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ABSTRACT

We present efficient algorithms for using selected configuration interaction (sCI) trial wave functions in phaseless auxiliary field quantum
Monte Carlo (ph-AFQMC). These advances, geared toward optimizing computational performance for longer configuration interaction
expansions, allow us to use up to a million configurations in the trial state for ph-AFQMC. In one example, we found the cost of ph-AFQMC
per sample to increase only by a factor of about 3 for a calculation with 104 configurations compared to that with a single one, demonstrating
the tiny computational overhead due to a longer expansion. This favorable scaling allows us to study the systematic convergence of the phase-
less bias in auxiliary field quantum Monte Carlo calculations with an increasing number of configurations and provides a means to gauge
the accuracy of ph-AFQMC with other trial states. We also show how the scalability issues of sCI trial states for large system sizes could be
mitigated by restricting them to a moderately sized orbital active space and leveraging the near-cancellation of out of active space phaseless
errors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087047

I. INTRODUCTION

Quantum Monte Carlo (QMC) is a powerful tool in our arse-
nal to tackle the quantum many-body problem.1–7 Among various
QMC approaches, phaseless auxiliary-field quantum Monte Carlo
(ph-AFQMC)8 has emerged as an accurate and efficient method.
While originally from the condensed matter community [therein
usually referred to as constrained-path auxiliary field quantum
Monte Carlo (AFQMC)],9–11 ph-AFQMC has gained popularity in
chemistry in recent years.12–24 The accuracy and scalability of ph-
AFQMC are determined in large part by the choice of the trial wave
function. The use of a trial wave function becomes necessary for
retaining statistical efficiency (in sample complexity) to control the
fermionic phase (or sign) problem.25,26 The constraint imposed to
control the phase problem is called the phaseless approximation.8

When the trial wave function approaches the exact ground state,
the corresponding ph-AFQMC energy tends to the ground state

energy. The commonly used trial wave function for ph-AFQMC is
the broken-symmetry Hartree–Fock (HF) wave function. It scales as
O(N3) to obtain the trial wave function and O(N5) to perform the
ph-AFQMC calculation with the trial to obtain energy for a fixed
statistical error, where N is the system size. Beyond HF, one may
try to use a single determinant trial using approximate Bruckner
orbitals,23 which essentially keeps the same computational scaling
for ph-AFQMC. While single determinant trial wave functions are
attractive due to their scalability, their accuracy can be limited and
questionable in many examples.13,21,27

On the other hand, there has been a flurry of developments
in selected configuration interaction (sCI) methods in the last few
years.28–31 Despite their steep (formally exponential) scaling with
system size, sCI methods have increasingly been employed to study
moderately sized systems and perform large active space correlated
calculations. These methods have the capability of generating sys-
tematically more accurate approximations to the state of interest
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by increasing the number of configurations judiciously. This attrac-
tive feature makes sCI wave functions natural candidates for trial
states in projector QMC methods. Based on significant advances in
real-space QMC algorithms with such trial states,32,33 several papers
have already reported calculations with long sCI expansions in dif-
fusion Monte Carlo.34–37 There has also been some recent progress
for using them in ph-AFQMC,21,24,38 but the commonly used algo-
rithm based on the Sheman–Morrison–Woodbury identity has an
inherent computational bottleneck with the local energy evalua-
tion scaling as O(NcN

4), where Nc is the number of determinants.
This steeper scaling compared to real-space methods is due to the
Gaussian orbital representation of the electron repulsion interac-
tion. Furthermore, the force bias evaluation scales asO(NcN

2 +N3),
which can be expensive since it is performed once every time step.
Due to these, it has been challenging to scale up the ph-AFQMC
calculations beyond 100–1000 configurations.

In this work, we propose to use one of the sCI methods,
heat-bath CI (HCI),30,39,40 to generate a large trial with up to 106 con-
figurations. We then combine several algorithmic advances made
by two of us27,41 using the generalized Wick’s theorem and make
further improvements to accelerate ph-AFQMC calculations with a
large trial. In particular, in our new algorithm, the local energy eval-
uation scales as O(NcN +N4), and the force bias evaluation scales
as O(Nc +N3). To alleviate the scaling issues of sCI wave functions,
we study the efficacy of active space trial states in calculating energy
differences and properties. The active space size is another variable
to converge the phaseless error systematically in larger systems while
keeping the calculation cost manageable. We use the new algorithm
for ph-AFQMC with HCI trials to investigate the behavior of the
phaseless bias as a function of the number of configurations in the
trial for several challenging systems.

This paper is organized as follows: We first review the ph-
AFQMC algorithm (Sec. II); we then discuss how one can drastically
speed up the evaluation of force bias and local energy of sCI trials
using the generalizedWick’s theorem (Sec. III); we show how phase-
less errors in the ground state energy and dipole moments change as
a function of the number of determinants in hydrogen chains, transi-
tion metal oxides, and a few small molecules (Sec. IV); and we finally
conclude (Sec. V).

II. PHASELESS AUXILIARY FIELD QUANTUM MONTE
CARLO

We briefly summarize the procedure for phaseless AFQMC
here and refer the reader to Ref. 16 for more details. Consider the
ab initioHamiltonian given by

Ĥ ≙ ∑
ij

hijâ
†

i âj + 1

2
∑
γ

⎛
⎝∑ij L

γ
ijâ

†

i â j

⎞
⎠
2

, (1)

where hij are one-electron integrals and L
γ
ij are Cholesky decom-

posed two-electron integrals in an orthonormal orbital basis.Wewill
use letters N,M, and X to denote the number of electrons, the num-
ber of orbitals, and the number of Cholesky vectors, respectively.
We note that in chemical systems, empirically, X ∼ O(M) with a
proportionality constant usually smaller than 10. For density fit-
ting (not employed here), we expect X ∼ 4 − 5M.42 AFQMC uses the

exponential form of the projector to converge to the ground state of
the Hamiltonian as

e
−τĤ ∣ψI⟩ τ→∞ÐÐÐ→ ∣Ψ0⟩, (2)

where τ is the imaginary time, ∣Ψ0⟩ is the ground state, and ∣ψI⟩ is an
initial state such that ⟨ψI ∣ψ0⟩ ≠ 0. Using the Hubbard–Stratonovic
transform,43,44 the short-time exponential projector can be
written as

e
−ΔτĤ ≙ ∫ dxp(x)B̂(x), (3)

where x is the vector of auxiliary fields (one scalar field per Cholesky
component), p(x) is the standard normal Gaussian distribution of
the auxiliary fields, and B̂(x) is a complex propagator given by the
exponential of a one-body operator. Due to Thouless’ theorem,45

B̂(x) acts on a Slater determinant ∣ϕ⟩ as

B̂(x)∣ϕ⟩ ≙ ∣ϕ(x)⟩, (4)

where ∣ϕ(x)⟩ is another Slater determinant obtained by a linear
transformation of the orbitals in ∣ϕ⟩. By sampling the auxiliary fields
in Eq. (3) and applying the short time propagator sufficiently many
times, we obtain a stochastic representation of the ground state wave
function in the long time limit as

∣Ψ0⟩ ∝∑
i

wi
∣ϕi⟩
⟨ψT ∣ϕi⟩ , (5)

where wi are weights, ∣ϕi⟩ are Slater determinants with complex
orbitals sampled during propagation, and ∣ψT⟩ is the trial state used
for importance sampling. More accurate trial states lead to less noisy
weights.

We use the hybrid approximation8 in this paper, which avoids
the expensive calculation of local energy at each propagation step.
Importance sampling in AFQMC involves shifting the sampled
auxiliary fields by the force bias given as

x̄γ ≙ −
√
Δτ
⟨ψT ∣∑ijL

γ
ijâ

†

i âj∣ϕ⟩
⟨ψT ∣ϕ⟩ , (6)

where ∣ϕ⟩ is the walker. The force bias can be thought of as a dynamic
correction to the mean-field contour shift46 that vanishes as Δτ → 0.
Force bias is not enough, by itself, to control the large fluctuations
stemming from the phase problem. The phaseless constraint8 can be
used to overcome the phase problem at the expense of a systematic
bias in the sampled wave function. The size of this phaseless bias is
dictated by the accuracy of the trial state.

After an equilibration time, the energy of the sampled wave
function can be measured as

E ≈ ∑iwiEL(ϕi)
∑iwi

, (7)

where
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EL(ϕi) ≙ ⟨ψT ∣Ĥ∣ϕi⟩
⟨ψT ∣ϕi⟩ (8)

is the local energy of the walker ∣ϕi⟩.We note that this estimator has a
zero-variance property, i.e., in the limit that the trial state is the exact,
ground state the variance of the estimator vanishes. In practice, this
means that more accurate trial states lead to less noisy local energy
values.

It is evident that more accurate trial states lead to less noisy
simulations and smaller phaseless biases. However, in general, the
use of more sophisticated trial states comes at the expense of greater
computational cost. In Sec. III, we present efficient algorithms to
calculate force bias and local energy of sCI trial states.

III. SELECTED CONFIGURATION INTERACTION
TRIAL STATES

A selected CI wave function is given by

∣ψT⟩ ≙
Nc

∑
n

cn∣ψn⟩ ≙
Nc

∑
n

cn
kn

∏
μ

â
†
tnμ
âpnμ ∣ψ0⟩, (9)

where ∣ψn⟩ are configurations obtained by particle–hole excitations
from the reference configuration ∣ψ0⟩, Nc is the number of config-
urations in the expansion, cn are real expansion coefficients, and kn
are the excitation ranks. We will use the indices pμ and tμ to denote

occupied and virtual orbitals, respectively, whereas indices i, j, . . .
will be used for general orbitals. The orthonormal orbital basis set
used in the expansion can be chosen to be natural orbitals obtained
from an HCI calculation or can be optimized using a self-consistent
procedure. In the following, we use the same basis set to express
the Hamiltonian in Eq. (1) and, in general, all second-quantized
operators refer to this basis. In our prior work, we have proposed
efficient algorithms for using selected CI states in variational Monte
Carlo41 and free projection AFQMC.27 These focused on the calcu-
lation of local energy using the generalized Wick’s theorem. Here,
we discuss an algorithm for calculating the force bias required
in ph-AFQMC and briefly summarize the calculation of local
energy.

A. Force bias

The calculation of the force bias for importance sampling is
one of the computationally intensive parts of propagation in ph-
AFMQC. By substituting the sCI trial state into the force bias
expression in Eq. (6), we obtain

x̄γ ≙ −
√
Δτ
∑n∑ijcnL

γ
ij⟨ψn∣â†

i âj∣ϕ⟩
∑ncn⟨ψn∣ϕ⟩ . (10)

The conventional way of evaluating the force bias proceeds by sep-
arately calculating the contribution of each configuration in the
CI expansion using the Sherman–Morrison–Woodbury identity,
resulting in a cost scaling of O(NcNM + XNM).38 Here, we present
an algorithm with cost scaling as O(Nc + XM2) by essentially sepa-
rating the sum over CI excitations from that over Cholesky indices
in Eq. (10).

We define the Green’s function matrix for the reference
configuration ∣ψ0⟩ and the walker configuration ∣ϕ⟩ as47,48

G
i
j ≙ ⟨ψ0∣â†

i âj∣ϕ⟩
⟨ψ0∣ϕ⟩ ≙ [ϕ(ψ†

0ϕ)−1ψ†

0]j
i
, (11)

whereψ0 and ϕ are the orbital coefficientmatrices of the correspond-
ing configurations and superscripts and subscripts denote row and
column indices, respectively. Note that since we work in the orbital
basis of the CI expansion, ψ0 has a particularly simple form with all
its columns being unit vectors. Thus, the cost of calculating Green’s
function in this basis scales as O(N2M). For convenience, we also
define the related quantity as

G
i
j ≙ − ⟨ψ0∣âjâ†

i ∣ϕ⟩⟨ψ0∣ϕ⟩ ≙ Gi
j − δij. (12)

According to the generalized Wick’s theorem,48 we have

⟨ψ0∣∏k
μâ

†
pμ âtμ ∣ϕ⟩⟨ψ0∣ϕ⟩ ≙ det(G{pμ}{tμ}

), (13)

where the sets of indices {pμ} and {tμ} denote the k × k slice of the
G matrix, with k being the rank of the excitation. This expression
is obtained by taking pairwise contractions of the operators in the
string of excitations according to the generalized Wick’s theorem
with the determinant structure arising due to fermionic permuta-
tion parity factors. Therefore, the denominator in Eq. (10) can be
expressed as

⟨ψT ∣ϕ⟩⟨ψ0∣ϕ⟩ ≙∑n cn det(G{pnμ}{tnμ}
). (14)

The computational cost scaling of this overlap ratio is, thus,
O(Nc) once Green’s function has been calculated. Since Wick’s
theorem applies naturally to overlap ratios, we will find it con-
venient to express matrix elements as ratios with the reference
overlap ⟨ψ0∣ϕ⟩.

To evaluate the numerator of Eq. (10), consider the matrix
element ratio given by

⟨ψn∣â†

i âj∣ϕ⟩⟨ψ0∣ϕ⟩ ≙ ⟨ψ0∣(∏k
μâ

†
pμ âtμ)â†

i âj∣ϕ⟩⟨ψ0∣ϕ⟩ , (15)

where we have dropped the configuration index subscript (n) on
the excitations for clarity. This ratio can also be evaluated using
the generalized Wick’s theorem, and by choosing the appropriate
order of operations, one can achieve a significant reduction in the
cost of calculating the numerator. To this end, we note that the
pairwise contractions in the string of excitation operators can be
divided into two groups: (1) those without any contractions between

CI excitations and â†

i âj, (2) those containing contractions between

two of the CI operators and â†

i âj. Algebraically, the two terms are
given as
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⟨ψ0∣(∏k
μa

†
pμatμ)â†

i âj∣ϕ⟩⟨ψ0∣ϕ⟩ ≙ det⎛⎜⎝
G
i
j G

i
{tμ}

G
{pμ}
j G

{pμ}
{tμ}

⎞⎟⎠
≙ Gi

j det(G{pμ}{tμ}
)

+
k

∑
ν,λ

(−1)1+ν+λGpν
j G

i
tλ det(G{pμ}/pν{tμ}/tλ

),
(16)

where on the first line, the matrix of size (k + 1) × (k + 1) is writ-
ten in a block form, and the notation {pμ}/pν indicates the set of
indices {pμ} excluding pν. Using this grouping of terms, we get for
the numerator in Eq. (10),

∑
n

∑
ij

cnL
γ
ij

⟨ψn∣â†

i âj∣ϕ⟩⟨ψ0∣ϕ⟩ ≙ (∑
n

cn det(G{pμn}{tμn}
))⎛⎝∑ij L

γ
ijG

i
j

⎞
⎠

+∑
pt

I
t
p

⎛
⎝∑ij L

γ
ijG

p
j G

i
t

⎞
⎠, (17)

where

I
t
p ≙∑

n

cn
kn

∑
ν,λ

δpnν ,pδtnλ ,t(−1)1+ν+λ det(G{pnμ}/pnν{tnμ}/tnλ
) (18)

is an intermediate formed by summing over the CI configurations.
The two terms in Eq. (17) are shown as tensor contraction dia-
grams in Table I for the case of doubly excited CI configurations.
Note that a selected CI state does not necessarily include all exci-
tations of a given rank; however, for a tensor representation, we
consider all doubly excited configurations in the table. In practice,
the sum over CI excitations in Table I is only performed over the
configurations in the selected CI state. The first term has a cost scal-
ing of O(Nc + XNM), while the second one using the intermediate
has a scaling of O(Nc + XM2). If the selected CI state is restricted
to an active space of size A, the overall cost can be reduced to
O(Nc + XNM + XAM).
B. Local energy

The calculation of local energy was discussed in detail in
Ref. 27. Here, we give a brief summary of the algorithm. Consider
the two-body part of the local energy [see Eq. (8)] expressed as

E
2
L∥ϕ∥ ≙ ∑n∑γijklcnL

γ
ijL

γ

kl

⟨ψn ∣â†i â
†
k
âl âj ∣ϕ⟩

⟨ψ0 ∣ϕ⟩

∑ncn
⟨ψn ∣ϕ⟩
⟨ψ0 ∣ϕ⟩

. (19)

The calculation of the overlap ratios in the denominator is described
in Sec. III A. The matrix element in the numerator for the nth
configuration is given by using Wick’s theorem as

⟨ψ0∣(∏k
μâ

†
pμ âtμ)â

†

i â
†

k
âlâj∣ϕ⟩

⟨ψ0∣ϕ⟩
≙ det⎛⎜⎜

⎝

G
{i,k}
{j,l} G

{i,k}
{tμ}

G
{pμ}
{j,l} G

{pμ}
{tμ}

⎞
⎟⎟
⎠
, (20)

where we have again dropped the configuration index subscript.
Similar to the force bias calculation, the terms in this determi-
nant can be split into two groups based on the kinds of pairwise
contractions: those that do not involve cross-contractions between
CI and Hamiltonian excitation operators and those that involve
at least one such cross-contraction. The second group containing
cross-contractions can be further split into two groups depending
on whether one or both of the Hamiltonian excitations are cross-
contracted with CI excitations. The resulting terms are shown as
a tensor diagram in Table I. Again, we assume all double excited
CI configurations only for representational convenience. Different
orders of performing the tensor contractions lead to different cost
scalings, and using the one described in Ref. 27 leads to a scaling of
O(NcX + XNM2). For a selected CI state restricted to an active space
of size A, this cost is reduced to O(NcX + XNAM + XN2M).

IV. RESULTS

In this section, we present the results of our ph-AFQMC/HCI
calculations and analyze the convergence of the phaseless error
for several systems. In particular, we consider the utility of active
space trial states for obtaining accurate energy differences and dipole
moments. We used PySCF49 to obtain molecular integrals and to
perform all quantum chemistry wave function calculations. The
SHCI code Dice was used to obtain the trial states. We do not con-
verge the HCI variational calculations close to near-exact accuracies
but only generate relatively crude expansions at a modest compu-
tational cost. The code used to perform ph-AFQMC calculations is
available in a public repository.50 Input and output files for all cal-
culations can also be accessed from a public repository.51 Sources
of systematic errors in ph-AFQMC calculations, besides the phase-
less bias, include Trotter error, population control bias, and errors
in the Cholesky decomposition of the electron repulsion integrals,
matrix exponential Taylor series truncation errors, and bias due to
filtering of rare large fluctuations. We used a conservative time step
of 0.005 a.u. in all ph-AFQMC calculations. For population con-
trol, we used the reconfiguration procedure described in Ref. 52.
Cholesky decompositions were calculated up to a threshold error of
10−5. Matrix exponentials were calculated by keeping terms up to
the sixth power in the Taylor expansion. We filtered large fluctua-
tions by capping weights and local energies.16 Although it is difficult
to get an accurate estimate of the systematic errors due to all these
factors in general, they can be controlled systematically. We estimate
these errors to be much smaller than the statistical errors in all the
results presented here.

A. Hydrogen chains

Hydrogen chain systems are convenient for benchmarking due
to their simplicity and the availability of accurate density matrix
renormalization group (DMRG) ground state energies.53 First, we
consider a chain of 50 equidistant hydrogen atoms with an inter-
atomic distance d ≙ 1.6 Bohr in the minimal STO-6G basis. We
performed ph-AFQMC/HCI calculations on this system using pro-
gressively larger HCI expansions. These trial states were constructed
as truncations of the HCI state obtained with ϵ1 ≙ 10−4 in the canon-
ical RHF basis. Figure 1 shows the convergence of the phaseless
error (calculated as a difference to the DMRG energy reported in
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TABLE I. Summary of computational cost scaling of force bias and two-body local energy calculations (given the reference Green’s function matrix G).
Sherman–Morrison–Woodbury (SMW) refers to overall cost scaling of the algorithm that makes use of the Sherman–Morrison–Woodbury formula as described in Ref. 38.

The last columns shows tensor contraction diagrams for all distinct types of pairwise Wick’s contractions using all doubly excited configurations ∑ cptquâ
†

t
âpâ

†
u âq∣ψ0⟩ as an

example. Combining all possible contractions of a given type along with the fermionic parity signs (not shown here) leads to the determinant expressions in Eqs. (17) and (20).
The same types of terms arise for higher than doubly excited configurations, and the adjacent column shows the optimal cost scaling for calculating each type for a general CI
trial with Nc configurations.

This worka

Quantity SMW Scaling Tensor diagrams for doubly excited configurations

Force bias NM(Nc + X) Nc + XNM

Local energy NcXN
2M

Nc + XM2

Nc + XNM

Nc + XN2M

Nc + XM2

Nc + XNM2

X(Nc +NM2)
aNc : number of configurations; N: Number of electrons; M: Number of orbitals; X: Number of Cholesky vectors; c: CI coefficients; L: Cholesky vectors; G and G: Green’s functions;
i, j, k, l: Hamiltonian indices; and p, q, t, u: CI excitation indices.
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FIG. 1. Convergence of the ph-AFQMC/HCI phaseless energy error and scaling of
the cost of computation with the increasing number of configurations for H50 using
the STO-6G basis at d ≙ 1.6 Bohr. The phaseless error is calculated with respect
to the near-exact DMRG energy. The bare cost factor is evaluated as the ratio
of computational costs with respect to a single configuration calculation using the
same number of samples. The adjusted cost factor is calculated as the bare cost

factor ×(σNc
/σ1)

2 to estimate the cost to obtain a fixed stochastic error.

reference) with the number of configurations in the trial state. We
observe a nearly monotonic decrease in the phaseless error, and the
error is less than 2 mH for the trial with 106 configurations. The
figure also shows the scaling of the cost of the ph-AFQMC calcula-
tion against the number of configurations with respect to the cost of
a single configuration calculation. Remarkably, the bare cost factor
for up to 104 configurations is less than 10 and increases roughly lin-
early with the number of configurations thereafter. This observation
is consistent with the scaling relations discussed in Sec. III, with the
O(NcX) factor in the cost scaling of local energy evaluation dom-
inating for large HCI expansions. We also show an error adjusted
cost factor to estimate the cost for obtaining a fixed stochastic error.
Since more accurate trial states lead to a reduced stochastic noise,
this adjusted cost factor is less than one for Nc ≤ 104, demonstrating
the efficacy of these trial states. We found that changing the value of
ϵ1 or slightly changing the selection criterion for choosing the con-
figurations only makes a difference in ph-AFQMC energies for the
smaller number of configurations, leading to similar convergence
behaviors for longer expansions.

We also studied the H10 chain in the cc-pVDZ basis at differ-
ent bond lengths to gauge the performance of active space trial states.
We first performed a (10e, 10o) complete active space self-consistent
field (CASSCF) calculation and generated trial states by truncating
the active space wave function. Figure 2 shows the convergence of
the phaseless error with the size of the HCI trial. For all three bond
lengths, we see a systematic convergence to an almost vanishing
error with the active space trial. The shortest bond length near equi-
librium converges rapidly, while the stretched bond length requires
almost the full active space wave function to reach convergence. The
out of active space phaseless error, arising due to not correlating any
orbitals outside the active space in the trial state, is tiny for all three
bond lengths in this case. We also show ph-AFQMC/UHF phaseless
errors in the figure for comparison. ph-AFQMC/UHF is known to

FIG. 2. ph-AFQMC/HCI phaseless errors for H10 using the cc-pVDZ basis set at
different bond lengths. The trial states with different numbers of configurations are
constructed by truncating a (10e, 10o) CASSCF wave function in each case. The
hollow symbols show ph-AFQMC/UHF phaseless errors. (They are almost zero for
d ≙ 1.6 Bohr and d ≙ 2.4 Bohr.)

be very accurate for hydrogen chains except at stretched geometries.
At stretched geometries, a CI expansion based on an unrestricted
HF reference has been employed in the past as a trial state53 and
could be a handy tool in other problems as well. The algorithms
described in this work can be straightforwardly extended to work
with UHF-based CI expansions.

B. Transition metal oxides

Recent studies of transition metal oxide molecules reported
benchmark ground state energies using various accurate many-body
methods.21,54 Here, we use ph-AFQMC/HCI to study convergence
of the phaseless errors for active space trials in TiO, CrO, MnO, and
FeO. The Trails-Needs pseudopotential and the corresponding DZ
basis sets55 were used at equilibrium geometries used in Ref. 21.

Figure 3 shows the convergence of phaseless errors with the
number of configurations in the trial state at equilibrium geometries
used in Ref. 21. We first performed CASSCF calculations with active
spaces consisting of the metal 3d and 4d orbitals and oxygen 2p
orbitals. The HCI trial states were then generated in a space includ-
ing the CASSCF active orbitals and the core orbitals, including all
electrons. ϵ1 ≙ 10−5 was used for the HCI calculations. Interestingly,
for FeO, CrO, and MnO, the phaseless error first increases before
converging to a fixed value as the number of configurations in the
trial is increased. This peculiar behavior highlights the fact that a
lower energy trial state does not guarantee a smaller phaseless error.
We note that the trends for smaller expansions are dependent on
the particular schemes used for choosing the orbital spaces and for
truncating the HCI states. However, results for a large number of
configurations are largely independent of such ambiguity. For TiO,
using more configurations makes little difference to the phaseless
error. We also performed ph-AFQMC/UHF calculations for com-
parison and found the phaseless errors to be 2(1), 5.3(8), −10(1), and
30.6(9) mH for TiO, CrO, MnO, and FeO, respectively.
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FIG. 3. Convergence of ph-AFQMC/HCI phaseless energy errors for four transi-
tion metal oxide molecules using the Trail-Needs dz pseudopotential and basis
set. SHCI reference energies were used as references for calculating the phase-
less errors. The trial states were constructed by truncating active space HCI wave
functions. Hollow symbols show ph-AFQMC/UHF errors.

The residual phaseless errors can be attributed solely to the out
of HCI active space correlation. These errors can be systematically
reduced by increasing the size of the active space, but vanishing
errors this way is unlikely to be practical for larger systems. On
the other hand, as noted in Sec. IV A, it is reasonable to expect
near-cancellation of this out of active space error when energy dif-
ferences at different geometries are calculated using the same active
space. Similar trends have been observed in multireference pertur-
bation theories. To gauge the efficacy of this heuristic, we calculated
ph-AFQMC/HCI energies of CrO at three bond lengths using the
procedure described above. Table II shows that the converged phase-
less errors are almost identical at the three points. We note that it
is crucial to converge the phaseless error of the active space trial,
and different geometries may require trial states with different num-
bers of configurations to achieve convergence. The table also shows
energies at infinite separation, showing that the error in the ph-
AFQMC/HCI dissociation energy compared to SHCI is 1.8(9) mH.
This evidence of small non-parallelity errors suggests that in large
problems, scalability issues of HCI trial states can be mitigated using
active spaces.

TABLE II. CrO ground state energies and out of active space phaseless errors at
different bond lengths. Bond lengths (d) are in Bohr, ph-AFQMC/HCI and SHCI ener-
gies are in H, and the phaseless errors are in mH. The last line shows energies at
dissociation.

d ph-AFQMC/HCI SHCI Phaseless error

2.65 −102.4993(5) −102.5040(5) 4.6(7)
3.06 −102.5531(5) −102.558421 5.3(5)
3.59 −102.5269(7) −102.5325(5) 5.6(8)
∞ −102.3862(8) −102.393321 7.1(8)

C. Dipole moments

The mixed estimator of an observable Ô in the ground state is
given by

⟨O⟩mixed ≙ ⟨ψT ∣Ô∣Ψ0⟩
⟨ψT ∣Ψ0⟩

, (21)

where ∣Ψ0⟩ is the ground state. In ph-AFQMC, one has access to an
approximate sampling of the ground state, making the calculation of
this mixed estimator convenient,

⟨O⟩mixed ≈ ∑iwiOL(ϕi)
∑iwi

, (22)

where

OL(ϕi) ≙ ⟨ψT ∣Ô∣ϕi⟩
⟨ψT ∣ϕi⟩

(23)

is the local observable value.
For observables Ô that do not commute with the systemHamil-

tonian, the mixed estimator has a systematic bias due to the trial
state used to measure the observable. This bias can be reduced by
using the extrapolated estimator, often employed in diffusionMonte
Carlo,56–58 given by

⟨Ô⟩extrapolated ≙ 2 ⟨ψT ∣Ô∣Ψ0⟩
⟨ψT ∣Ψ0⟩

− ⟨ψT ∣Ô∣ψT⟩
⟨ψT ∣ψT⟩

, (24)

where the variational estimator of the trial state is used to correct the
mixed estimator. The accuracy of this extrapolation depends criti-
cally on the quality of the trial state. Since ph-AFQMC calculations
on molecular systems are typically performed using crude single
determinant trials, extrapolation is not a viable option, and back-
propagation is used to evaluate variational estimators of the sampled
state instead.59 Here, we study the behavior of the mixed and extrap-
olated estimators of dipole moments of a few small molecules. The

FIG. 4. Convergence of different estimators for the dipole moment of NH3 using
the 6-31G basis. Variational and mixed estimators are calculated using HCI and
ph-AFQMC/HCI, respectively.

J. Chem. Phys. 156, 174111 (2022); doi: 10.1063/5.0087047 156, 174111-7

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

TABLE III. Dipole moments (in a.u.) of three molecules using the aug-cc-pVQZ basis set. The reported ph-AFQMC/HCI
values are converged with the number of configurations in the 50 orbital active space trial state.

ph-AFQMC/HCI

Molecule Mixed Extrapolated RHF MP2 CCSD CCSD(T) Experiment

CO 0.070(3) 0.044(6) −0.104 0.108 0.024 0.048 0.04860

BF 0.356(4) 0.321(8) 0.333 0.377 0.314 0.325 ⋅ ⋅ ⋅

H2O 0.726(2) 0.734(4) 0.780 0.733 0.738 0.729 0.73061

evaluation of the local dipole moment for an HCI trial state is simi-
lar to the force bias calculation outlined in Sec. III A since they both
involve matrix elements of one-electron operators.

We first look at the exact solvable problem of NH3 in the 6-31G
basis (see the supplementary material for geometry). We fully diag-
onalize this (10e, 14o) problem and calculate its ground state dipole
moment. Mixed and extrapolated ph-AFQMC estimators were eval-
uated with trial states consisting of an increasing number of leading
configurations from the ground state in the RHF canonical orbital
basis. Figure 4 shows the convergence of the estimators with the trial
state. In this case, we see a systematic convergence of the variational
and mixed estimators to the exact value. The extrapolation works
reasonably well with consistently smaller errors than the mixed
estimator.

Table III shows the calculated dipole moments for three
molecules at equilibrium geometries in the aug-cc-pVQZ basis. The
large basis set precludes exact evaluation, but CCSD(T) moments
are known to be very accurate for the molecules considered here
and agree well with the experimental values. We computed orbital
relaxed coupled cluster and MP2 dipole moments by calculating
energies at two different electric fields and evaluating the numeri-
cal derivative. For obtaining ph-AFQMC/HCI estimators, we first
performed a full-valence CASSCF calculations. The trial states were

FIG. 5. Convergence of different estimators for the dipole moment of CO using
the aug-cc-pVQZ basis. Variational and mixed estimators are calculated using HCI
and ph-AFQMC/HCI, respectively. Trial states are obtained by truncating a (14e,
50o) active space HCI wave function.

then constructed using HCI to correlate all electrons in a space of 50
CASSCF orbitals. In all cases, both mixed and extrapolated estima-
tors were nearly converged with the number of configurations in the
active space (details can be found in the supplementary material).
Consider the case of the challenging COmolecule, which has a small
dipole moment, and RHF predicts the wrong direction polarity in
this case. Furthermore, MP2 overestimates the dipole moment sig-
nificantly. The convergence of the dipole moment estimators with
the number of configurations in the trial state is shown in Fig. 5. For
a small number of configurations (fewer than 100), the variational
estimator is qualitatively incorrect similar to RHF. Adding more
configurations flips the sign, and the variational estimator seems to
eventually converge to the asymptotic value for the truncated space
of 50 orbitals. The mixed estimator also exhibits a non-monotonic
convergence with its value for a single determinant close to the
experimental value because of a fortuitous cancellation of mixed
estimator and phaseless biases. The extrapolated estimator for the
small number of configurations in the trial is very poor due to the
erroneous variational estimates. For more than 103 configurations,
while the mixed estimator seems to be converging to a substantially
biased dipole moment value, the extrapolation rectifies this bias rea-
sonably well. The extrapolated estimators are in good agreement
with the CCSD(T) and experimental values for all three molecules.
Evidently, extrapolation effectively corrects the out of active space
bias in the mixed estimator for CO and BF.

V. CONCLUSION

In this work, we presented efficient algorithms for using
selected CI trial states in ph-AFQMC.We demonstrated their favor-
able scaling by showing that simulations with long sCI expansions
incur little overhead compared to a single reference trial. In our anal-
ysis of the convergence of phaseless error in ground-state energies
and dipole moments as a function of the number of configurations,
we found it to be non-monotonic in some cases, highlighting the
importance of using a sufficient number of determinants in these
systems. The use of states restricted to moderately sized active spaces
yielded excellent results for energy differences and dipole moments.
Our numerical experiments suggest that this may be a practical
way to tackle larger systems, where the generation and handling
of sCI states in the full space are challenging. Finally, we showed
that the extrapolated estimator for dipole moments is accurate if
enough configurations are present in the trial state. If this behav-
ior turns out to be true in general, extrapolated estimators could be
a viable alternative to backpropagation for calculating ground state
properties.
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Our technique can be employed in different ways for studying
challenging systems. It can be used to validate the use of simpler and
less expensive trial states in ph-AFQMC for large calculations. ph-
AFQMC/HCI can be adopted as an accurate solver in embedding
schemes for describing the embedded cluster. It would be interest-
ing to study the feasibility of the extrapolated estimator in larger
systems and for calculating two-body properties. Finally, we note
that this technique can be utilized in the quantum–classical hybrid
AFQMC (QC-AFQMC) for prototypical and practical quantum
computations.62

SUPPLEMENTARY MATERIAL

See the supplementary material for geometries and details of
wave functions used.

ACKNOWLEDGMENTS

A.M. and S.S. were supported by the National Science Founda-
tion throughGrant No. CHE-1800584. S.S. was also partly supported
through the Sloan research fellowship. J.L. thanks David Reichman
for support and encouragement. All calculations were performed on
the Blanca and Summit clusters at CU Boulder.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available in
a public repository in Ref. 51.

REFERENCES

1M. H. Kalos, D. Levesque, and L. Verlet, “Helium at zero temperature with hard-

sphere and other forces,” Phys. Rev. A 9, 2178 (1974).
2D. Ceperley, G. V. Chester, andM. H. Kalos, “Monte Carlo simulation of a many-

fermion study,” Phys. Rev. B 16, 3081 (1977).
3D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic

method,” Phys. Rev. Lett. 45, 566 (1980).
4M. P. Nightingale and C. J. Umrigar, Quantum Monte Carlo Methods in Physics

and Chemistry (Springer Science & Business Media, 1998).
5W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte

Carlo simulations of solids,” Rev. Mod. Phys. 73, 33 (2001).
6G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, “Towards an exact description

of electronic wavefunctions in real solids,” Nature 493, 365 (2013).
7F. Becca and S. Sorella,QuantumMonte Carlo Approaches for Correlated Systems

(Cambridge University Press, 2017).
8S. Zhang and H. Krakauer, “Quantum Monte Carlo method using phase-free

random walks with Slater determinants,” Phys. Rev. Lett. 90, 136401 (2003).
9S. B. Fahy and D. R. Hamann, “Positive-projection Monte Carlo simulation: A

new variational approach to strongly interacting fermion systems,” Phys. Rev. Lett.

65, 3437 (1990).
10S. Zhang, J. Carlson, and J. E. Gubernatis, “Constrained path quantum Monte

Carlo method for fermion ground states,” Phys. Rev. Lett. 74, 3652 (1995).
11S. Zhang, J. Carlson, and J. E. Gubernatis, “Constrained path Monte Carlo

method for fermion ground states,” Phys. Rev. B 55, 7464 (1997).

12W. A. Al-Saidi, S. Zhang, and H. Krakauer, “Auxiliary-field quantum Monte
Carlo calculations of molecular systems with a Gaussian basis,” J. Chem. Phys.
124, 224101 (2006).
13W. A. Al-Saidi, S. Zhang, and H. Krakauer, “Bond breaking with auxiliary-field
quantumMonte Carlo,” J. Chem. Phys. 127, 144101 (2007).
14M. Suewattana, W. Purwanto, S. Zhang, H. Krakauer, and E. J. Walter,
“Phaseless auxiliary-field quantumMonte Carlo calculations with plane waves and
pseudopotentials: Applications to atoms and molecules,” Phys. Rev. B 75, 245123
(2007).
15W. Purwanto, S. Zhang, and H. Krakauer, “An auxiliary-field quantum Monte
Carlo study of the chromium dimer,” J. Chem. Phys. 142, 064302 (2015).
16M. Motta and S. Zhang, “Ab initio computations of molecular systems by the
auxiliary-field quantum Monte Carlo method,” Wiley Interdiscip. Rev.: Comput.
Mol. Sci. 8, e1364 (2018).
17H. Hao, J. Shee, S. Upadhyay, C. Ataca, K. D. Jordan, and B. M. Rubenstein,
“Accurate predictions of electron binding energies of dipole-bound anions via
quantumMonte Carlo methods,” J. Phys. Chem. Lett. 9, 6185–6190 (2018).
18M. Motta, J. Shee, S. Zhang, and G. K.-L. Chan, “Efficient ab initio auxiliary-
field quantum Monte Carlo calculations in Gaussian bases via low-rank tensor
decomposition,” J. Chem. Theory Comput. 15, 3510–3521 (2019).
19J. Shee, E. J. Arthur, S. Zhang, D. R. Reichman, and R. A. Friesner,
“Singlet–triplet energy gaps of organic biradicals and polyacenes with auxiliary-
field quantumMonte Carlo,” J. Chem. Theory Comput. 15, 4924–4932 (2019).
20J. Shee, B. Rudshteyn, E. J. Arthur, S. Zhang, D. R. Reichman, and R. A. Friesner,
“On achieving high accuracy in quantum chemical calculations of 3D transi-
tion metal-containing systems: A comparison of auxiliary-field quantum Monte
Carlo with coupled cluster, density functional theory, and experiment for diatomic
molecules,” J. Chem. Theory Comput. 15, 2346–2358 (2019).
21K. T. Williams, Y. Yao, J. Li, L. Chen, H. Shi, M. Motta, C. Niu, U. Ray, S.
Guo, R. J. Anderson et al., “Direct comparison of many-body methods for realistic
electronic Hamiltonians,” Phys. Rev. X 10, 011041 (2020).
22J. Lee and D. R. Reichman, “Stochastic resolution-of-the-identity auxiliary-field
quantum Monte Carlo: Scaling reduction without overhead,” J. Chem. Phys. 153,
044131 (2020).
23J. Lee, F. D. Malone, and M. A. Morales, “Utilizing essential symmetry breaking
in auxiliary-field quantum Monte Carlo: Application to the spin gaps of the C36

fullerene and an iron porphyrin model complex,” J. Chem. Theory Comput. 16,
3019–3027 (2020).
24H. Shi and S. Zhang, “Some recent developments in auxiliary-field quantum
Monte Carlo for real materials,” J. Chem. Phys. 154, 024107 (2021).
25E. Y. Loh, , Jr, J. E. Gubernatis, R. T. Scalettar, S. R.White, D. J. Scalapino, and R.
L. Sugar, “Sign problem in the numerical simulation of many-electron systems,”
Phys. Rev. B 41, 9301 (1990).
26M. Troyer and U.-J. Wiese, “Computational complexity and fundamental lim-
itations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94,
170201 (2005).
27A. Mahajan and S. Sharma, “Taming the sign problem in auxiliary-field quan-
tum Monte Carlo using accurate wave functions,” J. Chem. Theory Comput. 17,
4786–4798 (2021).
28E. Giner, A. Scemama, and M. Caffarel, “Using perturbatively selected con-
figuration interaction in quantum Monte Carlo calculations,” Can. J. Chem. 91,
879–885 (2013).
29F. A. Evangelista, “Adaptive multiconfigurational wave functions,” J. Chem.
Phys. 140, 124114 (2014).
30A. A. Holmes, N. M. Tubman, and C. J. Umrigar, “Heat-bath configuration
interaction: An efficient selected configuration interaction algorithm inspired by
heat-bath sampling,” J. Chem. Theory Comput. 12, 3674–3680 (2016).
31N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon, and K. B. Whaley,
“A deterministic alternative to the full configuration interaction quantum Monte
Carlo method,” J. Chem. Phys. 145, 044112 (2016).
32C. Filippi, R. Assaraf, and S. Moroni, “Simple formalism for efficient derivatives
andmulti-determinant expansions in quantumMonte Carlo,” J. Chem. Phys. 144,
194105 (2016).
33R. Assaraf, S. Moroni, and C. Filippi, “Optimizing the energy with quantum
Monte Carlo: A lower numerical scaling for Jastrow–Slater expansions,” J. Chem.
Theory Comput. 13, 5273–5281 (2017).

J. Chem. Phys. 156, 174111 (2022); doi: 10.1063/5.0087047 156, 174111-9

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

34M. Dash, S. Moroni, A. Scemama, and C. Filippi, “Perturbatively selected

configuration-interaction wave functions for efficient geometry optimization in

quantumMonte Carlo,” J. Chem. Theory Comput. 14, 4176–4182 (2018).
35S. D. Pineda Flores and E. Neuscamman, “Excited state specific multi-Slater

Jastrow wave functions,” J. Phys. Chem. A 123, 1487–1497 (2019).
36A. Benali, K. Gasperich, K. D. Jordan, T. Applencourt, Y. Luo, M. C. Bennett,

J. T. Krogel, L. Shulenburger, P. R. C. Kent, P.-F. Loos et al., “Toward a system-

atic improvement of the fixed-node approximation in diffusion Monte Carlo for

solids—A case study in diamond,” J. Chem. Phys. 153, 184111 (2020).
37F. D. Malone, A. Benali, M. A. Morales, M. Caffarel, P. R. C. Kent, and L. Shu-

lenburger, “Systematic comparison and cross-validation of fixed-node diffusion

Monte Carlo and phaseless auxiliary-field quantum Monte Carlo in solids,” Phys.

Rev. B 102, 161104 (2020).
38J. Shee, E. J. Arthur, S. Zhang, D. R. Reichman, and R. A. Friesner, “Phaseless

auxiliary-field quantum Monte Carlo on graphical processing units,” J. Chem.

Theory Comput. 14, 4109–4121 (2018).
39S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar,

“Semistochastic heat-bath configuration interaction method: Selected configu-

ration interaction with semistochastic perturbation theory,” J. Chem. Theory

Comput. 13, 1595–1604 (2017).
40J. E. T. Smith, B. Mussard, A. A. Holmes, and S. Sharma, “Cheap and near

exact CASSCF with large active spaces,” J. Chem. Theory Comput. 13, 5468–5478

(2017).
41A. Mahajan and S. Sharma, “Efficient local energy evaluation for multi-Slater

wave functions in orbital space quantum Monte Carlo,” J. Chem. Phys. 153,

194108 (2020).
42F. Weigend, A. Köhn, and C. Hättig, “Efficient use of the correlation consis-

tent basis sets in resolution of the identity MP2 calculations,” J. Chem. Phys. 116,

3175–3183 (2002).
43R. Stratonovich, “On a method of calculating quantum distribution functions,”

Sov. Phys. Dokl., 2 416 (1957).
44J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett. 3, 77 (1959).
45D. J. Thouless, “Stability conditions and nuclear rotations in the Hartree–Fock

theory,” Nucl. Phys. 21, 225–232 (1960).
46N. Rom, D. M. Charutz, and D. Neuhauser, “Shifted-contour auxiliary-

field Monte Carlo: Circumventing the sign difficulty for electronic-structure

calculations,” Chem. Phys. Lett. 270, 382–386 (1997).
47P.-O. Löwdin, “Quantum theory of many-particle systems. I. Physical inter-

pretations by means of density matrices, natural spin-orbitals, and convergence

problems in the method of configurational interaction,” Phys. Rev. 97, 1474
(1955).
48R. Balian and E. Brezin, “Nonunitary Bogoliubov transformations and extension
of Wick’s theorem,” Nuovo Cimento B 64, 37–55 (1969).
49Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D.
McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and K.-L. G. Chan, “PySCF:
The python-based simulations of chemistry framework,” Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 8, e1340 (2018).
50See https://github.com/sanshar/VMC/ for more information about the code
used to perform AFQMC calculations.
51See https://github.com/ankit76/ph_afqmc for more information about input
and output files of the AFQMC calculations.
52M. Calandra Buonaura and S. Sorella, “Numerical study of the two-dimensional
Heisenberg model using a Green function Monte Carlo technique with a fixed
number of walkers,” Phys. Rev. B 57, 11446 (1998).
53M. Motta, D. M. Ceperley, G. K.-L. Chan, J. A. Gomez, E. Gull, S. Guo, C. A.
Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma et al., “Towards the solution of the many-
electron problem in real materials: Equation of state of the hydrogen chain with
state-of-the-art many-body methods,” Phys. Rev. X 7, 031059 (2017).
54Y. Yao, E. Giner, T. A. Anderson, J. Toulouse, and C. J. Umrigar, “Accurate
energies of transition metal atoms, ions, and monoxides using selected configu-
ration interaction and density-based basis-set corrections,” J. Chem. Phys. 155,
204104 (2021).
55J. R. Trail and R. J. Needs, “Shape and energy consistent pseudopotentials for
correlated electron systems,” J. Chem. Phys. 146, 204107 (2017).
56P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, “Properties of
liquid and solid 4He,” Phys. Rev. B 19, 5598 (1979).
57D. M. Ceperley and M. H. Kalos, Monte Carlo Methods in Statistical Physics
(Springer, 1986), pp. 145–194.
58S. M. Rothstein, “A survey on pure sampling in quantum Monte Carlo
methods,” Can. J. Chem. 91, 505–510 (2013).
59M. Motta and S. Zhang, “Computation of ground-state properties in molecular
systems: Back-propagation with auxiliary-field quantum Monte Carlo,” J. Chem.
Theory Comput. 13, 5367–5378 (2017).
60J. S. Muenter, “Electric dipole moment of carbon monoxide,” J. Mol. Spectrosc.
55, 490–491 (1975).
61D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2004), Vol. 85.
62W. J. Huggins, B. A. O’Gorman, N. C. Rubin, D. R. Reichman, R. Babbush, and
J. Lee, “Unbiasing fermionic quantum Monte Carlo with a quantum computer,”
Nature 603, 416–420 (2022).

J. Chem. Phys. 156, 174111 (2022); doi: 10.1063/5.0087047 156, 174111-10

Published under an exclusive license by AIP Publishing


