of CifA predicts this 465 

region to be disordered (Wang et al., 2022; Xiao et al., 2021). Disordered regions 466 
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may facilitate post-translational modifications and regulate key protein functions 467 

(Sharma and Schiller, 2019), in this case, DNase activity that is independent of CI. 468 

Upon individual Cif expression, we observed that CifA alone does not 469 

recapitulate in situ DNase activity despite its ability to function as a DNase in vitro. 470 

At the histone-to-protamine transition stage of spermiogenesis, wMel CifA is not 471 

highly abundant, and wPip CifA reportedly vanishes (Horard et al., 2022; Kaur et 472 

al., 2022). Thus, one explanation is that CifA levels are below the threshold to 473 

induce spermatid DNA nicks or it requires co-expression with the CifB binding 474 

partner (Wang et al., 2022; Xiao et al., 2021). In contrast, single CifB promotes 475 

DNA fragmentation at this stage. T4 wPip CifB is also an in vitro DNase, which is 476 

proposed to contribute to the CI mechanism independent of CifA via DNA cleavage 477 

(Chen et al., 2019), although the host DNA substrate that T4 CifB acts on remains 478 

unknown. 479 

In conclusion, we report previously-unrecognized nuclease functions of both 480 

Cif proteins from wMel Wolbachia and establish a new understanding that T1 CifA 481 

is a DNase and RNase, and both T1 and T4 CifBs are DNase enzymes, which is 482 

consistent with general homology between their core nuclease domains. Based on 483 

these findings, we suggest that a durable gene nomenclature for Cifs will be 484 

grounded in evolutionary genetics and stable phylogenetic Types (T1-T5) that are 485 

less subject to shifting discoveries based on Cif enzymatic functions, as revealed 486 

here. Finally, we link in vitro and in situ enzymatic activity of the Cif proteins and 487 

highlight their impact on the nuclei of developing host sperm, a finding that is 488 

consistent with the Host Modification model of CI in this system (Kaur et al., 2022). 489 

This work highlights the significance of replicating in vitro enzymatic assays with in 490 

situ and/or in vivo measurements to confirm the biological functions of proteins in 491 

the arthropod host systems and their relation to the CI mechanism. 492 

 493 

Ideas and Speculation 494 

Given that individual expression of wMel CifA and CifB is insufficient to 495 

establish CI (LePage et al., 2017) and modify sperm genome integrity (Kaur et al., 496 

2022), we propose that Cif-mediated spermatid DNA and/or RNA damage may be 497 

central to the incipient CI-defining sperm modifications that alter chromatin integrity 498 

(Fig. 5). For example, CifA RNase activity may regulate cifB transcripts and thus 499 

gene expression that is known to be lower than that of cifA (Beckmann and Fallon, 500 
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Figure 5. Illustrative summary and hypotheses on CifA and CifB nuclease functions under 513 
the Host Modification model of CI. cifA and cifB genes are shown in blue and red arrows, 514 
respectively, with an annotated hairpin terminator. cifA is highly transcribed compared to cifB (Kaur 515 
et al., 2022). CifA enzyme encodes in vitro DNase and RNase activities. 1. Under the type V toxin-516 
antitoxin system (52), the CifA RNase may degrade mRNA of the cifB gene and suppress its toxicity 517 
against the host. 2. Under the Host Modification model of CI, CifA RNase may target 518 
spermatogenesis-associated mRNA(s) to modify sperm genome integrity and induce CI. CifB’s 519 
DNase activity alone or combined with CifA’s DNase and/or RNase functions may induce DNA 520 
fragmentation in canoe spermatids, the stage when histones are replaced by protamines to 521 
generate tightly condensed chromatin (Rathke et al., 2014). CifB’s DNase action is necessary for CI 522 
in some systems (30), though the DNA substrate in the host remains uncharacterized. On the other 523 
hand, we conversely show here that CifB spermatid DNase activity from wMel Wolbachia is 524 
insufficient to cause CI, which may be contingent upon CifA’s RNase and/or DNase activity that 525 
could hypothetically modify sperm genome integrity. CifAB-induced sperm modifications at this 526 
stage may pave the incipient steps to establish CI. 527 

 528 

 529 

Materials and Methods 530 

 531 

1. Fly rearing and strains 532 

D. melanogaster stocks y1w* (BDSC #1495), nos-GAL4:VP16 (BDSC 533 

#4937), and UAS transgenic (TG) lines homozygous for cifA, cifB, cifA;B, and cif 534 

mutants (LePage et al., 2017; Shropshire et al., 2020) were maintained at 12:12 535 

light:dark at 250C and 70% relative humidity on 50 ml of standard cornmeal- and 536 

molasses-based food medium. Lines without Wolbachia were previously generated 537 

(LePage et al., 2017) through tetracycline treatment for three generations. Wolb_F 538 

and Wolb_R3 primers were used to confirm symbiont presence. Virgin flies were 539 

collected and stored at room temperature. 540 

 541 

2. In vitro Nuclease assay 542 

Codon optimization, gene synthesis, cloning, and protein 543 

expression/purification were outsourced to GenScript Biotech (New Jersey, USA). 544 

Briefly, cifA and cifB genes were codon-optimized for translation and expression in 545 

E. coli, de novo synthesized, cloned into pGS-21a expression vector, and 546 

transformed into E. coli BL21 (DE3) competent cells. Cultures were grown in 1 L 547 

TB medium containing ampicillin and were incubated in 370C at 200rpm. Once cell 548 

density reached to 1.2 O.D. at 600 nm, 0.5 mM isopropyl-b-D-thiogalactoside 549 

(IPTG) was introduced for induction at 150C for 16 hours and then centrifuged at 550 

8000 g for 20 min. 551 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2022. ; https://doi.org/10.1101/2022.04.04.487029doi: bioRxiv preprint 



	 19	

For CifA, cell pellets were lysed on ice using buffer A (50 mM Tris,150 mM 552 

NaCl, 1 mM TECP, pH 8.0) by sonication. The lysate was clarified by centrifugation 553 

at 12000 g for 30 min at 40C. The clarified extracts of target CifA proteins carrying 554 

His tags at the C-terminus were filtered with a 0.45 µm filter and loaded onto Ni-555 

nitrilotriacetic acid (NTA) agarose resin preequilibrated in buffer A. The column was 556 

then washed with buffer B (50 mM Tris, 150 mM NaCl, pH 8.0) 10 column volumes 557 

(CV) to wash away impurities from the target proteins. The protein was eluted 558 

using buffer B supplemented with 20/50/300 mM imidazole. All proteins were 559 

sterilized by passing through 0.22 µm filter before being stored in aliquots. The 560 

concentration was determined by BCATM protein assay with BSA as a standard. 561 

SDS-PAGE and Western blot were used to confirm protein purity and molecular 562 

weight (source data files). 563 

For CifB, cell pellets were lysed on ice using buffer A (50 mM Tris,150 mM 564 

NaCl, pH 8.0). The lysate was clarified by centrifugation at 12000 g for 30 min at 565 

40C. The inclusion body pellet was solubilized in denature buffer A (7M Gu-HCl, 50 566 

mM Tris-HCl,150 mM NaCl, pH 8.0) by sonication. The cell precipitate was spun 567 

down at 13,000 rpm for 30 min at 4°C, then the supernatant including target CifB 568 

proteins carrying His-GST tag at the N-terminus was filtered with a 0.45 µm filter 569 

and loaded onto NTA agarose resin preequilibrated in buffer A. The column was 570 

then washed with buffer B (8 M Urea, 50 mM Tris-HCl, pH 8.0) 10 CV to wash 571 

away impurities from the target proteins. The protein was eluted using buffer B 572 

supplemented with 20/50/300 mM imidazole. All proteins were sterilized by passing 573 

through 0.22 µm filter before being stored in aliquots. The concentration was 574 

determined by BCATM protein assay with BSA as a standard. SDS-PAGE and 575 

Western blot were used to confirm protein purity and molecular weight (source 576 

data files). 577 

Additionally, mass spectrometry-based protein identification was performed 578 

to ensure no contaminant nuclease from the E. coli expression system was co-579 

purified. Briefly, 20 µg of purified proteins (CifA, CifA∆C, CifB∆D, and CifB2;∆D) were 580 

prepared for analysis using Suspension trap technology (Casiraghi et al., 2001) 581 

using the manufacturer protocol. The resulting peptides were analyzed by a 70-582 

minute data-dependent LC-MS/MS analysis. Briefly, peptides were auto sampled 583 

onto a 200 mm by 0.1 mm (Jupiter 3 micron, 300A), self-packed analytical column 584 

coupled directly to an LTQ (ThermoFisher) using a nanoelectrospray source and 585 
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resolved using an aqueous to organic gradient. A single full-scan mass spectrum 586 

followed by 5 data-dependent tandem mass spectra (MS/MS) was collected 587 

throughout the run and dynamic exclusion was enabled to minimize the acquisition 588 

of redundant spectra. The Resulting MS/MS spectra were searched via SEQUEST 589 

against a database containing the expressed proteins, an E. coli background 590 

proteome and reversed version for each of the entries. Identifications were filtered 591 

and collated at the protein level using Scaffold Proteome Software. 592 

In vitro nuclease activity assays were performed as previously described 593 

(Chen et al., 2019). For DNase and RNase activity measures, 1µM of individual Cif 594 

proteins were incubated in a reaction buffer containing 20 mM Hepes (pH 8.0), 5 595 

mM MgCl2, 2.5% sucrose, 150 mM NaCl, 0.001% Triton X-100, and 2 mM DTT 596 

with 500 nM single-stranded (ss) Cy5-labeled DNA [70-mer: Cy5-597 

GCAATTCGATCGTTGACATCTCGCGTGCTCGGTCAATCGGCAGATGCGGAGT598 

GAAGTTCCAACGTTCGGC-3] as previously used (Chen et al., 2019); 15nM 599 

double-stranded (ds) 154bp PCR purified fragment of rp49 gene (Shropshire et al., 600 

2018); or 100nM of synthetic RNA [45-mer: 5’ 601 

GGGUCAACGUGGGCAAAGAUGUCCUAGCAAGCCAGAAUUCGGCAG -3’] 602 

generated by Sigma. In reactions where CifA was co-present with CifB, 10 µM CifA 603 

was used as previously described (Chen et al., 2019). All reactions were carried 604 

out at 25°C for 120 min and quenched by adding EDTA to a final concentration of 605 

100 mM unless otherwise noted. Samples were run in 10% TBE polyacrylamide 606 

urea gels at 180 V for 60 min. For reactions using Cy5-labeled ssDNA, gels were 607 

imaged on the Odyssey CLx imaging system. Unlabeled dsDNA and ssRNA 608 

sample gels were post-stained with GelRed (Biotium) stain and imaged with Alpha 609 

innotech imager. 610 

 611 

3. In situ TUNEL assay 612 

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling 613 

(TUNEL) assays are based on detecting single- and double-stranded DNA nicking 614 

and fragmentation, which are characteristic of apoptotic cells (Vasudevan and 615 

Ryoo, 2016). To perform the assay and detect sperm DNA fragmentation, we first 616 

set up the flies as previously described (Shropshire et al., 2020). Briefly, virginity-617 

controlled wild type (wMel+ and wMel-) and TG (nos-Gal4:VP16) females were 618 

aged 9–11 days and mated with males (Layton et al., 2019). We used nos-619 
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Gal4:VP16 line since it was previously shown to drive cifA;cifB expression 620 

sufficient to induce near-complete embryonic death (Shropshire and Bordenstein, 621 

2019). We collected <8 hours old wild type and TG Gal4-UAS males as the young 622 

hatched males induce strong CI levels (Shropshire et al., 2021a; Yamada et al., 623 

2007), anesthetized on ice to stop their movement, and dissected whole testes in 624 

ice-cold 1X PBS solution. Dissected tissues were treated with 2 mM dithiothreitol to 625 

stabilize cellular proteins for 45 min at room temperature, followed by fixation in 2% 626 

paraformaldehyde on ice for 15 min. After washing in 1X PBS for 2 min, samples 627 

were permeabilized in 0.1% TritonX-100 in sodium citrate (10 mg sodium citrate, 628 

10 µl Triton, 10 ml milliQ H2O) for 2 min on ice. After washing in 1X PBS for 2 min, 629 

samples were incubated with 50 µl mix of 5 µl enzyme and 45 µl labeling solution 630 

(TUNEL In situ Cell Death Detection Kit, TMR Red’ from Roche) for 1.5 h at 37°C 631 

in a dark humid chamber. After washing in 1X PBS for 2 min, samples were finally 632 

incubated with 50 µL of DAPI staining solution (0.2 µg/ml), mounted on a glass 633 

slide, squashed with a coverslip, and stored overnight at 40C. Imaging was 634 

performed using green fluorescence filter excited at 488 nm laser for TUNEL and 635 

blue at 359 nm for DAPI stain at 100x magnification in All-in-one Keyence BZ-X700 636 

fluorescence microscope. Image exposure settings were kept constant throughout 637 

the treatment groups and images were analyzed using ImageJ software. The total 638 

number of sperm bundles and TUNEL-positive bundles with damaged DNA were 639 

manually counted per testes. 640 

 641 

4. Hatch rate assays 642 

Male siblings from TUNEL assays were used to measure CI hatch rate 643 

levels as previously described (LePage et al., 2017). Briefly, males and females 644 

were paired in 8 oz bottles affixed with a grape-juice agar plate smeared with 645 

yeast. Bottles were incubated at 250C for 24 h at which time the plates were 646 

replaced with freshly smeared plates and again stored for 24 h. Plates were then 647 

removed from bottles, and the numbers of eggs on each plate were counted. Any 648 

crosses with fewer than 25 eggs laid were discarded from the count. After another 649 

30 h incubation at 250C, the remaining unhatched eggs were counted. The percent 650 

of eggs hatched into larvae was calculated by dividing the number of hatched eggs 651 

by the total egg count and multiplying by 100. 652 
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 653 

5. In silico prediction analysis 654 

Protein sequence alignment of CifB orthologs from different Wolbachia 655 

strains (NCBI accession number, CifB T1 wMel - WP_010962721.1, T1 wPip - 656 

WP_012481788.1, T4 wPip - WP_007302979.1) and CifA T1 wMel 657 

(WP_010962721.1) were performed using the MUSCLE plugin (Edgar, 2004) in 658 

Geneious Prime v2021.0.3 (Kearse et al., 2012). Secondary structure predictions 659 

of CifA and CifB protein sequences were made using the PSIPRED Protein 660 

Sequence Analysis Workbench program (Jones, 1999). We manually curated the 661 

presence of the QxxxY motif based on its localization within a region of predicted 662 

α-helices in the nuclease domains in CifB and throughout the length of CifA 663 

proteins. 664 

 665 

6. Statistical analysis 666 

All statistical analyses were performed using GraphPad Prism 9 software. While 667 

comparing in situ TUNEL data between two groups, we used a two-tailed, non-668 

parametric Mann-Whitney U-test. For comparisons between more than two data 669 

sets, we used a non-parametric Kruskal-Wallis one-way analysis of variance test 670 

followed by a Dunn’s multiple correction. This allowed robust testing between all 671 

data groups while correcting for multiple test bias. For CI hatch rate assays, 672 

statistical significance was determined by Kruskal-Wallis and Dunn’s multiple 673 

correction tests. All P-values are reported in Table S2 and S3 and raw data files 674 

related to each experiment are included in the source data files. 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 
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Supplementary figure titles and legends 704 

 705 

Supplementary figure 1. CifB amino terminus alone does not induce DNase 706 

or RNase activity. Schematic representation showing the location of truncated 707 

domains of CifB recombinant proteins used in the study. 1 µM of Cif protein was 708 

incubated with 500 nM Cy5-labeled ssDNA, 15nM dsDNA and 100nM ssRNA for 709 

120 min. DNase and RNase enzymes were used as positive controls. To stop the 710 

reactions, EDTA was added to a 20x molar excess over Mg2+. Cy5-labeled ssDNA 711 

samples were run in a 10% polyacrylamide/TBE gel. Non-labeled dsDNA and RNA 712 

samples were run in 10% polyacrylamide/TBE gel and stained with GelRed. 713 

 714 

Supplementary figure 2. CifA and CifB are in vitro nucleases. (A) Dilution-715 

based nuclease assay shows CifA’s DNase and RNase, and CifB’s DNase 716 

activities persist at higher protein concentrations and diminish with dilutions. (B) 717 

Time–course assay shows nuclease activity of Cifs diminishes at shorter 718 

incubation time points. 719 

 720 

Supplementary figure 3. DNA breaks are detected at the canoe stage of 721 

Drosophila spermiogenesis. TUNEL staining on testes squashes of 0-8 hrs old 722 

males was performed to visualize DNA breaks during different stages of 723 

spermatogenesis in the same animal. DNA breaks marked by TUNEL staining are 724 

detectable only in canoe-stage spermatids, as expected (Rathke et al., 2007). 725 

During individualization, DNA breaks are no longer detectable in needle stage 726 

spermatids and the mature individualized sperms (white arrowheads). 727 

 728 

Supplementary figure 4. Single transgenic expression of cifB does not 729 

induce CI in D. melanogaster. Hatch rate assays were conducted to test if wild 730 

type Wolbachia-carrying symbiotic males and transgenic, aposymbiotic males 731 

expressing single and dual cifA and cifB genes (unfilled sex symbols) induce CI. 732 

Each dot represents the percent of embryos that hatched from a single male and 733 

female pair. Letters to the right indicate significant differences based on p = 0.05 734 

calculated by Kruskal-Wallis and Dunn’s test for multiple comparisons between all 735 

groups. This experiment was conducted three times in parallel to the in situ TUNEL 736 

assay of Figure 3. P-values are reported in Table S3. 737 

 738 

Supplementary figure 5. Single and dual expression of various cifA and cifB 739 

mutants ablates in situ nuclease activity and CI phenotype. (A, B, D, E) 740 

TUNEL assays on testes squashes of <8 hrs old males was performed to quantify 741 

sperm bundles with DNA breaks across the genotype treatment groups. Single and 742 

dual expression of cifA and cifB mutants in transgenic lines fails to induce 743 

spermatid DNA fragmentation. Total sperm bundles and those with fragmented 744 

DNA were manually counted from the images acquired. The numbers of testes 745 

investigated are shown in parentheses next to the genotype. The experiment was 746 

performed in two independent biological replicates in the same setup as 747 
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experiments in Figure 3. P-value significance was calculated by Kruskal-Wallis and 748 

Dunn’s test for multiple comparisons between all groups. P-values are reported in 749 

Table S2. (C, F) Hatch rate assays were conducted to test if single and dual 750 

expression of cifA and cifB mutants can induce CI when transgenically expressed 751 

in aposymbiotic males (unfilled sex symbols). Each dot represents the percent of 752 

embryos that hatched from a single male and female pair. Letters to the right 753 

indicate significant differences based on p = 0.05 calculated by Kruskal-Wallis and 754 

Dunn’s test for multiple comparisons between all groups. The experiment was 755 

conducted twice in parallel to the TUNEL assay. P-values are reported in Table S3. 756 

 757 

Supplementary figure 6. Spermatid DNase activity is ablated upon dual 758 

expression of cifA4 and cifB. Image shows DNA nuclei (blue, DAPI) and TUNEL 759 

signal (green) in sperm bundles with less DNA breaks (empty arrow heads) 760 

compared to cifAB in Figure 3. The experiment was performed with two biological 761 

replicates in the same setup as that in Figure 3. 762 

 763 

 764 

  765 
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