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Abstract. In this paper, we extend considerably the global existence results of entropy-
weak solutions related to compressible Navier-Stokes system with density dependent vis-
cosities obtained, independently (using di↵erent strategies), by Vasseur-Yu [Inventiones
mathematicae (2016) and arXiv:1501.06803 (2015)] and by Li-Xin [arXiv:1504.06826
(2015)]. More precisely we are able to consider a physical symmetric viscous stress tensor
� = 2µ(⇢)D(u)+

�
�(⇢)divu�P (⇢)

�
Id where D(u) = [ru+rTu]/2 with a shear and bulk

viscosities (respectively µ(⇢) and �(⇢)) satisfying the BD relation �(⇢) = 2(µ0(⇢)⇢�µ(⇢))
and a pressure law P (⇢) = a⇢� (with a > 0 a given constant) for any adiabatic constant
� > 1. The nonlinear shear viscosity µ(⇢) satisfies some lower and upper bounds for
low and high densities (our mathematical result includes the case µ(⇢) = µ⇢↵ with
2/3 < ↵ < 4 and µ > 0 constant). This provides an answer to a longstanding mathemat-
ical question on compressible Navier-Stokes equations with density dependent viscosities
as mentioned for instance by F. Rousset in the Bourbaki 69ème année, 2016–2017, no
1135.

1. Introduction

When a fluid is governed by the barotropic compressible Navier-Stokes equations, the
existence of global weak solutions, in the sense of J. Leray (see [35]), in space dimension
greater than two remained for a long time without answer, because of the weak control
of the divergence of the velocity field which may provide the possibility for the density to
vanish (vacuum state) even if initially this is not the case.

There exists a huge literature on this question, in the case of constant shear viscosity µ

and constant bulk viscosity �. Before 1993, many authors such as Ho↵ [27], Jiang-Zhang
[29], Kazhikhov–Shelukhin [32], Serre [47], Veigant–Kazhikhov [48] (to cite just some of
them) have obtained partial answers: We can cite, for instance, the works in dimension 1
in 1986 by Serre [47], the one by Ho↵ [27] in 1987, and the one in the spherical case in
2001 by Jiang-Zhang [29]. The first rigorous approach of this problem in its generality is
due in 1993 by P.–L. Lions [38] when the pressure law in terms of the density is given by
P (⇢) = a⇢

� where a and � are two strictly positive constants. He has presented in 1998
a complete theory for P (⇢) = a⇢

� with � � 3d/(d + 2) (where d is the space dimension)
allowing to obtain the result of global existence of weak solutions à la Leray in dimension
d = 2 and 3 and for general initial data belonging to the energy space. His result has been
then extended in 2001 to the case P (⇢) = a⇢

� with � > d/2 by Feireisl-Novotny-Petzeltova
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[23] introducing an appropriated method of truncation. Note also in 2014 the paper on
compressible Navier-Stokes equations with constant viscosities by Plotnikov-Weigant [45]
in dimension 2 for the linear pressure law that means � = 1. In 2002, Feireisl [24] has
also proved it is possible to consider a pressure P (⇢) law non-monotone on a compact
set [0, ⇢⇤] (with ⇢⇤ constant) and monotone elsewhere. This has been relaxed in 2018
by Bresch-Jabin [15] allowing to consider real non-monotone pressure laws. They have
also proved that it is possible to consider some constant anisotropic viscosities. The Lions
theory has also been extended recently by Vasseur-Wen-Yu [51] to pressure laws depending
on two phases (see also Maltese & al. [39], Novotny [43] and Novotny-Pokorny [44]). The
method introduced by Bresch-Jabin in [15] has also been recently developped in the bifluid
framework by Bresch-Mucha-Zatorska in [17].

When the shear and the bulk viscosities (respectively µ and �) are assumed to de-
pend on the density ⇢, the mathematical framework is completely di↵erent. It has been
discussed, mathematically, initially in a paper by Bernardi-Pironneau [6] related to vis-
cous shallow-water equations and by P.–L. Lions [38] in his second volume related to
mathematics and fluid mechanics. The main ingredient in the constant case which is the
compactness in space of the e↵ective flux F = (2µ + �)divu � P (⇢) is no longer true for
density dependent viscosities. In space dimension greater than one, a new mathematical
framework has been initiated with a series of papers by Bresch-Desjardins [8, 9, 10, 11],
(started in 2003 with Lin [12] in the context of Navier-Stokes-Korteweg with linear shear
viscosity case) who have identified an information related to the gradient of a function of
the density if the viscosities satisfy what is called the Bresch-Desjardins constraint. This
information is usually called the BD entropy in the literature with the introduction of
the concept of entropy-weak solutions. Using such extra information, they obtained the
global existence of entropy-weak solutions in the presence of appropriate drag terms or
singular pressure close to vacuum. Concerning the one-dimensional in space case or the
spherical case, many important results have been obtained for instance by Burtea-Haspot
[18], Ducomet-Necasova-Vasseur [22], Constantin-Drivas-Nguyen-Pasqualottos [21], Guo-
Jiu-Xin [25], Haspot [26], Jiang-Xin-Zhang [28], Jiang-Zhang [29], Kanel [33], Li-Li-Xin
[36], Mellet-Vasseur [41], Shelukhin [47] without such kind of additional terms. Stability
and construction of approximate solutions in space dimension two or three have been inves-
tigated during more than fifteen years with a first important stability result without drag
terms or singular pressure by Mellet-Vasseur [40]. Several important works for instance
by Bresch-Desjardins [8, 9, 10, 11] and Bresch-Desjardins-Lin [12], Bresch-Desjardins-
Zatorska [13], Li-Xin [37], Mellet-Vasseur [40], Mucha-Pokorny-Zatorska [42], Vasseur-Yu
[49, 50], and Zatorska [52] have also been written trying to find a way to construct approx-
imate solutions. Recently a real breakthrough has been done in two important papers by
Li-Xin [37] and Vasseur-Yu [50]: Using two di↵erent ways, they got the global existence of
entropy-weak solutions for the compressible paper when µ(⇢) = ⇢ and �(⇢) = 0. Note that
in the last paper [37] by Li-Xin, they also consider more general viscosities satisfying the
BD relation but with a non-symmetric stress di↵usion (� = µ(⇢)ru+(�(⇢)divu�P (⇢))Id)
and more restrictive conditions on the shear µ(⇢) viscosity and bulk viscosity �(⇢) and on
the pressure law P (⇢) compared to the present paper.

The objective of this current paper is to extend the existence results of global entropy-
weak solutions obtained independently (using di↵erent strategies) by Vasseur-Yu [50] and
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Lin-Xin [37] to answer a longstanding mathematical question on compressible Navier-
Stokes equations with density dependent viscosities as mentioned for instance by Rous-
set [46]. More precisely extending and coupling carefully the two-velocities framework
by Bresch-Desjardins-Zatorska [13] with the generalization of the quantum Böhm iden-
tity found by Bresch-Couderc-Noble-Vila [7] (proving a generalization of the dissipation
inequality used by Jüngel [30] for Navier-Stokes-Quantum system and established by
Jüngel-Matthes in [31]) and with the renormalized solutions introduced in Lacroix-Violet
and Vasseur [34], we can get global existence of entropy-weak solutions to the following
Navier-Stokes equations:

⇢t + div(⇢u) = 0

(⇢u)t + div(⇢u⌦ u) +rP (⇢)� 2div
�p

µ(⇢)Sµ +
�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sµ)Id

�
= 0,

(1.1)

where the shear stress are given by
p
µ(⇢)Sµ = µ(⇢)D(u)

in the regular setting (see below for the definition in the non-regular setting) and with
data

⇢|t=0 = ⇢0(x) � 0, ⇢u|t=0 = m0(x) = ⇢0u0, (1.2)

and where P (⇢) = a⇢
� denotes the pressure with the two constants a > 0 and � > 1, ⇢

is the density of fluid, u stands for the velocity of fluid, Du = [ru+rT
u]/2 is the strain

tensor. As usually, we consider

u0 =
m0

⇢0
when ⇢0 6= 0 and u0 = 0 elsewhere,

|m0|2

⇢0
= 0 a.e. on {x 2 ⌦ : ⇢0(x) = 0}.

Remark 1.1. We remark the following identity

2div
�p

µ(⇢)Sµ +
�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sµ)Id

�
= 2div(µ(⇢)Du) +r(�(⇢)divu),

in the regular setting where system (1.1) will be the classical writing form.

The viscosity coe�cients µ = µ(⇢) and � = �(⇢) satisfy the Bresch-Desjardins relation
introduced in [10]

�(⇢) = 2(⇢µ0(⇢)� µ(⇢)). (1.3)

The relation between the stress tensor Sµ and the triple (µ(⇢)/
p
⇢,
p
⇢u,

p
⇢v) where v =

2rs(⇢) with s
0(⇢) = µ

0(⇢)/⇢ will be proved in the following way: The matrix value Sµ is
the symmetric part of matrix value function Tµ namely

Sµ =
(Tµ + Tt

µ)

2
(1.4)

where Tµ is defined through

p
µ(⇢)Tµ = r(

p
⇢u

µ(⇢)
p
⇢
)�p

⇢u⌦p
⇢rs(⇢) (1.5)

with
s
0(⇢) = µ

0(⇢)/⇢. (1.6)
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and

�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Tµ)Id =

h
div(

�(⇢)

µ(⇢)

p
⇢u

µ(⇢)
p
⇢
)�p

⇢u ·p⇢rs(⇢)
⇢µ

00(⇢)

µ0(⇢)

i
Id. (1.7)

Remark 1.2. Compared to the case µ(⇢) = ⇢, the definition of Tµ is given through the two
compatible identities (1.5) and (1.7).

For the sake of simplicity, we will consider the case of periodic boundary conditions in
three dimension in space namely ⌦ = T3. In the whole paper, we assume:

µ 2 C
0(R+; R+) \ C

2(R⇤
+; R), (1.8)

where R+ = [0,1) and R⇤
+ = (0,1). We also assume that there exists two positive

numbers ↵1,↵2 such that

2

3
< ↵1  ↵2 < 4,

for any ⇢ > 0, 0 <
1

↵2
⇢µ

0(⇢)  µ(⇢)  1

↵1
⇢µ

0(⇢),
(1.9)

and there exists a constant C > 0 such that
����
⇢µ

00(⇢)

µ0(⇢)

����  C < +1. (1.10)

Note that if µ(⇢) and �(⇢) satisfying (1.3) and (1.9), then

�(⇢) + 2µ(⇢)/3 � 0

and thanks to (1.9)

µ(0) = �(0) = 0.

Remark 1.3. Note that the hypothesis (1.9)–(1.10) allow a shear viscosity of the form
µ(⇢) = µ⇢

↵ with µ > 0 a constant where 2/3 < ↵ < 4 and a bulk viscosity satisfying the
BD relation: �(⇢) = 2(µ0(⇢)⇢� µ(⇢)).

Remark 1.4. Note that the restriction 2/3 < ↵1  ↵2 comes from the hypothesis that
there exists " > 0 such that 2µ(⇢) + 3�(⇢) � "µ(⇢) which will satisfy 2µ(⇢) + 3�(⇢) > 0
(far from vacuum) which is the usual physical restriction between the shear and bulk
viscosities. Meanwhile, for technical reasons in the proof of Lemma 2.1, we need to re-
strict ↵2 < 4 in hypothesis (1.9). More precisely, we get that krrZ(⇢)kL2((0,T )⇥⌦) and
krZ1(⇢)kL4((0,T )⇥⌦), for some functions Z and Z1, are controlled if the two constants in
front of them in Lemma 2.1 are positive. It is important to remark that in the recent
paper [1], the authors have indicated how Lemma 2.1 may be used for the full range
2/3 < ↵ < +1 when µ(⇢) = ⇢

↵ and �(⇢) = 2(↵ � 1)⇢↵. It is enough to be able to
compare krrZ(⇢)kL2((0,T )⇥⌦) to krZ1(⇢)kL4((0,T )⇥⌦) to relax the assumptions. This is
based on the following uniform inequality: For any d � 1 and any positive function ✓ in
H

2(Td) : Z

Td
|r✓1/2|4 dx  9

16

Z

Td
(�✓)2 dx.
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Remark 1.5. In [50] and [37] the case µ(⇢) = µ⇢ and �(⇢) = 0 is considered, and in
[37] more general cases have been considered but with a non-symmetric viscous term in
the three-dimensional in space case, namely �div(µ(⇢)ru) � r(�(⇢)divu). In [37] the
viscosities µ(⇢) and �(⇢) satisfy (1.3) with µ(⇢) = µ⇢

↵ where ↵ 2 [3/4, 2) and with the
following assumption on the value � for the pressure p(⇢) = a⇢

� :

If ↵ 2 [3/4, 1], � 2 (1, 6↵� 3)

and

if ↵ 2 (1, 2), � 2 [2↵� 1, 3↵� 1].

Definitions. Following [34] (based on the work in [50]), we will show the existence
of renormalized solutions in u. Then, we will show that this renormalized solution is a
weak solution. The renormalization provides weak stability of the advection terms ⇢u⌦ u

together and ⇢u⌦ v. Let us first define the renormalized solution:

Definition 1.1. Consider µ > 0, 3�+2µ > 0, r0 � 0, r1 � 0, r2 � 0, � � 0 and r � 0. We
say that (

p
⇢,
p
⇢u) is a renormalized weak solution in u of the compressible Navier-Stokes

equations (with an extra capillarity term, with drag terms, with a supplementary pressure
if respectively r 6= 0, (r0, r1, r2) 6= 0 and � 6= 0), if it verifies (1.23)-(1.26), and for any

function ' 2 W
2,1(R3), there exists three measures R', R

1
', R

2
' 2 M(R+ ⇥ ⌦), with

kR'kM(R+⇥⌦) + kR1
'kM(R+⇥⌦) + kR2

'kM(R+⇥⌦)  Ckrr'kL1(R3),

where the constant C depends only on the solution (
p
⇢,
p
⇢u), and for any function

 2 C
1
c (R+ ⇥ ⌦),

Z T

0

Z

⌦
(⇢ t +

p
⇢
p
⇢u ·r ) dx dt = 0,

Z T

0

Z

⌦

�
⇢'(u) t + ⇢'(u)⌦ u : r 

�
dx dt

�
Z T

0

Z

⌦

✓
2(
p
µ(⇢)Sµ +

�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sµ)Id)'0(u)

◆
·r dxdt

� r

Z T

0

Z

⌦

✓
2(
p
µ(⇢)Sr +

�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sr)Id

�
'
0(u)

◆
·r dxdt

+F (⇢, u)'0(u) dx dt = hR', i ,
Z T

0

Z

⌦
(µ(⇢) t +

µ(⇢)
p
⇢

p
⇢u ·r ) dxdt�

Z T

0

Z

⌦

�(⇢)

2µ(⇢)
Tr(

p
µ(⇢)Tµ) dxdt = 0,

where Sµ is given in (1.4) and Tµ is given in (1.7). The matrix Sr is compatible in (1.19),
(1.20), and (1.21).
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The vector valued function F is given by

F (⇢, u) =

s
P 0(⇢)⇢

µ0(⇢)
r
Z ⇢

0

r
P 0(s)µ0(s)

s
ds

+ �

s
P

0
�(⇢)⇢

µ0(⇢)
r
Z ⇢

0

r
P

0
�(s)µ

0(s)

s
ds� r0u� r1⇢|u|u� r2

µ0(⇢)
⇢|u|2u.

(1.11)

For every i, j, k between 1 and d:

p
µ(⇢)'0

i(u)[Tµ]jk = @j(µ(⇢)'
0
i(u)uk)�

p
⇢ uk'

0
i(u)

p
⇢@js(⇢) +R

1
', (1.12)

r'
0
i(u)[r(

p
µ(⇢)rZ(⇢))]jk = r@j(

p
µ(⇢)'0

i(u)@kZ(⇢)) +R
2
', (1.13)

and

kR1
'kM(R+⇥⌦) + kR2

'kM(R+⇥⌦) + kR'kM(R+⇥⌦)  Ckrr'kL1 .

and for any  2 C
1
c (⌦):

lim
t!0

Z

⌦
⇢(t, x) (x) dx =

Z

⌦
⇢0(x) (x) dx,

lim
t!0

Z

⌦
⇢(t, x)u(t, x) (x) dx =

Z

⌦
m0(x) (x) dx,

lim
t!0

Z

⌦
µ(⇢)(t, x) (x) dx =

Z

⌦
µ(⇢0)(x) (x) dx

Remark 1.6. The notion of renormalized solutions was introduced by R. DiPerna and P.–
L. Lions in [20], and it was adopted to study the compressible Navier-Stokes equations
by P.–L. Lions [38]. In Lions’ framework, this notation allows to handle the issue of low
regularity of density. However, in our paper, we have more uniform bounds on density
and less regularity of velocity. With our definition of renormalized solution in velocity, it
allows us to get the weak stability of the solution sequence even we are not able to have
extra control on ⇢|u|2. It allows us to get rid of the Mellet-Vasseur type inequality for
passing to the limits and allows us to establish the existence result for any � > 1.

We define a global weak solution of the approximate system or the compressible Navier-
Stokes equation (when r = r0 = r1 = r2 = � = 0) as follows

Definition 1.2. Let Sµ the symmetric part of Tµ in L
2((0, T ) ⇥ ⌦) verifying (1.4)–(1.7)

and Sr the capillary quantity in L
2((0, T ) ⇥ ⌦) given by (1.19)–(1.21). Let us denote

P (⇢) = a⇢
� and P�(⇢) = �⇢

10. We say that (⇢, u) is a weak solution to (1.17)–(1.20), if
it satisfies the a priori estimates (1.23)–(1.26) and for any function  2 C1

c ((0, T ) ⇥ ⌦)
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verifying
Z T

0

Z

⌦
(⇢@t + ⇢u ·r ) dxdt = 0,

Z T

0

Z

⌦
(⇢u@t + ⇢u⌦ u : r ) dxdt

�
Z T

0

Z

⌦
2(
p
µ(⇢)Sµ +

�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sµ)Id) ·r dxdt

� r

Z T

0

Z

⌦
2(
p
µ(⇢)Sr +

�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sr)Id) ·r dxdt

+ F (⇢, u) dxdt = 0,
Z 1

0

Z

⌦

✓
µ(⇢) t +

µ(⇢)
p
⇢

p
⇢u ·r 

◆
dx dt

�
Z T

0

Z

⌦

�(⇢)

2µ(⇢)
Tr(

p
µ(⇢)Tµ) dxdt = 0,

(1.14)

with F given through (1.11) and for any  2 C1
c (⌦):

lim
t!0

Z

⌦
⇢(t, x) (x) dx =

Z

⌦
⇢0(x) (x) dx,

lim
t!0

Z

⌦
⇢(t, x)u(t, x) (x) dx =

Z

⌦
m0(x) (x) dx,

lim
t!0

Z

⌦
µ(⇢)(t, x) (x) dx =

Z

⌦
µ(⇢0)(x) (x) dx.

Remark 1.7. As mentioned in [16], the equation on µ(⇢) is important: By taking  = div'
for all ' 2 C1

0 , we can write the equation satisfied by rµ(⇢) namely

@trµ(⇢) + div(rµ(⇢)⌦ u) = div(rµ(⇢)⌦ u)�rdiv(µ(⇢)u)

�r
� �(⇢)
2µ(⇢)

Tr(
p

µ(⇢)Tµ)
⌘

= �div(
p

µ(⇢)tTµ)�r
� �(⇢)
2µ(⇢)

Tr(
p
µ(⇢)Tµ)

⌘
.

(1.15)

This will justify in some sense the two-velocities formulation introduced in [13] with the
extra velocity linked to rµ(⇢).

The main result of our paper reads as follows:

Theorem 1.1. Let µ(⇢) verify (1.8)–(1.10) and µ and � verify (1.3). Let us assume the
initial data satisfy

Z

⌦

✓
1

2
⇢0|u0 + 2rs(⇢0)|2 + (1� )⇢0

|2rs(⇢0)|2

2

◆
dx

+

Z

⌦

✓
a
⇢
�
0

� � 1
+ µ(⇢0)

◆
dx  C < +1.

(1.16)
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with k 2 (0, 1) given. Let T be given such that 0 < T < +1, then, for any � > 1, there
exist a renormalized solution to (1.1)-(1.2) as defined in Definition 1.1 with r, r0, r1, r2
and � all zero. Moreover, this renormalized solution with initial data satisfying (1.16) is
a weak solution to (1.1)-(1.2) in the sense of Definition 1.2.

Our result may be considered as an improvement of [37] for two reasons: First it takes
into account a physical symmetric viscous tensor and secondly, it extends the range of
coe�cients ↵ and �. The method is based on the consideration of an approximated
system with an extra pressure quantity, appropriate non-linear drag terms and appropriate
capillarity terms. This generalizes the Quantum-Navier-Stokes system with quadratic drag
terms considered in [49, 50]. First we prove that weak solutions of the approximate system
are renormalized solutions of the system, in the sense of [34]. Then we pass to the limit
with respect to r2, r1, r0, r, � to get renormalized solutions of the compressible Navier-
Stokes system. The final step concerns the proof that a renormalized solution of the
compressible Navier-Stokes system is a global weak solution of the compressible Navier–
Stokes system. Note that, thanks to the technique of renormalized solution introduced in
[34], it is not necessary to derive the Mellet-Vasseur type inequality in this paper: This
allows us to cover all range � > 1.

First Step. Motivated by the work of [34], the first step is to establish the existence of
global  entropy weak solution to the following approximation

⇢t + div(⇢u) = 0

(⇢u)t + div(⇢u⌦ u) +rP (⇢) +rP�(⇢)

� 2div
⇣p

µ(⇢)Sµ +
�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sµ)Id

⌘

� 2rdiv
⇣p

µ(⇢)Sr +
�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sr)Id

⌘

+ r0u+ r1⇢|u|u+ r2
⇢

µ0(⇢)
|u|2u = 0

(1.17)

where the barotropic pressure law and the extra pressure term are respectively

P (⇢) = a⇢
�
, P�(⇢) = �⇢

10 with � > 0. (1.18)

The matrix Sµ is defined in (1.4) and Tµ is given in(1.5)- (1.7). The matrix Sr is compatible
in the following sense:

r

p
µ(⇢)Sr = 2r

h
2
p
µ(⇢)rrZ(⇢)�r(

p
µ(⇢)rZ(⇢))

i
, (1.19)

where

Z(⇢) =

Z ⇢

0
[(µ(s))1/2µ0(s)]/s ds, k(⇢) =

Z ⇢

0
[�(s)µ0(s)]/µ(s)3/2ds (1.20)

and

r
�(⇢)

2µ(⇢)
Tr(
p
µ(⇢)Sr)Id = r(

�(⇢)p
µ(⇢)

+
1

2
k(⇢))�Z(⇢)Id� r

2
div[k(⇢)rZ(⇢)]Id. (1.21)
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Remark 1.8. Note that the previous system is the generalization of the quantum viscous
Navier-Stokes system considered by Lacroix-Violet and Vasseur in [34] (see also the inter-
esting papers by Antonelli-Spirito [4, 5] and by Carles-Carrapatoso-Hillairet [19]). Indeed
if we consider µ(⇢) = ⇢ and �(⇢) = 0, we can write

p
µ(⇢)Sr as

p
µ(⇢)Sr = 4

p
⇢

h
rrp

⇢� 4(r⇢1/4 ⌦r⇢1/4)
i
,

using Z(⇢) = 2
p
⇢. The Navier–Stokes equations for quantum fluids was also considered

by A. Jüngel in [30].

As the first step generalizing [50], we prove the following result.

Theorem 1.2. Let µ(⇢) verifies (1.8)–(1.10) and �(⇢) is given by (1.3). If r0 > 0, then
we assume also that infs2[0,+1)µ

0(s) = ✏1 > 0. Assume that r1 is small enough compared
to �, r2 is small enough compared to r and that the initial values verify
Z

⌦
⇢0

✓
|u0 + 2rs(⇢0)|2

2
+ ((1� ) + r)

|2rs(⇢0)|2

2

◆
dx

+

Z

⌦

�
a
⇢
�
0

� � 1
+ µ(⇢0) + �

⇢
10
0

9
+

r0

"1
|(ln ⇢0)�|

�
dx < +1,

(1.22)

for a fixed  2 (0, 1). Then there exists a  entropy weak solution (⇢, u,Tµ, Sr) to (1.17)–
(1.21) satisfying the initial conditions (1.2), in the sense that (⇢, u,Tµ, Sr) satisfies the
mass and momentum equations in a weak form, and satisfies the compatibility formula in
the sense of definition 1.2. In addition, it verifies the following estimates:

kp⇢ (u+ 2rs(⇢))k2L1(0,T ;L2(⌦))  C, ak⇢k�L1(0,T ;L�(⌦))  C,

kTµk2L2(0,T ;L2(⌦))  C, ((1� ) + r)kp⇢rs(⇢)k2L1(0,T ;L2(⌦))  C,

k
p

µ0(⇢)⇢��2r⇢k2L2(0,T ;L2(⌦))  C,

(1.23)

and

�k⇢k10L1(0,T ;L10(⌦))  C, �k
p
µ0(⇢)⇢8r⇢k2L2(0,T ;L2(⌦))  C,

r2k(
⇢

µ0(⇢)
)
1
4uk4L4(0,T ;L4(⌦))  C, r1k⇢

1
3 |u|k3L3(0,T ;L3(⌦))  C,

r0kuk2L2(0,T ;L2(⌦))  C, rkSrk2L2(0,T ;L2(⌦))  C.

(1.24)

Note that the bounds (1.23) provide the following control on the velocity field

kp⇢uk2L1(0,T ;L2(⌦))  C.

Moreover let

Z(⇢) =

Z ⇢

0

p
µ(s)µ0(s)

s
ds and Z1(⇢) =

Z ⇢

0

µ
0(s)

(µ(s))1/4s1/2
ds,

we have the extra control

r

Z T

0

Z

⌦
|r2

Z(⇢)|2 dx dt+
Z T

0

Z

⌦
|rZ1(⇢)|4 dx dt

�
 C, (1.25)
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and

kµ(⇢)kL1(0,T ;W 1,1(⌦)) + kµ(⇢)ukL1(0,TL3/2(⌦))\L2(0,T ;W 1,1(⌦))  C,

k@tµ(⇢)kL1(0,T ;W�1,1(⌦))  C,

kZ(⇢)kL1(0,T ;L1+(⌦)) + kZ1(⇢)kL1(0,T ;L1+(⌦))  C,

(1.26)

where C > 0 is a constant which depends only on the initial data.

Sketch of proof for Theorem 1.2. To show Theorem 1.2, we need to build the smooth
solution to an approximation associated to (1.17). Here, we adapt the ideas developed in
[13] to construct this approximation. More precisely, we consider an augmented version
of the system which will be more appropriate to construct approximate solutions. Let us
explain the idea.

First step: the augmented system. Defining a new velocity field generalizing the one
introduced in the BD entropy estimate namely

w = u+ 2rs(⇢)

and a drift velocity v = 2rs(⇢) and s(⇢) defined in (1.6).
Assuming to have a smooth solution of (1.17) with damping terms, it cavown that

(⇢, w, v) satisfies the following system of equations

⇢t + div(⇢w)� 2�µ(⇢) = 0

and

(⇢w)t + div(⇢u⌦ w)� 2(1� )div(µ(⇢)Dw)� 2div(µ(⇢)A(w))

� (1� )r(�(⇢)div(w � v)) +r⇢� + �r⇢10 + 4(1� )div(µ(⇢)r2
s(⇢))

= �r0(w � 2rs(⇢))� r1⇢|w � 2rs(⇢)|(w � 2rs(⇢))

� r2
⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) + r⇢r

✓p
K(⇢)�(

Z ⇢

0

p
K(s) ds)

◆
,

and

(⇢v)t + div(⇢u⌦ v)� 2div(µ(⇢)rv) + 2div(µ(⇢)rt
w) +r(�(⇢)div(w � v)) = 0,

where

v = 2rs(⇢), w = u+ v

and

K(⇢) = 4(µ0(⇢))2/⇢.

This is the augmented version for which we will show that there exists global weak solu-
tions, adding an hyperdi↵usivity "2[�2s

w� div((1+ |rw|2)rw)] on the equation satisfied
by w, and passing to the limit "2 goes to zero.

Important remark. Note that recently Bresch-Couderc-Noble-Vila [7] showed the fol-
lowing interesting relation

⇢r
✓p

K(⇢)�(

Z ⇢

0

p
K(s) ds)

◆
= div(F (⇢)r2

 (⇢)) +r
�
(F 0(⇢)⇢� F (⇢))� (⇢)

�
,
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with F
0(⇢) =

p
K(⇢)⇢ and

p
⇢ 

0(⇢) =
p
K(⇢). Thus choosing

F (⇢) = 2µ(⇢) and therefore F
0(⇢)⇢� F (⇢) = �(⇢),

this gives  (⇢) = 2s(⇢) and thus

⇢r
✓p

K(⇢)�(

Z ⇢

0

p
K(s) ds)

◆
= 2div

⇣
µ(⇢)r2

�
2s(⇢)

�⌘
+r

⇣
�(⇢)�

�
2s(⇢)

�⌘
. (1.27)

This identity will play a crucial role in the proof, because it defines the appropriate capil-
larity term to consider in the approximate system to be compatible with the stress tensor.
This form is compatible with the various multipliers which are used to get the -entropy
estimates and to give regularity control on the density. Other identities will be used to
define the weak solution for the Navier-Stokes-Korteweg system and to pass to the limit
in it namely

2µ(⇢)r2(2s(⇢)) + �(⇢)�(2s(⇢)) = 4
h
2
p

µ(⇢)rrZ(⇢)�r(
p
µ(⇢)rZ(⇢)

i

+ (
2�(⇢)p
µ(⇢)

+ k(⇢))�Z(⇢) Id� div[k(⇢)rZ(⇢)] Id.
(1.28)

where Z(⇢) =

Z ⇢

0
[(µ(s))1/2µ0(s)]/s ds and k(⇢) =

Z ⇢

0

�(s)µ0(s)

µ(s)3/2
ds.

Note that the case considered in [34, 49, 50] is related µ(⇢) = ⇢ and K(⇢) = 4/⇢
which corresponds to the quantum Navier-Stokes system. Note that two very interesting
papers have been written by Antonelli-Spirito in [2, 3] considering Navier-Stokes-Korteweg
systems without such relation between the shear viscosity and the capillary coe�cient.

Remark 1.9. The additional pressure �⇢10 is used in (2.17) thanks to 3↵2 � 2  10. It
could be possible to take ⇢3↵2�2 but we have chosen ⇢10 for the sake of simplicity.

Second Step and main result concerning the compressible Navier-Stokes system. To prove
global existence of weak solutions of the compressible Navier-Stokes equations, we follow
the strategy introduced in [34, 50]. To do so, first we approximate the viscosity µ by a
viscosity µ"1 such that infs2[0,+1) µ

0
"1(s) � "1 > 0. Then we use Theorem 1.2 to construct

a  entropy weak solution to the approximate system (1.17). We then show that this 
entropy weak solution is a renormalized solution of (1.17) in the sense introduced in [34].
More precisely we prove the following theorem:

Theorem 1.3. Let µ(⇢) verifies (1.8)–(1.10), �(⇢) given by (1.3). If r0 > 0, then we
assume also that infs2[0,+1)µ

0(s) = ✏1 > 0. Assume that r1 is small enough compared to
� and r2 is small enough compared to r, (same to Theorem 1.2) the initial values verify
Z

⌦

✓
⇢0

✓
|u0 + 2rs(⇢0)|2

2
+ ((1� ) + r)

|2rs(⇢0)|2

2

◆◆
dx

+

Z

⌦

✓
a
⇢
�
0

� � 1
+ µ(⇢0) + �

⇢
10

9
+

r0

"1
|(ln ⇢0)�|

◆
dx < +1.

(1.29)

Then the  entropy weak solutions is a renormalized solution of (1.17) in the sense of
Definition 1.1.
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We then pass to the limit with respect to the parameters r, r0, r1, r2 and � to recover
a renormalized weak solution of the compressible Navier-Stokes equations and prove our
main theorem.

2. The first level of approximation procedure

The goal of this section is to construct a sequence of approximated solutions satisfying
the compactness structure to prove Theorem 1.2 namely the existence of weak solutions
of the approximation system with capillarity and drag terms. Here we present the first
level of approximation procedure.

1. The continuity equation

⇢t + div(⇢[w]"3) = 2div
�
[µ0(⇢)]"4r⇢

�
, (2.1)

with modified initial data

⇢(0, x) = ⇢0 2 C
2+⌫(⌦̄), 0 < ⇢  ⇢0(x)  ⇢̄.

Here "3 and "4 denote the standard regularizations by mollification with respect to space
and time. In particular, [f(t, x)]"i = f ⇤ ⌘"i(t, x), for any t > " where

⌘"i(t, x) =
1

"i
N+1

⌘(
t

"i
,
x

"i
),

for i = 3, 4, with ⌘ a smooth nonnegative even function compactly supported in the space
time ball of radius 1, and with integral equal to 1. This is a parabolic equation recalling
that in this part Inf [0,+1)µ

0(s) > 0. Thus, we can apply the standard theory of parabolic
equation to solve it when w is given smooth enough. In fact, the exact same equation was
solved in paper [13]. In particular, we are able to get the following bound on the density
at this level approximation

0 < ⇢  ⇢(t, x)  ⇢̄ < +1. (2.2)
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2. The momentum equation with drag terms is replaced by its Faedo-Galerkin approxi-
mation with the additional regularizing term "2[�2s

w� div((1+ |rw|2)rw)] where s � 2
Z

⌦
⇢w ·  dx�

Z t

0

Z

⌦

✓
⇢([w]"3 � 2

[µ0(⇢)]"4
⇢

r⇢)⌦ w

◆
: r dx dt

+ 2(1� )

Z t

0

Z

⌦
µ(⇢)Dw : r dx dt+ 2

Z t

0

Z

⌦
µ(⇢)A(w) : r dx dt

+ (1� )

Z t

0

Z

⌦
�(⇢)divwdiv dx dt� 2(1� )

Z t

0

Z

⌦
µ(⇢)rv : r dx dt

� (1� )

Z t

0

Z

⌦
�(⇢)divvdiv dx dt�

Z t

0

Z

⌦
⇢
�div dx dt� �

Z t

0

Z

⌦
⇢
10div dx dt

+ "2

Z t

0

Z

⌦

�
�s

w ·�s
 + (1 + |rw|2)rw : r 

�
dx dt = �

Z t

0

Z

⌦
r0(w � 2rs(⇢)) ·  dx dt

� r1

Z t

0

Z

⌦
⇢|w � 2rs(⇢)|(w � 2rs(⇢)) ·  dx dt

� r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) ·  dx dt

� r

Z t

0

Z

⌦

p
K(⇢)�(

Z ⇢

0

p
K(s) ds)div(⇢ ) dx dt+

Z

⌦
⇢0w0 ·  dx

(2.3)

satisfied for any t > 0 and any test function  2 C([0, T ], Xn), where �(⇢) = 2(µ0(⇢)⇢ �
µ(⇢)), and s

0(⇢) = µ
0(⇢)/⇢, and Xn = span{ei}ni=1 is an orthonormal basis in W

1,2(⌦)
with ei 2 C

1(⌦) for any integers i > 0.

3. The Faedo-Galerkin approximation for the equation on the drift velocity v reads
Z

⌦
⇢v · � dx�

Z t

0

Z

⌦
(⇢([w]"3 � 2

[µ0(⇢)]"4
⇢

r⇢)⌦ v) : r� dx dt

+ 2

Z t

0

Z

⌦
µ(⇢)rv : r� dx dt+ 

Z t

0

Z

⌦
�(⇢)divv div� dx dt

�
Z t

0

Z

⌦
�(⇢)divwdiv� dx dt+ 2

Z t

0

Z

⌦
µ(⇢)rT

w : r� dx dt =
Z

⌦
⇢0v0 · � dx

(2.4)

satisfied for any t > 0 and any test function � 2 C([0, T ], Yn), where Yn = span{bi}ni=1
and {bi}1i=1 is an orthonormal basis in W

1,2(⌦) with bi 2 C
1(⌦) for any integers i > 0.

The above full approximation is similar to the ones in the papers [13]– [14] which
are two parts dedicated to augmented systems similar to the one we consider. We can
repeat the same argument as [14] to obtain the local existence of solutions to the Galerkin
approximation. In order to extend the local solution to the global one, the uniform bounds
are necessary so that the corresponding procedure can be iterated.

2.1. The energy estimate if the solution is regular enough. For any fixed n > 0,
choosing test functions  = w, � = v in (2.3) and (2.4), we find that (⇢, w, v) satisfies the
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following �entropy equality

Z

⌦

✓
⇢

✓
|w|2

2
+ (1� )

|v|2

2

◆
+

⇢
�

� � 1
+ �

⇢
10

9

◆
dx+ 2(1� )

Z t

0

Z

⌦
µ(⇢)|Dw � rv|2 dx dt

+ (1� )

Z t

0

Z

⌦
�(⇢)(divw � divv)2 dx dt+ 2

Z t

0

Z

⌦

µ
0(⇢)p0(⇢)

⇢
|r⇢|2 dx dt

+ 2

Z t

0

Z

⌦
µ(⇢)|Aw|2 dx dt+ "2

Z t

0

Z

⌦

�
|�s

w|2 + (1 + |rw|2)|rw|2
�
dx dt

+ r

Z t

0

Z

⌦

p
K(⇢)�(

Z ⇢

0

p
K(s) ds)div(⇢w) dx dt+ 20�

Z t

0

Z

⌦
µ
0(⇢)⇢8|r⇢|2 dx dt

+ r0

Z t

0

Z

⌦
(w � 2rs(⇢)) · w dxdt+ r1

Z t

0

Z

⌦
⇢|w � 2rs(⇢)|(w � 2rs(⇢)) · w dxdt

+ r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) · w dxdt

=

Z

⌦

✓
⇢0

✓
|w0|2

2
+ (1� )

|v0|2

2

◆
+

⇢
�
0

� � 1
+ �

⇢
10
0

9

◆
dx�

Z T

0

Z

⌦
⇢
�div([w]"3 � w) dx dt

� �

Z T

0

Z

⌦
⇢
10div([w]"3 � w) dx dt,

(2.5)

where s
0 = µ

0(⇢)/⇢ and p(⇢) = ⇢
�
. Compared to the calculations made in [13], we have

to take care of the capillary term and then to take care of the drag terms showing that
they can be controlled using that infs2[0,+1) µ

0(s) � "1 > 0 for the linear drag, using
the extra pressure term �⇢

10 for the quadratic drag term and using the capillary term
r⇢r(

p
K(⇢)�(

R ⇢
0

p
K(s)) for the cubic drag term. To do so, let us provide some properties

on the capillary term and rewrite the terms coming from the drag quantities.

2.1.1. Some properties on the capillary term. Using the mass equation, the capillary term
in the entropy estimates reads

r

Z

⌦

p
K(⇢)�(

Z ⇢

0

p
K(s) ds) div(⇢w) =

r

2

d

dt

Z

⌦
|r
Z ⇢

0

p
K(s) ds|2

+ 2r

Z

⌦

p
K(⇢)�(

Z ⇢

0

p
K(s) ds)�µ(⇢) = I1 + I2.

(2.6)

In fact, we write term I1 as follows

r

2

d

dt

Z

⌦
|r
Z ⇢

0

p
K(s) ds|2 = r

2

d

dt

Z

⌦
⇢|rs(⇢)|2 dx.
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By (1.27), we have

I2 = 2r

Z

⌦

p
K(⇢)�(

Z ⇢

0

p
K(s) ds)�µ(⇢)

= �2r

Z

⌦
⇢r
⇣p

K(⇢)�(

Z ⇢

0

p
K(s) ds)

⌘
·rs(⇢)

= 2r

Z

⌦
2µ(⇢)|2r2

s(⇢)|2 + �(⇢)|2�s(⇢)|2.

(2.7)

Control of norms using I2. Let us first recall that since

�(⇢) = 2(µ0(⇢)⇢� µ(⇢)) > �2µ(⇢)/3,

there exists ⌘ > 0 such that

2

Z T

0

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx dt+
Z T

0

Z

⌦
�(⇢)|�s(⇢)|2 dx dt

� ⌘

h
2

Z T

0

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx dt+ 1

3

Z T

0

Z

⌦
µ(⇢)|�s(⇢)|2 dx dt

i
.

As the second term in the right-hand side is positive, lower bound on the quantity
Z T

0

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx dt (2.8)

will provide the same lower bound on I2.
Let us now precise the norms which are controlled by (2.8). To do so, we need to rely

on the following lemma on the density. In this lemma, we prove a more general entropy
dissipation inequality than the one introduced by Jüngel in [30] and more general than
those by Jüngel-Matthes in [31].

Lemma 2.1. Let µ0(⇢)⇢ < kµ(⇢) for 2/3 < k < 4 and

s(⇢) =

Z ⇢

0

µ
0(s)

s
ds, Z(⇢) =

Z ⇢

0

p
µ(s)

s
µ
0(s) ds, Z1(⇢) =

Z ⇢

0

µ
0(s)

(µ(s))1/4s1/2
ds.

i) Assume ⇢ > 0 and ⇢ 2 L
2(0, T ;H2(⌦)) then there exists "(k) > 0, such that we have

the following estimate
Z T

0

Z

⌦
|r2

Z(⇢)|2 dx dt+"(k)
Z T

0

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx dt  C

"(k)

Z T

0

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx dt,

where C is a universal positive constant.
ii) Consider a sequence of smooth densities ⇢n > 0 such that Z(⇢n) and Z1(⇢n) converge
strongly in L

1((0, T )⇥⌦) respectively to Z(⇢) and Z1(⇢) and
p

µ(⇢n)r2s(⇢n) is uniformly
bounded in L

2((0, T )⇥ ⌦). Then
Z T

0

Z

⌦
|r2

Z(⇢)|2 dx dt+ "(k)

Z T

0

Z

⌦
|rZ1(⇢)|4 dx dt  C < +1

Remark 2.1. The case of Z = 2
p
⇢ for the inequality was proved in [30], which is critical

to derive the uniform bound on approximated velocity in L
2(0, T ;L2(⌦)) in [49, 50]. The

above lemma will play a similar role in this paper.
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Proof. Let us first prove the part i). Note that Z 0(⇢) =
p

µ(⇢)
⇢ µ

0(⇢), we get the following
calculation:

p
µ(⇢)r2

s(⇢) =
p
µ(⇢)r(

rµ(⇢)

⇢
) =

p
µ(⇢)r

 
1p
µ(⇢)

rZ(⇢)

!

= r2
Z(⇢)� rZ(⇢)p

µ(⇢)
⌦r

p
µ(⇢)

= r2
Z(⇢)� ⇢rZ(⇢)⌦rZ(⇢)

2µ(⇢)
3
2

.

Thus, we have
Z

⌦
µ(⇢)|r2

s(⇢)|2 dx =

Z

⌦
|r2

Z(⇢)|2 dx+
1

4

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx

�
Z

⌦

⇢

µ(⇢)
3
2

r2
Z(⇢) : (rZ(⇢)⌦rZ(⇢)) dx.

(2.9)

By integration by parts, the cross product term reads as follows

�
Z

⌦

⇢

µ(⇢)
3
2

r2
Z(⇢) : (rZ(⇢)⌦rZ(⇢)) dx

= �
Z

⌦

⇢

p
µ(⇢)

µ(⇢)
r2

Z(⇢) : (
rZ(⇢)p
µ(⇢)

⌦ rZ(⇢)p
µ(⇢)

) dx

=

Z

⌦

⇢

µ(⇢)

p
µ(⇢)rZ(⇢) · div(rZ(⇢)p

µ(⇢)
⌦ rZ(⇢)p

µ(⇢)
) dx

+

Z

⌦
r(

⇢p
µ(⇢)

)⌦rZ(⇢) :
rZ(⇢)⌦rZ(⇢)

µ(⇢)
dx

= I1 + I2.

(2.10)

To this end, we are able to control I1 directly,

|I1|  "

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx+

C

"

Z

⌦
µ(⇢)|r(

rZ(⇢)p
µ(⇢)

)|2 dx

 "

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx+

C

"

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx,
(2.11)

where C is a universal positive constant. We calculate I2 to have

I2 =

Z

⌦
r(

⇢p
µ(⇢)

)⌦rZ(⇢) :
rZ(⇢)⌦rZ(⇢)

µ(⇢)
dx

=

Z

⌦

r⇢⌦rZ(⇢)

µ(⇢)
3
2

: (rZ(⇢)⌦rZ(⇢)) dx

�
Z

⌦

⇢

µ(⇢)2
r
p
µ(⇢)⌦rZ(⇢) : (rZ(⇢)⌦rZ(⇢)) dx

=

Z

⌦

⇢

µ(⇢)2µ(⇢)0
|rZ(⇢)|4 dx� 1

2

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx.

(2.12)
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Relying on (2.9)-(2.12), we have
Z

⌦
|r2

Z(⇢)|2 dx+

Z

⌦

⇢

µ(⇢)2µ0(⇢)
|rZ(⇢)|4 dx� (

1

4
+ ")

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx

 C

"

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx.

Since k1µ
0(s)s  µ(s), we have

s

µ2(s)µ0(s)
� (

1

4
+ ")

s
2

µ(s)3
� (k1 �

1

4
� ")

s
2

µ(s)3
> "

s
2

µ(s)3
,

where we choose k1 >
1
4 . This implies

Z

⌦
|r2

Z(⇢)|2 dx+ "

Z

⌦

⇢
2

µ(⇢)3
|rZ(⇢)|4 dx  C

"

Z

⌦
µ(⇢)|r2

s(⇢)|2 dx.

This ends the proof of part i). Concerning part ii), it su�ces to pass to the limit in the
inequality proved previously using the lower semi continuity on the left-hand side.

⇤
2.1.2. Drag terms control. We have to discuss three kind of drag terms: Linear drag term,
quadratic drag term and finally cubic drag term.

a) Linear drag terms. As in previous works [8, 49, 52], we need to choose a linear drag
with constant coe�cient

r0

Z t

0

Z

⌦
(w � 2rs(⇢)) · w dxdt = r0

Z t

0

Z

⌦
|w � 2rs(⇢)|2 dx dt

+ r0

Z t

0

Z

⌦
(w � 2rs(⇢)) · (2rs(⇢)) dx dt.

(2.13)

The second term on the right side of (2.13) reads

r0

Z t

0

Z

⌦
(w � 2rs(⇢)) · (2rs(⇢)) dx dt = r0

Z t

0

Z

⌦
⇢(w � 2rs(⇢)) · 2rs(⇢)

⇢
dx dt

= r0

Z t

0

Z

⌦
⇢(w � 2rs(⇢)) · 2rg(⇢) dx dt

= 2r0

Z t

0

Z

⌦
⇢tg(⇢) dx dt,

where g
0(⇢) = s0(⇢)

⇢ = µ0(⇢)
⇢2 and g(⇢) =

R ⇢
1

µ0(r)
r2 dr. Letting

G(⇢) =

Z ⇢

1

Z r

1

µ
0(⇣)

⇣2
d⇣ dr,

then

r0

Z

⌦
⇢tg(⇢) dx = r0

@

@t

Z

⌦
G(⇢) dx,

which implies

r0

Z t

0

Z

⌦
⇢tg(⇢) dx dt = r0

Z

⌦
G(⇢) dx.
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Meanwhile, since lim⇣!0 µ
0(⇣) = "1 > 0, for any |⇣| < ✏ and any small number ✏ > 0, we

have µ
0(⇣) � "1

2 . Thus, we have further estimate on G(⇢) as follows

G(⇢) =

Z ⇢

1

Z r

1

µ
0(⇣)

⇣2
d⇣ dr � "1

2

Z ⇢

1
(1� 1

r
) dr

=
"1

2
(⇢� 1� ln ⇢)

� �"1
4
(ln ⇢)�,

for any ⇢  ✏. Similarly, we can show that

G(⇢)  4"1(ln ⇢)+

for any ⇢  ✏. For given number ✏0 > 0, if ⇢ � ✏0, then we have

0  G(⇢)  C

Z ⇢

1

Z r

1
µ
0(⇣) d⇣ dr  Cµ(⇢)⇢.

b) Quadratic drag term. We use the same argument as in [13] to handle this term. The
quadratic drag term gives

r1

Z t

0

Z

⌦
⇢|w � 2rs(⇢)|(w � 2rs(⇢)) · w dxdt

= r1

Z t

0

Z

⌦
⇢|w � 2rs(⇢)|3 dx dt

+ r1

Z t

0

Z

⌦
⇢|w � 2rs(⇢)|(w � 2rs(⇢)) · (2rs(⇢)) dx dt.

(2.14)

The second drag term of the right–hand side can be controlled as follows

r1

����
Z t

0

Z

⌦
⇢|w � 2rs(⇢)|(w � 2rs(⇢)) · (2rs(⇢)) dx dt

����

 2r1

Z t

0

Z

⌦
µ(⇢)|u||Du| dx dt

 

Z t

0

Z

⌦
µ(⇢)|Du|2 dx dt+ r

2
1

Z t

0

Z

⌦
µ(⇢)|u|2 dx dt,

(2.15)

and

k
p

µ(⇢)|u|kL2(0,T ;L2(⌦))  Ck⇢
1
3 |u|kL3(0,T ;L3(⌦))k

p
µ(⇢)

⇢
1
3

kL6(0,T ;L6(⌦)).

Note that
Z t

0

Z

⌦

µ(⇢)3

⇢2
dx dt =

Z t

0

Z

0⇢1

µ(⇢)3

⇢2
dx dt+

Z t

0

Z

⇢�1

µ(⇢)3

⇢2
dx dt

 C

Z t

0

Z

0⇢1
µ(⇢)(µ0(⇢))2 dx dt+

Z t

0

Z

⇢�1

µ(⇢)3

⇢2
dx dt

 C +

Z t

0

Z

⇢�1

µ(⇢)3

⇢2
dx dt.

(2.16)
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From (1.9), for any ⇢ � 1, we have

c
0
⇢
↵1  µ(⇢)  c⇢

↵2 ,

where 2/3 < ↵1  ↵2 < 4. This yields to

Z t

0

Z

⇢�1

µ(⇢)3

⇢2
dx dt  c

Z t

0

Z

⇢�1
⇢
3↵2�2

dx dt  c

Z t

0

Z

⌦
⇢
10
dx (2.17)

for any time t > 0.
c) Cubic drag term. The non-linear cubic drag term gives

r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) · w dxdt

= r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|4 dx dt

+ r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) · (2rs(⇢)) dx dt.

(2.18)

The novelty now is to show that we control the second drag term of the right–hand side
using the Korteweg-type information on the left-hand side

r2

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|2(w � 2rs(⇢)) · (2rs(⇢)) dx dt

 r2

⇣3
4

Z t

0

Z

⌦

⇢

µ0(⇢)
|w � 2rs(⇢)|4 + (2)4

4

Z t

0

Z

⌦

⇢

µ0(⇢)
|rs(⇢)|4

⌘
.

(2.19)

Remark that the first term in the right-hand side may be absorbed using the first term
in (2.18). Let us now prove that if r2 small enough, the second term in the right-hand
side may be absorbed by the term coming from the capillary quantity in the energy. From
Lemma 2.1, we have

Z t

0

Z

⌦

⇢
2

µ3(⇢)
|rZ(⇢)|4 dx dt =

Z t

0

Z

⌦

1

µ(⇢)⇢2
|rµ(⇢)|4 dx dt.

It remains to check that
Z t

0

Z

⌦

⇢

µ0(⇢)
|rs(⇢)|4 =

Z t

0

Z

⌦

1

µ0(⇢)⇢3
|rµ(⇢)|4 dx dt  C

Z t

0

Z

⌦

1

µ(⇢)⇢2
|rµ(⇢)|4 dx dt.

This concludes assuming r2 small enough compared to r.

2.1.3. The -entropy estimate. Using the previous calculations, assuming r2 small enough
compared to r, and denoting

E[⇢, u+2rs(⇢),rs(⇢)] =

Z

⌦
⇢

✓
|u+ 2rs(⇢)|2

2
+ (1� )

|rs(⇢)|2

2

◆
+

⇢
�

� � 1
+
�⇢

10

9
+G(⇢),
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we get the following -entropy estimate

E[⇢, u+ 2rs(⇢),rs(⇢)](t) + r0

Z t

0

Z

⌦
|u|2 dx dt

+
r

2

Z

⌦
|r
Z ⇢

0

p
K(s) ds|2 dx+ 2(1� )

Z t

0

Z

⌦
µ(⇢)|Du|2 dx dt+ 20�

Z t

0

Z

⌦
µ
0(⇢)⇢8|r⇢|2 dx dt

+ 2(1� )

Z t

0

Z

⌦
(µ0(⇢)⇢� µ(⇢))(divu)2 dx dt+ 2

Z t

0

Z

⌦
µ(⇢)|A(u+ 2rs(⇢))|2 dx dt

+ 2

Z t

0

Z

⌦

µ
0(⇢)p0(⇢)

⇢
|r⇢|2 dx dt+ r1

Z t

0

Z

⌦
⇢|u|3 dx dt+ r2

4

Z t

0

Z

⌦

⇢

µ0(⇢)
|u|4 dx dt

+ r

Z t

0

Z

⌦
µ(⇢)|2r2

s(⇢)|2 dx dt+ 1

2
r

Z t

0

Z

⌦
�(⇢)|2�s(⇢)|2 dx dt


Z

⌦

✓
⇢0

✓
|w0|2

2
+ (1� )

|v0|2

2

◆
+

⇢
�
0

� � 1
+
�⇢

10
0

9
+

r

2
|r
Z ⇢0

0

p
K(s) ds|2 +G(⇢0)

◆
dx

+ C
r1

�

Z

⌦
E[⇢, u+ 2rs(⇢),rs(⇢)]dx dt.

(2.20)

It su�ces now to remark that
Z t

0

Z

⌦
µ(⇢)|Du|2 +

Z t

0

Z

⌦
(µ0(⇢)⇢� ⇢)|divu|2

=

Z t

0

Z

⌦
µ(⇢)|Du� 1

3
divu Id|2 dxdt+

Z t

0

Z

⌦
(µ0(⇢)⇢� µ(⇢) +

1

3
µ(⇢))|divu|2.

Note that ↵1 > 2/3, there exists " > 0 such that

µ
0(⇢)⇢� 2

3
µ(⇢) > "µ(⇢).

Such information and the control of
p
µ(⇢)|A(u) + 2rs(⇢)| in L

2(0, T ;L2(⌦)) allow us,
using the Grönwall Lemma and the constraints on the parameters, to get the uniform
estimates (1.23)–(1.25).

Now we can show (1.26). First, we have

rµ(⇢) =
rµ(⇢)
p
⇢

p
⇢ 2 L

1(0, T ;L1(⌦)),

due to the mass conservation and the uniform control on rµ(⇢)/
p
⇢ given in (1.23). Let

us now write the equation satisfied by µ(⇢) namely

@tµ(⇢) + div(µ(⇢)u) +
�(⇢)

2
divu = 0.

Recalling that �(⇢) = 2(µ0(⇢)⇢� µ(⇢)) and the hypothesis on µ(⇢), we get

d

dt

Z

⌦
µ(⇢)  C

�Z

⌦
|�(⇢)||divu|2 +

Z

⌦
µ(⇢)

�
,

and therefore
µ(⇢) 2 L

1(0, T ;L1(⌦)),
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if µ(⇢0) 2 L
1(⌦) due to the fact that

p
|�(⇢)|divu 2 L

2(0, T ;L2(⌦)). Now, we observe that
µ(⇢)/

p
⇢ is smaller than 1 for ⇢  1 because ↵1 > 2/3, and smaller than µ(⇢) for ⇢n > 1,

then
µ(⇢)
p
⇢

2 L
1(L1).

Meanwhile, thanks to (1.9), we have

|r(µ(⇢)/
p
⇢)| 

����
rµ(⇢)
p
⇢

����+
µ(⇢)

2⇢
p
⇢
|r⇢| 

✓
1 +

1

↵1

◆ ����
rµ(⇢)
p
⇢

���� .

By (1.23), r(µ(⇢)/
p
⇢) is bounded in L

1(0, T ;L2(⌦)) and finally µ(⇢)/
p
⇢ is bounded in

L
1(0, T ; (L6(⌦)). Thus, we have that

µ(⇢)u =
µ(⇢)
p
⇢

p
⇢u,

is uniformly bounded in L
1(0, T ;L3/2(⌦)). Let us come back to the equation satisfied by

µ(⇢) which reads

@tµ(⇢) + div(µ(⇢)u) +
�(⇢)

2
divu = 0.

Recalling that �(⇢)divu 2 L
1(0, T ;L1(⌦)), then we get the conclusion on @tµ(⇢). Let us

now to prove that

Z(⇢) =

Z ⇢n

0

p
µ(s)µ0(s)

s
ds 2 L

1+((0, T )⇥ ⌦) uniformly.

Note first that

0 
p
µ(s)µ0(s)

s
 ↵2

µ(s)3/2

s2
 c2↵2(s

3↵1/2�21s1 +
µ(s)3/2�

s2�
1s�1).

There exists " > 0 such that ↵1 > 2/3 + ", thus

0 
p
µ(s)µ0(s)

s
 c2↵2(s

"�11s1 +
µ(s)3/2�

s2�
1s�1).

Note that µ0(s) > 0 for s > 0 and the definition of Z(⇢), we get

0  Z(⇢)  C(⇢" + µ(⇢)3/2�)

with C independent of n. Thus Z(⇢) 2 L
1(0, T ;L1+(⌦)) uniformly with respect to n.

Bound on Z1(⇢) follows the similar lines.

2.2. Compactness Lemmas. In this subsection, we provide general compactness lem-
mas which will be used several times in this paper.

Some uniform compactness.

Lemma 2.2. Assume we have a sequence {⇢n}n2N satisfying the estimates in Theorem
1.2, uniformly with respect to n. Then, there exists a function ⇢ 2 L

1(0, T ;L�(⌦)) such
that, up to a subsequence,

µ(⇢n) ! µ(⇢) in C([0, T ];L3/2(⌦) weak),

and
⇢n ! ⇢ a.e. in (0, T )⇥ ⌦.
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Moreover
⇢n ! ⇢ in L

(4�/3)+((0, T )⇥ ⌦),

s
P 0(⇢n)⇢n
µ0(⇢n)

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
*

s
P 0(⇢)⇢

µ0(⇢)
r
⇣Z ⇢

0

r
P 0(s)µ0(s)

s
ds

⌘
in L

1((0, T )⇥⌦)

and s
P 0(⇢n)⇢n
µ0(⇢n)

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
2 L

1+((0, T )⇥ ⌦).

If �n > 0 is such that �n ! � � 0, then

�n⇢
10
n ! �⇢

10 in L
4
3 ((0, T )⇥ ⌦).

Proof. From the estimate on µ(⇢n) and Aubin-Lions lemma, up to a subsequence, we
have

µ(⇢n) ! µ(⇢) in C([0, T ];L3/2(⌦) weak)

and therefore using that µ0(s) > 0 on (0,+1) with µ(0) = 0, we get the conclusion on ⇢n.
Let us now recall that

↵1

⇢n
 µ

0(⇢n)

µ(⇢)
 ↵2

⇢n
(2.21)

and therefore
c1⇢

↵2
n  µ(⇢n)  c2⇢

↵1
n for ⇢n  1,

and
c1⇢

↵1
n  µ(⇢n)  c2⇢

↵2
n for ⇢ � 1.

with c1 and c2 independent on n. Note that
s

p0(⇢n)µ0(⇢n)

⇢n
r⇢n 2 L

1(0, T ;L2(⌦)) uniformly. (2.22)

Let us prove that there exists " such that

I0 =

Z T

0

Z

⌦
⇢

4�
3 +"
n < C

with C independent on n and the parameters. We first remark that it su�ces to look at
it when ⇢n � 1 and to remark there exists " such that "  (� � 1)/3. Let us take such
parameter then

Z T

0

Z

⌦
⇢

4�
3 +"
n 1⇢�1 

Z T

0

Z

⌦
⇢

2�
3 +�� 1

3
n 1⇢�1 

Z T

0

Z

⌦
⇢

2�
3 +�+↵1�1
n 1⇢�1

recalling that ↵1 > 2/3. Following [37], it remains to prove that

I1 =

Z T

0

Z

⌦

⇥
⇢
[5�+3(↵1�1)]/3
n 1⇢�1

⇤
< +1

uniformly. Denoting

I2 =

Z T

0

Z

⌦

⇥
⇢
[5�+3(↵2�1)]/3 1⇢1

⇤
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and using the bounds on µ(⇢n) in terms of power functions in ⇢, which are di↵erent if
⇢n � 1 or ⇢n  1, we can write:

I1  I1 + I2  Ca

Z T

0

Z

⌦
⇢
2�/3
n P

0(⇢n)µ(⇢n)  Ca

Z T

0
k⇢�nk

2/3
L1(⌦)kP

0(⇢n)µ(⇢n)kL3(⌦)

where C does not depend on n. Using the Poincaré-Wirtinger inequality, one obtains that

kP 0(⇢n)µ(⇢n)kL3(⌦) = k
p

P 0(⇢n)µ(⇢n)k2L6(⌦)

 k
p

P 0(⇢n)µ(⇢n)kL1(⌦) + kr
⇥p

P 0(⇢n)µ(⇢n)
⇤
k2L2(⌦).

Let us now check that the two terms are uniformly bounded in time. First we caculate

r
⇥p

P 0(⇢n)µ(⇢n)
⇤
=

P
00(⇢n)µ(⇢n) + P

0(⇢n)µ0(⇢n)p
P 0(⇢n)µ(⇢n)

r⇢n

and using (2.21), we can check that

P
00(⇢n)µ(⇢n) + P

0(⇢n)µ0(⇢n)p
P 0(⇢n)µ(⇢n)



s
P 0(⇢n)µ0(⇢n)

⇢n
.

Therefore, using (2.22), uniformly with respect to n, we get

sup
t2[0,T ]

kr
⇥p

P 0(⇢n)µ(⇢n)
⇤
k2L2(⌦) < +1.

Let us now check that uniformly with respect to n

sup
t2[0,T ]

k
p

P 0(⇢n)µ(⇢n)kL1(⌦) < +1. (2.23)

Using the bounds on µ(⇢n), we have
Z

⌦

p
P 0(⇢n)µ(⇢n)  C

Z

⌦

h
⇢
(��1+↵1)/2
n 1⇢n1 + ⇢

(��1+↵2)/2
n 1⇢n�1

i

with C independent on n. Recalling that ↵1 � 2/3 and ↵2 < 4, we can check that
Z

⌦

p
P 0(⇢n)µ(⇢n)  C

Z

⌦

h
⇢
�/3
n + ⇢

�
2
n ⇢

3
2
n

i
,

and therefore using that ⇢�n 2 L
1(0, T ;L1(⌦)) and ⇢n 2 L

1(0, T ;L10(⌦)), we get (2.23).
This ends the proof of the convergence of ⇢n to ⇢ in L

(4�/3)+((0, T )⇥ ⌦.

Let us now focus on the convergence of
s

P 0(⇢n)⇢n
µ0(⇢n)

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
. (2.24)

First let us recall that

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
2 L

1(0, T ;L2(⌦)) uniformly.

Let us now prove that s
P 0(⇢n)⇢n
µ0(⇢n)

2 L
2+((0, T )⇥ ⌦). (2.25)
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Recall first that ↵1 >
2
3 , we just have to consider ⇢n � 1. We write

P
0(⇢n)⇢n
µ0(⇢n)

1⇢n�1  C⇢
��↵1+1
n 1⇢n�1  C⇢

�+1/3
n 1⇢n�1  C⇢

4�
3
n 1⇢n�1.

We can use the fact that ⇢(4�/3)
+

n 2 L
1((0, T )⇥⌦) uniformly to conclude on (2.25). Thanks

to s
P 0(⇢n)⇢n
µ0(⇢n)

!

s
P 0(⇢)⇢

µ0(⇢)
in L

2((0, T )⇥ ⌦)

and

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
! r

⇣Z ⇢

0

r
P 0(s)µ0(s)

s
ds

⌘
weakly in L

2((0, T )⇥ ⌦),

we have the weak convergence of (2.24) in L
1((0, T )⇥ ⌦).

We now investigate limits on u independent of the parameters. We need to di↵erentiate
the case with hyper-viscosity "2 > 0, from the case without. In the case with hyper-
viscosity, the estimate depends on "1 because of the drag force r1, while the estimate in
the case "2 = 0 is independent of all the other parameters. This is why we will consider
the limit "2 converges to 0 first.

Lemma 2.3. Assume that "1 > 0 is fixed. Then, there exists a constant C > 0 depending
on "1 and Cin, but independent of all the other parameters (as long as they are bounded),
such that for any initial values (⇢0,

p
⇢0u0) verifying (1.29) for Cin > 0 we have

k@t(⇢u)kL1+(0,T ;W�s,2(⌦))  C,

kr(⇢u)kL2(0,T ;L1(⌦))  C.

Assume now that "2 = 0. Let � : R+ ! R be a smooth function, positive for ⇢ > 0,
such that

�(⇢) + |�0(⇢)|  Ce
� 1

⇢ , for ⇢  1,

�(⇢) + |�0(⇢)|  Ce
�⇢

, for ⇢ � 2.

Assume that the initial values (⇢0,
p
⇢0u0) verify (1.29) for a fixed Cin > 0. Then, there

exists a constant C > 0 independent of "1, r0, r1, r2, � (as long as they are bounded), such
that

k@t [�(⇢)u] kL1+(0,T ;W�2,1(⌦))  C,

kr [�(⇢)u] kL2(0,T ;L1(⌦))  C.

Proof. We split the proof into the two cases.

Case 1: Assume that "1 > 0. From the equation on ⇢u and the a priori estimates, we
find directly that

k@t(⇢u)kL1+(0,T ;W�s,2(⌦))  C+(
r1

"1
)
1
4 k⇢k

1
4
L1(0,T )⇥⌦)

✓
r1

Z T

0

Z

⌦

⇢

µ0(⇢)
|u|4 dx dt

◆3/4

 C(1+1/"1).
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We have µ(⇢) � "1⇢, and from (1.23), we have the a priori estimate

krp
⇢k2L1(0,T ;L2(⌦)) 

C

"1
.

Hence

kr(⇢u)kL2(0,T ;L1(⌦)) 
����

⇢
p
µ(⇢)

����
L1(0,T ;L2(⌦))

kpµ(⇢)rukL2(0,T ;L2(⌦)))

+2krp
⇢kL1(0,T ;L2(⌦))k

p
⇢ukL1(0,T ;L2(⌦))

 C.

Case 2: Assume now that "2 = 0. Multiplying the equation on (⇢u) by �(⇢)/⇢, we get,
as for the renormalization, that

k@t [�(⇢)u] kL1+(0,T ;W�2,1(⌦))  C.

Note that

kr [�(⇢)u] kL2(0,T ;L1(⌦)) 
����

�(⇢)
p
µ(⇢)

����
L1

kpµ(⇢)rukL2(L2)

+2k�
0(⇢)

µ0(⇢)
kL1((0,T )⇥⌦)kµ0(⇢)rp

⇢kL1(0,T ;L2(⌦))k
p
⇢ukL1(0,T ;L2(⌦))

 C.

⇤
Lemma 2.4. Assume either that "2,n = 0, or "1,n = "1 > 0. Let (⇢n,

p
⇢nun) be a

sequence of solutions for a family of bounded parameters with uniformly bounded initial
values verifying (1.29) with a fixed Cin. Assume that there exists ↵ > 0, and a smooth
function h : R+⇥R3 ! R such that ⇢↵n is uniformly bounded in L

p((0, T )⇥⌦) and h(⇢n, un)
is uniformly bounded in L

q((0, T )⇥ ⌦), with

1

p
+

1

q
< 1.

Then, up to a subsequence, ⇢n converges to a function ⇢ strongly in L
1,

p
⇢nun converges

weakly to a function q in L
2. We define u = q/

p
⇢ whenever ⇢ 6= 0, and u = 0 on the

vacuum where ⇢ = 0. Then ⇢↵nh(⇢n, un) converges strongly in L
1 to ⇢↵h(⇢, u).

Proof. Thanks to the uniform bound on the kinetic energy
R
⇢n|un|2, and to Lemma 2.2,

up to a subsequence, ⇢n converges strongly in L
1((0, T )⇥ ⌦) to a function ⇢, and

p
⇢nun

converges weakly in L
2((0, T )⇥ ⌦) to a function q.

We want to show that, up to a subsequence, un1{⇢>0} converges almost everywhere to
u1{⇢>0}. We consider the two cases. First, if "1,n = "1 > 0, then from Lemma 2.3 and
the Aubin-Lions Lemma, ⇢nun converges strongly in C

0(0, T ;L1(⌦)) to
p
⇢q = ⇢u. Up

to a subsequence, both ⇢n and ⇢nun converges almost everywhere to, respectively, ⇢ and
⇢u. For almost every (t, x) 2 {⇢ > 0}, for n big enough, ⇢n(t, x) > 0, so un = ⇢nun/⇢n

at this point converges u. If "2,n = 0 we use the second part of Lemma 2.3 and thanks
to the Aubin-Lions Lemma, �(⇢n)un converges strongly in C

0(0, T ;L1(⌦)) to �(⇢)u. We
still have, up to a subsequence, both ⇢n and �(⇢n)un converging almost everywhere to,
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respectively, ⇢ and �(⇢)u (we used the fact that �(r)/
p
r = 0 at r = 0). Since �(r) 6= 0

for r 6= 0, for almost every (t, x) 2 {⇢ > 0}, for n big enough, �(⇢n)(t, x) > 0, so
un = �(⇢n)un/�(⇢n) at this point converges u.

Note that

⇢
↵
nh(⇢n, un) = ⇢

↵
nh(⇢n, un)1{⇢n>0} + ⇢

↵
nh(⇢n, un)1{⇢n=0}.

The first term converges almost everywhere to ⇢↵h(⇢, u)1{⇢>0}, and therefore to ⇢↵h(⇢, u)
in L

1 by the Lebesgue’s theorem. The second part can be estimated as follows

k⇢↵nh(⇢n, un)1{⇢n=0}kL1  kh(⇢n, un)kLqk⇢↵n1{⇢=0}kLp�" .

But ⇢↵n1{⇢=0} converges almost everywhere to 0, by the Lebesgue’s theorem, the last term
converges to 0. ⇤

Some compactness when the parameters are fixed. For any positive fixed �, r0, r1, r2 and
r, to recover a weak solution to (1.17), we only need to handle the compactness of the
terms

r⇢nr
✓p

K(⇢n)�(

Z ⇢n

0

p
K(s) ds)

◆

and

r1
⇢n

µ0(⇢n)
|un|2un.

Indeed due to the term r2⇢n|un|un and the fact that infs2[0,+1) µ
0(s) > "1 > 0, one obtains

the compactness for all other terms in the same way as in [13, 40].

Capillarity term. To pass to the limits in

r⇢nr
✓p

K(⇢n)�(

Z ⇢n

0

p
K(s) ds)

◆
,

we use the identity

⇢r
✓p

K(⇢n)�(

Z ⇢n

0

p
K(s) ds)

◆

= 4
h
2div(

p
µ(⇢n)rrZ(⇢n))��(

p
µ(⇢n)rZ(⇢n)

i

+
h
r
⇥
(
2�(⇢n)p
µ(⇢n)

+ k(⇢n))�Z(⇢n)
⇤
�rdiv[k(⇢n)rZ(⇢n)]

i
(2.26)
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where Z(⇢n) =

Z ⇢n

0
[(µ(s))1/2µ0(s)]/s ds and k(⇢n) =

Z ⇢n

0

�(s)µ0(s)

µ(s)3/2
ds. It allows us to

rewrite the weak form coming for the capillarity term as follows
Z t

0

Z

⌦

p
K(⇢n)�(

Z ⇢n

0

p
K(s) ds)div(⇢n ) dx dt

= 4

Z t

0

Z

⌦

�
2
p
µ(⇢n)rrZ(⇢n) : r +

p
µ(⇢n)rZ(⇢n) ·� 

�

+

Z t

0

Z

⌦

� 2�(⇢n)p
µ(⇢n)

+ k(⇢n))�Z(⇢n) div + k(⇢n)rZ(⇢n).rdiv 
�

= A1 +A2.

In fact, with Lemma 2.2 at hand, we are able to have compactness of A1 and A2 easily.
Concerning A1, we know that

p
µ(⇢n) !

p
µ(⇢) in L

p((0, T );Lq(⌦)) for all p < +1 and q < 3.

Note that rrZ(⇢n) is uniformly bounded in L
2(0, T ;L2(⌦)), we have rZ(⇢n) is uniformly

bounded in L
2(0, T ;L6(⌦)), because

R
⌦rZ(⇢n) = 0 due to the periodic condition. Thus

we have following weak convergence
Z

⌦

p
µ(⇢n)rZ(⇢n) ·� dx !

Z

⌦

p
µrZ ·� dx,

and Z

⌦

p
µ(⇢n)rrZ(⇢n)r dx !

Z

⌦

p
µrrZ : r dx,

thanks to Lemma 2.2. We conclude that Z = Z(⇢), thanks to the bound on Z(⇢n) and
the strong convergence on ⇢n. Thus using the compactness on ⇢n, the passage to the limit
in A1 is done. Concerning A2, we just have to look at the coe�cients

k(⇢n) =

Z ⇢n

0
�(s)µ0(s)/µ(s)3/2 ds, j(⇢n) = 2�(⇢n)/

p
µ(⇢n).

Recalling the assumptions on µ(s) and the relation �(s) = 2(µ0(s)s� µ(s)), we have

2(↵1 � 1)µ(s)  �(s)  2(↵2 � 1)µ(s),

and
↵1p
µ(s)s

 µ
0(s)

µ(s)3/2
 ↵2p

µ(s)s
.

This means that the coe�cients k(⇢n) and j(⇢n) are comparable to
p

µ(⇢n). Using the
compactness of the density ⇢n and the informations on µ(⇢n) given in Corollary 2.2, we
conclude the compactness of A2 doing as for A1.

Cubic non-linear drag term. We will use Lemma 2.4 to show the compactness of
⇢n

µ0(⇢n)
|un|2un.

More precisely, we write

⇢n

µ0(⇢n)
|un|2un = ⇢

1
6
n

r
⇢n

µ0(⇢n)
|un|2⇢

1
3
n |un|

1p
µ0(⇢n)

= ⇢
1/6
n h(⇢n, |un|), (2.27)
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By Lemma 2.2, there exists " > 0 such that ⇢
1
6
n is uniformly bounded in L

1(0, T ;L6�+"(⌦))
and ⇢n ! ⇢ a.e., so

⇢

1
6
n ! ⇢

1
6 in L

6�+"((0, T )⇥ ⌦)). (2.28)

Note that
q

⇢n
µ0(⇢n)

|un|2 is uniformly bounded in L
2(0, T ;L2(⌦)), and infs2[0,+1) µ

0(s) �

"1 > 0, ⇢
1
3
n |un| 1p

µ0(⇢n)
is uniformly bounded in L

3(0, T ;L3(⌦)), thus

h(⇢n, |un|) =
r

⇢n

µ0(⇢n)
|un|2⇢

1
3
n |un|

1p
µ0(⇢n)

2 L
6
5 (0, T ;L

6
5 (⌦)) uniformly. (2.29)

By Lemma 2.4 and (2.27)–(2.29), we deduce that
Z t

0

Z

⌦

⇢n

µ0(⇢n)
|un|2un dx dt !

Z t

0

Z

⌦

⇢

µ0(⇢)
|u|2u dx dt.⇤

Relying on the compactness stated in this section and the compactness in [40], we are
able to follow the argument in [13] to show Theorem 1.2. Thanks to term r1⇢n|un|un, we
have Z T

0

Z

⌦
r1⇢n|un|3 dx dt  C.

This gives us that
p
⇢nun ! p

⇢u strongly in L
2(0, T ;L2(⌦)).

With above compactness of this section, we are able to pass to the limits for recovering a
weak solution. In fact, to recover a weak solution to (1.17), we have to pass to the limits
as the order of "4 ! 0, n ! 1, "3 ! 0 and " ! 0 respectively. In particular, when
passing to the limit "3 tends to zero, we also need to handle the identification of v with
2rs(⇢). Following the same argument in [13], one shows that v and 2rs(⇢) satisfy the
same moment equation. By the regularity and compactness of solutions, we can show the
uniqueness of solutions. By the uniqueness, we have v = 2rs(⇢). This ends the proof of
Theorem 1.2.

3. From weak solutions to renormalized solutions to the approximation

This section is dedicated to show that a weak solution is a renormalized solution for
our last level of approximation namely to show Theorem 1.3. First, we introduce a new
function

[f(t, x)]" = f ⇤ ⌘"(t, x), for any t > ", and [f(t, x)]x" = f ⇤ ⌘"(x)

where

⌘"(t, x) =
1

"N+1
⌘(

t

"
,
x

"
), and ⌘"(x) =

1

"N
⌘(

x

"
),

with ⌘ a smooth nonnegative even function compactly supported in the space time ball of
radius 1, and with integral equal to 1. In this section, we will rely on the following two
lemmas to proceed our ideas. Let @ be a partial derivative in one direction (space or time)
in these two lemmas. The first one is the commutator lemma of DiPerna and Lions, see
[38].
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Lemma 3.1. Let f 2 W
1,p(RN⇥R+), g 2 L

q(RN⇥R+) with 1  p, q  1, and 1
p+

1
q  1.

Then, we have

k[@(fg)]" � @(f([g]"))kLr(RN⇥R+)  CkfkW 1,p(RN⇥R+)kgkLq(RN⇥R+)

for some C � 0 independent of ", f and g, r is determined by 1
r = 1

p + 1
q . In addition,

[@(fg)]" � @(f([g]")) ! 0 in L
r(RN ⇥ R+)

as " ! 0 if r < 1. Moreover, in the same way if f 2 W
1,p(RN ), g 2 L

q(RN ) with
1  p, q  1, and 1

p + 1
q  1. Then, we have

k[@(fg)]x" � @(f([g]x" ))kLr(RN )  CkfkW 1,p(RN )kgkLq(RN )

for some C � 0 independent of ", f and g, r is determined by 1
r = 1

p + 1
q . In addition,

[@(fg)]x" � @(f([g]x" )) ! 0 in L
r(RN )

as "! 0 if r < 1.

We also need another very standard lemma as follows.

Lemma 3.2. If f 2 L
p(⌦⇥R+) and g 2 L

q(⌦⇥R+) with 1
p +

1
q = 1 and H 2 W

1,1(R),
then

Z T

0

Z

⌦
[f ]"g dx dt =

Z T

0

Z

⌦
f [g]" dx dt,

lim
"!0

Z T

0

Z

⌦
[f ]"g dx dt =

Z T

0

Z

⌦
fg dx dt,

@[f ]" = [@f ]",

lim
"!0

kH([f ]")�H(f)kLs
loc
(⌦⇥ R+) = 0, for any 1  s < 1.

We define a nonnegative cut-o↵ functions �m for any fixed positive m as follows.

�m(y)

8
>>>>>><

>>>>>>:

= 0, if 0  y  1
2m ,

= 2my � 1, if 1
2m  y  1

m ,

= 1, if 1
m  y  m,

= 2� y
m , if m  y  2m,

= 0, if y � 2m.

(3.1)

It enables to define an approximated velocity for the density bounded away from zero and
bounded away from infinity. It is crucial to process our procedure, since the approximated
velocity gradient is bounded in L

2((0, T )⇥ ⌦). In particular, we introduce um = u�m(⇢)
for any fixed m > 0. Thus, we can show rum is bounded in L

2(0, T ;L2(⌦)) due to (3.1).
In fact,

rum = �
0
m(⇢)u⌦r⇢+ �m(⇢)

1p
µ(⇢)

Tµ

=
�
�
0
m(⇢)

(µ(⇢)⇢)1/4

(µ0(⇢))
3
4

��
(

⇢

µ0(⇢)
)
1
4u
�
⌦
� µ

0(⇢)

⇢
1
2µ(⇢)

1
4

r⇢
�
+ �m(⇢)

1p
µ(⇢)

Tµ.
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Similarly to [34], thanks to the cut-o↵ function (3.1) and form fixed, �0m(⇢)(µ(⇢)⇢)
1
4 /(µ0(⇢))

3
4

and �m(⇢)/
p
µ(⇢) are bounded. Then rum is bounded in L

2((0, T ) ⇥ ⌦) using the esti-
mates with r > 0 and r2 > 0, and hence for ' 2 W

2,+1(R), we get r'0((um)j) is bounded
in L

2((0, T )⇥ ⌦) for j = 1, 2, 3.

The following estimates are necessary. We state them in the lemma as follows.

Lemma 3.3. There exists a constant C > 0 depending only on the fixed solution (
p
⇢,
p
⇢u),

and Cm depending also on m such that

k⇢kL1(0,T ;L10(⌦)) + k⇢uk
L3(0,T ;L

5
2 (⌦))

+ k⇢|u|2k
L2(0,T ;L

10
7 (⌦))

+ kpµ
�
|Sµ|+ r|Sr|

�
k
L2(0,T ;L

10
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+ k�(⇢)
µ(⇢)

kL1((0,T )⇥⌦)

+ k

s
P 0(⇢n)⇢n
µ0(⇢n)

r
⇣Z ⇢n

0

r
P 0(s)µ0(s)

s
ds

⌘
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P

0
�(⇢n)⇢n
µ0(⇢n)

r
⇣Z ⇢n

0

r
P

0
�(s)µ

0(s)

s
ds

⌘
kL1+((0,T )⇥⌦) + kr0ukL2((0,T )⇥⌦)  C,

and

kr�m(⇢)kL4((0,T )⇥⌦ + k@t�m(⇢)kL2((0,T⇥⌦))  Cm.

Proof. By (1.24), we have ⇢ 2 L
1(0, T ;L10(⌦)). Now we have rp

⇢ 2 L
1(0, T ;L2(⌦))

because µ
0(s) � "1 and µ

0(⇢)r⇢/p⇢ 2 L
1((0, T );L2(⌦)). Note that

⇢u = ⇢
2
3 ⇢

1
3u,

⇢
2
3 2 L

1(0, T ;L15(⌦)) and ⇢
1
3u 2 L

3(0, T ;L3(⌦)), ⇢u is bounded in L
3(0, T ;L

5
2 (⌦)).

By (1.24), we have ( ⇢
µ0(⇢))

1/2|u|2 2 L
2((0, T )⇥ ⌦). Note that

⇢|u|2 = (⇢µ0(⇢))1/2(
⇢

µ0(⇢)
)1/2|u|2,

it is bounded in L
2(0, T ;L

10
7 (⌦)), where we used facts that µ(⇢) 2 L

1(0, T ;L5/2(⌦))
(recalling that for ⇢ � 1 we have µ(⇢)  c⇢

4 and ⇢ 2 L
1(0, T ;L10(⌦))) and µ

0(⇢)⇢ 
↵2µ(⇢).

Similarly, we get
p
µ(|Sµ| + r|Sr|) 2 L

2(0, T ;L10/7(⌦)) by (1.23). The L
1((0, T ) ⇥ ⌦)

bound for �(⇢)/µ(⇢) may be obtained easily due to (1.3) and (1.9).

Concerning the estimates related to the pressures, we just have to look at the proof in
Lemma 2.2. Note that

r�m(⇢) = �
0
m(⇢)r⇢ = �

0
m(⇢)

⇢
1/2

µ(⇢)1/4

µ0(⇢)
[

µ
0(⇢)

⇢1/2µ(⇢)1/4
r⇢]

by (1.25), we conclude that r�m(⇢) is bounded in L
4((0, T )⇥⌦). It su�ces to recall that

thanks to the cut-o↵ function �m, we have �0m(⇢)⇢1/2µ(⇢)1/4/µ0(⇢) bounded in L
1((0, T )⇥
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⌦). Similarly, we write

@t�m(⇢) = �
0
m(⇢)@t⇢ = ��0m(⇢)div(⇢u)

= ��0m(⇢)
⇢
p
µ
Tr(Tµ)�

�
�
0
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1
4
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3
4

�� ⇢
1
4

(µ0(⇢))
1
4

u
�
·
� µ
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⇢1/2µ(⇢)1/4
r⇢
�
,

which provides @t�m(⇢) bounded in L
2(0, T ;L2(⌦)) thanks to (1.23), (1.24) and (1.25).

and using the cut-o↵ function property to bound the extra quantiies in L
1((0, T )⇥⌦) as

previously.
⇤

Lemma 3.4. The -entropy weak solution constructed in Theorem 1.2 is a renormalized
solution, in particular, we have

Z T
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�
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(3.2)

where
p

µ(⇢)'0
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0
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3
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2
p
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'
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(3.4)
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Proof. We choose a function
h
�
0
m([⇢]") 

i

"
as a test function for the continuity equation

with  2 C
1
c ((0, T )⇥ ⌦). Using Lemma 3.2, we have

0 =

Z T

0

Z

⌦

�
@t

h
�
0
m([⇢]") 
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"
⇢+ ⇢u ·r

h
�
0
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�
dx dt

= �
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�
0
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0
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�
dx dt
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0
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Tr(Tµ) + 2
p
⇢u ·rp

⇢
⇤
"

!
dx dt.

(3.5)

Using Lemma 3.3 and Lemma 3.2, and passing into the limit as " goes to zero, from (3.5),
we get:

0 =
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0
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�
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0
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⇢
p
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0
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p
µ
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dx dt,

(3.6)

thanks to  r�m(⇢) 2 L
4((0, T )⇥ ⌦), u 2 L

2((0, T )⇥ ⌦), and  compactly supported.
Similarly, we can choose [ �m(⇢)]" as a test function for the momentum equation. In

particular, we have the following lemma.
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Proof. By Lemma 3.1, we can show that
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For the second term, we have
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where [f(t, x)]" = f(t, x) ⇤ ⌘"(t, x) and [f(t, x)]x" = f ⇤ ⌘"(x) with " > 0 a small enough
number. We write R1 in the following way

R1 =

Z T

0

Z

⌦
 �m(⇢)

⇥
div(⇢u⌦ u)

⇤
"
dx dt�

Z T

0

Z

⌦
 �m(⇢)

⇥
div(⇢u⌦ u)

⇤x
"
dx dt

=

Z T

0

Z

⌦
 r�m(⇢) :

⇥
⇢u⌦ u

⇤
"
dx dt�

Z T

0

Z

⌦
 r�m(⇢) :

⇥
⇢u⌦ u

⇤x
"
dx dt.

Thanks to Lemma 3.3, ⇢|u|2 2 L
2(0, T ;L10/7(⌦)) and  r�m(⇢) 2 L

4((0, T ) ⇥ ⌦), we
conclude that R1 ! 0 as "! 0. Meanwhile, we can apply Lemma 3.1 to R2 directly, thus
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By Lemma 3.1, we have R21 ! 0 as " ! 0. The term R22 will be calculated in the
following way,
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For the other terms in the momentum equation, we can follow the same way as above
method for (3.6) to have
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(3.7)

The goal of this subsection is to derive the formulation of renormalized solution following
the idea in [34]. We choose the function
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as " goes to zero. Putting these two limits together, we have
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(3.8)

Now we should pass to the limit in (3.8) as m goes to infinity. To this end, we should keep
the following convergences in mind:

�m(⇢) converges to 1, for almost every(t, x) 2 R+ ⇥ ⌦,
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nated convergence theorem yields that A2m converges to zero as m ! 1. Meanwhile, the
Dominated convergence theorem also gives us A1m converges to Tµ in L
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From now, we denote R' = 2 '00(u)Tµ((Sµ + rSr) + �(⇢)
2µ(⇢)Tr((Sµ + rSr)Id). This ends the

proof of Theorem 1.3.
⇤

4. renormalized solutions and weak solutions

The main goal of this section is the proof of Theorem 1.1 that obtains the existence of
renormalized solutions of the Navier-Stokes equations without the additional terms, thus
the existence of weak solutions of the Navier-Stokes equations.

4.1. Renormalized solutions. In this subsection, we will show the existence of renor-
malized solutions. To this end, we need the following lemma of stability.

Lemma 4.1. For any fixed ↵1 < ↵2 as in (1.9) and consider sequences �n, r0n, r1n and
r2n, such that ri,n ! ri � 0 with i = 0, 1, 2 and then �n ! � � 0. Consider a family of
µn : R+ ! R+ verifying (1.9) and (1.10) for the fixed ↵1 and ↵2 such that

µn ! µ in C
0(R+).

Then, if (⇢n, un) verifies (1.23)-(1.26), up to a subsequence, still denoted n, the following
convergences hold.
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that ⇢n ! ⇢ a.e. with µ(⇢) = µ̃(t, x). Together with (4.1) and ⇢n is uniformly bounded in
L
1(0, T ;L�(⌦)), thus we get part 1.

Note that

rµ(⇢n)p
⇢n

=

p
⇢nrµ(⇢n)

⇢n
� µ(⇢n)r⇢n

2⇢n
p
⇢n

,

thus ����r
µ(⇢n)p
⇢n

����  C |p⇢n|
����
rµ(⇢n)p

⇢n

���� ,
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so rµ(⇢n)p
⇢n

is bounded in L
1(0, T ;L2(⌦)), thanks to (1.23). Using (1.26), we have µ(⇢n)p

⇢n
is

bounded in L
1(0, T ;W 1,2(⌦)), thus it is uniformly bounded in L

1(0, T ;L6(⌦)).
On the other hand,

p
⇢nun is uniformly bounded in L

1(0, T ;L2(⌦)). From Lemma 2.4,
we have

µ(⇢n)un =
µ(⇢n)p
⇢n

p
⇢nun ! µ(⇢)u in L

1(0, T ;Lq(⌦))

for any 1  q <
3
2 . Since (Tµ)n is bounded in L

2(0, T ;L2(⌦)), and so, up to a subsequence,
converges weakly in L

2(0, T ;L2(⌦)) to a function Tµ. Using Lemma 2.4, this gives part 4.
⇤

With Lemma 4.1, we are able to recover the renormalized solutions of Navier-Stokes
equations without any additional term by letting n ! 1 in (3). We state this result in
the following Lemma. In this lemma, we fix µ such that "1 > 0.

Lemma 4.2. For any fixed "1 > 0, there exists a renormalized solution (
p
⇢,
p
⇢u) to the

initial value problem (1.1)-(1.2).

Proof. We can use Lemma 4.1 to pass to the limits for the extra terms. We will have to
follow this order: let r2 goes to zero, then r1 tends to zero, after that r0, �, r go to zero
together.
– If r2 = r2(n) ! 0, we just write

r2
⇢n

µ0(⇢n)
|un|2un = r

1
4
2

� ⇢n

µ0(⇢n)

� 1
4
� ⇢n

µ0(⇢n)

� 3
4 |un|2un,

and µ
0(⇢n) � "1 > 0, so

� ⇢n
µ0(⇢n)

� 1
4  C|⇢n|

1
4 , thus,

r2
⇢n

µ0(⇢n)
|un|2un ! 0 in L

4
3 (0, T ;L

6
5 (⌦)).

– For r1 = r(n) ! 0,

|r1⇢n|un|un|  r
1
3 ⇢

1
3
nr

2
3 ⇢

2
3
n |un|2,

which converges to zero in L
3
2 (0, T ;L

9
7 (⌦)) using the drag term control in the energy and

the information on the pressure law P (⇢) = a⇢
� .

– For r0 = r0(n) ! 0, it is easy to conclude that

r0un ! 0 in L
2((0, T )⇥ ⌦).

– We now consider the limit r ! 0 of the term

r⇢nr
✓p

K(⇢n)�(

Z ⇢n

0

p
K(s) ds)

◆
.

Note the following identity

⇢nr
✓p

K(⇢n)�(

Z ⇢n

0

p
K(s) ds)

◆
= 2div

⇣
µ(⇢n)r2

�
2s(⇢n)

�⌘
+r

⇣
�(⇢n)�

�
2s(⇢n)

�⌘
,
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we only need to focus on div
⇣
µ(⇢n)r2

�
2s(⇢n)

�⌘
since the same argument holds for the

other term. Since

r

Z

⌦
div
⇣
µ(⇢n)r2

�
2s(⇢n)

�⌘
 dx

= r

Z

⌦

⇢n

µn
rZ(⇢n)⌦rZ(⇢n)r dx+ r

Z

⌦
µnrs(⇢n)� dx

= r

Z

⌦

⇢n

µn
rZ(⇢n)⌦rZ(⇢n)r dx+ r

Z

⌦

p
µnrZ(⇢n)� dx,

the first term can be controlled as
��r
Z

⌦

p
µnrZ(⇢n)� dx

��  Cr
1
2 k
p
µ(⇢n)kL2(0,T ;L2(⌦))k

p
rrZ(⇢n)kL2(0,T ;L2(⌦)) ! 0,

thanks to (1.25) and (1.26); and the second term as

��
Z

⌦

⇢n

µn
rZ(⇢n)⌦rZ(⇢n)r dx

�� 
p
r
p
r

Z

⌦

p
µ(⇢n)

⇢n

µ(⇢n)
3
2

|rZ(⇢n)|2|r | dx

 Ck
p
r

⇢n

µ(⇢n)
3
2

|rZ(⇢n)|2kL2(0,T ;L2(⌦))k
p
µ(⇢n)kL2(0,T ;L2(⌦))r

1
2 ! 0.

– Concerning the quantity �⇢10, thanks to µ
0
"1(⇢) � "1 > 0,

p
�|r⇢5| is uniformly bounded

in L
2(0, T ;L2(⌦)). This gives us that �

1
30 ⇢ is uniformly bounded in L

10(0, T ;L30(⌦)).
Thus, we have

����
Z T

0

Z

⌦
�⇢

10r dx dt

����  C( )�
2
3 k�

1
3 ⇢

10kL1(0,T ;L3(⌦)) ! 0

as � ! 0.
With Lemma 4.1 at hand, we are ready to recover the renormalized solutions to (1.1)-

(1.2). By part 1 and part 2 of Lemma 4.1, we are able to pass to the limits on the
continuity equation. Thanks to part 4 of Lemma 4.1,

p
µ(⇢n)'

0(un) !
p
µ(⇢)'0(u) in L

1(0, T ;L2(⌦)).

With the help of Lemma 2.2, we can pass to the limit on pressure, thus we can recover
the renormalized solutions.

⇤

4.2. Recover weak solutions from renormalized solutions. In this part, we can
recover the weak solutions from the renormalized solutions constructed in Lemma 4.2.
Now we show that Lemma 4.2 is valid without the condition "1 > 0. For such a µ, we
construct a sequence µn converging to µ in C

0(R+) and such that "1n = inf µ0
n > 0.

Lemma 4.1 shows that, up to a subsequence,

⇢n ! ⇢ in C
0(0, T ;Lp(⌦))

and

⇢nun ! ⇢u in L
1(0, T ;L

p+1
2p (⌦))

for any 1  p < �, where (⇢,
p
⇢u) is a renormalized solution to (1.1).
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Now, we want to show that this renormalized solution is also a weak solution in the sense
of Definition 1.2. To this end, we introduce a non-negative smooth function � : R ! R such
that it has a compact support and �(s) = 1 for any �1  s  1. Let �̃(s) =

R s
0 �(r) dr,

we define
'n(y) = n�̃(

y1

n
)�(

y2

n
)�(

y3

n
)

for any y = (y1, y2, y3) 2 R3. Note that 'n is bounded in W
2,1(R3) for any fixed n > 0,

'n(y) converges everywhere to y1 as n goes to infinity, r'n is uniformly bounded in n

and converges everywhere to unit vector (1, 0, ....0), and we have the following control

krr'nkL1(R3) 
C

n
! 0

as n goes to infinity. This allows us to control the measures in Definition 1.1 as follows

kR'nkM(R+⇥⌦) + kR1
'n

kM(R+⇥⌦) + kR2
'n

kM(R+⇥⌦)  Ckrr'nkL1(R3) ! 0

as n goes to infinity. Using this function 'n in the equation of Definition 1.1, the Lebesgue’s
Theorem gives us the equation on ⇢u1 in Definition 1.2 by passing limits as n goes to
infinity. In this way, we are able to get full vector equation on ⇢u by permuting the
directions. Applying the Lebesgue’s dominated convergence Theorem, one obtains (1.4)
by passing to limit in (1.12) with i = 1 and the function 'n. Thus, we have shown that
the renormalized solution is also a weak solution.
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Analysis in Mechanics of Viscous Fluids. Springer, Berlin (2017).

[12] D. Bresch, B. Desjardins, Chi-Kun Lin. On some compressible fluid models: Korteweg, lubrica-
tion, and shallow water systems. Comm. Partial Di↵erential Equations 28 (2003), no. 3-4, 843–868.

[13] D. Bresch, B. Desjardins, E. Zatorska. Two-velocity hydrodynamics in Fluid Mechanics, Part
II. Existence of global -entropy solutions to compressible Navier-Stokes system with degenerate
viscosities. J. Math. Pures Appl. Volume 104, Issue 4, 801–836 (2015).

[14] D. Bresch, V. Giovangigli, E. Zatorska. Two-velocity hydrodynamics in fluid mechanics: Part I
Well posedness for zero Mach number systems J. Math. Pures Appl., Vol. 104, No. 4, 762–800 (2015).

[15] D. Bresch, P.-E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations:
thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. of Math. (2) 188
(2018), no. 2, 577-684.

[16] D. Bresch, I. Lacroix-Violet, M. Gisclon. On Navier-Stokes-Korteweg and Euler-Korteweg sys-
tems: Application to quantum fluids models. Arch. Rational Mech. Anal. (2019), 975–1025.

[17] D. Bresch, P. Mucha, E. Zatorska. Finite-energy solutions for compressible two-fluid Stokes
system. Arch. Rational Mech. Anal., 232, Issue 2, (2019), 987–1029.

[18] C. Burtea, B. Haspot. New e↵ective pressure and existence of global strong solution for compressible
Navier-Stokes equations with general viscosity coe�cient in one dimension. arXiv:1902.02043 (2019).

[19] R. Carles, K. Carrapatoso, M. Hillairet. Rigidity results in generalized isothermal fluids. An-
nales Henri Lebesgue, 1, (2018), 47–85.

[20] R. J., DiPerna, P.-L.Lions, Ordinary di↵erential equations, transport theory and Sobolev spaces.
Invent. Math. 98 (1989), no. 3, 511-547.

[21] P. Constantin, T. Drivas, H.Q. Nguyen, F. Pasqualotto. Compressible fluids and active po-
tentials. Ann. IHP Analyse non linéaire. 37, (2020), 145–180,
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