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ABSTRACT. In this paper, we extend considerably the global existence results of entropy-
weak solutions related to compressible Navier-Stokes system with density dependent vis-
cosities obtained, independently (using different strategies), by Vasseur-Yu [Inventiones
mathematicae (2016) and arXiv:1501.06803 (2015)] and by Li-Xin [arXiv:1504.06826
(2015)]. More precisely we are able to consider a physical symmetric viscous stress tensor
o = 2u(p) D(uw) + (A(p)divu— P(p)) Id where D(u) = [Vu+ V" u]/2 with a shear and bulk
viscosities (respectively u(p) and A(p)) satisfying the BD relation A(p) = 2(u'(p)p—pu(p))
and a pressure law P(p) = ap” (with a > 0 a given constant) for any adiabatic constant
~ > 1. The nonlinear shear viscosity u(p) satisfies some lower and upper bounds for
low and high densities (our mathematical result includes the case u(p) = pp® with
2/3 < a < 4 and p > 0 constant). This provides an answer to a longstanding mathemat-
ical question on compressible Navier-Stokes equations with density dependent viscosities
as mentioned for instance by F. Rousset in the Bourbaki 69¢me année, 2016—2017, no
1135.

1. INTRODUCTION

When a fluid is governed by the barotropic compressible Navier-Stokes equations, the
existence of global weak solutions, in the sense of J. LERAY (see [35]), in space dimension
greater than two remained for a long time without answer, because of the weak control
of the divergence of the velocity field which may provide the possibility for the density to
vanish (vacuum state) even if initially this is not the case.

There exists a huge literature on this question, in the case of constant shear viscosity p
and constant bulk viscosity A. Before 1993, many authors such as Hoff [27], Jiang-Zhang
[29], Kazhikhov—Shelukhin [32], Serre [47], Veigant-Kazhikhov [48] (to cite just some of
them) have obtained partial answers: We can cite, for instance, the works in dimension 1
in 1986 by Serre [47], the one by Hoff [27] in 1987, and the one in the spherical case in
2001 by Jiang-Zhang [29]. The first rigorous approach of this problem in its generality is
due in 1993 by P.—L. Lions [38] when the pressure law in terms of the density is given by
P(p) = ap” where a and ~ are two strictly positive constants. He has presented in 1998
a complete theory for P(p) = ap” with v > 3d/(d + 2) (where d is the space dimension)
allowing to obtain the result of global existence of weak solutions a la Leray in dimension
d = 2 and 3 and for general initial data belonging to the energy space. His result has been
then extended in 2001 to the case P(p) = ap” with v > d/2 by Feireisl-Novotny-Petzeltova
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[23] introducing an appropriated method of truncation. Note also in 2014 the paper on
compressible Navier-Stokes equations with constant viscosities by Plotnikov-Weigant [45]
in dimension 2 for the linear pressure law that means v = 1. In 2002, Feireisl [24] has
also proved it is possible to consider a pressure P(p) law non-monotone on a compact
set [0, ps] (with p. constant) and monotone elsewhere. This has been relaxed in 2018
by Bresch-Jabin [15] allowing to consider real non-monotone pressure laws. They have
also proved that it is possible to consider some constant anisotropic viscosities. The Lions
theory has also been extended recently by Vasseur-Wen-Yu [51] to pressure laws depending
on two phases (see also Maltese & al. [39], Novotny [43] and Novotny-Pokorny [44]). The
method introduced by Bresch-Jabin in [15] has also been recently developped in the bifluid
framework by Bresch-Mucha-Zatorska in [17].

When the shear and the bulk viscosities (respectively p and A) are assumed to de-
pend on the density p, the mathematical framework is completely different. It has been
discussed, mathematically, initially in a paper by Bernardi-Pironneau [6] related to vis-
cous shallow-water equations and by P.-L. Lions [38] in his second volume related to
mathematics and fluid mechanics. The main ingredient in the constant case which is the
compactness in space of the effective flux F' = (2u + A)divu — P(p) is no longer true for
density dependent viscosities. In space dimension greater than one, a new mathematical
framework has been initiated with a series of papers by Bresch-Desjardins [8, 9, 10, 11],
(started in 2003 with Lin [12] in the context of Navier-Stokes-Korteweg with linear shear
viscosity case) who have identified an information related to the gradient of a function of
the density if the viscosities satisfy what is called the Bresch-Desjardins constraint. This
information is usually called the BD entropy in the literature with the introduction of
the concept of entropy-weak solutions. Using such extra information, they obtained the
global existence of entropy-weak solutions in the presence of appropriate drag terms or
singular pressure close to vacuum. Concerning the one-dimensional in space case or the
spherical case, many important results have been obtained for instance by Burtea-Haspot
[18], Ducomet-Necasova-Vasseur [22], Constantin-Drivas-Nguyen-Pasqualottos [21], Guo-
Jiu-Xin [25], Haspot [26], Jiang-Xin-Zhang [28], Jiang-Zhang [29], Kanel [33], Li-Li-Xin
[36], Mellet-Vasseur [41], Shelukhin [47] without such kind of additional terms. Stability
and construction of approximate solutions in space dimension two or three have been inves-
tigated during more than fifteen years with a first important stability result without drag
terms or singular pressure by Mellet-Vasseur [40]. Several important works for instance
by Bresch-Desjardins [8, 9, 10, 11] and Bresch-Desjardins-Lin [12], Bresch-Desjardins-
Zatorska [13], Li-Xin [37], Mellet-Vasseur [40], Mucha-Pokorny-Zatorska [42], Vasseur-Yu
[49, 50], and Zatorska [52] have also been written trying to find a way to construct approx-
imate solutions. Recently a real breakthrough has been done in two important papers by
Li-Xin [37] and Vasseur-Yu [50]: Using two different ways, they got the global existence of
entropy-weak solutions for the compressible paper when p(p) = p and A(p) = 0. Note that
in the last paper [37] by Li-Xin, they also consider more general viscosities satisfying the
BD relation but with a non-symmetric stress diffusion (o = pu(p)Vu+ (A(p)divu— P(p))Id)
and more restrictive conditions on the shear u(p) viscosity and bulk viscosity A(p) and on
the pressure law P(p) compared to the present paper.

The objective of this current paper is to extend the existence results of global entropy-
weak solutions obtained independently (using different strategies) by Vasseur-Yu [50] and
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Lin-Xin [37] to answer a longstanding mathematical question on compressible Navier-
Stokes equations with density dependent viscosities as mentioned for instance by Rous-
set [46]. More precisely extending and coupling carefully the two-velocities framework
by Bresch-Desjardins-Zatorska [13] with the generalization of the quantum Béhm iden-
tity found by Bresch-Couderc-Noble-Vila [7] (proving a generalization of the dissipation
inequality used by Jiingel [30] for Navier-Stokes-Quantum system and established by
Jiingel-Matthes in [31]) and with the renormalized solutions introduced in Lacroix-Violet
and Vasseur [34], we can get global existence of entropy-weak solutions to the following
Navier-Stokes equations:

pt +div(pu) =0
(pu); + div(pu @ u) + VP(p) — 2div(y/u(p)Sy + 3 ;ETY (Vi(p)S,)1d) =

where the shear stress are given by

Vi(p)Sy = p(p)D(u)
in the regular setting (see below for the definition in the non-regular setting) and with
data

(1.1)

pli=o = po(z) 2 0, puli=o = mo(z) = pouo, (1.2)
and where P(p) = ap” denotes the pressure with the two constants a > 0 and v > 1, p
is the density of fluid, u stands for the velocity of fluid, Du = [Vu + V7u]/2 is the strain
tensor. As usually, we consider
mol?
Po

ug = ™0 when po # 0 and ug = 0 elsewhere, =0a.e. on{ze€Q:py(x)=0}
Po

Remark 1.1. We remark the following identity

2div (v/p(p)Sy +— r(v/ 1(p)Sp)Id) = 2div(u(p)Du) + V(A(p)divu),

in the regular setting where system (1.1) will be the classical writing form.

The viscosity coefficients u = p(p) and A = A(p) satisfy the Bresch-Desjardins relation
introduced in [10]

A(p) = 2(pi/ (p) — 1u(p))- (1.3)

The relation between the stress tensor S, and the triple (u(p)/+/p, v/pu, \/pv) where v =

2Vs(p) with s'(p) = 1/(p)/p will be proved in the following way: The matrix value S, is

the symmetric part of matrix value function T, namely

(Ty + T}.)
e (1.4)

where T, is defined through

Vilp) T, = V(/p ”) /U ® \/pVs(p) (1.5)

with
s'(p) =1 (p)/p- (1.6)
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and

o) a2 S #e)y o o( ) P (P)
mTr(mTu)Id—[d Gy VPu5) — Vou Vo Vs(o) N,(p)]ld. (1.7)

Remark 1.2. Compared to the case p1(p) = p, the definition of T, is given through the two
compatible identities (1.5) and (1.7).

For the sake of simplicity, we will consider the case of periodic boundary conditions in
three dimension in space namely ©Q = T3. In the whole paper, we assume:

pe CO(Ry; Ry) NC*(RY; R), (1.8)

where Ry = [0,00) and R% = (0,00). We also assume that there exists two positive
numbers aq, as such that

2
—<a; <ag <4,

3 - - (1.9)
forany p >0,  0< —pu'(p) < plp) < —pi'(p),
(0%)] a1
and there exists a constant C > 0 such that
1
pr” (p)
< C < +o0. (1.10)
’ 1w (p)

Note that if p(p) and A(p) satisfying (1.3) and (1.9), then

Ap) +2p(p)/3 = 0
and thanks to (1.9)
©(0) = A(0) = 0.

Remark 1.3. Note that the hypothesis (1.9)—(1.10) allow a shear viscosity of the form
w(p) = pp® with p > 0 a constant where 2/3 < a < 4 and a bulk viscosity satisfying the

BD relation: A(p) = 2(1'(p)p — p(p))-

Remark 1.4. Note that the restriction 2/3 < a3 < ay comes from the hypothesis that
there exists e > 0 such that 2u(p) + 3A(p) > eu(p) which will satisfy 2u(p) + 3A(p) > 0
(far from vacuum) which is the usual physical restriction between the shear and bulk
viscosities. Meanwhile, for technical reasons in the proof of Lemma 2.1, we need to re-
strict az < 4 in hypothesis (1.9). More precisely, we get that |[VVZ(p)||12((0,r)xq) and
IV Z1(p) | 40,7y x> for some functions Z and Zi, are controlled if the two constants in
front of them in Lemma 2.1 are positive. It is important to remark that in the recent
paper [1], the authors have indicated how Lemma 2.1 may be used for the full range
2/3 < a < 400 when u(p) = p® and A(p) = 2(a — 1)p®. It is enough to be able to
compare [|[VVZ(p)|r2(0,1)x0) to [IVZ1(p)llL2(0,r)xq) to relax the assumptions. This is
based on the following uniform inequality: For any d > 1 and any positive function 6 in
H?(T9) :

Vo2 da < 9/ (A6)? d.
Td 16 Td
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Remark 1.5. In [50] and [37] the case u(p) = pp and A(p) = 0 is considered, and in
[37] more general cases have been considered but with a non-symmetric viscous term in
the three-dimensional in space case, namely —div(u(p)Vu) — V(A(p)divu). In [37] the
viscosities p(p) and A(p) satisfy (1.3) with p(p) = up® where a € [3/4,2) and with the
following assumption on the value v for the pressure p(p) = ap”:

If o € [3/4,1], v € (1,6 — 3)

and

ifa € (1,2), v € [2a—1,3c —1].

Definitions. Following [34] (based on the work in [50]), we will show the existence
of renormalized solutions in u. Then, we will show that this renormalized solution is a
weak solution. The renormalization provides weak stability of the advection terms pu ® u
together and pu ® v. Let us first define the renormalized solution:

Definition 1.1. Consider p > 0, 3\+2u > 0,79 > 0,71 > 0,790 >0, > 0and » > 0. We
say that (y/p, /pu) is a renormalized weak solution in u of the compressible Navier-Stokes
equations (with an extra capillarity term, with drag terms, with a supplementary pressure
if respectively r # 0, (ro,7m1,72) # 0 and § # 0), if it verifies (1.23)-(1.26), and for any

function ¢ € W2°°(R3), there exists three measures Rw,ﬁi,ﬁi € M(R* x Q), with

—1 —=2
Bl pmrt ) + [ Boll Mm@+ x0) + [ Rollm@txo) < CIIVVQ[| oo (rs),

where the constant C' depends only on the solution (y/p,/pu), and for any function
e CP(RT xQ),

/OT/Q(P%Jr\/ﬁ\/ﬁu-Vzp)dxdt—o,
/OT/Q(PSO(U)%erw(U)@u:V@b) da dt

N /T/ (2(\/,@& T %ﬂ(m&ﬂd) so’(u)) - Vi daedt
_T/ /< (Viulp)S: +2Aﬂ<(pp)ﬁ (Vu(p)8r)1d) f ) Vo dadt

+F(p,u) ' (u)yp dz dt = (Ry, ) ,

/ / )\/5 v dzdt—/ /2u Tr(V/u(p) T dedt = 0,

where S, is given in (1.4) and T}, is given in (1.7). The matrix S, is compatible in (1.19),
(1.20), and (1.21).
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The vector valued function F' is given by

Plplpg [7 [P ()(s)
' (p) v/o ﬁd
Pé(P)P P M S — rou — riplulu — 72 ul?u
o F B2

For every i, j, k between 1 and d:

(1.11)

V()P Tk = 0((p)@i(whur) — v/p wepi(w)\/p0is(p) + Ry, (1.12)

2

ri (W) [V (V u(p)V Z ()] = 705 (\/ 1(p) @i (u) O Z (p)) + R, (1.13)

and
—1 —2
IRl amrt <) + 1Bl vt xa) + [ Bollm@+xa) < ClIVV@|[ L.

and for any 1 € C°(Q):

tim [ p(t, 2)i(x) da = /Q po(@)i () de,

t—0 Q

tim [ p(t.yult,2)i(e) da = | mola)ia) da

tig [ u(p)(t,2)0() do = | (o) @)0) o
Q Q

Remark 1.6. The notion of renormalized solutions was introduced by R. DiPerna and P.—
L. Lions in [20], and it was adopted to study the compressible Navier-Stokes equations
by P.—L. Lions [38]. In Lions’ framework, this notation allows to handle the issue of low
regularity of density. However, in our paper, we have more uniform bounds on density
and less regularity of velocity. With our definition of renormalized solution in velocity, it
allows us to get the weak stability of the solution sequence even we are not able to have
extra control on plu|?. It allows us to get rid of the Mellet-Vasseur type inequality for
passing to the limits and allows us to establish the existence result for any v > 1.

We define a global weak solution of the approximate system or the compressible Navier-
Stokes equation (when r =rg =r; =re = = 0) as follows

Definition 1.2. Let S, the symmetric part of T, in L*((0,7) x Q) verifying (1.4)—(1.7)
and S, the capillary quantity in L2((0,7T) x Q) given by (1.19)-(1.21). Let us denote
P(p) = ap” and Ps(p) = 6p'°. We say that (p,u) is a weak solution to (1.17)—(1.20), if
it satisfies the a priori estimates (1.23)—(1.26) and for any function ¢ € C°((0,7") x )
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verifying

T
/ / (pOtp + pu - V) dzdt = 0,
0 Q
T
/ / (pudp) + pu @ u : Vp) dxdt
0 Q

T
- / / 2(v 1(p)Sy + MTr(\/,u(,o)Su)Id) -V dadt
o Jo 2u(p)

T
- T/O /{22(\/@87“ T MTY(WSHM) - Vb dadt

2p(p) )
+ F(p,u) Y dxdt =0,
/0 N /Q (M(ﬂ)d}ﬁu(p)\fpu-vlb) du dt

NG
_/T/ MTT(WT“)wdxdt:O,
0 Q

#(p)
with F' given through (1.11) and for any 1 € C°(Q):

lim [ plt,)(x) do /Q po(2)P () d,

(1.14)

t—0 Q

tim [ ot pult,2)i(a) da = [ mola)ia) da.

tiy | u(p)(t,2) () do = [ o) a)i) o
Q Q

Remark 1.7. As mentioned in [16], the equation on u(p) is important: By taking ¢ = divp
for all ¢ € C3°, we can write the equation satisfied by Vu(p) namely

OV u(p) +div(Vu(p) ® u) = div(Vu(p) @ u) — Vdiv(u(p)u)
Alp)
= v(mm\/mmm)) 1.15)

— v (VEI'T,) - V(5 TR,
This will justify in some sense the two-velocities formulation introduced in [13] with the
extra velocity linked to Vu(p).
The main result of our paper reads as follows:
Theorem 1.1. Let u(p) verify (1.8)—(1.10) and p and X verify (1.3). Let us assume the

initial data satisfy

1
/Q <2p0|u0 + ZHVs(po)]2 + k(1 — K)po

g
+/ (afypo + u(p0)> dx < C < +o0.
Q
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with k € (0,1) given. Let T be given such that 0 < T < +oo, then, for any v > 1, there
exist a renormalized solution to (1.1)-(1.2) as defined in Definition 1.1 with r, o, 71, T2
and § all zero. Moreover, this renormalized solution with initial data satisfying (1.16) is
a weak solution to (1.1)-(1.2) in the sense of Definition 1.2.

Our result may be considered as an improvement of [37] for two reasons: First it takes
into account a physical symmetric viscous tensor and secondly, it extends the range of
coefficients a and . The method is based on the consideration of an approximated
system with an extra pressure quantity, appropriate non-linear drag terms and appropriate
capillarity terms. This generalizes the Quantum-Navier-Stokes system with quadratic drag
terms considered in [49, 50]. First we prove that weak solutions of the approximate system
are renormalized solutions of the system, in the sense of [34]. Then we pass to the limit
with respect to ro,r1,79,7,0 to get renormalized solutions of the compressible Navier-
Stokes system. The final step concerns the proof that a renormalized solution of the
compressible Navier-Stokes system is a global weak solution of the compressible Navier—
Stokes system. Note that, thanks to the technique of renormalized solution introduced in
[34], it is not necessary to derive the Mellet-Vasseur type inequality in this paper: This
allows us to cover all range v > 1.

First Step. Motivated by the work of [34], the first step is to establish the existence of
global k entropy weak solution to the following approximation

pt +div(pu) =0
(pu)¢ + div(pu @ u) + V.P(p) + VFs(p)

2 (VI8 + 5 T8t

(p) (1.17)
— 2rdiv(v/u(p)S: + 7)Tr Vul(p)s)1a)
P 2, _
+Tou+r1p|u|u+r2 — |ul"u =10
1 (p)
where the barotropic pressure law and the extra pressure term are respectively
P(p) = ap”, Ps(p) = 0p'° with 6 > 0. (1.18)

The matrix S, is defined in (1.4) and T, is given in(1.5)- (1.7). The matrix S, is compatible
in the following sense:

/1(p)Sx [2Fvvz V(v ilp)VZ(p) } (1.19)

Z(p) = /0 () 2 () sds, k(o) = /0 "IN ) () 2ds  (1.20)

and

P ()1 = (4 () AZ () - LA ko) VZ(I (1.21)
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Remark 1.8. Note that the previous system is the generalization of the quantum viscous
Navier-Stokes system considered by Lacroix-Violet and Vasseur in [34] (see also the inter-
esting papers by Antonelli-Spirito [4, 5] and by Carles-Carrapatoso-Hillairet [19]). Indeed

if we consider p(p) = p and \(p) = 0, we can write \/u(p)S, as
VE(p)S: = 4/p |V — 4(VpH 0 V4]

using Z(p) = 2,/p. The Navier-Stokes equations for quantum fluids was also considered
by A. Jiingel in [30].

As the first step generalizing [50], we prove the following result.

Theorem 1.2. Let u(p) verifies (1.8)—(1.10) and A(p) is given by (1.3). If ro > 0, then
we assume also that infs€[07+oo)u’(5) = €1 > 0. Assume that r1 is small enough compared
to §, ro is small enough compared to r and that the initial values verify

[uo + 26V s(po) | 12V5(po) 2
/on< 0 5 0 +(I€(1—I€)+T)2O> dx

(1.22)

Po P’ | To
— o——+—| —|)d
+/Q(a7_1+M(P0)+ g 2, |(npo)-|) d < +oo,

for a fized k € (0,1). Then there exists a k entropy weak solution (p,u,T,,S,) to (1.17)-
(1.21) satisfying the initial conditions (1.2), in the sense that (p,u,T,,S,) satisfies the
mass and momentum equations in a weak form, and satisfies the compatibility formula in
the sense of definition 1.2. In addition, it verifies the following estimates:

||\/ﬁ(u + QKVS(IO))“%OO(O,T;LZ(Q)) S Oa aHpH’[Y/OO(O,T;L“/(Q)) S C,
ITullZ20 7220 < C ((1 = &) + ) VAV 2o (0 7202 < Cs (1.23)

Kl ()07 2V 220 11200y < C

and

5||p||i9>°(0,T;L10(ﬂ)) <C, 5” \% Nl(p)pstH%Q(O,T;LQ(Q)) <C,

P s 1.24
AL sy € il ol ey < C e
TOH“H%?(O,T;L?(Q)) <C, r“ST“%Q(O,T;LQ(Q)) <C

Note that the bounds (1.23) provide the following control on the velocity field
VPl oo o 7:12(0y) < C-

Z(p):/op‘u(ss)ul@ds and Zl(p):/op('u('u/(s)ds

s))/4s1/2 77

Moreover let

we have the extra control

r UOT/Q!VQZ(p)IzdacdtJr/OT/Q!VZl(p)l“dwdt} <G, (1.25)
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and
||IU“(IO)||L°°(0,T;W1’1(Q)) + Hu(p)u”L°°(O,TL3/2(Q))mL2(07T;W1,1(Q)) <C,
[0c11(p) | oo 0,7, -11()) < C, (1.26)
||Z(p)”L°°(0,T;L1+(Q)) + ||Zl(p)HL°°(07T;L1+(Q)) <C,

where C' > 0 is a constant which depends only on the initial data.

Sketch of proof for Theorem 1.2. To show Theorem 1.2, we need to build the smooth
solution to an approximation associated to (1.17). Here, we adapt the ideas developed in
[13] to construct this approximation. More precisely, we consider an augmented version
of the system which will be more appropriate to construct approximate solutions. Let us
explain the idea.

First step: the augmented system. Defining a new velocity field generalizing the one
introduced in the BD entropy estimate namely

w=u+2cVs(p)

and a drift velocity v = 2Vs(p) and s(p) defined in (1.6).
Assuming to have a smooth solution of (1.17) with damping terms, it cavown that
(p, w,v) satisfies the following system of equations

pr +div(pw) — 26Apu(p) = 0

and
(pw) + div(pu @ w) — 2(1 — k)div(u(p)Dw) — 2kdiv(u(p) A (w))
— (1= ")V(A(p)div(w — kv)) + Vp? 4+ 0Vp' +4(1 — k)rdiv(u(p) V2s(p))
= —ro(w — 26Vs(p)) — riplw — 26Vs(p)|(w — 26V s(p))
e = 269s(0) P~ 2655(0) + 1 (VEGIA([ VEGIas) )
and

(pv) + div(pu @ v) — 2rdiv(u(p) Vo) + 2div(u(p) Viw) + V(A(p)div(w — kv)) = 0,
where
v =2Vs(p), w=u-+ KV
and
K(p) =40 (p))*/p-

This is the augmented version for which we will show that there exists global weak solu-
tions, adding an hyperdiffusivity eo[A%w — div((1 + |Vw|?)Vw)] on the equation satisfied
by w, and passing to the limit €5 goes to zero.

Important remark. Note that recently Bresch-Couderc-Noble-Vila [7] showed the fol-
lowing interesting relation

PV <\/ K(p)A(/Op VK (s) d8)> = div(F(p)V*%(p)) + V ((F'(p)p = F(p)) A% (p)) ,
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with F'(p) = /K (p)p and /py'(p) = /K (p). Thus choosing
F(p) =2 u(p) and therefore F'(p)p — F(p) = A(p),

this gives 1(p) = 2s(p) and thus

¥ (VEDA[ VG a9) = 2iv (u(p) 7 (25(0)) + ¥ (M)A 2s(0). - (121)

This identity will play a crucial role in the proof, because it defines the appropriate capil-
larity term to consider in the approximate system to be compatible with the stress tensor.
This form is compatible with the various multipliers which are used to get the k-entropy
estimates and to give regularity control on the density. Other identities will be used to
define the weak solution for the Navier-Stokes-Korteweg system and to pass to the limit
in it namely

2u(p)V*(25(p)) + Alp)A(2s(p)) = 4 [2\/u(p)VVZ(p) - V(x/u(r))VZ(p)}
2X(p) (1.28)

+( e +k(p))AZ(p) Id — div[k(p)VZ(p)] 1d.
where Z(p) = /Op[(u(s))l/Qlu'(s)]/s ds and k(p) = /Op st.

Note that the case considered in [34, 49, 50] is related p(p) = p and K(p) = 4/p
which corresponds to the quantum Navier-Stokes system. Note that two very interesting
papers have been written by Antonelli-Spirito in [2, 3] considering Navier-Stokes-Korteweg
systems without such relation between the shear viscosity and the capillary coefficient.

Remark 1.9. The additional pressure dp'® is used in (2.17) thanks to 3ag — 2 < 10. It
could be possible to take p3*2~2 but we have chosen p'° for the sake of simplicity.

Second Step and main result concerning the compressible Navier-Stokes system. To prove
global existence of weak solutions of the compressible Navier-Stokes equations, we follow
the strategy introduced in [34, 50]. To do so, first we approximate the viscosity u by a
viscosity fie, such that inf,cjg 4o0) pz,(s) > €1 > 0. Then we use Theorem 1.2 to construct
a k entropy weak solution to the approximate system (1.17). We then show that this x
entropy weak solution is a renormalized solution of (1.17) in the sense introduced in [34].
More precisely we prove the following theorem:

Theorem 1.3. Let u(p) verifies (1.8)—(1.10), A(p) given by (1.3). If ro > 0, then we
assume also that infs€[07+oo)u’(s) =€ > 0. Assume that ry is small enough compared to
d and ry is small enough compared to r, (same to Theorem 1.2) the initial values verify

/Q (Po (|U0 + 2K Vs(po)|* F k(1= k) + 1) |2vsépo)|2>) da

2
0 (1.29)

g
+/ (a Po —i—,u,(po)—i-ép—i—m](lnpo)_]) dx < +o0.
Q 1 9 &1

Then the K entropy weak solutions is a renormalized solution of (1.17) in the sense of
Definition 1.1.
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We then pass to the limit with respect to the parameters r,rg, 71,79 and § to recover
a renormalized weak solution of the compressible Navier-Stokes equations and prove our
main theorem.

2. THE FIRST LEVEL OF APPROXIMATION PROCEDURE

The goal of this section is to construct a sequence of approximated solutions satisfying
the compactness structure to prove Theorem 1.2 namely the existence of weak solutions
of the approximation system with capillarity and drag terms. Here we present the first
level of approximation procedure.

1. The continuity equation

pi + div(p[w]e,) = 2rdiv ([1'(p)]=, Vp) , (2.1)
with modified initial data

p(0,2) = po € C*T(Q), 0<p<po(z) <p.

Here €3 and ¢4 denote the standard regularizations by mollification with respect to space
and time. In particular, [f(¢,x)]e, = f *ne,(t,x), for any t > ¢ where

t
(t,2) = ——=n(—, =
7761( "T) EiNHU(Qa 5@')’

for i = 3,4, with n a smooth nonnegative even function compactly supported in the space
time ball of radius 1, and with integral equal to 1. This is a parabolic equation recalling
that in this part Infjy ) 1 (s) > 0. Thus, we can apply the standard theory of parabolic
equation to solve it when w is given smooth enough. In fact, the exact same equation was
solved in paper [13]. In particular, we are able to get the following bound on the density
at this level approximation

0<p<pltz)<p<+oo. (2.2)
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2. The momentum equation with drag terms is replaced by its Faedo-Galerkin approxi-
mation with the additional regularizing term eo[A%w — div((1 + |Vw|?)Vw)] where s > 2

/pw T/de—//< [M’()]a4v) ) Vi da di

T2 1—K// D dea:dt—i—%// Vi da dt
l—m// dlvwdlvwdxdt—in—/s// v Vi da dt
k(1 — k) / / p)divodivey da dt — / / pYdivep dz dt — & / / pt0divey da dt

+82// (A%w - A% + (1 + |Vwl*)Vw : Vi) dodt = //row 2kVs(p)) - dxdt

—r /0 /Qp\w —2kVs(p)|(w — 26Vs(p)) - 1 dx dt

—r t P —2kVs(p)|*(w — 26Vs(p)) - 1 da

[ = 26V s(o) P~ 26 s(p) b e

—7‘/ / \/K(p)A(/p\/K(S)ds)div(pw)d:cdt—}—/powo-wdz
0 JQ 0 Q

(2.3)

satisfied for any ¢t > 0 and any test function ¥ € C([0,T], X,,), where A(p) = 2(u ( )p —
2

w(p)), and s'(p) = w'(p)/p, and X,, = spanf{e;}?; is an orthonormal basis in W
with e; € C*°(Q) for any integers i > 0.

Ab

Q)

3. The Faedo-Galerkin approximation for the equation on the drift velocity v reads

/pv <bdx—// AT >]€4V) V) : Védz dt

—1-2/-@/ / p)Vu : V(l)dxdt+n/ / p)dive dive dz dt (2.4)

// d1vwd1v¢>dwdt—|—2// w:Vquxdt:/povg-(bdx

satisfied for any ¢ > 0 and any test function ¢ € C([0,77],Y;), where Y;, = span{b;}?" ;

n =

and {b;}22, is an orthonormal basis in W12(Q) with b; € C°°(Q) for any integers i > 0.

The above full approximation is similar to the ones in the papers [13]- [14] which
are two parts dedicated to augmented systems similar to the one we consider. We can
repeat the same argument as [14] to obtain the local existence of solutions to the Galerkin
approximation. In order to extend the local solution to the global one, the uniform bounds
are necessary so that the corresponding procedure can be iterated.

2.1. The energy estimate if the solution is regular enough. For any fixed n > 0,
choosing test functions ¢ = w, ¢ = v in (2.3) and (2.4), we find that (p, w,v) satisfies the
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following x—entropy equality

2 2 5 10 ¢
/<p<|w’ +(1- )/iH)—l- P +5p> dx+2(1—/i)/ /u(p)ﬂDw—vaPdwdt
2 71 0 Ja
(1—k) // )(divw — kdive)? da:dt+2/i/ /()\Vp\dedt
+21€/ / ]Aw|2d:1:dt+€2/ / (|A%w? + (1 + |Vw|*)|[Vw|?) dz dt
//\/ A/ VK (s) ds)div(pw d:zdt—|—20/£5// p) 2|V p|? d dt
—I-TO/ /(w—2/<ch(p))-wdmdt—|—T1/ /p\w—21<;Vs(p)|(w—2mVs(p))-wdxdt
0 JQ 0 JQ
t
+T2// /'0 —2kVs(p)|*(w — 26V s(p)) - w dz dt
o Ja #(p)

2 2
:/ (PO <|w0] +(1 —m)mw) + 5/)0 ) dx — / / Tdiv([w]ey, — w) dz dt
Q 2 2 ’Y

T
— Odiv([w].. — w) dz
6/0 /de ([w]ey — w) da dt,
(2.5)

where s’ = p/(p)/p and p(p) = p?. Compared to the calculations made in [13], we have
to take care of the capillary term and then to take care of the drag terms showing that

they can be controlled using that infycjo o) '(s) > €1 > 0 for the linear drag, using
the extra pressure term 5p10 for the quadratic drag term and using the capillary term
rpV (/K (p)A( fO /K (s)) for the cubic drag term. To do so, let us provide some properties

on the Caplllary term and rewrite the terms coming from the drag quantities.

2.1.1. Some properties on the capillary term. Using the mass equation, the capillary term
in the entropy estimates reads

P
r/Qs/K(p)A(/O JE(s) ds) div(pw) = 2dt/ \v/ JE(s) ds]?
+2/€7“/Q\/K(p)A(/Op\/K(s)ds)A,u(p) =1 + Ip.

(2.6)

In fact, we write term I; as follows

s [V [ VEG P = 55 [ vsofd.

2dt
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By (1.27), we have
b= [ VRGIA[" VEG) ) Ao
- —QW/QpV(\/mA(/Op\/@dS)) - Vs(p) (2.7)
— 2 /Q 20(0)[2925(p) 2 + () [2As(p) .

Control of norms using Io. Let us first recall that since

Alp) = 2(1'(p)p — 1(p)) > —21(p)/3,
there exists n > 0 such that

// (p)|V?s(p 2d:cdt+// p)|As(p)|* da dt
> a2 // (0)[V25(p)|? da dt + = // p)|As(o)|? da .

As the second term in the right-hand side is positive, lower bound on the quantity

/ / (p)|VZs(p)|? dx dt (2.8)

will provide the same lower bound on Is.

Let us now precise the norms which are controlled by (2.8). To do so, we need to rely
on the following lemma on the density. In this lemma, we prove a more general entropy
dissipation inequality than the one introduced by Jiingel in [30] and more general than
those by Jiingel-Matthes in [31].

Lemma 2.1. Let (/(p)p < ku(p) for 2/3 < k <4 and

s(p) = /Op,u’(s)ds, Z(p) = /op @u’(s) ds, Zi(p) = /Opmds'

S

i) Assume p > 0 and p € L?(0,T; H*>(Q)) then there exists e(k) > 0, such that we have
the following estimate

/OT/Q‘sz(P)Qdmdt—l—s(k:)/OT/QMg);)g\VZ(p)]4dxdt< / / (0)|V25(p)|? d dt,

where C is a universal positive constant.

ii) Consider a sequence of smooth densities p, > 0 such that Z(pn) and Zl( n) COnverge
strongly in L*((0,T) x Q) respectively to Z(p) and Z1(p) and \/1u(pn)V?s(pyn) is uniformly
bounded in L*((0,T) x Q). Then

T T
/ / \V2Z(p)|* dx dt + e(k)/ / IVZi(p)|*dzdt < C < +o0
0 Q 0 Q

Remark 2.1. The case of Z = 2,/p for the inequality was proved in [30], which is critical
to derive the uniform bound on approximated velocity in L?(0,T; L?(€2)) in [49, 50]. The
above lemma will play a similar role in this paper.
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Proof. Let us first prove the part i). Note that Z’(p) = ¥£ (p)

p
calculation:

Vip)V2s(p) = =V ulp)V ( :(p)VZ(p)>

—V22(p) - Vi Eg; & Vo)

pVZ(p) ®VZ(p)
2(p)>2

' (p), we get the following

=V?Z(p) -

Thus, we have
2 2 5. 2 2 I 1 P’ 4 do
[rwsopis = [ (vz@)Par+ g [ Cvzi)ta
- [ L2 (V2(p) @ V()
2 u(p)?

By integration by parts, the cross product term reads as follows
- [ L2 (V2(0) V2 () do
Q pu(p)?
[ pVE(P) oo . VZ(p)  VZ(p)
V2Z(p) : ( ) da
o #p) uip) — /ulp)

[ r i (VZLp) o VZ(p)
= Joupy VHOIV AR AN S O i)

+ [ v(

(2.10)

=1 + I

To this end, we are able to control I; directly,

2 A C VZ(p) .2 2
|11 §5/ u(p )SWZ( Pl du + / (W)’ ! (2.11)

4 o 2 2 gy
S/mm <>\dw+/ PIV2s(p) 2 d,

where C' is a universal positive constant. We calculate I3 to have

I = /V VZ(p) ® VZ(p)

1(p)
Vp® VZ( )

dx

)& VZ(p) :

7 (VZ(p) @ VZ(p)) dx
)2 (2.12)

/ — Vv ulp) @VZ(p): (VZ(p) @ VZ(p)) dx
QM

_ [ P v 4 x—l o 4 gy
_/Qu(p)%(p)" 2l 2/Qu(p)3|vz(p)| o
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Relying on (2.9)-(2.12), we have

2
[z [ vzt de = (g +) [ L9z do

</ (0)[V2s(p) 2 da.

Since kit (s)s < pu(s), we have

# -
1 (s )u’(S) 4
where we choose kj > . This implies

P’ C
[ zR dne [ Lovztar< S [ uovso) .

This ends the proof of part i). Concerning part ii), it suffices to pass to the limit in the
inequality proved previously using the lower semi continuity on the left-hand side.

O

2.1.2. Drag terms control. We have to discuss three kind of drag terms: Linear drag term,
quadratic drag term and finally cubic drag term.

a) Linear drag terms. As in previous works [8, 49, 52|, we need to choose a linear drag
with constant coefficient

t t
ro/ /(w —2kVs(p)) - wdzr dt = To/ / lw — 26V s(p)|? d dt
0 JQ 0 JQ

+ 7“0/ /(w —2kVs(p)) - (26Vs(p)) dx dt.

The second term on the right side of (2.13) reads

7“0/0 /Q(w—QHVS(p) (26Vs(p da:dt—ro// w = 26Vs ))-”’”V:(p)dxdt

_ro// w—26Vs(p)) - 26V g(p) dar dt

= 2K70 / / peg(p) dx dt,

where ¢'(p) = o) — 4p) apg alp) = [F “T( ") dr. Letting

p p
= [ e
ro/thg(p) dl‘:Togt/QG(P) dx
ro /Ot/gptg(p) dwdt:ro/ﬂG(p) dx

(2.13)

then

which implies
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Meanwhile, since lim¢_,o ¢//(¢) = &1 > 0, for any |(| < € and any small number € > 0, we
have p/(¢) > 5. Thus, we have further estimate on G(p) as follows

Y L AT(9) er [* 1
:%(ﬂ—l—lnﬂ)
Z—%(lnp)ﬂ

for any p < e. Similarly, we can show that
G(p) < 4ei(lnp)y

for any p < e. For given number ¢y > 0, if p > ¢g, then we have

0<G(p<C / ’ / "W dCdr < Cp(p)p.

b) Quadratic drag term. We use the same argument as in [13] to handle this term. The
quadratic drag term gives

7’1/0 /Qp\w—QFJVs(p)\(w—QnVs(p)).wda;dt

=r ' w— 26V s( )13 d |

_1/0/91)! 26Vs(p)|? dz dt (2.14)
+7‘1/0 /pr—QﬁVS(p)\(w—Q,‘iVs(p)).(2ﬂvs(p>)dxdt.

The second drag term of the right—hand side can be controlled as follows

/ / plw —26Vs(p)|(w —2kVs(p)) - (26Vs(p)) dx dt

1

<2m“1/ / p)|u||Du| dx dt (2.15)

< /1/ / \]D)uPdacdt—&-ml/ / (p)|u|? dz dt,
and

(p
IV up)|ulll 20,702 (02)) < Cllp3ulll s o,:z3) =1z 0,715 () -
pS

Note that

t
/0 Q P2 //O<p<1
¢
SC// wu(p) dxdt—l—//
0 Jo<p<1 p>1
roup)
o]
0 Jp>1

/t/p>1 'ui))gda:dt

(2.16)
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From (1.9), for any p > 1, we have

dp™ < p(p) < ep™

where 2/3 < ag < ag < 4. This yields to

t 1(p)? t t
/ / / / p*2 2 dydt < c/ /,010 dx (2.17)
0 Jp>1 0 Jp>1 0 Ja

for any time ¢ > 0.
¢) Cubic drag term. The non-linear cubic drag term gives

t p — 4KV S 2'UJ—:"QS -wax
[ [ sl = 2695 0 - 2655(0) - wda s

— t P = 26Vs( o) di |
N 2/0 /Qu’(p)| 26Vs(p)[* du dt (2.18)
Lo
+T2/0 /QM|w—2”V5(P)|2(w—2“VS(P))-(2Ws(p))da:dt.

The novelty now is to show that we control the second drag term of the right—hand side
using the Korteweg-type information on the left-hand side

t Lw_ KVS 2w_ KVS . RVS X
o [ [ sl 2e9s(0) P — 265 5(0) - (26Vs(p) ds

t H4 t
<n([ [ pr)w—zwsm)\u(ﬂ) | [t esor).

Remark that the first term in the right-hand side may be absorbed using the first term
n (2.18). Let us now prove that if ro small enough, the second term in the right-hand
side may be absorbed by the term coming from the capillary quantity in the energy. From
Lemma 2.1, we have

|+

It remains to check that

// yvs // 3\w |4dxdt<0// 2|w (p)|* dz dt.
o w( o t( o nlp

This concludes assuming ro small enough compared to r.

(2.19)

(p)|* dx dt = //u S|V u(p)* da dt.
Q

2.1.3. The k-entropy estimate. Using the previous calculations, assuming 72 small enough
compared to r, and denoting

U+ 26V s( )2 s(p)[2 10
Elp,u+2kVs(p), Vs(p)] = /Qp <|+22V(p)\ +(1- H)K]|v ;p)] )—i—fypj 1—1—5% +G(p),
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we get the following x-entropy estimate

t
E[,o,u—i—?ﬁVs(p),Vs(p)](t)—i-ro/ /\u!Qdmdt
/\v/ VK (s)ds|*dz +2(1 — k) // ]Du\Qdaﬁdt+2Om5// 0|V p|? dx dt
1—&// p)p — p(p))(divu) d.’L‘dt—i—Qlﬁ:// p)|A(u + 26V s(p))|* dx dt

+2n/ / ]Vp]Qdde—n/ /p|uy3dmdt+/ / \u|4dg;dt
o H(
// |2V2 )|? da dt + m“// p)|12As(p)|? dx dt

2 2 PO
S/ 00 M‘f’(l—lﬂ?)lﬁ’ vol + P + 0 +\V/ \/K(s)ds\Q—i-G(po) dx
0 2 2 ~—1 "9 T2V

0%1 / Elp, u+ 26Vs(p), Vs(p)dz dt.
Q

(2.20)

It suffices now to remark that

/ [ nomu + / o= pldiva?
// )| — dqud]dedt—i—// (p)—l—;,u( )ldiva?.

Note that oy > 2/3, there exists € > 0 such that

1 (p)p — %u(p) > ep(p).

Such information and the control of \/u(p)|A(u) + 26Vs(p)| in L2(0,T; L*(Q2)) allow us,
using the Gronwall Lemma and the constraints on the parameters, to get the uniform
estimates (1.23)—(1.25).

Now we can show (1.26). First, we have

Vu(p)
VP

due to the mass conservation and the uniform control on Vyu(p)/\/p given in (1.23). Let
us now write the equation satisfied by p(p) namely

On(p) + div(u(p)u) + Me)

5 divu = 0.
Recalling that A(p) = 2(i/(p)p — n(p)) and the hypothesis on u(p), we get

% Loy =c ([ polavee+ [ o).

p(p) € L=(0,T; LH(Q)),

Vulp) = VP € L0, T; L1()),

and therefore
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if u(po) € LY(Q) due to the fact that /| \(p)|dive € L?(0,T; L?(2)). Now, we observe that
w(p)/+/p is smaller than 1 for p < 1 because o > 2/3, and smaller than u(p) for p, > 1,
then

HP) ¢ oot
\/ﬁeL (LY).

Meanwhile, thanks to (1.9), we have

ol < [T+ 20w < (14 )| 4.

By (1.23), V(u(p)/+/p) is bounded in L>(0,T; L*(€2)) and finally p(p)/,/p is bounded in
L>(0,T; (L%(2)). Thus, we have that

o) o
p(p)u = ﬁ\/ﬁ,

is uniformly bounded in L°(0,T; L?/%(Q)). Let us come back to the equation satisfied by

w(p) which reads R
Do) + div(p(pu) + 2

Recalling that A(p)divu € L>(0,T; L'(2)), then we get the conclusion on d;u(p). Let us
now to prove that

divu = 0.

Z(p) = Opn "LL(SS)N/(S)dS € L' ((0,T) x Q) uniformly.

Note first that

$)3/2
M(S)Q_lszl)-

s (s s)3/
)

There exists € > 0 such that a; > 2/3 4 ¢, thus

0<- M(SS)M/(S) < caan(sT M p(s)*”

<1+ 827_1521)-

0< < cgara (830272 ooy +

Note that 4/(s) > 0 for s > 0 and the definition of Z(p), we get
0< Z(p) < Clp° + u(p)**")

with C independent of n. Thus Z(p) € L>(0,T; L**(Q2)) uniformly with respect to n.
Bound on Z;(p) follows the similar lines.

2.2. Compactness Lemmas. In this subsection, we provide general compactness lem-
mas which will be used several times in this paper.

Some uniform compactness.

Lemma 2.2. Assume we have a sequence {pn}nen satisfying the estimates in Theorem
1.2, uniformly with respect to n. Then, there exists a function p € L*°(0,T; L7 (2)) such
that, up to a subsequence,

p(pn) — p(p) in C([0,T); L¥*(Q) weak),

and
pn — p a.e. in (0,T) x Q.
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Moreover
pn — p in LD ((0,T) x Q),

(" \/Pi ([ Y 1) i 210710

If 6, > 0 is such that 6, — § > 0, then
5,00 = 5p10  in L3((0,T) x Q).

Proof. From the estimate on p(p,) and Aubin-Lions lemma, up to a subsequence, we
have

p(pn) = p(p) in C([0, T); L*/(92) weak)
and therefore using that p/(s) > 0 on (0, +00) with ©(0) = 0, we get the conclusion on p,,.
Let us now recall that

<= (2.21)

and therefore

c1pp? < p(pn) < c2pi? for p, <1,
and

c1ppt < plpn) < c2pi? for p > 1.
with ¢; and ¢y independent on n. Note that

/ !/
PonilPn) G, e 12(0, 7, T2(2)) wniformly. (222)
Pn

Let us prove that there exists € such that

with C independent on n and the parameters. We first remark that it suffices to look at
it when p, > 1 and to remark there exists £ such that ¢ < (v — 1)/3. Let us take such
parameter then

T dy 4 27 T 2y
& -1 D gy tar—1
/ /Pn3 1p>1 </ / 31,o>1 </ /Pn3 Ip>1

recalling that oy > 2/3. Following [37], it remains to prove that

—[1 / / 5')/+3 a1 — 1]/31 >1:| <+OO

T
L= / / [plratea—Dl/ ] )
0 Q

uniformly. Denoting
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and using the bounds on u(py,) in terms of power functions in p, which are different if
pn = 1 or p, <1, we can write:

L<h+L<C, / | AP o) o < €. / 1) 1P (oo 1y
where C' does not depend on n. Using the Poincaré-Wirtinger inequality, one obtains that
1P (pr) () | 23 ) = VP (pr) () 1 5
< VP (pr) (o)l (@) + IV VP (pn)ilpn) |1 20

Let us now check that the two terms are uniformly bounded in time. First we caculate

VIV P loilan]] = C T b,

and using (2.21), we can check that

P (pp)pupn) + P'(pa) ' (pn) _ [P (pu) (Pn)
P'(pn)p(pn) a P

Therefore, using (2.22), uniformly with respect to n, we get

u IV [V/P(pr) (o)) 720y < +00-

)

Let us now check that uniformly with respect to n

sup ||/ P’ (pn) p(pn)ll L1 () < +oo. (2.23)
t€[0,T]

Using the bounds on pu(py,), we have

/\/P/ Pr) i (Pn) <C/ Tlren/2y g plTiTe)/2, >1]

with C' independent on n. Recalling that a; > 2/3 and «s < 4, we can check that

/vP’pn 11(pn) <C/ ”/3+p pn

and therefore using that p;, € L>(0,T; L*(Q2)) and p, € L*°(0,T; L'°(Q)), we get (2.23).
This ends the proof of the convergence of py, to p in L&H/3)7((0,T) x €.

Let us now focus on the convergence of

Pn P/
\/Tp” / \/7 ds (2.24)
First let us recall that
Pn / /
V(/ Pls)w'ls) ds) € L>(0,T; L*(£2)) uniformly.
0 S

Let us now prove that

P'(pn)pn 2+

——— €L 0,7) x Q). (2.25)
1 (pn) (0.1) )
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Recall first that a1 > %, we just have to consider p, > 1. We write

P'(pn)pn
1 (pn)

We can use the fact that p(47/ I ¢ L'((0,T) x Q) uniformly to conclude on (2.25). Thanks
to

4y
Lp,>1 < Cppm 11, 51 < Cpl ™31, 51 < Cpid 1,1

Pl(pn)pn P'(p)p
' (p)

/pn \/Plids _> V / \/P/i Weakly in L*((0,T) x Q),

we have the weak convergence of (2.24) in L'((

T) x Q)

We now investigate limits on u independent of the parameters. We need to differentiate
the case with hyper-viscosity €5 > 0, from the case without. In the case with hyper-
viscosity, the estimate depends on €1 because of the drag force ri, while the estimate in
the case g5 = 0 is independent of all the other parameters. This is why we will consider
the limit €9 converges to 0 first.

Lemma 2.3. Assume that £1 > 0 is fived. Then, there exists a constant C > 0 depending
on 1 and Cyy,, but independent of all the other parameters (as long as they are bounded),
such that for any initial values (po, \/pouo) verifying (1.29) for Cy, > 0 we have
10:(pw) || L0, 0w —52(0)) < C,
IV (pu)ll 200,101 () < C-
Assume now that eo = 0. Let ® : RT — R be a smooth function, positive for p > 0,
such that
B(p) + | (p)| < Ce v, for p< 1,
D(p) +|¥'(p)| < Ce™?,  for p>2.
Assume that the initial values (po, \/pouo) verify (1.29) for a fized Cj, > 0. Then, there
exists a constant C' > 0 independent of €1,79,71,72,0 (as long as they are bounded), such
that
10: [®(p)u] HLH(OTW 21(0)) < C,
IV [@(p)ul | 20,7521 02)) < C-

Proof. We split the proof into the two cases.

Case 1: Assume that €; > 0. From the equation on pu and the a priori estimates, we
find directly that

(ST 1 T
10t (p)[| L+ (0,05 —5:2(02)) < C+(a)4HPH£1(O,T)XQ) <7'1/0 /Q

3/4
4
u|® dx dt < C(1+1/e1).
¢ u’(p)| | > (1+1/e)
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We have u(p) > e1p, and from (1.23), we have the a priori estimate

C
IV /Pl 01202 < o

Hence

p
wip)Vu ,
VI | oo 0,7:22(02) Vil orason

+2[IV/pll Lo 0,752 00 IV Pull Lo (0,7522(0)
<C.

IV (pu) ||L2(0,T;L1(Q)) < H

Case 2: Assume now that o = 0. Multiplying the equation on (pu) by ®(p)/p, we get,
as for the renormalization, that

10 [®(p)u] || L1+ 0,21 ()) < C-

Note that
I @) Iz < || oy VATl
Y \/ﬁ(p) Lo
' (p) )
+2H7M’(P) | oo 0,7y x) 1 (P)V /Pl oo (0,752 (02)) VP oo (0,7:22 (02))
< (.

O

Lemma 2.4. Assume either that €2, = 0, or €1, = €1 > 0. Let (pn,/Pnun) be a
sequence of solutions for a family of bounded parameters with uniformly bounded initial
values verifying (1.29) with a fized Ci,. Assume that there exists a > 0, and a smooth
function h : R* xR3 — R such that p% is uniformly bounded in LP((0,T)x Q) and h(pn,un)
is uniformly bounded in L1((0,T) x Q), with

Lt

P q
Then, up to a subsequence, p, converges to a function p strongly in L', \/ppu, converges
weakly to a function q in L?. We define u = q/+/p whenever p # 0, and u = 0 on the
vacuum where p = 0. Then p&h(pn,u,) converges strongly in L' to p®h(p,u).

Proof. Thanks to the uniform bound on the kinetic energy [ p,|u,|?, and to Lemma 2.2,
up to a subsequence, p, converges strongly in L'((0,T) x §2) to a function p, and /ppus,
converges weakly in L2((0,T) x ) to a function gq.

We want to show that, up to a subsequence, u, 1,0} converges almost everywhere to
ulgy~oy. We consider the two cases. First, if €1, = &1 > 0, then from Lemma 2.3 and
the Aubin-Lions Lemma, p,u, converges strongly in C°(0,7; L*(2)) to Vvpq = pu. Up
to a subsequence, both p, and p,u, converges almost everywhere to, respectively, p and
pu. For almost every (t,z) € {p > 0}, for n big enough, p,(t,z) > 0, 80 up = prin/pn
at this point converges u. If €2, = 0 we use the second part of Lemma 2.3 and thanks
to the Aubin-Lions Lemma, ®(p,)u, converges strongly in C°(0,7T; L*(Q)) to ®(p)u. We
still have, up to a subsequence, both p, and ®(p,)u, converging almost everywhere to,
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respectively, p and ¢(p)u (we used the fact that ®(r)/y/r = 0 at r = 0). Since ®(r) # 0
for » # 0, for almost every (t,z) € {p > 0}, for n big enough, ®(p,)(t,z) > 0, so
Up = P(pn)tn/P(pp) at this point converges u.

Note that

Prl(pn, un) = prb(pn, un)1ip, >0 + PRI (Pn; un) (s, =0}-

The first term converges almost everywhere to p*h(p, u)1 {p>0}> and therefore to p*h(p, u)
in L' by the Lebesgue’s theorem. The second part can be estimated as follows

o h(pon, un)Lgp, =0yl < |[7(pn, un)lLall Pl gp=0y |l o<

But pp1,—0} converges almost everywhere to 0, by the Lebesgue’s theorem, the last term
converges to 0. U

Some compactness when the parameters are fixed. For any positive fixed 6, rg, r1, 72 and
r, to recover a weak solution to (1.17), we only need to handle the compactness of the
terms

ou¥ (VEGoA([ VR

and
Pn

o
M/(pn)

Indeed due to the term rapp |un|u, and the fact that infgjo 4o0) p'(5) > €1 > 0, one obtains
the compactness for all other terms in the same way as in [13, 40].

\un|2un.

Capillarity term. To pass to the limits in

¥ (VEGoA([ VEa).

we use the identity

¥ (VEGIA[ " VEGI 9

— 4)2div(v/ilpn) VV Z(pn)) = A 1(pa) VZ(pr) | (2.26)
+ VIR 4(0))820(00)] ~ Vaivlk(on) V2 00)]

1(pn)
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Pn Pn A /

where Z(p,) = / [(u(s))21 (5)] /s ds and k(pn) = / st. It allows us to
0 0

rewrite the weak form coming for the capillarity term as follows

[ [ VRGaa [ VR syt
=4 [ [ Vilp)TIZ(0.) 0+ ulp) V2 ) - M)

2X(pn) , ,
/ / \/7 pn))AZ(pn) dive) + k(ﬂn)VZ(,On).VdIV@b)
= Al =+ AQ.

In fact, with Lemma 2.2 at hand, we are able to have compactness of A1 and As easily.
Concerning A1, we know that

Vi(pn) = v/ 1(p) in LP((0,T); L4(Q2)) for all p < +o0 and ¢ < 3.

Note that VV Z(p,,) is uniformly bounded in L?(0, T; L%(2)), we have VZ(p,,) is uniformly
bounded in L?(0,T; L5(Q2)), because [, VZ(pn) = 0 due to the periodic condition. Thus
we have following weak convergence

/Q Vilpn)VZ(pr) - Apdr — /Q ViV Z - A de,
and
/Q\/u(pn)VVZ(pn)Vw dx — /Q VeV Z Ny dx,

thanks to Lemma 2.2. We conclude that Z = Z(p), thanks to the bound on Z(p,) and
the strong convergence on p,. Thus using the compactness on p,,, the passage to the limit
in A; is done. Concerning As, we just have to look at the coefficients

Pn . )
o) = [ MW /(62 s, (o) = 200/ Vo).
Recalling the assumptions on u(s) and the relation A(s) = 2(u/(s)s — u(s)), we have

2(on = 1)pu(s) < As) < 2(a2 — 1)uls),
and ,
oM (2)2 <2
w()s P T Juls)s
This means that the coefficients k(p,) and j(p,) are comparable to /u(p,). Using the
compactness of the density p, and the informations on u(p,) given in Corollary 2.2, we
conclude the compactness of As doing as for A;.

Cubic non-linear drag term. We will use Lemma 2.4 to show the compactness of
Pn
W (pn)

|2 |21,

More precisely, we write

’(’” run|2un—pm/ funl®o |un| () = 05 (pn, [un)), (2.27)
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1
By Lemma 2.2, there exists ¢ > 0 such that p$ is uniformly bounded in L°(0, T; L%7¢(Q))
and p, — p a.e., so
1
pS = ps  in LYTE((0,T) x Q). (2.28)
Note that /e~ \un\Z is uniformly bounded in L?(0,T; L*(2)), and infejg 4o0) 1/ (s) >

is uniformly bounded in L3(0, T; L3(f2)), thus

€1 > Oa pﬁ|un|m

h(pns [un) =

XY TP S PO
Up|——=—=—== € L5(0,T; L5()) uniformly. (2.29)
(ol Pl W (pn)

By Lemma 2.4 and (2.27)—(2.29), we deduce that

/ / |un\2und$dt—>/ / |u]2ud:ndt O
o #( o #(

Relying on the compactness stated in this section and the compactness in [40], we are
able to follow the argument in [13] to show Theorem 1.2. Thanks to term 71y |ty |tn, we

have
T
/ / rlpn|un\3dxdt <C.
0 Q

VPnttn, — /pu strongly in L?(0,T; L*(Q)).
With above compactness of this section, we are able to pass to the limits for recovering a
weak solution. In fact, to recover a weak solution to (1.17), we have to pass to the limits
as the order of ¢4 — 0, n — 00, e3 — 0 and € — 0 respectively. In particular, when
passing to the limit €3 tends to zero, we also need to handle the identification of v with
2Vs(p). Following the same argument in [13], one shows that v and 2Vs(p) satisfy the
same moment equation. By the regularity and compactness of solutions, we can show the

uniqueness of solutions. By the uniqueness, we have v = 2Vs(p). This ends the proof of
Theorem 1.2.

This gives us that

3. FROM WEAK SOLUTIONS TO RENORMALIZED SOLUTIONS TO THE APPROXIMATION

This section is dedicated to show that a weak solution is a renormalized solution for
our last level of approximation namely to show Theorem 1.3. First, we introduce a new
function

[f(t,2)]e = f*n(t,x), for any t>e, and [f(¢t,2)]E = f*n(z)

where . . )
x x
ne(t, ) = ENTH(E’ 2)7 and n(z) = ;Nn(g%

with 7 a smooth nonnegative even function compactly supported in the space time ball of
radius 1, and with integral equal to 1. In this section, we will rely on the following two
lemmas to proceed our ideas. Let 0 be a partial derivative in one direction (space or time)
in these two lemmas. The first one is the commutator lemma of DiPerna and Lions, see
[38].
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Lemma 3.1. Let f € WEP(RN xRY), g € LIRN xR*) with 1 < p,q < oo, and %%—% <1.
Then, we have

110(f9)]e — 8(f([g]€))||LT(RN><]R+) < CHfHWLP(RNxRﬂ||9||Lq(RNxR+)
for some C > 0 independent of €, f and g, r is determined by % = % + %. In addition,

[0(f9))e = (f(lg)e) = 0 in L"(RY x RY)

as € — 0 if r < 0o. Moreover, in the same way if f € WIWP(RN), g € LI(RN) with
1<p,q< o0, and%—i—%g 1. Then, we have

Io(fg)le = O(f (gl ey < Cllfllwre @) lgll Loy

for some C > 0 independent of €, f and g, r is determined by % = % + %. In addition,
[D(f9))2 = d(f([9)2) = 0 in L"(RY)

as e — 0 if r < 0.

We also need another very standard lemma as follows.

Lemma 3.2. If f € LP(Q x RY) and g € LY(Q x RY) with 1+ 1 =1 and H € W'*(R),

then
| [ingarai= [ [ g aea,
il_I)I(l)/ / legdx dt = /OT/Qfgdxdt,

fle = 0],
hgg)HH([ ) = H()llz;, (@ x R) =0, forany 1< s < ox.
I3 oc

We define a nonnegative cut-off functions ¢,, for any fixed positive m as follows.

=0, if0<y<
=2my — 1, 1f <y<1
=2-Z, if m <y <2m,

It enables to define an approximated velocity for the density bounded away from zero and
bounded away from infinity. It is crucial to process our procedure, since the approximated
velocity gradient is bounded in L?((0,7) x ). In particular, we introduce u,, = udm,(p)
for any fixed m > 0. Thus, we can show Vu,, is bounded in L?(0,T; L?(Q2)) due to (3.1).
In fact,

Vi = ¢, (p)u @ Vo + dm(p)

o (ulp)p) PVt e (M) ——
= Onl) o G ™) © G r Vo) + om0 7T

—
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Similarly to [34], thanks to the cut-off function (3.1) and for m fixed, ¢,,,(p)(u(p)p) T /(u’(p))%
and ¢,,(p)/+/1(p) are bounded. Then Vu,, is bounded in L?((0,7) x ) using the esti-
mates with r > 0 and ro > 0, and hence for ¢ € W2 T°(R), we get V¢'((um,);) is bounded
in L2((0,T) x Q) for j =1,2,3.

The following estimates are necessary. We state them in the lemma as follows.

Lemma 3.3. There exists a constant C > 0 depending only on the fized solution (\/p, /pu),
and C,, depending also on m such that

+ llolul|

Alp
+IVES + 18Dl 1 o+ 1S lit0mce

P'(pn, Pr [ P(s)p
+ ||\/,— . dS) 21+ (0,1)x0)
w( 0
Pi(pn)p P | Pi(s)p'(s)
+ H\/T ds)”L1+ ((0,T)x ) + HTOUHLZ OT Y% €) < C
0
and

IVém(p) a1y < + 10edm ()l L2((0.7x0)) < Crm-

Proof. By (1.24), we have p € L>=(0,T;L'°(Q2)). Now we have V. /p € L>(0,T; L*(2))
because 1'(s) > e1 and 1/ (p)Vp/\/p € L((0,T); L*()). Note that

1ol Lo 0,75210(0)) + llpull

L3(0,T; L3 Q) LQ(O,T;L¥ (1)

2 1
pu = pipiu,
p% € L>(0,T; L'®(Q)) and péu € L3(0,T; L3(Q)), pu is bounded in L3(0, T Lg(Q))
By (1.24), we have (M,fp))1/2|u]2 € L%((0,T) x ). Note that

1/2( p

/( )1/2|u|27

plul® = (o1 ()
it is bounded in LZ(O,T;L%O(Q)), where we used facts that u(p) € L°°(0,T;L5?(Q))
(recalling that for p > 1 we have u(p) < cp* and p € L*°(0,7; L'°(Q))) and u/(p)p <
aap(p).
Similarly, we get \/f(|S,| + 7[S;|) € L2(0,T; L'%7(Q)) by (1.23). The L>®((0,T) x Q)
bound for A(p)/u(p) may be obtained easily due to (1.3) and (1.9).

Concerning the estimates related to the pressures, we just have to look at the proof in
Lemma 2.2. Note that

P Pu(p)t i (p)
1 (p) [P/M(P)1/4 /
(

by (1.25), we conclude that Ve, (p) is bounded in L*((0,T) x Q). It suffices to recall that
thanks to the cut-off function ¢,,, we have ¢/, (p )pl/Qﬂ(p)1/4/M (p) bounded in L>°((0,T") x

Véum(p) = n(p)Vp = ¢l (p)2
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Q). Similarly, we write

Or6m(p) = & (p)0tp = — 3, (p)div(pu)

1 1
( (P)p)t\,  p7 1 (p)
ﬁ - o)’ )(wp)ﬁ ) oy )
which provides 9;¢.,(p) bounded in L?(0,T; L*(R)) thanks to (1.23), (1.24)
and using the cut-off function property to bound the extra quantiies in L>°((0,
previously.

and (1.25).
T) x Q) as

X

O

Lemma 3.4. The k-entropy weak solution constructed in Theorem 1.2 is a renormalized
solution, in particular, we have

/T/ (pp(u)te + (pp(u) ® u) V)
//vw ViD)(S, + 7Sy

Tr(v/1(p)Su + v/ 1u(p)Sr)1d]

. ) (3.2)
/ / e (W) T, [2((S, + 7S, + QM(p)Tr(SM-i-TSr)Id]
/ / b (u ) da: dt = 0,
where
VDA Tl5k = 0 () — fukso;w)j’g +RL,
Va) (W) ]k_Qr% )0;0kZ(p) — 20;(\/ () Z(p)0s(w)) + R
0 T = w(ﬁim})w ()
R 20 iy + 5 (3.3)
1(p) v
S T ) = 10 (S + 5(0) AZ(p)
— %div(kz(p)(p;(u)vz(P)) + Ry,
where
R = ¢ (u)Tyu/u(p)u
R% = 2¢] ()T, VZ(p)
P (3.4)
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Proof. We choose a function [qb’m([p]a)q/}} as a test function for the continuity equation
£
with ¢ € C2°((0,T) x ). Using Lemma 3.2, we have

0—/ [ @ [6ne10] o+ pu- 9 [61utlpk 0] ) daat
= [ [ @0 + v i) 3.5)
/ /<¢t¢m — o, ([ple )[\/ﬁ%ﬁ(m)wﬁu-v\ﬂa) dz dt.

Using Lemma 3.3 and Lemma 3.2, and passing into the limit as e goes to zero, from (3.5),
we get:

r / P
0= [ o) = et ) ST, + 23 ) v -

T
_ . / P . " .
— [ Wenlo) = vl LT, 4 - Tn(o])

thanks to ¥V, (p) € LY(0,T) x Q), u € L*((0,T) x ), and v compactly supported.
Similarly, we can choose [1)¢n,(p)]c as a test function for the momentum equation. In
particular, we have the following lemma.

Lemma 3.5.

/ / Vo (p)]e (Or(pu) + div(pu @ w)) da dt

tends to

T
—/0 /Q@Z’tpum + V) - (pu @ U + Y (0dm(p) + v - Vo, (p))pudx di

as € — 0.

Proof. By Lemma 3.1, we can show that

T T
/0 /Q Wb ()] B1pre) e it —> — /0 /Q Dot + Vs (p)pru da dt.

For the second term, we have

r T
/ / [¢¢m(ﬂ)]6div(,0u ® u) dx dt = / / Vom(p) [div(pu ® “)L da dt
0 Q 0 Q
r T
= ( /0 /Q b (p) [div(pu @ w)]_ dzdt - /0 /Q Y (p) [div(pu @ u)|” du dt)

T
+ /0 /ngbm(p) [div(pu ® u)]s dx dt
=Ri + Ry,
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where [f(t,z)]: = f(t,x) * n:(t,x) and [f(t,x)]? = f * n-(z) with € > 0 a small enough
number. We write Ry in the following way

R —/T/¢¢m(p) [div(pu @ u)] dxdt—/T/¢¢m(p) [div(pu @ u)]? dz dt
/ /wwm :pu@ul da:dt—/ /w¢m p): [pu@ull dudt.

Thanks to Lemma 3.3, plu|? € L2(0,T;L*/7(Q)) and ¢V, (p) € L*((0,T) x Q), we
conclude that Ry — 0 as € — 0. Meanwhile, we can apply Lemma 3.1 to Ro directly, thus

T
| [t divion s w)? dsa
T T
— (/0 /Qz/@m(P) [le(pU ® u)]E dr dt — /0 /inbm(p)dlv(pu ® [u]f) dx dt)

T
[ [ wnorivious ) do e
= Ro1 + Rao.

By Lemma 3.1, we have Ro; — 0 as € — 0. The term Ros will be calculated in the
following way,

/ ' / Yom(p)div(pu @ [u]f) dx dt

Do

:/0 /chbm(p)div(pu)[u]gdxdwr/OT/QWm(p)pu.v[u]g du dt
:/T/ pdiv(pu) [um]? dxdt+/OT/Q¢puV(¢m(p)[u]§)dxdt—

/ /1/1 -Vom(p)pudz dt
/ /Vﬂ}pu@) U |2 dmdt/ /w 12V om(p)pu dez dt,

which tends to

T T
—/ /V¢pu®umd:pdt—/ /w-uv¢m(p)pud:rdt,
0o Ja 0o Ja

as ¢ — 0.
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For the other terms in the momentum equation, we can follow the same way as above
method for (3.6) to have

T
/0 /Q(wtpuerVw-(pu@um—2¢m(p)(\/ (p)(S, +7Sy) Tr(v/1(p)S, + 7S,)1d))
T
/ /d)aﬂﬁm ) +u-Vom(p))pu
/ | 20BN, 4 780) + G LT T8+ 811 (0) + ) F . 0) e

Thanks to (3.6), we have

T
/0 [ i+ V0 (gt 200 p) (VRIS + 161) + o)y Jul) (S, + 75,))1d)

2u(p)
- / ' / Wl (p)

/ / 2 (\/1(p)(Sp + 151) + ;;f&og)Tr(\/u(p)(Su+TST))Id)V¢>m(p))dxdt:O.

A=) = Gm () F (.0

(3.7)

The goal of this subsection is to derive the formulation of renormalized solution following
the idea in [34]. We choose the function [¢¢'([um]:)], as a test function in (3.7). As the
same argument of Lemma 3.5, we can show that

T
/0 /Q (01 [ (o)), ptim + V[0 (tmle)]. : (914 ® t4)) iz

T
— / / (pe(um)r + pu @ o(up ) V) da dt,

an

/ / wcp [t —2¢m( )(m(S +7S;) Tr Vi(p)Sy + 7Sy) )
+ [0¢ ([um])] . — mp)LTrm)pu

1(p)
2/ (S +75,) + ﬁfp)gr(\/mpxsuwsnm»wm(p)+¢m<p>F<p,u>) da
- / | 08 ) (= 260 (0) VRS, + 18 + 5 T/ RNS, + 18)a)
Y P . ”
+ 9 (um) ( cbm(p)mT (Tu)p

— 2(\/ulp)(S, +715,) Te(v/7(P)Sy + 15:)) Vo (p) + b (p) F(py 1)) das d
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as € goes to zero. Putting these two limits together, we have

T
/ / (po(um)ts + pu @ ©(um) V)
0 Q

V0 () — 20m(0) (VS + 750 + A("p)) (VP8 + 75,))

2(
08 )V (= O (D) AV RS, + 160 + TS, +15,)) (59

+ 90 () (= Pl (p)—=Tr(T,) pu — 2(\/1(p) (S + 7S

Vilp)
+ QAM((pZ) Tr(v/1(p)S + 78:)) Vo (p) + bm(p) F(p, u)) da: dt = 0.

Now we should pass to the limit in (3.8) as m goes to infinity. To this end, we should keep
the following convergences in mind:

ém(p) converges to 1,  for almost every(t,r) € RT x €,
U converges to u,  for almost every(t,z) € RT x Q, (3.9)

lp#l (p)| <2, and converges to 0 for almost every(t,z) € R* x Q.
We can find that

V1(p)Vim =/ 1(p)V(dm(p)u) = dm(p)\/ 1(p) Vu + ér, (p)/ 11(p)uVp

_ Om(p) (V(u(p)u)—fu-v“(p))+ VP ( 1(p) (V) ( pt ) (4] (p)u(pﬂ/))

(o) Vo i e P o s )
VP Vilp) pi ;o i(p)ipt
= om(p) Ty + 3 \ T ) (Om 3
o u(p)i( p 1 p)((u’(p))Z ) (p)(ﬂ’(p)ﬁ)
:A1m+A2m'

Note that

thus d)’m(p)u(p)%pi/(u(p)’)% converges to zero for almost every (¢,x). Thus, the Domi-
nated convergence theorem yields that As,, converges to zero as m — oo. Meanwhile, the
Dominated convergence theorem also gives us Ay, converges to T, in LtZ,x' Hence, with
(3.9) at hand, letting m — oo in (3.8), one obtains that

T
/0 /Q (o) + pu® p(w) Vi) — 2940 (u) (+/(P) Sy + 71)
Alp)

+ mTr(\/@(Su +1S,))1d) — 20" ()T, (S, + 7Sy)
+ MTr(<Su +7S:)1d) + 9’ (u) F(p,u)) da dt = 0.

2p(p)
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From now, we denote R, = 2¢¢" (w)T,((S, +rS;) + ;;L((pp)) Tr((S, +rS;)Id). This ends the

proof of Theorem 1.3.
O

4. RENORMALIZED SOLUTIONS AND WEAK SOLUTIONS

The main goal of this section is the proof of Theorem 1.1 that obtains the existence of
renormalized solutions of the Navier-Stokes equations without the additional terms, thus
the existence of weak solutions of the Navier-Stokes equations.

4.1. Renormalized solutions. In this subsection, we will show the existence of renor-
malized solutions. To this end, we need the following lemma of stability.

Lemma 4.1. For any fized oy < g as in (1.9) and consider sequences 6y, Ton, T1n and
Ton, such that vy, — r; > 0 with 1 = 0,1,2 and then 6,, — 0 > 0. Consider a family of
tn : RT — RY wverifying (1.9) and (1.10) for the fized oy and o such that

tn — . in CO(RT).

Then, if (pn,un) verifies (1.23)-(1.26), up to a subsequence, still denoted n, the following
convergences hold.

1. The sequence p, convergences strongly to p in C°(0,T; LP(Q)) for any 1 < p < .

2. The sequence fin,(pn) un converges to u(p)u in L>(0,T; LP(2) for p € [1,3/2).

3. The sequence (T,), convergences to T, weakly in L*(0,T; L?(2)).

4. For every function H € W%®(R%) and 0 < a < 2v/v + 1, we have that p>H (u,) con-
vergences to p*H (u) strongly in LP(0,T;Q) for1 <p < (vijﬁl)a In particular, \/pu(pp)H (uy)

convergences to \/u(p)H (u) strongly in L>=(0,T; L*(Q2)).
Proof. Using (1.26), the Aubin-Lions lemma gives us, up to a subsequence,
pn(pn) = in CO(OvT§ L1(Q))
for any g < % But
sup |t — pf — 0

as n — 0o. Thus, we have

in(pn) = filt,2) in CO((0,T]; L9(%), (4.1)
so up to a subsequence,

w(pn) = [t z) a. e.

Note that u is increasing function, so it is invertible, and p~* is continuous. This implies

that p, — p a.e. with u(p) = fi(t, z). Together with (4.1) and p,, is uniformly bounded in
L*>(0,T; L7(2)), thus we get part 1.

1

Note that
g Hlen) _ VPV i(pn) — p(pn)Vpn
VPn Pn 2pny/pn
thus

Viu(pn)
VP

‘vu(pn)

n

< ClVpnl

)
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so V5= is bounded in T , thanks to (1.23). Using (1.26), we have ==~ is
V4L i bounded in L (0, T; L*(Q2)), thanks to (1.23). Usi 26), we have “22) |

bounded in L>(0,T; W12(Q)), thus it is uniformly bounded in L>(0,T; L5(Q)).
On the other hand, ,/ppu,, is uniformly bounded in L>(0,T; L?(£2)). From Lemma 2.4,

we have

ion)un = 20 o s oy i L(0,T; 19(9))
vV Pn
for any 1 < ¢ < 3. Since (T,.),, is bounded in L?(0,T; L*(£2)), and so, up to a subsequence,
converges weakly in L?(0,T; L?(£2)) to a function T,. Using Lemma 2.4, this gives part 4.
g

With Lemma 4.1, we are able to recover the renormalized solutions of Navier-Stokes
equations without any additional term by letting n — oo in (3). We state this result in
the following Lemma. In this lemma, we fix u such that €; > 0.

Lemma 4.2. For any fived €1 > 0, there exists a renormalized solution (\/p,/pu) to the
initial value problem (1.1)-(1.2).

Proof. We can use Lemma 4.1 to pass to the limits for the extra terms. We will have to
follow this order: let ro goes to zero, then ri tends to zero, after that rg,d,r go to zero
together.

—If 7o = ra(n) — 0, we just write

Pn i/ Pn
D

)
U | “Uny,
1 (pn) m

Pn 2 . 4 6
ro————|un|“u, — 0in L3(0,T; L5(82)).
s (075 L} (@)

—For r; =r(n) =0,
142 2 9
100 |unlun| < 73 pirs pit[unl”,

which converges to zero in L3 (0,T; L? (Q)) using the drag term control in the energy and
the information on the pressure law P(p) = ap”.
— For 79 = rp(n) — 0, it is easy to conclude that

rotn, — 0 in L2((0,T) x Q).
— We now consider the limit » — 0 of the term
Pn
0¥ (VEGA [ VEGIs).

Note the following identity

oV (JWM | VEG ds>) = 2div (ju(pa) V2 (25(p0)) ) + V (A(0)A (25(p0)) ).
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we only need to focus on div (u(pn)v2 (2s(pn))) since the same argument holds for the
other term. Since

r /Q div (u(pn)vz (23(pn))>1/1 dx

1 [ 229 2(0,) 0 VZ(p.)Vuds 1 [ Vs(pn) A0 ds
Q Hn &

— Zivz(pn) @ VZ(pn) V) da + r/ ViV Z(pn) Ay d,
Q Hn Q

the first term can be controlled as

1
‘7“/9 VEnV Z(pn) Atp dx| < Crz ||y plpn) |l 20,1220 VTV Z(pn) | 220 7:12(02)) — 0,

thanks to (1.25) and (1.26); and the second term as
|, 9200 & V2T da] < VIVE [ Vi) L 92 P
n H{pn)?

Pn 1
<C|vr 3 IV Z(pn) 1Pl 207220 IV 11(on) | L2 0,722 (02)) 72 — 0.
HA\Pn

— Concerning the quantity dp'°, thanks to pe, (p) > e1 >0, V8|V p°| is uniformly bounded
in L2(0,T; L?(2)). This gives us that 5%;) is uniformly bounded in L!°(0,T; L3°()).
Thus, we have

T 2 1
/0 /Qaplow dxdt’ < C(4)85185p™|| 11 (0.7:28(0) — O

as § — 0.

With Lemma 4.1 at hand, we are ready to recover the renormalized solutions to (1.1)-
(1.2). By part 1 and part 2 of Lemma 4.1, we are able to pass to the limits on the
continuity equation. Thanks to part 4 of Lemma 4.1,

1(pn) @ (un) = /ulp)¢'(w) in L=(0,T; L*(R)).

With the help of Lemma 2.2, we can pass to the limit on pressure, thus we can recover
the renormalized solutions.

O

4.2. Recover weak solutions from renormalized solutions. In this part, we can
recover the weak solutions from the renormalized solutions constructed in Lemma 4.2.
Now we show that Lemma 4.2 is valid without the condition €; > 0. For such a u, we
construct a sequence j, converging to g in C°(RT) and such that ey, = inf !, > 0.
Lemma 4.1 shows that, up to a subsequence,

pu—p in C°0,T; LP(Q))
and
ptl
Py, — pu  in L(0,T; L 2 (Q))
for any 1 < p <, where (p, \/pu) is a renormalized solution to (1.1).
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Now, we want to show that this renormalized solution is also a weak solution in the sense
of Definition 1.2. To this end, we introduce a non-negative smooth function ® : R — R such
that it has a compact support and ®(s) = 1 for any —1 < s < 1. Let ®(s) = f08<1>(r) dr,
we define

ealy) = n@(2)0(2)0(22)

for any y = (y1,v2,y3) € R3. Note that ¢, is bounded in W2 (R3) for any fixed n > 0,
©n(y) converges everywhere to y; as n goes to infinity, V¢, is uniformly bounded in n
and converges everywhere to unit vector (1,0, ....0), and we have the following control

C
IVVenllLoo(rsy < P 0
as n goes to infinity. This allows us to control the measures in Definition 1.1 as follows

—1 —=2
| R Mm@+ xa) + 1B, Mm@t <) + 1Ry, [m@ <o) < ClIVV e Lo @sy — 0

as n goes to infinity. Using this function ¢, in the equation of Definition 1.1, the Lebesgue’s
Theorem gives us the equation on pu; in Definition 1.2 by passing limits as n goes to
infinity. In this way, we are able to get full vector equation on pu by permuting the
directions. Applying the Lebesgue’s dominated convergence Theorem, one obtains (1.4)
by passing to limit in (1.12) with ¢ = 1 and the function ¢,,. Thus, we have shown that
the renormalized solution is also a weak solution.
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