
Enhancing Maneuverability via Gait Design

Siming Deng1, Ross L. Hatton2, and Noah J. Cowan1

Abstract— The gaits of locomoting systems are typically
designed to maximize some sort of efficiency, such as cost of
transport or speed. Equally important is the ability to modulate
such a gait to effect turning maneuvers. For drag-dominated
systems, geometric mechanics provides an elegant and practical
framework for both ends—gait design and gait modulation.
Within this framework, “constraint curvature” maps can be
used to approximate the net displacement of robotic systems
over cyclic gaits. Gait optimization is made possible under
a previously reported “soap-bubble” algorithm. In this work,
we propose both local and global gait morphing algorithms
to modify a nominal gait to provide single-parameter steering
control. Using a simplified swimmer, we numerically compare
the two approaches and show that for modest turns, the local
approach, while suboptimal, nevertheless proves effective for
steering control. A potential advantage of the local approach
is that it can be readily applied to soft robots or other systems
where local approximations to the constraint curvature can be
garnered from data, but for which obtaining an exact global
model is infeasible.

I. INTRODUCTION

Often, the focus in locomotion research is on design
of a nominal gait—for example, to minimize energy or
maximize speed. However, maneuvering and steering are
essential aspects in controlling a system. Though switching
between a “forward” gait and a “turning” gait would provide
a simple solution, continuous steering is crucial to allow
a graceful means to respond to sensory feedback, avoid
obstacles, or track moving targets. The value of such a
graded steering control parameter becomes obvious when
one considers driving a car, which would be awkward (at
best) if the car only produced a finite set of discrete turning
radii from which a driver (or algorithm) must select at each
moment in time. By contrast, it would clearly be desirable
to be able to exert continuous control over the steering
direction. However, most complex undulatory robots—such
as snake robots [1], [2] and legged systems [3], have no such
built-in “steering wheel.”

The problem we address in this paper is how to efficiently
modulate an optimized forward gait to produce graded
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steering control, and effectively nudging the forward gait
into a turning gait in a smooth fashion, analogous to a
steering wheel in a car. Indeed, cockroaches exhibit graceful
steering, as they modulate their gait to “servo” along walls,
using tactile feedback from their antennae [4]. Inspired by
cockroaches, engineering experts have devised smooth, but
ad hoc steering control inputs for hexapods such as RHex
[3] and Sprawl [5], by effectively inducing graded left–
right asymmetries in the gait. The goal of this work is
develop a principled way of constructing and exploiting such
asymmetries for control.

The present work builds on a massive literature on ma-
neuverability, but we focus narrowly on a few prior works
most related to the present paper. Early work [2], [6]
addressed how a multi-link snake-like robot that performs
undulatory locomotion can make turns by offsetting its body
curvature (i.e., steering can be achieved by regularizing the
offset level), inducing a lateral asymmetry, a general idea
later formalized in a seminal paper on steering control for
cyclic, nonholonomic systems [7]. More recent work [8],
[9] provided an approach to create gait libraries using a
geometric mechanics framework, establishing the framework
for maneuverability we build on in this paper.

Here, we aim to incorporate a previously published ge-
ometric optimization algorithm [10] to create general prin-
cipled means by which to create effective, efficient mod-
ulations of a nominal gait for undulatory, drag-dominated
robotic systems. If the locomotion model is a local, data-
driven model [11]—only available in a neighborhood of
the nominal gait—we present a computationally simple,
local-gradient-based approach. But if the locomotor model
is global (e.g., built from first principles), we can apply
an (approximately) globally optimal approach. Then we
compare the performance between the approaches through
numerical simulations in a simplified swimmer.

II. BACKGROUND

In this paper will use Purcell’s three link swimmer [12]
as an example system to test our gait modulation methods
(Fig. 1). The three link model is widely adopted because
its simple dynamics can be easily visualized on a two-
dimensional shape space.

A. Locomotion Model

When analyzing a system’s locomotor behavior, it is
convenient to separate its configuration space Q into its shape
space M and position space G, namely Q = G × M . A
system’s shape (i.e., its joint configuration) r ∈ M defines
its internal configuration—namely, where each body segment
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Fig. 1. An overview of an example system and its optimal gaits. (a) Schematic of a three-link viscous swimmer—a minimal template [13] for understanding
locomotion. The shape of the system, described by its two joint positions, lives in a two-dimensional space. The coordinate of the body frame is chosen
according to the minimal perturbation principle [14]. (b) The optimal gait (red) in the sense of x-direction motion efficiency (i.e. the largest displacement
in x-direction per unit power dissipation). The gait is plotted over the system’s constraint curvature height function corresponding to x-direction movement
(−DA)x, which provides an approximation to the system’s locomotor behavior. (c) Similar to (b), the optimal gait (blue) for turning motion. The two
optimal gaits are cross-illustrated in both (b) and (c) with dashed curves. (d) A trivial demonstration of the system’s spatial trajectory from a gait-switching
execution. The black arrows over the trajectory denotes the system’s x-axis at the beginning of each cycle, and the color coded trajectory represents which
gait the system is operating on.

is located with respect to a body-fixed frame. Meanwhile, its
global position g ∈ G ( SE(2) for a planar system) locates
the system in a spatial frame, specifying the location and
orientation of the body frame. The three link swimmer is
considered a planar system with a two-DoF shape space,
namely g ∈ SE(2) and r = [r1, r2]

T . In the sequel, when
convenient, we will conflate g with its (global) coordinate
representation, namely g = [gx, gy, gθ]

T .
For a drag-dominated system (i.e., a system with negligible

inertial effects), the body velocity is related to its shape
velocities by the local connection [15], [16]:

g−1ġ = −A(r)ṙ, (1)

where g−1ġ is the body frame velocity of the system, r ∈
M denotes the system’s internal shape variable, and A(r)
is the local connection matrix. The local connection matrix
A(r) contains all the information of the system’s locomotor
behavior in the environment; it acts analogously to a Jacobian
in that it maps velocities in one coordinate to velocities in
another (however, unlike a Jacobian matrix, it is generally
non-integrable). The net spacial displacement of performing
one gait can be calculated with a path integral over the local
connection vector fields:

gφ =

gxgy
gθ

 =

∮
φ

−gA(r) (2)

where gφ denote the net displacement generated executing
one cycle of gait φ. Previous works [17] show that we can
simplify this line integral by a surface integral as follows:

gφ ≈ exp

(∫∫
φa

(−DA)

)
(3)

where (−DA) = dA+
∑
i<j [Ai, Aj ] is the total Lie bracket

of the local connection. Here, dA is the exterior derivative,

and
∑
i<j [Ai, Aj ] is the sum of Lie brackets between the

columns of A.
Another important aspect to a drag-dominated system is

the effort required when changing shape, which can be
modeled as the path-length s of the system shape trajectory
weighted by a Riemannian metric M

ds2 = drTMdr, (4)

that encodes the actual effort required to move the links
through the surrounding fluid [18], [19], [12].

B. Gait Optimization

Given a gait parametrization p, optimal cycles must satisfy
the following gradient condition [10]

∇pJ = 0 (5)

where J is an objective functional. For example, we consider

Jx =
gx
s

(6)

as the objective functional that captures how efficient the
gait is in terms of moving forward, regularized by its path-
length. Similar objective functionals can be defined in terms
of rotation or lateral motion. Solutions to (5) for the cost (6)
can be reached by finding the equilibria of the dynamical
system

ṗ = ∇pJx =
1

s
∇pgx −

gx
s2
∇ps+∇pσ, (7)

where g, s denote the spatial displacement and the path-
length cost, executing one cycle of the gait φ. The other
terms in the expression will be described below.

The first term ∇pgx alone would lead to a gait that has
the greatest displacement per cycle, corresponding to the
simple objective gx. The approximation in (3) is a surface
integral whose boundary is defined by the gait φ; hence a
variation around gait φ is intuitively thought of as adding



or subtracting weighted regions near the surface boundary.
Formally, the general form of the Leibniz rule1 converts this
gradient of the functional with respect to variations of its
boundary to the gradient of its boundary weighted by the
integrand:

∇p
∫∫

φa

(−DA)x =

∮
φ

(∇pφ) y (−DA)x. (8)

Specifically, the sign y denotes the interior product2 between
the boundary gradient ∇pφ and the weight (−DA)x. In the
simple setting that we consider here, a system with a two-
dimensional shape space, the above interior product reduces
to a normal multiplication between the normal component of
∇pφ and the scalar magnitude of the constraint curvature,

∇p
∫∫

φa

(−DA)x =

∮
φ

(∇p⊥φ)(−DA)x. (9)

Running the optimization with only the first term will end
up with gaits locating on the zero contour of the constraint
curvature.

The second term ∇ps in (7) measures how variations of
gait affect its execution cost per cycle. This term acts to
regularize the optimization, cutting off diminishing returns
around low-yield regions on the constraint curvature map.
The third term ∇pσ in (7) is responsible for reorganizing
waypoints in the local tangent direction to achieve the most
efficient pacing when executing the gait. This term applies
changes that keep the gait within the same image-family.3 For
the dissipative mechanical systems that we consider here, this
gradient term is orthogonal to the other two terms mentioned
above; this implies that the optimization of efficient pacing
is independent from the path optimization.

For the example system that we consider for this paper,
the optimal gaits, that are generated by previously discussed
algorithm, maximizing x and θ motion efficiencies are shown
in Fig. 1, respectively. The optimal gaits each encircle a
rich, sign-definite region, where it gives up the low-yield
regions for shorter path-length, on their respective constraint
curvature maps.

III. MANEUVERABILITY

A common scenario in locomotion is steering during for-
ward motion–e.g., a robot executing a translational gait, and
modulating this nominal gait to accomplish graded rotational
redirection of the heading. Ideally, such steering occurs
while largely preserving the overall translational motion.
In essence, we are looking for a smooth transformation
from the optimum under one objective (e.g. pure forward
motion) to the optimum under another objective (e.g. pure
rotational motion). Depending on how much information we
know about the model, we can generate such transformation

1See [20] for more details
2An operation between a vector field and a differential form that results

in a -1 degree differential form by “pre-specifying” the vector field as one
of the inputs to the differential form. See more in [20].

3The image-family of a gait is the set of all gaits that share the same
image in the shape space

of gaits with local or global approaches. In the following
subsections, we discuss the local and global methods re-
spectively under the setting of enhancing turning around a
forward-moving gait.

A. Gradient-Based Approaches

The gradients of displacement and cost with respect to the
gait parameters provide locally optimal changes with respect
to the new objective. Tweaking the gait along the gradient
direction will produce the fastest changes in the outcome; in
other words, the modulated gait will have significant changes
under the new objective with minimal modulation.

Under the previously mentioned setting, to modulate
around an optimal forward gait in order to achieve turning,
we initiate at the optimal gait in the sense of the most
efficient x displacement as mentioned in II-B:

px : ∇pJx = ∇p
gx
s

= 0. (10)

Modulating this starting gait along the gradient ∇pJθ will
provide the most rapid changes of Jθ, rotational efficiency.
Then, the solution of the following equation will guide the
gait toward the rotational optimum:

dp

du
= ∇pJθ, p(0) = px, (11)

where px denote the optimal forward gait parameters. The
solution p(u) can be pre-calculated and stored as an infinite-
dimensional gait library where u serves as the modulation
variable.

Calculating the above solution will require the model
information (i.e. the constraint curvature) at each iteration
during the process; visually it is the shape space area swept
by the gait library. In situations where we do not have the
luxury of knowing the full model, as mentioned in Section
I, it is viable to simply use the first order approximation as
the following:

p(u) = px + u∇pJθ|px , (12)

where ∇pJθ|px is the first gradient at the x-direction opti-
mum. As a comparison, the first order approximation requires
less model information as well as less computational power
while maintaining similar performance within some range of
turning behavior (see Results, Section IV).

B. Pareto Front

Now assume we have the full locomotion model, and
we would like to push for the optimal transition from one
optimum to another. Here we consider the trade-off between
x and θ efficiencies in the sense of Pareto optimality, where
we cannot improve one objective without hurting the other. A
set of Pareto optimal gaits can be generated, forming a Pareto
front, using the following objective in our optimization
algorithm while iterating α from 0 to 1:

Jtotal = α
Jx

Jxmax
+ (1− α) Jθ

Jθmax
, (13)

where Jx and Jθ are normalized using the optimal values in
each direction alone Jxmax Jθmax.



Although the above method can guarantee global op-
timality to the objective Jtotal without being trapped at
local optima (i.e., critical points) like the gradient-based
methods, it cannot guarantee a smooth transition among gaits
located on the Pareto Front. We will continue the comparison
between this global method and previous gradient-based
methods in Results (Section IV).

C. Online Control

In general it takes a handful of parameters to describe
gaits, and the outcome of gaits are of relatively small
size (i.e., SE(2) has only 3 degree of freedom). A higher
level control is useful in simplifying the control complexity.
Previously discussed gait modulation naturally enables a high
level control over the robot movement despite its complex
locomotor behavior.

In an online, within-cycle type of control scenario, gait
switching/modulation can happen at phases where gaits are
not collocated. Large-amplitude “jumps” can cause the robot
to stop current motion, reposition its joints, then finally
follow the new gait, which in general can badly affect the
overall smoothness and efficiency of the system motion. Lim-
iting the band-width of modulation rate can prevent jumps
from one gait to another. This limitation acts intuitively like
a dynamically adjusted interpolation between current and
target gaits.

In an online control situation, the commanded shape
velocity ṙ is constructed as

ṙ(t) = ṙ∗ + u̇d(t) + uḋ(t), (14)

where ṙ∗ denotes the shape velocity along the current gait, u
denotes the control variable providing steer-ability, and d(t)
denotes the difference between current gait and target gait at
time t. Because drag-dominated systems are most efficient
when their power dissipation is held constant, we want to
limit u̇ such that it does not significantly impact the metric-
weighted speed of the system,

‖ṙ‖M ≈ ‖ṙ∗ + uḋ(t)‖M. (15)

In the demonstration below, we implement this restriction
enforcing

‖u̇d(t)‖M ≤ k‖ṙ‖M, 0 < k � 1. (16)

IV. RESULTS

In this section we provide a parallel comparison among
different approaches in generating gait modulations using
the example simulated system three-link swimmer mentioned
in II. Also the following results are generated under the
circumstance where an optimal forward gait is modulated
for turning.

Following the methods mentioned in III-A, a number of
snapshots from the solution of (11), p(u), are shown in Fig.
2(a). As expected, as the modulation variable u increases, the
gradient pulls the gaits toward the top-right corner, where the
optimal rotation gait is located (see Fig. 1(b)).

As discussed in III-A, under waypoint parametrization,
the gradient is given by local definitions along the gait.

a) b)

Fig. 2. An illustration of gait modulations generated with (a) gradient
iteration and (b) first order approximation at the nominal gait. When the
modulation variable u = 0, the gait (red) is the x-direction optimal gait
(i.e., the same as the one shown in Fig. 1(b)). As u increase in value,
the nominal gait is modulated toward the top-right corner for additional θ
movement.

Consequently, part of the gait can be trapped in some
local critical points, where the gradient diminishes for some
waypoints, even though other parts of the gait are advancing
with the gradient. In Fig. 2(a), the gradient along the two
sides (top-left and bottom-right) started as zeros, leaving
no changes across modulations. Similarly, as the bottom-left
side of the gait gets close to a local critical point, this side
converges and is not able to proceed onward.

The first order approximation results the gait modulation
in a linear fashion as expected. The effect on the bottom-
left side differs from the one mentioned above; because the
gradient is non-zero at start, that side will keep modulating
even though it causes additional unnecessary path-length
costs by dimpling inwards.

There is a significant gap in the middle of the Pareto Front
(see Fig. 3) around α = 0.4, where the optimizer is giving
up a large amount of x-direction efficiency in return of θ-
direction efficiency. We conjecture that the formation of such
a bifurcation region is due to the balancing of two local
optima in x and θ efficiencies, similar to those observed in
the gradient iteration method. Around the region near α =
0.4, the two local optima yield close values. As Jtotal is
altered by α, the global optimum has a sudden jump, both
in the appearance of the gait and the motion output. Further
investigation is needed to make a conclusion here.

Intuitively such bifurcation is reasonable, where there
are certain limits to the extents that modulating a gait is
meaningful, once beyond that limit, then it is time to switch
to some other qualitatively different gait.

Fig. 4(a) shows a zoomed-in view of the three methods
on the trade-off map between x and θ efficiencies, focusing
at the region close the x-direction optimum (bottom right
corner of Fig. 3). The efficiency of gradient-based methods
slowly drop off as they move towards turning, part of the
reason being segments of the gait are trapped at local critical
points.

V. DEMONSTRATION

We implemented our gait modulation generation along
with an additional command filter control described in III-C.
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Fig. 3. An overview of the performance of the gait libraries from the global approach. (a) Gaits generated with the global approach, where α = 1, 0
corresponds to those optimal gaits shown in Fig. 1(b-c). (b) Displacement in (x, y, θ) per cycle of the gait library. Note that the discontinuity appears
around the region α = 0.4 where the optimizer decides to qualitatively change the gait. (c) Pareto front, generated from (13), on the efficiency trade-off
map. The discontinuity appears here as a large gap where the optimizer was not able to reliably converge to data points in between, likely due to a
bifurcation in the objective function as a function of α.
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by local and global approaches. The performance of the gradient-based
methods is almost as good as the global optimizer locally at the x-optimum,
and slowly drops off.

The following demonstration is made on the same example
system as in previous sections, the gait libraries are generated
by the gradient iteration methods.

We chose turning curvature as as an intuitive control input.
For the gait modulations, average turning curvature, which is
a function of the x and θ displacements induced by executing
one full gait cycle, was used to map desired curvature to
the gait modulation variable u. Under an arbitrary command
(i.e., to perform a slight turn during forward motion), the
controller limits the rate of modulation variable, u̇, based on
the differences between current and target shape as discussed
in (16), where k is set to 0.1. The gait trajectory in Fig. 5 is
as expected, when at a phase where current gait and target
gait are not collocated, the command filter will dynamically
interpolate between the two gaits, preventing sudden jumps
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Fig. 5. A demonstration of gait modulation in motion. (a) Shape trajectory,
as quasi-periodic functions, of the robot over a normalized time (i.e. one
full lap in the shape space per normalized time). (b) The system’s spatial
trajectory by executing the above shapes. Black arrows denotes the system’s
x-axis position at the beginning of each lap, and the color coded trajectory
shows approximately (not to scale) the average turning curvature is currently
being performed. The shape space trajectory of each lap is also shown above
the trajectory as a simple visualization.

in the shape space.

VI. DISCUSSION

In this paper, we incorporate insights from geometric gait
optimization to construct gait modulations that enable “con-
trollable maneuverability”. The local approach we present
involves starting with a forward-optimized gait, and then
inducing gait parameter modulations that push the gait in the
gradient direction of a turning objective function; this local
strategy provides an effective turning control system up to



moderate turns, according to our numerical investigation of
a simplified swimmer. The global approach aims to generate
a continuous family of optimal gaits that satisfy Pareto
optimality—trading of forward movement and turning. We
also discussed the advantages and limitations between local
and global approaches in generating gait modulations.

Finally, we demonstrated a common use case of gait
modulations, where a high-level continuous steering control
is possible while largely maintaining a nominal forward gait.

More broadly, one of our future aims is to apply principles
from this geometric framework to make steerable, stimuli-
based soft robots. Our groups work with experts in mate-
rial science and mechanics who focus on fabrication and
modeling of stimulus-responsive materials [21], [22] and of
nonlinear high-deformation structures [23].

Some early works [24] are successful in building hydrogel-
based origami structures in which they are able to achieve
a variety of shape changes including bending, elongating,
twisting, and buckling. From a roboticist point of view,
these shape changes can be utilized as actuation for soft
robots. On the other hand, there is no obvious way to build
low-dimensional, first-principles models for the locomotor
dynamics—making our interest in using local maneuvering
based on data-driven models [11] particularly salient. Ul-
timately, we are interested in putting together micro-scaled,
hydrogel-based soft robots that locomote and perform a wide
range of dynamic, maneuverable locomotor tasks based on
environmental information.

For the high-deformation structures, a key focus of future
work will be understanding how to access the steering mod-
ulations when only some of the shape variables are directly
controlled. This work will combine the ideas outlined in
this paper with the geometric mechanics of semi-passive
locomotion we explored in [25].
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