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Abstract

In this paper, we investigate the stability and instability of the steady state (0, ps) (p; is a con-
stant) for the 3D homogeneous incompressible viscous flow in a bounded simply connected
domain with a smooth boundary where the velocity satisfies the Navier boundary conditions.
It is shown that there exists a critical slip length —C, u, where C, > 0 is an explicit generic
constant depending only on the domain (given in (1.7)) and © > 0 is the viscosity coeffi-
cient, such that when the slip length ¢ is less than —C, i, the steady state (0, py) is linearly
and nonlinearly unstable; and conversely, the steady state (0, p;) is linearly and nonlinearly
stable when ¢ > —C, .

Mathematics Subject Classification 35Q30 - 35R35 - 76N10

1 Introduction

Let Q C R be a bounded simply connected domain with smooth boundary 32 along with
unit outward normal vector n. The motion of a 3D homogeneous incompressible viscous
fluid in Q2 is governed by the following Navier-Stokes equations [24]:

ou+u-Vu+Vp —puAu=0,
divu=0, x e Q,

(1.1)
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where the unknowns u(z, x) and p(z, x) denote the velocity and the pressure of the fluid
respectively, and u > 0 is the viscosity coefficient. We add to u(z, x) the Navier boundary
conditions on 9$2:

u-n=0
’ 1.2
{M(S(ll) M) = —Cur, (12)
where S(-) is the strain tensor,
S(u) = Vu+ (Va) ", (1.3)

¢ € R is slip length measuring the tendency of the fluid to slip on the boundary, and (-),
represents the tangential part of the vector (-) on d€2. The boundary condition (1.2) was first
introduced by Navier [27], allowing the fluid to slip along the boundary, and is often used to
model rough boundaries [2, 12]. In this setting, the boundary 9<2 is said to be dissipative if
¢ =0.

As one of the important boundary conditions, there is an extensive literature on the
existence, uniqueness, and regularity theory of the solutions to the incompressible Navier-
Stokes equations with the Navier boundary conditions (1.2). In particular, since the work
of Solonnikov and S¢adilov [29] on the existence and regularity of weak solutions for the
Navier-Stokes equations with Navier boundary conditions, many significant results have been
obtained by many experts, see for an incomplete list [1, 3, 11, 13, 19, 26] and the references
cited therein.

Beyond the theory on existence, uniqueness and regularity of the solutions, the stability and
instability of viscous fluids governed by the Navier-Stokes equations is also a classical subject
[5, 10], and was investigated by many mathematicians for various boundary conditions,
especially for the no-slip and Navier boundary conditions. In recent years, this subject attracts
more and more attentions. For the case of the no-slip boundary condition, Guo and Tice [15]
studied the linear instability for a steady state profile of a 3D compressible viscous flow in an
infinite slab, in which a heavier fluid lies on a lighter fluid along a planar interface, i.e., the
Rayleigh-Taylor (RT) steady state. Jiang and Jiang [20] investigated the RT instability fora 3D
nonhomogeneous incompressible viscous fluid driven by gravity in a bounded domain, where
the steady density is heavier with increasing height, see also [16, 18, 21] for more results on the
RT instability. Kagei [22] proved that if the Reynolds and Mach numbers are sufficiently small,
the planar Couette flow is asymptotically stable under sufficiently small initial disturbances
in viscous compressible fluid. On the other hand, some important progresses have also been
made on the situation where the velocity satisfies the Navier boundary conditions. In 2016,
Li and Zhang [23] considered the nonlinear stability of the planar Couette flow for the 3D
compressible Navier-Stokes equations with the no-slip boundary condition on the upper flat
boundary and the Navier boundary conditions on the lower flat boundary where ¢ > 0. Ding
and Lin [7] studied the stability of the planar Couette flow for viscous incompressible fluid
in a two dimensional slab domain, where the Navier boundary conditions with ¢ > 0 is
imposed on both the upper and lower flat boundaries. In both articles mentioned above, the
condition { > 0 plays an important role.

In 1959, Serrin addressed the problem on the sign of ¢ and pointed out that ¢ does not need
to have a defined sign (see [28], p. 240). Actually, the situation of ¢ < 0 does exist in the real
world. For the curved gas-liquid interfaces, Haase et al. [17] investigated the evolution of the
slip length with the bubble’s protrusion angle. They found that the slip length is maximum
for a small but finite nonzero protrusion angle, however, when the angle exceeds a critical
value, the slip length becomes negative, i.e., { < 0. The relationship between the bubble’s
protrusion angle and the slip length is clearly shown in figure (a) on p. 5 of [17], see also
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the references cited therein for more similar results. The Navier boundary conditions (1.2)
with ¢ < 0 is also applied widely in the numerical simulations of flows, see [6, 25] and
the references cited therein. Therefore, one significant problem is to analyze the stability of
viscous fluids governed by Navier boundary conditions with { < 0, and it is very interesting
to perform stability analysis on the steady state (0, ps) (p; is a constant) to the Navier-Stokes
equations with Navier boundary conditions for all { € R. Comparing with the situation
¢ > 0, the research on the Navier boundary value problem with ¢ < 0 is very limited, due
to the challenges arising from the possible lack of dissipation. In 2018, Ding, Li and Xin [8]
investigated the stability and instability of the trivial steady state of the 2D incompressible
Navier-Stokes equations with Navier boundary conditions in a slab domain R x [0, 1]. They
have shown that when all boundaries are dissipative, i.e., ¢ > 0, the nonlinear asymptotic
stability holds true. Otherwise, there is a sharp critical viscosity, which distinguishes the
linear/nonlinear stability from instability. We remark that, from the physical point of view,
it is more natural to study the Navier boundary value problem for any £ € R in a bounded
domain, which will be addressed in current paper.

The purpose of this paper is to analyze the stability and instability of the steady state
(0, ps) (ps is a constant) to the problem (1.1)—(1.2) in Q C R3 for any ¢ € R. To this end,
we denote the perturbation around the steady state (0, ps) by

v(t,x) =u(t,x) =0, q(t,x)=p(t, x)— ps,

then the equations (1.1) can be rewritten as the following perturbed form:

:3,V+V~VV+Vq—/LAV=O, (1.4)
divv=0, x e Q.
In addition, we shall impose the Navier boundary conditions:

v.-n=0, x €09,

: 1w(S) -n)_ = —¢ve. (1)

Upon the linearization around the steady-state (0, p;), we obtained from the equations (1.4)
the following linearized equations:

(1.6)

v+ Vg —uAv=0,
divv=0, x € Q.

Before stating our main results, we now clarify the notations used throughout this paper.
For convenience, we will drop the domain 2 in Sobolev spaces and their corresponding
norms as well as in the integrals over €2, for example,

L? .= LP(Q), H*:=wk*(Q), /::/ ,
Q
Lg = {ueL2|divu:O, u-n:Oon&Q},
H} = {ueHlldivuzo, u-n=00n3Q},
W:={ue HlnH? | (S (w) -n)r = —{u; on 9Q},

V)= [ueH;

o

/ [ul?do # 0}, Dy = {u e c[divu =0},
aQ

In addition, a product space (X)> of vector functions is still denoted by X for presentation
simplicity, for examples, the vector function u € (H?)? is denoted by u € H?.
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/ |S(w)|*dx
C = inf ————

1
uev) 2/ uldo
2

plays an important role in our results and analysis. Clearly, C, is well defined and C, > 0. In
the case of slab domain, see for instance [8] on R x [0, 1], C, could take zero value. One of the
distinct features in our situation is that the bounded simply connected domain €2 guarantees
the positivity of C,. Indeed, from Theorem 2 in [9], we have the following Korn’s inequality
for functions with vanishing normal trace on the boundary: there exists a constant Cjg > 0
such that

The constant C,, defined by

) 1.7)

lull g1 < CillS()||z2 for any u € H' withu-n =0. (1.8)

On the other hand, we know from the standard trace theorem that, there is a constant Coq > 0
such that

lullz290) < Coqllullg forany u € H'. (1.9)

Therefore, one finds that
1

> — >0
T 2C1Chg

Cr

We note that, both Cg and Caq only depend on the domain €2. In what follows, we denote
by C a generic positive constant which may depend on €2, « and ¢.
Our first result is on the instability to the problem (1.5)—(1.6).

Theorem 1.1 Let Q2 be a bounded simply connected subset in R with C* boundary 9$2 and
n the unit outward normal. If

¢ < —Copt, (1.10)

holds for C, defined in (1.7), then the linearized problem (1.5)—(1.6) is unstable. That is, there
exists an unstable solution

(v, q) = M (V(x), G (x)) (1.11)

to the linearized problem (1.5)—(1.6), where (v, q) € H 2 % H! solves the following equations

AV+ Vg —uAv =0,
AR (1.12)
divv=0, x e Q,
with the Navier boundary conditions
v-n=0, x €09, (L13)
n(SE) - n), = —¥. '
and the constant growth rate A > 0 is defined by
! / [SW)2dx — ¢ / |v>do
SH
A := sup 9% ) (1.14)

VeH) / [v]2dx
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Based on Theorem 1.1, we can establish the following nonlinear instability result.

Theorem 1.2 Ler Q be a bounded simply connected subset in R® with C> boundary 9 and
n the unit outward normal. Under the condition (1.10), the nonlinear problem (1.4)—(1.5) is
unstable in the Hadamard sense. That is, there are positive constants €, §y and a function
Vo, [IVoll g2 = 1, such that, for any § € (0, §9) and the initial datum \78 = 8V, there exists a
unique strong solution v® € C([0, T™], H?) with an associated pressure p® of the nonlinear
problem (1.4)—(1.5) satisfying

IV (T2 2 = ellVoll 2., (L.15)
. s __ 1.2
for the escape time T° = T In —5.

It remains an interesting problem on the stability of the linear and nonlinear systems for the
case { > —C, . In the following Theorem, we prove the exponentially asymptotic stability
when ¢ > —C, .

Theorem 1.3 Let Q2 be a bounded simply connected subset in R with C* boundary 9$2 and
n the unit outward normal. Under the condition

¢ > —Cru, (1.16)

the linearized problem (1.5)—(1.6) is globally stable. Indeed, for any vo € H? satisfying
divvo = 0 and the boundary compatibility conditions, there exists a unique global strong
solution (v, q) € H? x H' 10 the linearized problem (1.5)—(1.6) with the initial datum vy.
Furthermore, there are positive constants o and C depending only on 2, u, ¢ and C,, such
that for any t > 0 it holds

VOl + g @l + 1V @Ol 2 < Ce™ 2 |[Voll 2. (1.17)

If one further assumes that the initial datum vy € H? is sufficiently small , then the nonlinear
problem (1.4)—(1.5) is globally stable. More precisely, there is a positive constant 1 > 0, such
that if ||[voll g2 < €1, then the nonlinear problem (1.4)—(1.5) admits a unique global strong
solution (v, q) € H* x H'. Furthermore, there are positive constants y and C depending
only on Q, u, ¢ and C, such that for any t > 0 it holds

_r
VOl g2 + gl g + Vi@l 2 < Ce™ 2 Vol g2, (1.18)

foranyt > 0.

Remark 1.1 For the critical case { = —C, ., the linearized problem (1.5)—(1.6) also possesses
a unique global strong solution (v, g) € H? x H' and IVl g2 < Cllvoll g2, whose proof is
similar to that of Theorem 1.3. However, for the nonlinear problem (1.4)—(1.5), due to the
absence of dissipation, it is difficult to prove whether it is stable or not.

Remark 1.2 1t is noticed that we use the critical value of the slip length ¢, instead of the
viscosity coefficient u to determine the stability or instability of the solution, which is different
from [8], where they used the critical viscosity.

Remark 1.3 For the slab domain T2 x [0, 1], which is not simply connected, the constant
C, = 0 and the conclusions of the above Theorems also hold. One also finds that the value of
C, for our domain £ is different from that for T2 x [0, 1], which reveals that the geometric
structure of the domain has an effect on the stability and instability of (0, py).
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Remark 1.4 From the above Theorems and Remarks, one finds that when the boundary is
dissipative, the steady state (0, py) is always linearly and nonlinearly stable. This is in accor-
dance with the results in [8] on R x [0, 1] with dissipative boundary condition for the upper
and lower boundaries.

We now make some brief comments on the proofs of Theorems 1.1-1.3. In order to
construct an unstable solution to the linearized problem (1.5)—(1.6), we start with a growing
mode solution to the linearized problem (1.5)-(1.6) in the form of (1.11). Inserting this ansatz
into (1.6) yields (1.12) with the boundary condition (1.13). In [8], the boundaries of R x [0, 1]
are flat, the authors took this advantage to transfer the boundary problem (1.6) into ordinary
differential equations (ODEs) by employing the horizontal Fourier transform. In our case, the
domain €2 is any bounded smooth simply connected region in R3, thus 92 could be smooth
surface of various shape. Therefore, we can not directly follow the idea of [8]. In order to
overcome the difficulties caused by the boundary, we adopt the variational method [20] to
construct a solution of the problem (1.12)—(1.13).

In order to prove Theorem 1.2, we first need to establish the Stokes estimates with the
Navier boundary conditions for any ¢ € R. However, when ¢ < —C, i, the existence of weak
solutions to the corresponding Stokes problem is not known. Instead, we will study a modified
Stokes problem (3.4)—(3.5), which will help us to prove the local well-posedness of the
problem (1.4)—(1.5) and derive some important estimates. Finally, based on the constructed
unstable solution in Theorem 1.1 and the local well-posedness of the problem (1.4)—(1.5),
we can prove the nonlinear instability by employing some ideas in [14].

The proof of Theorem 1.3 is given by the standard energy method, where the condition
¢ > —C,u plays an essential role. This condition ensures that the boundary integrals and
the terms which are caused by the nonlinear terms can be controlled by the dissipative terms
IS, and ISVl -

The rest of this paper is arranged as follows. In the next section, we prove the instability
of the linearized problem and obtain Theorem 1.1. With the help of Theorem 1.1 and the a
priori estimates, we show the proof of Theorem 1.2 in Sect. 3. The stability results will be
presented in Sect. 4.

2 The linear instability

In this section, we will adopt the variational method to construct an unstable solution to the
linearized problem (1.5)—(1.6).

2.1 Growing mode ansatz

To begin with, we assume a growing mode solution to the linearized problem (1.5)—(1.6) in
the form

v(t, x) =v(x)eM, qt,x) =gx)e. 2.1

Inserting this ansatz into (1.6) yields that

(2.2)

AV+ Vg — nAv =0,
divv=0, x e Q,
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and into (1.5) gives the boundary conditions
v.-n=0, x €09,
w(S@) -n), = —v,.

Obviously, the linearized problem (1.5)—(1.6) is unstable if there exists a solution (V, g, 1)
to (2.2)—(2.3) with & > 0. Now, multiplying (2.2); by V, integrating by parts and using the
boundary condition (2.3) and div v = 0, we obtain that

,\/vzdx = “f AV - Vdx = —%/ |SV|?dx —g/ [v|%do. (2.4)
Q2

We find that the problem (2.2)—(2.3) has a natural variational structure. Therefore, we may
arrive at such an aim by solving the maximization problem

(2.3)

A = sup E(V), 2.5
veA
where
EG) =-YX / [S(¥)2dx — ;/ [v|2do (2.6)
2 a0

and the associated admissible set is defined as

/|v|2dx = 1].

Next, we show that a maximizer of (2.5) exists, and that the corresponding Euler-Lagrange
equations are equivalent to the problem (2.2)—(2.3).

.A::{\”IGV(,1

Proposition 2.1 E (V) can achieves its maximum on A and A > 0.
Proof Since ¢ < —Cj 1, it follows from the definition of C, that there is a function @ € V!
such that

¢ JIS@ldx

> =5
w2 [, ado

which yields

E@ =4 [1s@iax ¢ [ il =0,
2 aQ

Therefore, the condition (1.10) guarantees that A is positive.
Now, we turn to prove the first claim in Proposition 2.1. Using the trace theorem [4], we
know that there is a constant Czq depending only on €2, such that

/ ¥2do < Caall ¥l ] 2. @.7)
Q2

Furthermore, combining (2.7) with Korn’s inequality (1.8) and Cauchy’s inequality, we derive
that, for any v € A, there is a positive constant Cg = C1oC3gq, depending only on €2, such
that

- - - M -
E®) < —¢Cal S 21912 — §||S<v>||iz
Ccie?

2u

[N Mo <
= =S IS + SISO + 19117
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C2 ;2 ~ C2 {2
< ), < =2 (2.8)
2 21

Therefore, E£(V) has an upper bound on 4, and supg 4 E(V) is well-defined and finite.
Letting v, € A be a maximizing sequence, then E(V,) is bounded. It follows from (2.8)
that
C2 2
OSE(Vn)sAsﬂ—;.
2p

Similar to the arguments in (2.8), we arrive at

- - - Ko
0<E®Wn) = —CllSO2lIVallr2 — EHS(Vn)”sz

2 .2
Mo W~ Coes
s—gwmw;+zmmmé+4%wwm
2.2
|/ Co¢
s—ﬂwmwg+ Z. 2.9)
Therefore, we obtained that
} 4cc?
ISE)I7. < ; , (2.10)

which implies that ¥, is bounded in H' due to Korn’s inequality (1.8). Thus there exists a
function Vo € H! and a subsequence (still denoted by Vv,, for simplicity), such that v,, — Vg
weakly in H I and strongly in L?. Moreover, in view of (2.7), we also see that ¥, — Vo
strongly in L?(3€2). Combining the convergence in L%, H' and L?(dS2) with the lower
semi-continuity, we have

0 < sup E(V) = limsup E(v,)

ve A n—o0o
= —ﬁliminf/ [SF,))?dx — ¢ lim / [V,%do < E¥y),  (2.11)
2 n—oo n—00 Jaq

which also implies fasz |¥0|2do > 0.In addition, we can also show that ¥o-n = 0, div g = 0
and [ |Vo|’dx = 1. Thus, ¥p € A and

E¥o) < sup E(¥). 2.12)
veA
Consequently, E (V) achieves its maximum on A. O

Next, we will prove the maximizer constructed above satisfying the problem (2.2)—(2.3).

Proposition 2.2 Let V € A be the maximizer of E(-) constructed in Proposition 2.1 and
A = E(V). Then there exists a corresponding pressure field q associated to V, such that
v,q) € H? x H! solves the boundary value problem (2.2)—(2.3).

Proof For any wg € A and ¢, r € R, we define
jt,r) = / [V + W0 + rv|*dx.
Then j (¢, r) is smooth and j(0, 0) = 1. Also, notice that

0 j(t,r) =2/V-\7Vodx, 0rj(t,r) (2.13)

(t,r)=(0,0) (t,r)=(0,0) -
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Hence, in view of the implicit function theorem, there exists a smooth function r = r(t)
defined near 0, such that »(0) = 0 and j(z, r(¢)) = 1. Since V is a maximizer of E(v), a
direct calculation leads to

d . . -
0= aE(v + tWo + r(1)V)

t=0

—2;/ V- wodo —2;#(0)/ [v2do —W/(O)f |S(¥)|2dx
R Q2

- ,U,/S(ff) : S(wo)dx

-2 V- wodo + 2Ar'(0) — M/ S(¥) : S(Wo)dx. (2.14)
a0

Here we have used the definition of A and the fact that

/|\7|2dx =1.

Now an implicit differentiation from j (¢, r(t)) = 1 gives
r'(0) = —/V~W0dx. (2.15)

Inserting (2.15) into (2.14) yields

A/ff -wodx = —¢ v - wodo — %/S(fl) 1 S(Wp)dx, (2.16)

Q
which implies that there exists a pair of functions (v, ) € H U L? solving (2.2) in weak
sense and Vv - n = 0 on . It remains to show that v satisfies the boundary condition (2.3),
and (v, §) € H> x H'. However, since the remaining arguments are similar to the following
Proposition 3.1, we omit the details here. O

The proof of Theorem 1.1 follows from Propositions 2.1 and 2.2.

3 The nonlinear instability

In this section, we investigate the nonlinear instability of the perturbed problem (1.4)—(1.5).
As a starting point, one needs the local existence and regularity theory for (1.4)—(1.5), which
was known for the case ¢ > 0, and for some cases when { < 0 under certain condition such
as ug 2 <1, see Theorem 1 in [26]. Here, we would need a theory for all ¢, in particular for
¢ < —C;p. In the study of problems of Navier-Stokes equations, the theory of corresponding
Stokes problem plays an important role. In this case, the Stokes problem reads as

—uwAv+ Vg =
{ divL\LI = O—,i_ xqe Q,f G
with Navier boundary conditions
v-n=0, x €09,
: 1w(SW) - n), =—tve. G2
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When ¢ > —C,pu, the existence of weak solutions to the Stokes problem (3.1)—(3.2)
can be directly derived from a Lax-Milgram argument, which fails for the case { < —C,pu.
To establish a local existence and regularity theory for (1.4)—(1.5), we will proceed with
a classical Faedo-Galerkin approximation method based on the existence of a nice basis
satisfying the Navier boundary conditions (1.5). Traditionally, such a basis is constructed
from the Stokes problem (3.1)—(3.2). In absence of the existence of weak solutions to the
Stokes problem (3.1)—(3.2), we will study the auxiliary problem (3.4)—(3.5), a stationary
problem of Navier-Stokes equation with a large damping term, in Proposition 3.1, which
would help us to construct the basis used in Faedo-Galerkin approximation toward a local
existence and regularity theory for (1.4)—(1.5) in this section. The basis also would help to
establish the existence of weak solutions to (3.1)—(3.2) under some additional assumptions.
The latter is presented in the Appendix.

3.1 Local well-posedness

Recalling that from Korn’s inequality (1.8) and the trace theorem (2.7), we can define Cg, as
the best constant of the following inequality

/ Iv’do < CqllS™) |l 2]Iv]l;2 forall ve HL. (3.3)
0

As first step, we consider the following auxiliary equations:

—uAvV+Vg+yv="f,
K qt+yv=7f (3.4)
divv=0, x e,
cie? . . .
where y = 1 + s supplemented with Navier boundary conditions
v-n=0, xe€d, 3.5)
1w(S)-n)_ = —¢ve. '

Proposition 3.1 For each f € L2, there exists a unique strong solution (v,q) € H* x H!
to the problem (3.4)—(3.5) satisfying

IVilg2 + ligll g = Cllf L2, (3.6)

where C > 0 depends only on 2, u and ¢.

Proof We are seeking v € H(} such that, for any w € H;, it holds that

%/S(v):S(w)dx+{/ V-wda+y/v-wdx:/f-wdx. 3.7
Ele}

To this end, we define the bilinear form
B(v,w) .= %/S(V) : S(w)dx—i—;‘/ V-wda—l—y/V-wdx.
Q2

Obviously, B(, -) is continuous and symmetric on H; X H; Using Cauchy’s inequality and
(3.3), one has
2 2
iz Co¢
;/ [veldo = =S, — =2
a0 nw

2
IvII2,.
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c2s?

S the bilinear form B(-, -) satisfies

Then, since y =1 +

C2 2
B, = B ISWIG + (- ‘:f

2 2
MVliz2 = Cllviig.

which implies that the bilinear form B(-, -) is coercive on H[} X H(} Hence, Lax-Milgram
theorem ensures that there exists a unique function v € H; such that B(v, w) = (f, w) for
any w € H;. Choosing ¢ € D, as a test function in (3.7), we have

n
([~ 1AV 7% bl gy = [ S0 Sty [vegar= [ 7-ga,
Then, by virtue of Theorem IV.2.4 in [4], there exists a distribution g € (Cgo )" such that
—uAvV+Vg+yv=f, inQ, (3.8)

and —puAv + yv — f € H™! yields that g € L* which is defined uniquely up to an additive
constant. Also, v € H(} implies divv = 0in Q2 and v-n = 0 on 9€2. Thus, it remains to prove
that v satisfies the boundary condition (3.5);. Since —puAv + Vg + yv € L?, taking dual
product of the equation (3.8) with ¢ € H/ and using the Green’s formula in [31], we have

(1(SW) - 1), @)yq + C/ Ve - gdo =0,
a0
for any ¢ € H]. Now, for ¢ € H? (9R2), there exists ¢ € H'(R) such that div$ = 0 in Q
and ¢ = ¢ on 9. Then, ¢ € H(} and
</’L(S(V) . I’l)_[ + ;V'L’s ¢)()Q :<M(S(V) : n).r + ;V'L'a ¢1’)3Q
=(u(S() - n), +¢ve. @)y =0.
which yields that
W(SV) - n), = —¢ve, in H3(3Q).

Thus, there exists a unique weak solution (v, g) € H I'x L2 tothe problem (3.4)—(3.5), which
satisfies

Vllgr < ClLfl 2 (3.9)

Next, we show that (v, ¢) € H> x H'. For this purpose, we consider the following Stokes
problem:

oo e
with Navier boundary conditions
w-n=0, x €0,
[M(S(w) ‘n), = —{vs. G-11)

Since v € H', we have v; € H% (0€2). Then, by virtue of Theorem 4.5 in [31], the problem
(3.10)—(3.11) has a unique strong solution (W, 7) € H? x H!, and we have
192+ 17t < C(UF = yVl2 + 91y ). (3.12)

@ Springer



95 Page 120f26 F.Lietal.

It follows from trace theorem, (3.9) and (3.12) that
IWllg2 + 17l g < Clflz2- (3.13)

On the other hand, (v, g) is also a weak solution of the problem (3.10)—(3.11). Thus, it
remains to prove (v, ¢) = (W, 7). In fact, we can see that (v — w, ¢ — 77) satisfies

—uANV—-—w)+V(@g—7m)=0,
{ di\lf(v(— W) :(; )(cqe Q,) G194
with the slip boundary conditions
{ (V—W)-iz:(), x €9, G15)
w(S(v—w)-n)_ =0.
Multiplying (3.14) by (v — w) and integrating by parts, we have
%/ IS(v — W) [2dx =0,
which impliesv=w € H 2. Furthermore, by (3.13), we have
IVllg2 < CILf Il 2. (3.16)
As for g, it follows from (3.4); and (3.16) that g € H' and
lgllgr = ClflL2-
The proof of this proposition is completed. O

Next, in order to use the classical Faedo-Galerkin approximation method to prove the
local well-posedeness of the perturbed problem (1.4)—(1.5), we need a basis {W,-}f-’i | CH 2
for H(} satisfying the Navier boundary conditions (1.5) including the case when ¢ < —C, u.

This is achieved with the help of Proposition 3.1.

Proposition 3.2 There exists a basis {w;}2, C H? to H;, which is also an orthonormal
basis to ch, satisfying

w(SWi) -n) = —C(Wi)r, x €0RQ. (3.17)
Proof From the proof of Proposition 3.1, we have that for each f € L(ZI, there exists a
unique function w € H; such that B(w,w) = (f,w) for any w € H‘}. Thus, we can
define a linear invertible operator £ by LW = f or £L~! f = w. Since the embedding map
HC} — L?, is compact, the operator £~! is a bounded linear compact operator from L(Z, to
L2. The symmetry of £ can also be deduced by the symmetry of the bilinear form B(:, -).
Thus, by virtue of the spectral theory of operators, we infer that £~! possesses countable real
positive eigenvalues {n; }7° | withn; — +ocasi — +o00. The corresponding eigenfunctions

{wi}?il form an orthonormal basis to Lf,. Furthermore, we have Lw; = %wi. Therefore,
- 1

we also deduce that £ has a countable set of eigenvalues {#}?31 with the corresponding
=

eigenfunctions {w;}7°,, which also constitute a basis of H;. Then the following eigenvalue
problem:

— Av+Vp =y,
divv=0, x e Q,
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with the Navier boundary conditions (1.5) possesses countable eigenvalues {A;}7°, where
rAi=—y+ % with the corresponding eigenfunctions {w;}7° . Finally, by Proposition 3.1,

o0

we can prove that {w;}7°, also lie in H 2. The proof of this proposition is completed. O

Finally, with the help of the above preparations, we are ready to apply the Faedo-Galerkin
approximation method to prove the local well-posedeness of the perturbed problem (1.4)—
(1.5).

Proposition 3.3 For any given initial datum vo € W, there exist a constant T > 0anda
unique strong solution (v, q) € C([0, T), H? x HY) to the perturbed problem (1.4)—(1.5).

Remark 3.1 In [26], when puz? < 1, a local well-posedness theorem has been established
in conormal Sobolev spaces, aiming at a uniform theory with respect to the viscosity pu.
Here, we establish local well-posedness theory for all { € R with a fixed positive viscosity
w1 in standard Sobolev spaces. The difficulty of boundary values for Vv was avoided by
utilizing estimates on time derivatives of v, and then apply the Stokes type estimates given
by Proposition 3.1 to achieve higher order derivative estimates on v.

Proof We take an orthonormal basis {w;}72, C H 2 of L2 which, from Proposition 3.2, is

=

also a basis of H!. For each m € N, we search an approximate function v,, in the form

Vi =Y Vim (Wi, (3.18)

i=1
where v; ,, (t) are the functions to be determined. v,, is obtained by solving the following
differential equation:
d

m
a/vm -w;dx + > / S(Vy) : S(w;)dx

+/V - Vy, ~w-dx:—§/ Vi - Wido,
m m 1 00 m 1 (3.19)

m
Vi (0) = (Yo, Wi) 2 Wi,
i
ie., v;,(t) withi = 1, 2, ..., m are determined by solving the following nonlinear ODEs:

d m m
Evi,m(t) + Z Ajivim(t)+ Z B k,iVjm(OVim(@) =0,

= st (3.20)

Vim(0) = (vo, W;) g2,

where

Aj; = ﬁ/S(w,-) : S(wi)dx—l-{/ w; - wdo,
2 Ele)
Bjri = /Wj - Vwy - widx.
From the structure of &3.20), in view of the standard nonlinear ODEs theory, there
exists a positive time 7,,, such that the problem (3.20) possesses a unique solution

Vi (1), Vom (@), -+, Vm (1)) € cL(o, fm)), i.e., there exists a gnique solution v,, €
c! (0, T,,), H 2) to the problem (3.19). Now, we need to show that 7;, can be extended to
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any positive constant 7' (> T,). To this end, we give the following uniform energy estimate.
Multiplying (3.19) by v; ,, (¢), summing them up from i = 1 to m and integrating by parts,
we obtain that

1d

n
S [ tomiar + 5/ 1S (V) P = —¢ /m Val2do. (321)

Using (3.3), we get

— / [V |?do <
Q

which together with (3.21) yields

3¢5 n
p Llv 7, + ZnS(vm)uiz,

1d " fgger
S [ oniar + Z/ SmPdx < 2 . (3.22)
An application of Gronwall’s inequality to (3.22) then implies that, for 0 < ¢ < T,
T ~
sup [V l72 + / IVVmli72de < e livoll3n < eTivolls..  (3.23)
0

0<t<T,

which means that the maximum life span fm can be extended to T and {v,,};_, is bounded
in L>®(0, T; L2) N L*(0, T; H]}). Furthermore, there exists a function v € L>(0, T; L2) N
L0, T; H;) and a subsequence (still denoted by {v,,}_,) such that as m — +o0,

V;u — v weakly — % in L*°(0, T'; L(ZT) and v,, — v weakly in L2(O, T; H;).

To pass to the limit in the nonlinear term, it is necessary to obtain a strong convergence result.
Here, the compactness theorem of Aubin-Lions-Simon will be used. For this purpose, we
need to provide an estimate on the derivative with respect to time of {v,,}>"_,. Note that for
any ¢ € H;, we have

‘—M/Avmwpdx’ = ’%/S(Vm):S(w)derC/ Vm-de"
Q2

= ClVmll g @l g
which implies that
{—=Av,,)%°_, is bounded in L*(0, T; (H})). (3.24)

m=1

For the nonlinear term, we have, for any ¢ € H; s

1 3
]/v V¥ @dx| < ClIVull 31Vl 2 9l 26 < CUVanll 22 ¥ 112 gl

Thus, thanks to the bound for {v,,};> ; in (3.23), we conclude that

{Vi - VVp}or | is bounded in L%(O, T; (H(l)’). (3.25)
Therefore, it follows from (3.24) and (3.25) that
d o . 4 1/
{avm} | is bounded in L¥ (0, T (H,)). (3.26)
m=

The rest of arguments is completely analogous to the case for the Navier-Stokes equations
with non-slip boundary condition, see for instance, Sect. 1.3 of Chapter V in [4]. We can
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now pass to the limit in the equations satisfied by approximate solutions, and prove that
velL®0,T; LH)NL20,T; H)isa global weak solution to the problem (1.4)—(1.5) with
the initial datum vy.

Next, we show that this weak solution v is actually a local strong solution. To this end,
we should obtain higher order energy estimates. We differentiate (3.19); with respect to ¢,
multiply the resulting equations by %vi, m (1) and then obtain the following estimate

%% |8,vm|2dx+%/|5(atvm)|2dx
<zl /89 10V |2do + / 18:Vim |2 |V Vy |dix. (3.27)
The terms on the right hand side of (3.27) can be bounded as follows:
Iclfmlarvmlzdo < CIZINS @ Vi)l L2110 Vin |l 2, (3.28)
/IatvaZIvaldx < C”atvm”L%z”S(alvm)”%z||S(Vm)||L2- (3.29)

Substituting the above two inequalities back into (3.27) and using Young’s inequality, we
deduce that

1d
S [ 1vmPdx + % f 1S@ Vi) Pdx < CL+ IS0 Vmll72. (3.30)

Note that || S(v,,) || ;2 appears on the right hand side of (3.30), thus we also need to give its
estimate. Multiplying both sides of (3.19); by %V,‘,m(t), adding them up from i = 1 to m,
and integrating by parts, we obtain that

d
£ / 1S () Pdx + / 19,V 2dlx

S/Ilezlvanmldx—HCI/ [Vin|10; Vi |do. (3.31)
Ele:

Arguing analogously to (3.28) and (3.29), we have

ICI/ [Vin |10 Vi |do
Ele

1 1 1 1
CIENS @2 1V 12 1S @1 i) 1 25 18V 2

1 &
CEUSVmIZ2 + IVmllo) + Ena,vmniz + 5||S<atvm>||§2, (3.32)

IA

IA

and
5 1 3
/ Vo [V 0¥y dx < ClIVn I 25 11Vl 26 11V 00 Vil 12
£
<CEIVmll 2 15T, + 5||S(atvm>||iz. (3.33)

It follows from (3.32) and (3.33) that

d 1
%af|S(vm>|2dx+5/|azvm|2dx

< CEUSEMIT2 + 1Vmll32 + 1Vl 2 ISV 1132) + e1S@va) 17, (3.34)
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Adding (3.22), (3.30) and (3.34) together and choosing ¢ = %, we obtain that

Sa /(|Vm| + 10 ¥l )dX+ /|S(Vm)| dx

+ 5[ v Px + & / |S(vm>|2dx + gf 1S (Brvi) Pelx

< C>ISOMIT2 + 1Vmll 72 + 1¥mll 2 SV )
+ C(L+ 1SOm) 1718 Vmll7- (3.35)
In order to integrate the above inequality in time, we need to estimate ||0;v,, (0)2.

Multiplying (3.19); by %v[,m, adding them up from i = 1 to m, and integrating by parts, we
arrive at

/ |3th‘2dx = — ,u/ AV, - 0V dx — /vm - Vv, - 0,V dx
1 2 2 2
< 2 10 Vi ll72 + C(||AVm||Lz + Vi - Vlele)- (3.36)
Thus, taking ¢ — 07 in (3.36), we have

19V Ol z2 < C(UIvoll 2 + Vol 2)- (3.37)

Now, defining

O % / (Vi[> + 19 v [)dx + % [ |S(vm) dx, (3.38)

one reads, with the help of Young’s inequality, from (3.35) that
0'(1) = 1o +C0° (), (3.39)
for some positive constants 51 and 52. Therefore, it is clear from (3.39) that there exists a

constant 7 > 0, which is finite due to the nonlinearity on the right hand side of (3.39), such
that

sup [ (Vo 3V, SVm)) (D117 2
0<t<T

T
+/ 13 Vims S (V). S@ Vi) 172dt < C. (3.40)
0

In view of the lower semi-continuity of norms to the bounds (3.40), we obtain that

sup_[|(v, vt,S(V))(t)Ile +/ II(Vt,S(V),S(Vz))IIizdt =<C. (3.41)
0<t<T

Finally, we establish the H>-regularity for v. To this end, we rewrite the equations (1.4)
as
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aisynmre o
with Navier boundary conditions
v-n=0, x €09,
: ,LL(S(V) -n)T = —{v;. (343)

Based on the above arguments, v € H(} is the weak solution to the Stokes problem (3.42)-
(3.43). Then, it follows from Proposition 3.1 that v(¢) € H?fort € (0, T) and

IVIZ2 + lgl3 <ClIvell32 + ClIv - VVIZ, + ClIvIiT,
<CIVill32 + CIVIF VYT 5 + ClIVIIT

1
< C(IViliZz + IVIZ2) + CIVVIG: + S 19V, (3.44)
which combined with (3.41) yields

sup (V% + g3, < C.
0<t<T

Thus, the whole proof is completed. O

3.2 Nonlinear energy estimates

Next, we establish some nonlinear energy estimates for the perturbed problem (1.4)—(1.5),
which will be used in the proof of Theorem 1.2. For this purpose, we assume that (v, g) is
the strong solution of the perturbed problem (1.4)—(1.5) with the initial datum vq, which is
obtained in Proposition 3.3. Arguing analogously to (3.22), we have

d o M 2 $2C o

g M2 + SISO = 2= 2 Vi (3.45)

Differentiating the equation (1.4); in time, multiplying the resulting equations by v, and then
integrating over €2 imply that
ld 2 K 2 2
—— [ [v¢|"dx + = | |S(v)|7dx = —=¢ [(vi)r|"do — [ v, - Vv-vdx. (3.46)
2 dr 2 Ple)

In view of Korn’s inequality, Holder’s inequality and Young’s inequality, we have

1d nw
SPTLAARE NI
< CleSOO N2 1vell 2 + VI V92l 21Vl 2
m 4C|z | 4c
< §||S(v,>||iz - Ivell?, + 7||v||%oo||vt||iz. (3.47)

Furthermore, multiplying (1.4); by v;, integrating by parts and recalling that divv, = 0, we
have, for any positive ¢, that

d
%a/w(v)lzdx—i—/mlzdx

=—/V~VV~V,dx—§[ vr - (Vy)do
R
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T 1 1
CIISWI VI USOD 2 IVell o + ClVIze VI 1V Vel 2

<
8C |c|4
< ;nvnmnanﬁ Pisw t)||L2+ IvII2,
o+ §||S<v)||L2 + @nv,an. (3.48)

If we assume that
IVl <8, Yiel0,T],
for some positive §and T > 0, then there is a positive constant C such that
Iv(@®)|l L~ < C8.

Under the condition [|[v(?) | g2 < 5, we sum (3.45), e x (3.47) and (3.48) up and then take
& > 0 small enough to obtain that

d 2 & 2 M 2
(V2 + 51wl + SIS ™I2)
3u e 1 ¢? |z |*
+ (ISWIG + = ISO0IE: + 5 II7) = (- 2 2V (349)
8 8 2 en
Then, for any bounded 8, we get under the condition ||v(¢) || w2 < § that

t
(v, ve. SM) 72 + /0 I(vi. SO, S(V)) ()17 2ds

t
< ClI(v, Vi, SW) O3, + € fo V12, ds. (3.50)

On the other hand, multiplying (1.4); by v;, integrating over €2 and recalling that divv; = 0,
we arrive at

f v, [>dx = / (AV v, —v-Vv-v)dx < / (IVIIVV] + ] AV])|v;]dx. 3.51)
By virtue of Sobolev’s inequality, Holder’s inequality and Cauchy’s inequality, we have
Ve3> < CE+ DIV G-
Taking t — OV in the above inequality yields
limsup v, (D)1, < C( + 1) IVoll7,2- (3.52)
t—0t+
Therefore, we conclude from (3.50) and (3.52) that, if ||[v(#)|| g2 < 5, then
t
1(v. ve, SM) O3, + /0 (e, SOV, S(V)) ()11 ds
t
< Cllvolfy + € [ Iviads (3.53)
0

Finally, it follows from (3.44) and the assumption ||v(?) | g2 < 5 that

1
Envzvn’@ +llgl3, < C(Ivell3s + VI, + G IVVIE,).
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which, together with (3.53), implies that for t € [0, T,
t
IVOIZ, + V@132 + llg® 13, + fo 1(ve. SV, SV)) ()13 2ds

t
< (1wl + [ VO IE2a5). (3.54
Therefore, summarizing the above conclusions, we arrive at the following theorem.

Theorem 3.1 For any given initial datum vy € H? satisfying divvy = 0 and the boundary
compatibility conditions, there exist a constant T > 0 and a unique strong solution (v, q) €
co([o, T, H? x Hl) to the perturbed problem (1.4)—(1.5). Moreover, there exists a constant
§ > 0, such that if vl g2 < 8 fort € [0, TY, then the strong solution satisfies the energy
inequality (3.54) for some constant C > 1.

3.3 Proof of the nonlinear instability

Now, we adopt some ideas in [14] to prove the nonlinear instability. To this end, in view of
Theorem 1.1, we first construct a linear solution

vl =My € H?, (3.55)

to the problem (1.5)—(1.6) with the initial datum v € H? satisfying div vop = Oand || Vol g2 =
1.

Denote vg := Vo and Cy := [|Vg|| 2. By Theorem 3.1, there is ad > 0 such that, for any
8 < &, there exists a unique local solution (V‘S, q‘s) € CO([O, T1, H? x Hl) to the problem
(1.4)—(1.5) with the initial datum vg satisfying ||v8|| g2 = 6. Let C > 0 and § be the same
constants as in Theorem 3.1 and §p = min{S )9, 1}. Then, for any § € (0, ép), we define

1.2
TP = — =2, je 5eMT
A 1)
where €(, independent of §, is a sufficiently small positive number to be determined later.

Furthermore, we define

= 2¢p, (3.56)

T* =sup {t € (0, T™ ||V’ || 2 < bo}.
and
T* =sup {t € (0, T™™||IV°|| 2 < 28C1e™'},

where 7™# stands for the maximal time of existence. Apparently, 7*, T** > 0 and

IV (T2 = 8o if T* < oo, (3.57)

IV (T*)||2 = 28C1 AT if T < 0. (3.58)
Thus, in view of (3.54) and the definitions of 7* and T**, we obtain that for any ¢ <
min{T¢, T*, T*},

IV @I + v 01172 < C8*1¥0l17, +C fot V2117 ds

N 4C82Cie*M

< Cs? < 822N (3.59)
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where C», independent of &, is a positive constant.

Denote v¢ = v% — 8v/ and ¢¢ = ¢° — 84'. Notice that (§v/, 8¢) is also a solution to
the problem (1.5)—(1.6) with the initial datum vg € H?. Hence, v¢ satisfies the following
equations

a,vd—;LAvd—i-V d 4. vys =0,
{div vi=0, xe¢ Qq, (.60
with Navier boundary conditions
vl.n=0, xedQ,
I a1

and the initial condition v¢|,—o = 0. Multiplying (3.60); by v¢ and integrating by parts over
2, we have

1d
—— / [v¢|?dx + 5/ ISvH)Pdx = — / Vo vvd L vldx — ;/ Iv¢|2do
2 dr 2 Ple)
< cf V4 2do + ¥ VY L2 v
02
<t f Vo + C3 IV 2 v 2. (3.62)
02
Additionally, from the definition of A, we obtain that
—5/ |S(vydx — ¢ / V¢ 2do < A/ v Pdx,
2 o)
which, together with (3.62), implies that
d
anvdan < AVl 2 + C3IVP 1130
By Gronwall’s inequality, we arrive at

t t
Ve, 2 < C3e“/0 e MV |20ds < C3e"’c252/ eMds < 482N (3.63)

0
Now we claim that
T° = min {T°, T*, T*}, (3.64)
provided that € is taken as
. o G ]
€9 = min ,—— 1. 3.65
0 [zu/c2 acy (365)

Indeed, if 7* = min {7°, T*, T**}, then T* < oo. In fact, in view of (3.59), we have

IV (T*) |2 < V28N < /Cr8eMT" = 2€04/C; < b0,

which contradicts with (3.57). On the other hand, if 7** = min {T?, T*, T**}, then T** <
oo. It follows from (3.56) and (3.58) that

IV (T*) |l 2 <8IV (T*) I 2 + IV (T*) )| 12

<SIV(T*)|l 2 + Cas?e AT
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<5C1ATT 4 0 622AT
<8eM7(C) + Ca8eT’) < 28C1 AT

which contradicts with (3.58). Therefore, T = min {T‘S, T*, T**}.
Finally, we get from (3.63) and (3.65) that
V(T2 = 18V (T2 — VU TP 2 = CroerT” — Ci62e*AT
> 2C1€p — 2Cs¢5 > Ciéo, (3.66)

which completes the proof of Theorem 1.2 by choosing € = €.

4 The linear and nonlinear stability

In this section, we give the proof of Theorem 1.3, namely, the stability of the linear and
nonlinear problems under the assumption (1.16): { > —C, .
It follows from the definition of C, that for any u € H;, and for ¢ < 0, it holds

;cr/ lul’do > 5/ |S(u)|dx. 4.1)
a0 2

This is crucial for the proof of the stability.

The local well-posedness theory for both the linearized problem (1.5)—(1.6) and the non-
linear problem (1.4)—(1.5) can be obtained by the Faedo-Galerkin approximation method as
Proposition 3.3. In order to prove Theorem 1.3, we only need to derive the a priori estimates
similar to those of Theorem 3.1.

Proof of Theorem 1.3 Since C, > 0, we divide the condition (1.16) into the following two
cases: —C,u < ¢ <0and ¢ > 0.

We start with the linear stability. Let v be a solution of the linearized problem (1.5)—(1.6)
with an associated pressure g. Then the solution (v, g) possesses proper regularity such that
the procedure of formal calculations makes sense. Taking inner product between the equation
(1.6)1 and v, using the boundary condition (1.5) and the constraint div v = 0, and integrating
by parts, we obtain that

1d / 2 M 2 2
—— [ |v|?dx + —/|S(v)| dx = —;/ Iv;[*do. 4.2)
2dr 2 SO

In the case of ¢ > 0, (4.2) implies that

2 2
dx SW)IFdx < 0.
2dt/ll +/|(V)|x

In the case of —C,u < ¢ < 0, (4.2) gives

1
/|v|2dx +ole+ o /|S(v)|2dx <0. 4.3)

Therefore, in either case, as long as (1.16) holds, there is a positive constant oy > 0 such that

d
a/|v|2dx+al/|5(v)|2dx <0, (4.4)
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which, with the help of Korn’s inequality (1.8), implies that there is a positive constant o« > 0
such that

d
3 IVIE2 + vl <o. (4.5)

We thus conclude from (4.5) that, for any ¢ > 0, it holds
t
fo IV@I2,dT < Clivoll32, VD)2 < Ce™ T Ivoll 2. (4.6)

Next, taking time derivative on (1.6);, multiplying the resulting equations by v; in L2,
and then using the calculations similar to that in the derivation of (4.4), we get

d 2 2
T [vi|"dx + o1 | [S(v)[7dx <0, 4.7
and
d 2 2
gy IVellze + ellve @l = 0. (4.8)
Analogously to (3.52), we also have
v (0)112, < CllAv2,. (4.9)

Hence, (4.8) implies that, for any ¢ > 0,

t
/ Vi () 3dT < Clvolg2. Vi ®llz2 < Ce™ 3 vl 2. (4.10)
0

Now, using the estimates in Proposition 3.1, we have
2 2 2 2 - 2
IVII52 + gl < CAVITL 4+ 1Vell72) < Ce™* [Ivoll5e. 4.11)

The first assertion (linear stability) in Theorem 1.3 follows.

Now, we turn to prove the second assertion (nonlinear stability) in Theorem 1.3. From
a standard local well-posedness theory on Navier-Stokes equations with Navier boundary
conditions, we assume that v € H? is a solution of the perturbed problem (1.4)—(1.5) with
the associated pressure ¢ € H', up to some time T > 0. We now proceed under the following
a priori hypothesis: There is a sufficiently small positive number 8| such that

IvOllg2 <81, Ve[0T (4.12)

The choice of §; will be given later.
Taking inner product between (1.4); and v, the standard energy estimate and a similar
argument to that for (4.4) yield that, for any ¢ € [0, T], it holds

d 2 2
& [v|“dx + o1 | |S(V)|“dx <0, (4.13)
and
d 2 2
allVlle +allv)ly 0. 4.14)

Therefore, for any ¢t € [0, T'], it holds

1
/ V(@) I51de < ClIvoll72,  IV@)Ilz2 < Ce 3 Ivoll 2. (4.15)
0
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Applying 9; to (1.4)1, taking the inner product of the result with v, and a similar argument
to that in the derivation of (4.7), we obtain that

d
- / vilPdx + o1 / 1S(vo) Pdx

< c\/vt Vv vide| < CIVVILR IR < CoISeOIR,

which, with the help of the smallness of §, implies that there is a positive constant § such
that for any ¢ € [0, T'], it holds

d
a/ |Vt|2dx +ﬂ/ |S(v,)|2dx <0. (4.16)
From (3.52), we have

IV (O)[125 < Clivoll3,s. 4.17)

Therefore, for any ¢t € [0, T'], it holds

t
_B
/0 Ve (D) 12,1d7 < ClivolZs Vi@l 2 < Ce™ 2 ol o (4.18)
Finally, from the estimates in Proposition 3.1, we have

V3,2 + g 130 < C(Ive + v VY3, + IvI2,)
< C(IVellZ2 + 1132 + VI IV VI3 2)

< C(Ivill72 + Ivl72) + C8TIVVI3, (4.19)
which, with the help of the smallness of 81, (4.15) and (4.18), gives, for any ¢ € [0, T'], that

VO 2 + Ig Ol < CAVO L2 + 1V (D)1 12) < Ce™ 2 vl 2. (4.20)

for y = min{«, B}.
Now, as assumed in Theorem 1.3, ||vo || g2 < &1, we find from (4.20) that, if [|v(#)[| g2 < 81
fort € [0, T'], then

IVOllg2 < Cer, V1 €[0,T],

for a positive constant C independent of 7. Therefore, the a priori hypothesis (4.12) is fulfilled
if we choose §; = /¢ for &1 small enough. A standard continuity argument, with the help of
the local well-posedness theory, the choice of §; = ,/e1, the smallness of &1, and the uniform
estimate (4.20), gives the global existence of the unique strong solution (v, ¢) € H> x H' to
the nonlinear problem (1.4)—(1.5) satisfying the estimates (1.18). Thus, the proof of Theorem
1.3 is completed. O
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5 Appendix

In this section, we study the existence of solutions to the Stokes problem (3.1)—(3.2) with the
help of Proposition 3.2 and some additional assumptions.
We first recall the Stokes problem (3.1)-(3.2) as

{ divlff ivoJ,r qu Qf o-h
with Navier boundary conditions

v-n=0, x €09,

! ,u(S(v) -n)T = —{Vv;. (5-2)

From Proposition 3.2, the following eigenvalue problem:

— Av+Vp =y,
divv=0, x e Q,

with the Navier boundary conditions (5.2) possesses countable eigenvalues {1;}°°,, with the

i=1
corresponding eigenfunctions {w;}°,. In particular, {w;}°, C H 2 is an orthonormal basis
of L(zr, and also a basis of H(}.
Proposition 5.1 Assume that f € L% and r < —Cypu.
(1) If 0 ¢ {1;}52,, then the Stokes problem (5.1)—(5.2) possesses a unique strong solution

i=0

(v,q) € H? x H' and
IVllg2 + gl g < C(IVIE2 + £ 11 22)-
(2) If0 € {A;}32, with the corresponding eigenfunction wo and
/f -wodx =0,
then the conclusions in (1) also hold.

Proof We first give the proof of the first assertion. We assume that the weak solution of the
Stokes problem (5.1)—(5.2) has the following form:

oo
V=) uw, (5.3)
i=1
where the constants v; will be determined by solving the following equations:
vi(% / |S(wi)2dx + ¢ / |w,-|2do> - f f-widx, foranyieN,. (5.4)
a0
On the other hand, we have that for each w;,
w
E/ |S(w;)|*dx +;/ Iwi[*do = 2;. (5.5)
aQ

Thus, it follows from (5.4) and (5.5) that for any i € N,

ff-W,'dx

v =
Ai
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As a result, we deduce that

ad -w;dx
V= Z ”T’wi eL?.

i=1

Multiplying (5.4) by v;, summing them up from i = 1 to oo and using Korn’s inequality, we
infer that v also belongs to H. and

IVl < C>IvI2 + 1 £ llz2).

It is also easy to check that for any w € H(},

E/S(v):S(w)dx—k;/ v~wdo:/f-wdx.
2 IQ

The rest of arguments are similar to Proposition 3.1. The proof of the first assertion is
completed. We can prove the second assertion in the same way. O
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