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ABSTRACT: We explore different ways of incorporating accurate
trial wave functions into free projection auxiliary-field quantum
Monte Carlo (fp-AFQMC). States employed include coupled-
cluster singles and doubles, multi-Slater, and symmetry-projected
mean-field wave functions. We adapt a recently proposed fast
multi-Slater local energy evaluation algorithm for fp-AFQMC,
making the use of long expansions from selected configuration
interaction methods feasible. We demonstrate how these wave
functions serve to mitigate the sign problem and accelerate convergence in quantum chemical problems, allowing the application of
fp-AFQMC to systems of substantial sizes. Our calculations on the widely studied model Cu2O2

2+ system show that many previously
reported isomerization energies differ substantially from the near-exact fp-AFQMC value.

1. INTRODUCTION

Projector Monte Carlo (PMC) is among the most powerful
and versatile methods for calculating the properties of many-
fermion systems.1−4 In this method, one numerically integrates
the imaginary-time (τ) Schrödinger equation

ψ τ

τ
ψ τ

∂| ⟩

∂
= − ̂ | ⟩H

( )
( )

(1)

whose solution can formally be written as |ψ(τ)⟩ =
exp (−τĤ)|ψr⟩, where |ψr⟩ is an initial state. Writing the initial
state as a linear combination of the Hamiltonian eigenstates
(|ψi⟩), |ψr⟩ = ∑ici|ψi⟩, we get

∑ψ τ τ ψ| ⟩ = − | ⟩c E( ) exp( )
i

i i i
(2)

where Ei are energy eigenvalues. Consequently, as long as the
initial state |ψr⟩ does not have a vanishing overlap with the
ground state (c0 ≠ 0), |ψ(τ)⟩ approaches the ground state
exponentially fast in the long τ limit. One can use a trial wave
function |ψl⟩ to measure various observables in the ground
state. In particular, the ground-state energy can be obtained
using the expression

τ
ψ ψ

ψ ψ
=

⟨ | ̂ | ⟩

⟨ | | ⟩

τ

τ

− ̂

− ̂
E

He

e
( ) l

H
r

l
H

r (3)

which converges to the exact ground-state energy in the long τ
limit. Although PMC is exact in principle, in practice (in the
absence of special symmetries in the system), any attempt at
stochastic numerical integration is plagued with a severe
numerical instability, termed the sign problem, stemming from
the antisymmetry of fermionic wave functions.5 As a result, the

signal-to-noise of the PMC simulation decreases exponentially,
and after a relatively short imaginary time τ, obtaining useful
information from the simulation becomes intractable.
Various flavors of PMC differ in the space in which the

simulation is performed, the method used to approximately
apply the projector onto a state, and how the sign problem is
controlled. Characteristics of four commonly used PMC
methods, namely diffusion Monte Carlo (DMC),3,6 Green’s
function Monte Carlo (GFMC),7,8 auxiliary-field QMC
(AFQMC),9−16 and full configuration interaction QMC
(FCIQMC),17,18 are listed in Table 1. These approaches
have been developed with different goals in mind based on
their respective advantages and pitfalls. The sign problem is
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Table 1. Characteristics of Various Commonly Used PMC
Approachesa

method space projector form approximation

DMC real exp (−ΔτH) fixed-node

GFMC real (1 − ΔτH)−1 fixed-node

GFMC orbital 1 − ΔτH fixed-node

AFQMC orbital exp (−ΔτH) phaseless

FCIQMC orbital 1 − ΔτH initiator
aThe last column lists the approximation that is commonly used to
overcome the sign problem in the respective methods.

Articlepubs.acs.org/JCTC

© 2021 American Chemical Society
4786

https://doi.org/10.1021/acs.jctc.1c00371
J. Chem. Theory Comput. 2021, 17, 4786−4798

D
o
w

n
lo

ad
ed

 v
ia

 U
N

IV
 O

F
 C

O
L

O
R

A
D

O
 B

O
U

L
D

E
R

 o
n
 A

u
g
u
st

 2
9
, 
2
0
2
2
 a

t 
1
9
:3

3
:1

8
 (

U
T

C
).

S
ee

 h
tt

p
s:

//
p
u
b
s.

ac
s.

o
rg

/s
h
ar

in
g
g
u
id

el
in

es
 f

o
r 

o
p
ti

o
n
s 

o
n
 h

o
w

 t
o
 l

eg
it

im
at

el
y
 s

h
ar

e 
p
u
b
li

sh
ed

 a
rt

ic
le

s.



less severe in orbital space methods compared to real-space
methods due to the antisymmetry naturally enforced in the
Hilbert space. The linear projectors used in orbital space
GFMC and FCIQMC have the advantage that they do not
have time-step errors that arise in the exponential projectors.
The cost of applying the linear projector is also much smaller
comparatively. Alternatively, the exponential projector used in
AFQMC allows noise-free application of the one-body part of
the Hamiltonian, leading to a milder sign problem in AFQMC
compared to FCIQMC and GFMC. Regardless of the variation
in the severity of the sign problem in different methods, it
becomes exponentially worse with system size in all cases,
making calculations of large systems very difficult. One of the
common ways to deal with it is to use a guiding wave function
to enforce a constraint that stabilizes the simulation at the
expense of a systematic bias. The phaseless constraint19 often
used in AFQMC (ph-AFQMC), and the fixed-node approx-
imation used in DMC and GFMC lead to polynomially scaling
methods, albeit with more or less controlled errors. A different
approach is used in FCIQMC, whereby the constraint is
applied without an external guiding state using the initiator
approximation.20 Another way of dealing with the sign
problem is using transcorrelation, wherein trial wave function
information gets folded into the Hamiltonian, making the
projection more manageable.21 A recently proposed approach
of combining aspects of variational and projection methods
through time-step optimization also seems promising.22

In the current work, we will take a different approach.
Instead of introducing a bias to stabilize the simulation, we use
high-quality states |ψl⟩ and |ψr⟩ such that the simulation
converges quickly enough before the sign problem becomes
prohibitively expensive. We will use the exponential projector
exp (−ΔτH) and work in orbital space without enforcing a
constraint. Thus, this approach is almost identical to free
projection AFQMC (fp-AFQMC). The term free projection
was first introduced in ref 19 to distinguish it from the
phaseless approach. Due to the very high cost of fp-AFQMC
when used with simple wave functions, to date, only a handful
of calculations have been reported on systems of substantial
sizes, the chromium dimer calculation by Purwanto et al.23

being notable among them. Looking at eq 3, it is evident that if
the states |ψl⟩ and |ψr⟩ have substantial weight on the ground
state and small weights on low-lying excited states, the energy
estimator E(τ) will converge rapidly to the ground-state
energy, and one can obtain an accurate estimate of the ground-
state energy with a relatively short τ simulation. This approach
is analogous to finite-temperature AFQMC simulations with τ
playing the role of inverse temperature. It is also closely related
to the method presented in ref 24 by Hlubina et al., where a
Gutzwiller trial wave function is used to obtain accurate
energies in the Hubbard model due to a zero-variance
principle. While past efforts to incorporate high-quality wave
functions into AFQMC, including those in ph-AFQMC,25,26

have focused on model lattice systems, in this paper, we
consider ab initio systems and wave functions commonly used
in quantum chemistry. We study the use of multi-Slater
(obtained from selected configuration interaction meth-
ods),27−31 coupled-cluster singles and doubles (CCSD),32,33

and symmetry-projected mean-field states34,35 in fp-AFQMC.
Our method presents a way to systematically improve upon
these wave functions through imaginary-time propagation. In
particular, we find that multi-Slater states, in combination with
CCSD, give remarkably accurate results for several systems,

and one can perform near-exact simulations on systems as large
as 52 electrons in 118 orbitals.
The rest of this paper is organized as follows: In Section 2,

we begin with the details of the procedure used for sampling
the short-time propagator. Then, we present efficient ways of
using various wave functions in the estimator. In Section 3, we
analyze the efficacy of these states in fp-AFQMC with some
illustrative examples. We also gauge the accuracy of focal point
corrections to stretch the scope of the method. We present
results for larger systems, namely benzene, cyclobutadiene, and
Cu2O2

2+. Finally, we conclude with a discussion of the
prospects for our approach.

2. THEORY

2.1. Propagator Sampling. Here, we review how the
propagator is sampled in AFQMC following the detailed
exposition by ref 16. Consider the ab initio electronic
Hamiltonian given by

∑ ∑̂ = + = ̂ + ̂† † †H h a a v a a a a K V
1

2
ij

i
j
i j

ikjl

ij
kl

i k j l

(4)

where i, j, k, and l are spin-orbital indices and hi
j and vij

kl are one
and two electron integrals, respectively. We denote the number
of orbitals by M and the number of electrons by N. To sample
the imaginary-time propagator, one first divides the prop-
agation into small intervals and makes a Trotter approximation
for each interval, given as

τ

=

= + Δ

τ τ

τ τ τ τ

− ̂ −Δ ̂

−Δ ̂ −Δ ̂ −Δ ̂ −Δ ̂

e e

e e e e O

( )

( )

H H N

H K V K/2 /2 3
(5)

To sample the exponential of the two-body part, we express it
as a sum of squares using a modified Cholesky decom-
position36,37

∑ ∑ ∑̂ = [ ] = − ̂
γ

γ

γ

γ
†

i
kjjjjjjj

y
{zzzzzzzV L a a v

1

2

1

2
jl

j
l

j l

2

2

(6)

where v̂γ = i∑jl [L
γ]j
laj
†al are one-body operators. We will

denote the number of Cholesky matrices, Lγ, by X. Empirically,
X is known to scale linearly with the number of orbitals with X
∼ 5−10M. Using the Hubbard−Stratanovic transform, we get

∫∏
π

τ= + Δτ

γ

γ τ−Δ ̂ − Δ ̂γ γ γe
dx

e e O
2

( )V x x v/2 22

(7)

where xγ are the auxiliary fields. The quadratic Trotter error
arises due to the fact that v̂γ do not commute with each other.
The propagator on the short interval can be expressed in a
compact form as

∫ τ= ̂ + Δτ−Δ ̂
e p B Odx x x( ) ( ) ( )H 2

(8)

where x is the vector of auxiliary fields, p(x) is the standard
Gaussian distribution, and B̂(x) is a one-body operator given
by

̂ = τ τ τ−Δ Δ ∑ ̂ −Δ
γ γ γB e e ex( ) K x v K/2 /2

(9)

The full propagator can be written as
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∫ ∫∏= ̂ = ̂τ− ̂
e d p B px x x( ) ( ) ( ) ( )H

i

i i i
(10)

where xi are auxiliary fields at the ith time slice, denotes time
ordering, = { }xi is the set of auxiliary fields at all time slices,

and ̂ = ∏ ̂B x( ) ( )
i i .

Substituting the propagator integral into the energy
expression in eq 3, we get

∫

∫
τ

ψ ψ

ψ ψ
=

⟨ | ̂ ̂ | ⟩

⟨ | ̂ | ⟩
E

p H

p
( )

( ) ( )

( ) ( )

l r

l r (11)

According to the Thouless theorem, applying the exponential
of a one-body operator onto a Slater determinant results in
another Slater determinant with rotated orbitals. This allows
one to operate the sampled propagator onto a determinant as

ϕ ϕ̂ | ⟩ = | ⟩( ) ( ) (12)

where |ϕ⟩ and ϕ| ⟩( ) are Slater determinants. If the initial
state is a single determinant, the projector can thus be applied
directly to it. However, even when the state |ψr⟩ is not a single
determinant (e.g., CCSD or Jastrow−Slater wave function), it
can be written as

∫ψ ϕ ϕ ϕ| ⟩ = | ⟩d c( )
r (13)

where the integral is over an overcomplete set of Slater
determinants |ϕ⟩, and consequently, the expansion coefficients
c(ϕ) are not unique. Thus, we have

∫

∫
τ

ϕ ϕ ψ ϕ

ϕ ϕ ψ ϕ
=

⟨ | ̂ ̂ | ⟩

⟨ | ̂ | ⟩
E

d p c H

d p c
( )

( ) ( ) ( )

( ) ( ) ( )

l

l (14)

Now we can sample multidimensional integrals in the
numerator and the denominator using Monte Carlo. The
process for directly sampling determinants |ϕ⟩ from a CCSD
initial state |ψr⟩ will be described in Section 2.2. We sample
directly from the standard Gaussian distribution p( ). So we
get the estimator

τ
ψ ϕ

ψ ϕ

ψ ϕ

ψ ϕ
≈

∑ ⟨ | ̂ ̂ | ⟩

∑ ⟨ | ̂ | ⟩
=

∑ ⟨ | ̂ | ⟩

∑ ⟨ | ⟩
E

H H
( )

( )

( )

( )

( )
i l i i

i l i i

i l i i

i l i i (15)

where i and |ϕi⟩ are auxiliary field and initial wave function
samples, respectively. We note that this estimator of the ratio
of two random variables has a bias that goes down as 1/
Nsamples, while the statistical noise goes down more slowly as

N1/ samples . Therefore, we ignore the more rapidly decaying

bias, which we have confirmed to be unimportant in our
numerical calculations. In the limit that |ψl⟩ is the exact ground
state, the estimator in eq 15 becomes noiseless since
ψ ϕ ψ ϕ⟨ | ̂ | ⟩ = ⟨ | ⟩H E( ) ( )

i i i i0 0 0 . This zero-variance property
ensures that more accurate |ψl⟩ states lead to lower statistical
noise in the estimator. Subtracting the mean-field background
from the Hamiltonian is known to substantially reduce
statistical fluctuations,14 and we employ this strategy in our
calculations. We also periodically orthogonalize orbitals in the
walker, ϕ| ⟩( )

i i , at fixed intervals during the propagation for
numerical stability.
The most expensive operation in propagation is the

formation of the one-body operator matrix (∑γxγv̂γ in eq 9),

which has a computational cost scaling of O(XM2). The
exponentials of these matrices are not explicitly calculated,
instead only their action on the walker matrices, ϕ| ⟩( )

i i with
dimension M × N, is calculated using a truncated Taylor series,
which has a cost scaling of O(NM2). We retain the first 10
terms in the Taylor series of the exponential.

2.2. Trial and Initial Wave Functions. In this section, we
will outline methods for using various accurate states as |ψl⟩
and |ψr⟩ in eq 3. For using a wave function as |ψl⟩, one needs
an efficient way to calculate its local energy given by

ϕ
ψ ϕ

ψ ϕ
=

⟨ | ̂ | ⟩

⟨ | ⟩
E

H
( )L

l

l (16)

where |ϕ⟩ is a Slater determinant. In terms of local energy, eq
15 is written as

τ
ψ ϕ ϕ

ψ ϕ
≈

∑ ⟨ | ⟩

∑ ⟨ | ⟩
E

E
( )

( ) ( ( ))

( )
i l i i L i i

i l i i (17)

For accurate trial states and larger systems, local energy
evaluation can become more expensive than propagation.
Many ways of reducing this cost in AFQMC have been
proposed for single determinant and multi-Slater trials.38−42

Below we will describe economic algorithms for evaluating
local energies for multi-Slater and symmetry-projected mean-
fields trial states, which can be used as |ψl⟩. To use a wave
function as the initial state |ψr⟩ in the sampling method
outlined in Section 2.1, one needs to be able to sample a
determinant from it (eq 13). We will present a way to do this
for CCSD wave functions.

2.2.1. Multi-Slater. A multi-Slater wave function is obtained
by particle−hole excitations from a reference configuration.
We can write it as

∑ ∏ψ ψ| ⟩ = | ⟩
μ

†
μ μ

c a a
n

N

n

k

t p 0

c

n

n

n n
(18)

where |ψ0⟩ is the reference configuration, cn are real expansion
coefficients, Nc is the number of configurations in the
expansion, and kn are the excitation ranks. Note that the
product of particle−hole excitations needs not be ordered
since the excitations commute with each other.
Multi-Slater wave functions can be employed as |ψl⟩ trial

states in fp-AFQMC. We recently presented an efficient local
energy evaluation algorithm for multi-Slater wave functions in
variational Monte Carlo43 that has a favorable scaling with the
number of configurations, analogous to developments in real-
space QMC algorithms.44 Here, this algorithm is adapted for
AFQMC with some important changes. For convenience, we
write the local energy as

ϕ
ψ ϕ

ψ ϕ

ψ ϕ

ψ ϕ
[ ] =

⟨ | ̂ | ⟩

⟨ | ⟩

⟨ | ⟩

⟨ | ⟩
E

H
/L

0 0 (19)

The overlap ratio in the denominator is given by

∑ψ ϕ

ψ ϕ

ψ ϕ

ψ ϕ

⟨ | ⟩

⟨ | ⟩
=

⟨ ∏ | ⟩

⟨ | ⟩

μ

†
μ μ

c

a a

n

n

p t

0

0

0

n n n

(20)

Since |ψ0⟩ and |ϕ⟩ are determinants, we can use the generalized
Wick’s theorem to compute the terms in this sum. The Green’s
function is given as16
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ψ ϕ

ψ ϕ
ϕ ψ ϕ ψ=

⟨ | | ⟩

⟨ | ⟩
= [ ]

†
† − †G

a a
( )j

i i j

i
j0

0
0

1
0

(21)

where ϕ and ψ0 are the orbital coefficient matrices of the

corresponding determinants. Using the generalized Wick’s

theorem, we get

ψ ϕ

ψ ϕ

⟨ ∏ | ⟩

⟨ | ⟩
=

μ

†

{ }
{ }μ μ

μ

μ

a a
Gdet( )

p t

t

p0

0 (22)

where the sets of indices {pμ} and {tμ} denote the k × k slice of

the G matrix, k being the rank of the excitation. Therefore,

once the Green’s function is calculated at cost O(N2M) the

overlap ratio in eq 20 can be calculated at cost O(Nc). We will

ignore the scaling factors with respect to the excitation rank k

as it is usually small, typically (k ≤ 6).
To calculate the numerator in the local energy expression of

eq 19, we first rewrite the Hamiltonian as

∑ ∑ ∑̂ = [ ′] + [ ] [ ]
γ

γ γ† † †H h a a L L a a a a
1

2
ij

j
i

i j

ikjl

i
k

j
l

i j k l

(23)

where we have normal-ordered the two-body term in eq 4 and

absorbed the resulting one-body terms into h′. Note that we

have used the same orbitals as those used in the multi-Slater

trial wave function to express the Hamiltonian. The one-body

part of the local energy numerator is given by

∑ ∑ψ ϕ

ψ ϕ

ψ ϕ

ψ ϕ

⟨ | ̂ | ⟩

⟨ | ⟩
= [ ′]

⟨ ∏ | ⟩

⟨ | ⟩

μ

† †
μ μ

i
k
jjjjjjjjjjjjjj

y
{
zzzzzzzzzzzzzz

( )H
c h

a a a a

n

n

ij

i
j

p t i j
1

0

0

0

n n n

(24)

Using the generalized Wick’s theorem, we get

ψ ϕ

ψ ϕ

⟨ ∏ | ⟩

⟨ | ⟩
=
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† †
{ }

{ }
{ }
{ }

μ μ μ

μ

μ

μ

i
k
jjjjjjjjjj

y
{
zzzzzzzzzz( )a a a a G

G G
det

p t i j j
i

t
i

j

p

t

p

0

0
(25)

where the matrix on the RHS is written as a block matrix with

the blocks given by the specified slices. We have also defined a

modified Green’s function as

δ= −Gj
i

j
i

j
i

(26)

where δ is the Kronecker delta. A naive evaluation of the sums

in eq 24 entails contracting over the one-body Hamiltonian

separately for each configuration in the multi-Slater expansion.

This explicit evaluation of the double sum can be avoided

using the following trick. Substituting the matrix element in eq

25 into eq 24 and dropping the configuration index n for

convenience, we get

∑

∑

∑
∑

[ ′]

= [ ′]

+ −
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ν

ν

{ }

{ }
{ }
{ }

{ }
{ }

=

{ }

{ }
{ }

μ

μ

μ

μ

μ

μ
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μ

μ

μ ν

i
k
jjjjjjjjjj

y
{
zzzzzzzzzzi
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y
{zzzzzzz i

k
jjjjjjjjjjjjj

y
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zzzzzzzzzzzzz
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G G

h G G

h G
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det

det( )

( 1) det

ij

i
j
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p
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i
j

j
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t

p

k
ij

i
j

j
p

t
i

t

p p1

(27)

where we have Laplace expanded the determinant on the LHS
along the first column. {pμ}\pν denotes the set of indices {pμ}
excluding pν. This equation suggests a way of separating the
sums over Hamiltonian and configuration indices by
precomputing the intermediates given by

∑

∑

= [ ′]

= [ ′]

E h G

S h G

ij

i
j

j
i

t
p

ij

i
j

j
p

t
i

0
1

(28)

Using these intermediates in eq 27, we get

∑

∑
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= + −
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{ }
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{ }
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μ
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i
k
jjjjjjjjjj

y
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k
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y
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i
j

j
i

t
i

j

p

t

p

t

p
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p

t

p p0
1

1
(29)

where the RHS now does not involve any contractions over the
one-body Hamiltonian indices.
The two-body contribution to the local energy numerator is

given by

∑ψ ϕ

ψ ϕ

⟨ | ̂ | ⟩

⟨ | ⟩
=

H
c E

n

n n
2

0 (30)

where

∑ ∑
ψ ϕ

ψ ϕ
= [ ] [ ]

⟨ ∏ | ⟩

⟨ | ⟩
γ

γ γ
μ

† † †
μ μ( )

E L L

a a a a a a

n

ikjl

i
k

j
l

p t i j k l0

0

n n n

(31)

Again using Wick’s theorem, we find

ψ ϕ

ψ ϕ

⟨ ∏ | ⟩

⟨ | ⟩
=

μ

† † †
{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

μ μ μ

μ

μ

μ

i
k
jjjjjjjjjj

y
{
zzzzzzzzzz( )a a a a a a G

G G
det

p t i j k l k l
i j

t
i j

k l

p

t

p

0

0

,
, ,

,

n n n

(32)

By following a procedure analogous to the one-body case, it is
possible to avoid the expensive explicit evaluation of the sums
in eq 31, by precomputing the following intermediates
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∑ ∑
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0
2

,
,

1

,
,

2
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Using these intermediates along with eqs 31 and 32, dropping
the configuration index n for convenience, we get
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∑ ∑
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1 2 1 2

1, 2

1 2
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(34)

where we have Laplace expanded the determinant on the LHS
along the first two columns. The primed sum indicates the
conditions ν1 ≠ ν2 and λ1 ≠ λ2, and all of these indices can take
values from 1 to k. Note that the RHS only involves a sum over
the Hamiltonian index γ, while all other Hamiltonian indices
are contracted in the separate calculation of the intermediates.
Thus, we have partially separated the sums over configuration
and Hamiltonian indices.
Now, we consider the cost scaling of this algorithm. We will

only look at the more expensive two-body contribution. The
cost of calculating G scales as O(N2M). The intermediate D1 in
eq 33 can be calculated at cost O(XNM2). The cost of
calculating each D2

γ is O(NM2); thus, the cost of calculating it
for all γ is also O(XNM2). Given these intermediates, the
contribution of each determinant in the expansion to the local
energy, as given by eq 34, has a cost scaling of O(X) arising
from the last term in the equation. Therefore, the total cost
scaling is given by O(XNM2 + XNc). We note that this scaling
is different from that of the algorithm we reported previously
in ref 43. It is possible to use our previous algorithm in fp-
AFQMC, which amounts to combining D2

γ intermediates to
build a four-index tensor intermediate, resulting in a total cost
scaling of O(XN2M2 + Nc). While this algorithm has a better
scaling with Nc, for the multi-Slater expansions employed in
this study with Nc ∼ 104, we found it to be slower than the
algorithm detailed above in most cases because of the large
cost of building the four-index intermediate. Finally, if the
multi-Slater expansion is restricted to an active orbital space of
size A, the algorithm cost scales as O(XNAM + XNc).
2.2.2. Symmetry-Projected Mean-Field States. Symmetry-

projected mean-field states are given by

∏ψ ψ| ⟩ = |̂ ⟩P
i

i 0
(35)

where P̂i denotes the projector onto an eigenstate of the
operator for symmetry i and |ψ0⟩ is a broken symmetry mean-
field state. When such states are variationally optimized in the
presence of the projectors, they yield more accurate
approximations of the desired energy eigenstate at a mean-
field level compared to bare symmetry broken states without
projectors. The state |ψ0⟩ can be allowed to break different
symmetries of the molecular Hamiltonian like spin, complex
conjugation, point group, and number symmetry simulta-
neously. Here, we consider the breaking and restoration of spin
(S) and complex conjugation (K) symmetries resulting in a
KSGHF state. Details of optimizing such states can be found in
ref 34.
To use KSGHF as the |ψl⟩ trial state in fp-AFQMC

calculations, we consider the local energy given by

ϕ
ψ ϕ

ψ ϕ
[ ] =

⟨ | ̂ ̂ ̂ | ⟩

⟨ | ̂ ̂ | ⟩
E

P PH

P P
L

K S

K S

0

0 (36)

Note that P̂S commutes with the Hamiltonian. If determinants
sampled from |ψr⟩ are closed shell (RHF-like) or high-spin
open shell (ROHF-like), the propagator sampling described in
Section 2.1 preserves their good spin quantum numbers. So, in
these cases, we have

ϕ ϕ̂ | ⟩ = | ⟩PS (37)

This allows us to ignore the spin projector completely because
of its trivial action on the walker. If a sampling of |ψr⟩ were
used that produced UHF-like determinants, one would have to
perform the spin projection explicitly, but we will not consider
this case here. The complex conjugation symmetry projection
is performed as

ϕ
ψ ϕ ψ ϕ

ψ ϕ ψ ϕ
[ ] =

⟨ | ̂ | ⟩ + ⟨ *| ̂ | ⟩

⟨ | ⟩ + ⟨ *| ⟩
E

H H
L

0 0

0 0 (38)

where |ψ0*⟩ is obtained by complex conjugating the orbitals of
|ψ0⟩. We use this same projector when optimizing the KSGHF
state. Evaluation of local energy now proceeds similarly to the
RHF case with a cost scaling of O(XN2M).

2.2.3. CCSD. The coupled-cluster wave function ansatz is
given by

∑ ∑

ψ ψ

ψ

| ⟩ = ̂ + ̂ | ⟩

= ̂ + ̂ ̂ | ⟩
μ

μ μ

μ ν

μν μ ν

i
kjjjjjjj

y
{zzzzzzz

T T

t E t E E

exp( )

exp

1 2 0

,
0

(39)

where |ψ0⟩ is a reference Slater determinant and Êμ are
particle−hole excitation operators given by

̂ =μ
†E a at p (40)

μ = {t, p} is a composite index for a pair of empty and
occupied orbitals in the reference determinant. tμ and tμν are
singles and doubles amplitudes, respectively. To use a CCSD
wave function as |ψr⟩, we sample determinants from it using a
Hubbard−Stratanovic transform in a manner analogous to the
imaginary-time propagator. Since the particle−hole excitation
operators commute with each other, we have

ψ ψ̂ + ̂ | ⟩ = ̂ | ̃ ⟩T T Texp( ) exp( )1 2 0 2 0 (41)
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where, due to Thouless’ theorem, |ψ̃0⟩ = exp(T̂1) |ψ0⟩ is a
Slater determinant. Note that unlike the imaginary-time
propagator, here we can split the exponential exactly without
incurring a Trotter error. Now, we write T̂2 as a sum of squares
by diagonalizing the double amplitudes

∑ ∑= ̂ ̂ = ̂̂
μ ν

μν μ νT t E E
i

i2

,

2

(42)

where the one-body operators ̂
i are defined as

∑λ̂ = ̂
μ

μ
μV Ei i i

(43)

Here, λi and V are the eigenvalues and eigenvectors of the
doubles amplitudes tμν, respectively. Using the Hubbard−
Stratanovic transform, we get

∫∑ ∏
π

̂ = − ̂
ikjjjjjj y{zzzzzzE

dx
e eexp

2
i

i

i

i x x E2 /2 2i i i
2

(44)

Having written the exponential of a two-body operator as an
integral over exponentials of one-body operators, we can
sample its action upon |ψ̃0⟩ using Monte Carlo. We again
employ direct sampling of the multidimensional Gaussian to
obtain determinant samples (see Section 2.1). In this sense, the
CCSD operator can be thought of as performing a long-time
propagation of the reference determinant in one step without a
Trotter error. Computational cost considerations for sampling
the CCSD wave function this way are similar to those for
sampling the propagator. We note that this way of sampling
CCSD wave functions is similar to the treatment of Jastrow
factors in ref 45.

3. RESULTS

In this section, we present and analyze the results of fp-
AFQMC calculations on various systems. We used PySCF46 to
obtain molecular electronic integrals and optimized CCSD
wave functions. The modified Cholesky decompositions were
performed using a script in the AFQMC code PAUXY.47 HCI
calculations were performed with the code Dice.48,49 All fp-
AFQMC calculations were performed with a code that we have
made publicly available on GitHub..50 Input and output files
from all large calculations can also be found in a public
repository.51 Additional details of the calculations have been
provided in the Supporting information.
Before presenting the results, we make a note of some

practical details related to fp-AFQMC calculations. The
amount of time required to achieve convergence depends on
the gap to low-lying excited states and the convergence
threshold. We estimated convergence by performing energy
calculations at multiple points during the projection, and
energies within error bars of each other at 2−3 consecutive
substantially separated times were taken to be converged. All
fp-AFQMC calculations have a Trotter error that can be made
arbitrarily small by reducing the time step. There are various
ways of handling this error common to almost all projection
QMC methods. We assessed the amount of Trotter error by
performing pilot calculations with different time steps for a
fraction of the propagation time required for convergence.
Based on these small calculations, conservative time steps were
chosen. We employed time steps ranging from 0.01 to 0.1 H−1

in this study for different problems.

3.1. Illustrative Examples. 3.1.1. Energy Convergence
for Different Trial and Initial States. In this section, we
analyze the convergence of the energy estimator in eq 3 for
different combinations of the trial and initial wave functions
discussed above. While all such estimators should converge to
the ground-state energy eventually regardless of the choice of
trial states, they differ considerably in the amount of
computational effort expended. To understand the conver-
gence behavior of the function E(τ) in eq 3 with τ, let us
denote the spectral decomposition of the trial and initial states
in the basis of energy eigenstates as

∑ ∑ψ ψ ψ ψ| ⟩ = | ⟩ | ⟩ = | ⟩l r,
l

i

i i r
i

i i
(45)

where H|ψi⟩ = Ei|ψi⟩. Substituting into eq 3, we get

τ =
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−

−E
E e l r
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( ) i i

E
i i

i
E

i i

i

i
(46)

From this expression, it is evident that the convergence is
dictated by the energy gap to the low-lying excited states in the
symmetry sector of the ground state and the coefficients of
these states in the spectral decompositions. Since imaginary-
time propagation is efficient at filtering out higher-lying excited
states, it is best to project out lower-lying states in the initial
and trial wave functions as much as possible. If the problem
admits an active space overlapping substantially with low-lying
states, compact wave functions restricted to such a subspace
represent a natural choice to accomplish this.
Figure 1 shows the convergence behavior in a stretched N2

molecule with a bond length of d = 3 Bohr using the cc-pVDZ

Figure 1. Convergence of the energy estimator for N2 (d = 3 Bohr) in
cc-pVDZ basis for different trial and initial state combinations
denoted as wave1 and wave2, respectively. For example, “RHF, CCSD”
indicates the estimator using an RHF state as |ψl⟩ and a CCSD state as
|ψr⟩. The bottom plot shows the number of samples required to get a
stochastic error less than 0.5 mH as a function of imaginary time.
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basis set. We correlated all 14 electrons in the 28 orbitals of
this basis set for all calculations. At this geometry, the
electronic structure is fairly multireference in character, as
evidenced by the substantial error in the CCSD(T) energy.
Despite the shortcomings of the CCSD wave function, in this
case, it still improves the convergence of energy significantly
compared to RHF. Similarly, both multi-Slater and KSGHF
wave functions used as |ψl⟩ trials lead to faster energy
convergence than RHF. For all combinations shown in the
plot, the estimators are variational throughout the propagation.
Figure 2 shows that when a UHF state is used along with an

RHF state in a mixed estimator, the resulting energy becomes
nonvariational after some propagation and eventually con-
verges to the ground-state energy slowly. Curiously, the
variational estimator using UHF for both |ψl⟩ and |ψr⟩
converges rather slowly compared to the RHF variational
estimator, even though the UHF energy is lower at τ = 0. Both
these observations can be explained by noting that low-lying
excited states contribute significantly in the spectral decom-
position of the UHF state due to spin contamination, as has
been pointed out previously.52 Empirically, we often found the
estimator to be nonvariational when using a symmetry broken
wave function as one of the trial or initial states. While such
nonvariational estimators could still be employed in fp-
AFQMC calculations, determining convergence could become
tricky for larger systems. Thus, we do not use symmetry
broken states like UHF or UCCSD with a UHF reference in
this study.
Another important consideration is the statistical efficiency

afforded by various trial states. The bottom panel of Figure 1
shows the number of samples required to get a stochastic error
of less than 0.5 mH at different imaginary times. In all cases,
the number of samples increases roughly exponentially with
imaginary time because of the sign problem, but the estimators
differ considerably in the number required to get a fixed
stochastic error. As discussed in Section 2.1, based on the zero-
variance principle (eq 15), statistical efficiency is dictated by
the quality of the |ψl⟩ state. This principle is evident from the
plot, with the estimator using the RHF state as |ψl⟩ requiring a
large number of samples. The multi-Slater state, with the
leading 103 configurations taken from an HCI wave function, is

the most accurate and, thus, yields the most statistically
efficient estimators. Note that the “multi-Slater, RHF”
estimator requires fewer samples to get a fixed statistical
error compared to the “multi-Slater, CCSD” estimator for the
same imaginary time. However, since the CCSD estimator
converges much faster than the RHF one, the correct
comparison to make is between the number of samples at
times when both estimators have the same energy. When this is
taken into account, the CCSD estimator requires fewer
samples. In addition, since the cost of sampling the CCSD
wave function is equivalent to just one imaginary-time
propagation step, it also has a lesser overall computational
cost compared to the RHF estimator, which requires many
propagation steps to reach the same energy.

3.1.2. Multi-Slater Trials with Different Number of
Configurations. Multi-Slater trial states can be systematically
made more accurate by adding more configurations. In this
section, we analyze the cost and benefits of using longer
expansions. Figure 3 shows energy convergence with imaginary

time for two water molecules at equilibrium geometries
(provided in the Supporting Information) in the aug-cc-
pVDZ basis set. The 1s electrons on oxygen atoms were frozen
in all calculations correlating the remaining 16 electrons in 80
orbitals. In contrast to the N2 example in Section 3.1.1,
correlation in this system is primarily dynamic. The main
advantage of adding more configurations to the trial state |ψl⟩
is to increase the sampling efficiency, as seen from the bottom
panel of the figure. It also slightly reduces the projection time
required to reach convergence. We have included the curve for
the estimator using a CCSD state as |ψr⟩ to demonstrate the
efficacy of this state in accelerating convergence particularly in
problems dominated by dynamic correlation.

Figure 2. Slow or nonvariational convergence of the energy estimator
for different trial and initial state combinations. System and other
details are the same as in Figure 1.

Figure 3. Convergence of the energy estimator for two water
molecules at equilibrium geometries in aug-cc-pVDZ basis for
different number of configurations. Other details are the same as in
Figure 1.
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In Figure 4, we compare the computational cost scaling of
the naive local energy algorithm with that presented in Section

2.2.1 for the same two water molecule system. The naive
algorithm effort is estimated by simply multiplying the cost of
local energy calculation for a single RHF determinant by the
number of configurations. While the cost of calculating local
energy for a single determinant includes the cost of evaluating
the Green’s function, which need not be evaluated for every
configuration from scratch, it is a small fraction of the much
more expensive operation of contracting the Green’s function
with Hamiltonian integrals. For less than 103 configurations,
the cost of the efficient algorithm is seen to increase sublinearly
with the number of configurations. In this regime, the cost is
dominated by the construction of intermediates scaling as
O(XNM2). Beyond this point, the iteration over configurations
begins to dominate, scaling linearly as O(XNc). To estimate the
marginal cost of adding configurations to the trial state, one
needs to compare the increase in local energy cost with a
reduction in the required number of samples with the
associated reduction in propagation costs depending on the
system.
3.1.3. Basis Set and Semicore Correlation Focal Point

Corrections. Gaussian basis sets used in quantum chemistry
are designed to provide a fast convergence for various
molecular properties, including energy differences with
increasing basis set size. While much of the important

correlation is captured in smaller basis sets, larger basis sets
are still required to obtain quantitatively accurate properties in
some cases. Focal point approaches53−55 have been developed
to yield accurate results close to the continuum limit while
avoiding prohibitively expensive calculations with steep-scaling
methods in large basis sets. Here, we consider its use to
provide basis set and semicore corrections to fp-AFQMC
calculations. The basis set correction is given as

−

≈ − + −

E

E E E

(fp AFQMC, LB)

(fp AFQMC, SB) (M, LB) (M, SB)
(47)

where LB and SB refer to large and small bases, respectively,
and M is another method that can be used in the large basis
set. We will refer to the resulting method as fp-AFQMC/M. M
could be CCSD, CCSD(T), MP2, or any other technique
suitable for the problem at hand. The crucial point is that it
does not need to be accurate on its own; it should be good
enough to capture the effects of increasing the basis size.
Table 2 shows the efficacy of the basis set correction for the

N2 bond-breaking problem. We performed all electron fp-
AFQMC ground-state energy calculations of the N2 molecule
for a set of bond lengths in both cc-pVDZ and cc-pVQZ basis
sets. A CCSD state was used as the |ψr⟩ state, while a multi-
Slater wave function was used as |ψl⟩. Despite the poor
performance of UCCSD(T) in this system, with absolute
energy errors of ∼20 mH for some bond lengths, it provides an
excellent basis set correction for fp-AFQMC.
Similar to basis set corrections, a semicore correlation

correction can be used as

− +

≈ − + +

−

E N N

E N E N N

E N

(fp AFQMC, )

(fp AFQMC, ) (M, )

(M, )

v sc

v v sc

v (48)

where Nv is the number of valence electrons and Nsc is the
number of semicore electrons. This correction is particularly
relevant for 3d transition-metal compounds where in addition
to valence electrons, the semicore 3s and 3p electrons can play
an important role in the chemistry. We note that a CCSD(T)
semicore correction has been used along with CASPT2
recently.56 Table 3 shows the performance of this correction
for fp-AFQMC in three transition-metal oxide molecules at
equilibrium geometries used in ref 57. We used the scalar
relativistic X2C Hamiltonian in a triple-ζ ANO-RCC basis set
with a 21s15p10d6f4g/6s5p3d2f1g contraction on metal atoms
and a 14s9p4d3f/4s3p2d1f contraction on oxygen. Multi-Slater
wave functions were used as |ψl⟩ trials. Since these systems are

Figure 4. Computational cost scaling of the local energy calculation
with the number of configurations (same system as in Figure 3).
Computational time is the wall time for calculating 100 local energy
samples. “Efficient algorithm” refers to the algorithm described in
Section 2.2.1.

Table 2. Basis Set Corrections for Ground-State Energies (in H) of N2 for a Set of Bond Lengths (in Bohr)a

cc-pVDZ cc-pVQZ

d UCCSD(T) fp-AFQMC UCCSD(T) fp-AFQMC fp-AFQMC/UCCSD(T)

2.0 −109.2694 −109.2706 −109.4592 −109.4610 −109.4603

2.4 −109.2356 −109.2419 −109.4078 −109.4142 −109.4141

2.7 −109.1506 −109.1642 −109.3172 −109.3320 −109.3307

3.0 −109.0689 −109.0897 −109.2311 −109.2543 −109.2519

3.6 −108.9828 −108.9978 −109.1372 −109.1537 −109.1521

4.2 −108.9630 −108.9702 −109.1117 −109.1192 −109.1189

aIn the last column, we use the notation fp-AFQMC/UCCSD(T) to denote energies obtained by adding the UCCSD(T) cc-pVQZ basis
correction to the cc-pVDZ fp-AFQMC energies. Stochastic errors in the QMC calculations are less than 0.8 mH.
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open shell, we used unrestricted CCSD wave functions on top
of ROHF references as the |ψr⟩ initial states. In all three cases,
UCCSD(T) energies have some absolute energy errors, but
they still provide reasonable semicore corrections.
Besides the examples presented here, we will check the

accuracy of these focal point corrections in larger systems in
the following sections. In all of the cases presented in this
paper, we have found these corrections to be exceptionally
accurate.
3.2. Organic Molecules. 3.2.1. Ground-State Energy of

Benzene (C6H6). A recent benchmark study58 reported the
ground-state energy of benzene on the cc-pVDZ basis using
various accurate quantum chemistry methods. Here, we
calculate fp-AFQMC energies in this basis as well as the cc-
pVTZ basis. We used the same geometry as in the benchmark
paper and froze the 1s electrons of all carbon atoms at the HF
level. This yields correlation spaces of (30e, 108o) for the cc-
pVDZ basis and (30e, 258o) for the cc-pVTZ basis. For fp-
AFQMC calculations in both basis sets, we used a multi-Slater
wave function as |ψl⟩ and the CCSD wave function as |ψr⟩. In
the cc-pVDZ basis calculation, we used canonical HF orbitals
to obtain an HCI wave function consisting of about 2.6 × 105

configurations, of which the leading 104 were used in the trial
state. For the cc-pVTZ basis set, we first performed an
HCISCF calculation with a (30e, 100o) active space with a
loose ϵ1 = 0.001 allowing internal rotations. An HCI wave
function consisting of about 1.3 × 106 configurations was then
obtained in just the active space, and the leading 104

configurations were used in the trial state for fp-AFQMC.
Table 4 shows the ground-state energies from various methods.

The correlation in this system is primarily dynamic in nature
and, thus, CCSD(T) recovers most of the correlation energy.
All of the high accuracy methods are more or less in agreement
within chemical accuracy for the cc-pVDZ basis. In the cc-
pVTZ basis, the phaseless approximation error with the RHF
trial is about 3 mH. The CCSD(T) basis set correction seems
to work well in this case as well. We note that unlike several
methods in Table 4, fp-AFQMC energies were obtained
without performing any extrapolations.

3.2.2. Automerization of Cyclobutadiene (C4H4). Calculat-
ing the barrier height for automerization of cyclobutadiene is a
challenging problem because of the multireference (biradical)
character of the transition state. This system has been used to
gauge the accuracy of many multireference methods. We
performed fp-AFQMC calculations using geometries provided
in ref 60. The minima correspond to a D2h rectangular
geometry, while the transition state has a square D4h geometry
(Figure 5). Some geometry optimization studies find slightly

bent transition-state structures,61 but due to the flatness of the
energy surface near the transition state, energy differences
between different geometries used for transition states in
various studies are tiny (less than a mH in most cases). Carbon
1s orbitals were frozen, leading to correlation spaces of size
(20e, 72o) and (20e, 172o) in the cc-pVDZ and cc-pVTZ basis
sets, respectively. We used the CCSD wave function as the |ψr⟩
state in both bases. For |ψl⟩, we used multi-Slater wave
functions consisting of the order of 104 configurations obtained
from relatively crude HCI calculations using a procedure
similar to that used for benzene calculations. Full details of the
wave functions can be found in the Supporting Information.
Table 5 shows barrier heights obtained from different

methods. We also provide absolute energies in the Supporting

Table 3. Semicore Corrections for Ground-State Energies
(in H) in Transition-Metal Oxide Moleculesa

species method Ar core Ne core

CrO UCCSD(T) −1115.7928 −1116.1485

fp-AFQMC −1115.7953 −1116.1505

fp-AFQMC/UCCSD(T) −1116.1510

MnO UCCSD(T) −1232.5244 −1232.8777

fp-AFQMC −1232.5287 −1232.8815

fp-AFQMC/UCCSD(T) −1232.8820

FeO UCCSD(T) −1346.7165 −1347.0381

fp-AFQMC −1346.7188 −1347.0415

fp-AFQMC/UCCSD(T) −1347.0404
aNe and Ar core denote energies with and without semicore
correlation, respectively. All calculations were performed with the
X2C Hamiltonian in a triple-ζ quality ANO basis set. Stochastic error
in QMC calculations is less than 0.7 mH in all cases.

Table 4. Ground-State Energy (in H) of Benzene from
Different Methodsa

method cc-pVDZ cc-pVTZ

CCSD(T) −231.5813 −231.8058

MBE-FCI58 −231.5848

DMRG58 −231.5846(7)

SHCI58 −231.586(2)

ph-AFQMC (RHF)59 −231.5879(4) −231.8122(4)

ph-AFQMC (multi-Slater)59 −231.5861(4)

fp-AFQMC/CCSD(T) −231.8096(7)

fp-AFQMC −231.5851(7) −231.809(1)

aCorrelation spaces: (30e, 108o) for cc-pVDZ and (30e, 258o) for cc-
pVTZ.

Figure 5. D4h symmetric transition state of cyclobutadiene (middle)
between two D2h symmetric degenerate minima (left and right).

Table 5. Automerization Barrier Height (kcal/mol) for
Cyclobutadienea

method cc-pVDZ cc-pVTZ

CCSD(T) 15.8 18.2

CC(t;3)62 7.8 10.0

CCSDT62 7.6 10.6

TCCSD (2, 2)60 9.4 12.9

TCCSD(T) (2, 2)60 4.6 7.0

TCCSD (12, 12)63 9.2

MR-MkCCSD(T)64 7.8 8.9

MRCI+Q63 9.2

fp-AFQMC/CCSD(T) 10.9(4)

fp-AFQMC 8.4(4) 10.2(4)

iCAS-CI (6-31+G**basis)61 11

experiment65 1.6−10

aNote that different methods used slightly different geometries.
Correlation spaces: (20e, 72o) for cc-pVDZ and (20e, 172o) for cc-
pVTZ.
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Information for reference. The experimental estimate for the
barrier spans a large range of 1.6−10 kcal/mol (includes zero-
point vibrational energy). CCSD(T) overestimates the gap
substantially due to its poor description of the transition state.
An iterative treatment of triple excitations in CCSDT or its
cheaper approximation CC(t;3)61 almost entirely corrects this
error, signaling the failure of perturbative treatment of triples
to describe the biradical transition state. Tailored CCSD
(TCCSD)62 with a small (2e, 2o) active space reference
overestimates the barrier height, while the perturbative triples
correction overcorrects this error. Recent TCCSD calculations
with a (12e, 12o) CAS reference63 improve upon the previous
result. The genuinely multireference Mukherjee’s CCSD (MR-
MkCCSD(T))64 yields a barrier height within about 1 kcal/
mol of the fp-AFQMC result. Multireference configuration
interaction with the Q correction (MRCI+Q) and incremental
complete active space configuration interaction (iCAS-CI)61

also give energy gaps close to the fp-AFQMC value. Finally,
despite the poor performance of CCSD(T), it provides a
remarkably accurate basis set correction for fp-AFQMC.
3.3. Isomerization of Cu2O2

2+. Enzymes like tyrosinase
and catechol oxidase feature a binuclear Cu2O2

2+ active site.
The copper atoms serve to activate molecular oxygen and can
bind to it in a variety of ways.66 A particular reaction pathway
connecting two such structural isomers shown in Figure 6 has

been studied extensively using several wave function methods
and density functional theory (DFT) functionals.67−75 It is
known to be a challenging electronic structure problem with a
large spread in calculated isomerization energetics obtained
from different techniques. While a thorough study of this
system would necessitate the inclusion of solvation and ligand
effects, in this paper, we only focus on the core and compare
various methods with the results obtained using fp-AFQMC.
We also gauge the impact of semicore correlation and scalar
relativity on relative energies.
The isomerization pathway is obtained by simply linearly

interpolating between the two structures shown in Figure 6
using a single parameter f as described in ref 67. To allow a
direct comparison with previous studies, we performed fp-
AFQMC calculations using the same double-ζ quality basis
that has often been employed, referred to here as BS1. This
basis used the Stuttgart pseudopotential and associated basis
functions for copper atoms, while an ANO basis with
10s6p3d/4s3p2d contraction for oxygen atoms. We froze the
semicore 3s and 3p electrons on copper and the core 1s
electrons on oxygen at the HF level leading to a correlation
space (32e, 108o). Multi-Slater and CCSD wave functions
were used as |ψl⟩ and |ψr⟩ states, respectively (details in the
Supporting Information). The calculated relative energies from
fp-AFQMC and a few other methods are shown in Figure 7.
Note that all of the methods shown used the same basis set.
The correlation space was the same for all techniques except

DMRG-CT (strongly contracted canonical transformation),
which froze the same number of orbitals as other methods but
at the DMRG-SCF level. We also list the relative energies
between the two isomers in Table 6. CCSD(T) overstabilizes
the μ−η2:η2-peroxo isomer by about 6.5(6) kcal/mol
compared to fp-AFQMC. Looking at the absolute energies
(provided in the Supporting Information), this difference is
mainly due to CCSD(T) undercorrelating the bis(μ-oxo)
isomer by about 8 mH. On the other hand, the perturbative
treatment of triples in CCSD(T) seems to provide a good
description of the correlation in the μ−η2:η2-peroxo isomer,
slightly overcorrelating it, suggesting that this state does not
have a significant biradical character. CR-CCSD(TQ)a and ph-
AFQMC with a nonorthogonal CI trial both overstabilize the
μ−η2:η2-peroxo isomer even further. The DMRG-CT curve is
in relatively good agreement with the fp-AFQMC results.
To understand the effect of semicore correlation and the

basis set on the relative energies of bis(μ-oxo) and μ−η2:η2-
peroxo isomers, we performed additional calculations reported
in Table 6. Correlating the copper 3s and 3p semicore
electrons and the oxygen 1s electrons, leading to a correlation
space of (52e, 118o), substantially increases the gap in BS1.
This is also true of CCSD(T) energies. We also performed fp-
AFQMC calculations in the bigger triple-ζ ANO-RCC basis set
with a 21s15p10d6f4g/6s5p3d2f1g contraction on copper and
14s9p4d3f/4s3p2d1f on oxygen using the X2C scalar
relativistic Hamiltonian. We will refer to this basis set as
BS2. The fp-AFQMC gap without semicore correlation in BS2
is larger than the BS1 gap. CCSD(T) calculations suggest a
much smaller impact of semicore correlations on the
isomerization barrier in BS2 compared to BS1. This could be
due to an inadequate representation of semicore electrons and
scalar relativistic effects in BS1. Previous studies have noted the
sizeable influence of scalar relativity on relative energies as well
as their poor description in the ECP of BS1.70,72 CCSD(T)
calculations in the quadruple-ζ quality ANO-RCC basis set
(BS3) suggest that the relative energy is nearly converged with
the basis set size for BS3. The fp-AFQMC/CCSD(T) energy
was obtained by adding semicore and basis set corrections to
the fp-AFQMC BS3 value and is the best estimate of the
relative energy presented here. Nonrelativistic CCSD(T) and
strongly contracted n-electron valence perturbation theory
(SC-NEVPT2) calculations performed in the quadruple-ζ
ANO basis set (termed BS3-NR), also reported in Table 6,

Figure 6. Cu2O2
2+ isomers corresponding to f = 0 (left) and f = 1

(right).

Figure 7. Relative energies along the isomerization curve of Cu2O2
2+.
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confirm the importance of including scalar relativity in this
system. Relative energies obtained from nonrelativistic
calculations are significantly larger than relativistic ones,
while semicore correlation effects are relatively small for
CCSD(T). Based on this evidence, it seems likely that
semicore correlation effects are relatively small in this system
provided an appropriate basis set is employed.

4. CONCLUSIONS

We have presented efficient ways to use high-quality wave
functions, namely multi-Slater, CCSD, and symmetry-pro-
jected mean-field states, in near-exact free projection AFQMC.
Appropriate combinations of wave functions reduce the
amount of projection time required to achieve convergence
and mitigate the sign problem. We analyzed how the trial states
affect the statistical efficiency of Monte Carlo sampling using
illustrative examples. We also found some encouraging
evidence suggesting that focal point basis set and semicore
corrections may allow widening the scope of this approach
when used in combination with other methods. We provided
benchmark energy values for the challenging problems of
automerization of cyclobutadiene and isomerization of Cu2O2

2+

in moderately sized basis sets.
The method presented here can be improved in several ways

that we plan to pursue in the future. To tackle systems with
low-lying excited states that are difficult to project out
deterministically using the wave functions presented here, a
transcorrelated method with trial states including Jastrow
factors may be effective. Another possibility is to search for
constraints like the phaseless approximation and assess their
performance for different trial states. Our experiments with the
systems considered here suggest that direct Gaussian sampling
is very efficient for moderately correlated systems. Importance
sampling is likely necessary for more strongly correlated
systems. A more systematic study of focal point corrections is
warranted to assess their scope of applicability. It will also be
fruitful to explore alternative ways to extrapolate energies to
the basis set limit.
Improvements to the software implementation along the

lines of those already introduced for ph-AFQMC are possible.
Significant cost reductions can be gained by making the full use

of symmetries in the ab initio Hamiltonian.76 Our current
implementation only takes advantage of the spin symmetry.
The use of graphical processing units has been suggested to
provide drastic speedups in AFQMC calculations.39,77 Such
performance improvements should allow applications to larger
systems than those presented here at a fraction of the cost. In
addition to performance improvements, we are also interested
in looking for ways to calculate properties besides ground-state
energies like correlation functions and nuclear forces within the
framework presented here.
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