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Abstract: Land-use and land-cover (LULC) change is a primary driver of terrestrial carbon release,
often through the conversion of forest into agriculture or expansion of urban areas. Classification
schemes are a key component of landscape analyses. This study creates a novel LULC classification
scheme by incorporating ecological data to redefine classes of an existing LULC classification based
on variation in above-ground tree carbon. A tree inventory was conducted for 531 plots within
a subbasin of the Tampa Bay Watershed, Florida, USA. Above-ground tree carbon was estimated
using the i-Tree model. Plots were classified using the Florida Land Use Cover Classification System.
Mean quantities of above-ground tree carbon, by class, were tested for statistical differences. A
reclassification was conducted based on these differences. Sub-classes within a given “land cover”
class were similar for six of the seven classes. Significant differences were found within the “Wetlands”
class based on vegetation cover, forming two distinct groups: “Forested Wetlands” and “Non-forested
and Mangrove Wetlands”. The urban “land use” class showed differences between “Residential”
and “Non-residential” sub-classes, forming two new classes. LULC classifications can sometimes
aggregate areas perceived as similar that are in fact distinct regarding ecological variables. These
aggregations can obscure the true variation in a parameter at the landscape scale. Therefore, a study’s
classification system should be designed to reflect landscape variation in the parameter(s) of interest.

Keywords: landscape classification; land use; land cover; urban ecosystems; ecosystem services;
carbon storage

1. Introduction

Urban ecosystems are heterogeneous, complex mosaics of developed and vegetated
areas with variable structure and dynamics [1]. They are formed by anthropogenic land-
use and land-cover (LULC) change, a primary driver of terrestrial carbon release [2]. In
the Tampa Bay area this often occurred through the conversion of forested areas into
pasture/croplands [3], and later in developed areas, with the expansion of urban areas from
population growth [4]. The impacts are widespread and include alterations to nutrient
cycles, biodiversity, and climate change stemming from carbon dioxide (CO;) emissions.
Therefore, LULC change is one of the most significant impacts humans exert on their
environment [5].

Throughout its history, the United States has experienced near continuous urban
expansion. In the modern era, urban regions have doubled in size since the late 1970s. They
hold about 81% of the US population [6,7] using the Census Bureau’s definition of urban
population density, which is 50,000 or more in a qualitatively defined area. Between 1950
and 1990, metropolitan areas, defined as urban centers and their surrounding counties, have
tripled in size. They comprise an estimated 24.5% of land in the contiguous United States [6].
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It is further estimated that more than 50% of available land in the US has in some way been
altered by humans [8].

1.1. Urban Ecosystem Services

Significant attention has focused on urban forests as a source of ecosystem services
(ESs), which contribute tremendous benefits to society [9]. These include food, raw ma-
terials, energy, carbon storage, water filtration, and recreation, among others, many of
which can be estimated in both real and economic terms [10,11]. Adjacent concentrations
of human activity continuously alter the very ecological relationships and processes that
provide these services [12].

Interest in ES continues to grow, particularly for urban areas, with a large body of
research that examines function and utility [13,14]. These include the identification, quan-
tification, and monitoring of ES [15], valuation as a set of economic goods and services [16]
and as tradeable commodities to mitigate environmental degradation, such as the Payments
for Ecosystem Services framework [17]. A review of the literature for 25 cities in Canada,
China, and the United States found that the total monetary value of ecosystem service
benefits ranged between USD 3212 and USD 17,772 ha—! [9] in addition to less tangible
environmental and cultural benefits including aesthetics, education, spiritual, health, and
heritage among others [18]. Carbon storage in particular is viewed as an important com-
ponent to future climate change mitigation [19] and a number of studies have estimated
carbon storage for urban trees and soil [20-22].

1.2. LULC Classifications

Landscape classifications are context specific and vary widely between studies and
disciplines. Similar to all models, they are a simplification of reality that serve as a means to
an end [23]. In general, classifications can be thought of as both a scheme (class definitions)
and the process of assigning landscape features into classes. LULC classifications are
important components in many ES studies that seek to investigate the spatial patterns of
ES and their use. For example, ES mapping investigates the spatial pattern of supply and
demand by integrating statistical estimates with LULC data. This can allow for tracking
and projections of ES use over time as well as space [24]. Burkhard et al. [25] conducted an
ES mapping study to measure energy capacity for particular LULC classes. They applied
an out-of-the-box classification scheme used by the European Union’s CORINE program.
CORINE uses a hierarchical classification that begins with five broad classes spanning
44 sub-classes [26]. In their discussion, Burkhard et al. [25] recognized that the relationship
between ES mapping and spatial scale is an area of ES research that requires attention.
Moreover, the intensity of ES capacity across land-use types must be investigated to fully
understand the spatial patterns of ES supply and demand [27].

The spatial heterogeneity of urban ecosystems poses a challenge when selecting class
criteria because urban areas occupy a comparatively small area and require large-scale
resolution data for accurate detection. Still, one of the most widely applied and /or modified
classifications for urban studies is the Anderson land-use system [28,29]. It was developed
to standardize data for remote sensing techniques used by government agencies. The
classification uses a hierarchy of levels that increase in detail. For example, the Level I
category “Urban or Built-up Land” is further split into the following Level II classes:
“Residential”, “Commercial”, “Industrial”, etc. This structure is repeated for all Level I
categories, the rest of which refer to other land uses and covers: “Agriculture”, “Rangeland”,
“Forest Land”, “Water”, “Wetlands”, “Barren land”, “Tundra”, and “Perennial Snow or
Ice” [29]. The model allows the option for user-defined Level III and Level IV classes
pursuant to the needs of each study. Jensen [30] described it as a “resource-oriented”
classification in comparison to those that are “activity”-based. In this regard, it is useful for
distinguishing urban lands from natural, but does not account for functional relationships
within the landscape or the ability to understand the heterogeneity of urban landscapes
at a finer scale [31]. Instead, it describes landscape features more in terms of cover than
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use. Cadenasso et al. [31] also noted that because the Anderson classification system was
designed on a national scale, it lacks the ability to differentiate details within urban systems
and therefore requires significant modification.

As an alternative, Cadenasso et al. [31] proposed the High Ecological Resolution
Classification for Urban Landscapes and Environmental Systems (HERCULES) developed
to function at a “medium-scale” to balance small- and large-scale classifications such as
Anderson and biotoping, respectively. HERCULES is meant to separate urban structure
and ecological function so that relationships between them are apparent. This provides for
the ecology “of” cities as opposed to ecology “in” cities [32,33] by characterizing three land
cover elements (buildings, surface materials, and vegetation) divided into two categories
that relate their influence on ecological function. Patches across the landscape are assigned
proportions for each cover they contain, as well as the physical layout of buildings. It is
suggested that HERCULES better integrates human and natural components and exposes
differences between structure and function [34]. However, Zipperer et al. [35], while
acknowledging the attempt of HERCULES to gauge the influence of built structures on
ecological processes, criticized its labor intensity and large number of resultant patches.

Recent examples of novel methods for classifying urban, urbanizing, and developing
areas include Shi et al. [36], Solérzano et al. [37], and Naushad et al. [38]. Shi et al. combined
multisource remote sensing data with social media data to better differentiate urban classes
in Guangzhou, China. Solérzano et al. used deep learning algorithms, such as U-Net, with
radar and multispectral imagery to assist in differentiating tree cover types. Naushad et al.
compared the efficacy of a few different approaches with deep learning technologies with
via transfer learning with EuroSAT data.

Many urban classifications have been developed for different areas and applications,
but a full review is beyond the purpose of this introduction. For additional examples and
discussions on urban LULC classifications please see Cadenasso et al. [34], Grove et al. [39],
and Zipperer et al. [35]. Landscape ecologists are calling for ideas to integrate biophysical
and socioeconomic data with existing statistical approaches [40], and it was shown that
this is possible with classifications such as HERCULES. LULC classifications can greatly
alter the results of a landscape analysis. Therefore, the questions asked in a study must
dictate the classification used. For example, if LULC classifications describe the spatial
variation in landscape features, and ES mapping describes the spatial distribution of these
services, then the classes used to map ES should accurately represent the variation in ES
under investigation.

1.3. Objectives

This study modifies an existing LULC classification to incorporate ES data for use in
studies investigating ES across an urban landscape. Tree data and the Florida Land Cover
Classification System were integrated to create a carbon-centric classification scheme [41].
Changes in above-ground tree carbon (AGTC) storage for each class were estimated for
the period 2006-2011. AGTC was estimated for individual trees using the Urban Forest
Effects (UFORE) model and inventory data collected in 2006 and 2011. Estimates were then
aggregated by class and scaled for the study area. Section 2.1 to Section 2.5 discusses the
study area, data collection, and input datasets. Section 2.6 discusses the statistical analyses
to compare sub-classes for the plot data. Sections 2.7 and 2.8 detail how the LULC classes
were classified and then reclassified based on AGTC. Results for the initial classification and
AGTC classification are detailed in Sections 3.1 and 3.2, respectively. The post-hoc analyses
to compare classes are discussed in Section 3.3. The structural classification using a decision
tree is discussed in Section 3.4 while the final reclassification is detailed in Section 3.5.

2. Materials and Methods
2.1. Study Area

This study was conducted in a 796 km? (79,600 ha) subbasin of the Tampa Bay Wa-
tershed (TBW) adjacent to the city of Tampa, Florida in the southeastern United States
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(27.95° N, 82.46° W) (Figure 1). The TBW is located in west-central Florida along the Gulf of
Mexico. It spans 16,600 km? with a drainage basin of 5700 km? [42]. It is the largest estuary
in the state with approximately 100 tributaries, 4 rivers, and 40 brackish streams. The TBW
has a humid subtropical climate with a mean annual temperature of 23.3 °C. Winters are
short, dry, and mild with roughly 1-2 freezes per year. Most rain occurs during summer
months ranging from late April to October. Mean annual precipitation is 127 cm.
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Figure 1. The Tampa Bay Watershed in west-central Florida according to the Southwest Florida Water
Management District. The hatched region shows the study area within the larger watershed.

The area is home to approximately 4.6 million people in Hillsborough, Manatee, Pasco,
and Pinellas counties. These include the cities of Tampa, St. Petersburg, and Clearwater.
Florida itself has experienced rapid population growth in the past few decades with urban
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expansion occurring at a rate faster than the national average [43]. The TBW is no exception
with the addition of 1,000,000 people during the period 1995-2005 [44].

As an important urban center of Florida, the TBW contains productive agricultural
lands, phosphate mining, power generation, tourism, recreation, and other industries.
These activities have led to significant environmental degradation and LULC change [45].

2.2. Plot Data

The study area was divided into a grid of 1.77 km? hexagons with a random sample
point selected in each as specified by the UFORE model framework [46]. A total of 531 plots
(Figure 2), each 405 m? were inventoried, using the procedures in the UFORE field data
collection manual, including species and diameter at breast height (DBH) for all individual
tree stems greater than or equal to 2.5 cm [47]. Percent cover, count, and species data
were also recorded for all tree and non-tree woody stems less than 2.5 cm but were not
included in this study due to difficulties obtaining carbon estimates. Plots were sampled
in 2006 and resampled in 2011. Any plots that were not resampled were removed from
analyses as discussed in Section 2.5. Species were identified to specific epithet when
possible; otherwise down to genera using nomenclature established in the Plant List of
Accepted Nomenclature, Taxonomy, and Symbols (PLANTS) database developed by the
Natural Resources Conservation Service, an agency of the United States Department of
Agriculture [48].

2.3. Carbon Estimates

AGTC estimates for individual trees were obtained using the UFORE model. Indi-
vidual tree estimates were then summed to derive a total AGTC estimate for each sample
plot. UFORE was developed by the US Forest Service to estimate structure, carbon storage,
and air quality for cities [46]. UFORE has been used in a number of North American cities
including New York, Washington DC, Baltimore, San Francisco, Toronto, and international
cities in China, New Zealand, and Italy, among others [49-51]. It was later expanded into a
larger suite of modeling tools known as i-Tree [52].

2.4. LULC Data and Initial Classification

Plot LULC classifications were obtained using data available from the Southwest
Florida Water Management District (SWFWMD) [53]. SWFWMD LULC data cover an area
much larger than the TBW available as 1:100,000 quarter quadrangles. Quadrangles for
2006 and 2011 were processed to derive LULC maps covering portions of Hillsborough and
Pasco counties within the study area’s boundaries.

The SWFWMD datasets used a classification scheme derived specifically for Florida
and adapted from the Florida Fish and Wildlife Conservation Commission’s (FWC) Florida
Land Use Cover Classification System (FLUCCS) [54]. FLUCCS itself is based on a frame-
work design [29] that breaks land use and land cover categories into a four-tier hierar-
chy [55]. Each tier increases in detail and specificity from Level I (coarse) to Level IV
(detailed). For example, using SWFWMD’s adaptation of this system, the broad Level
I category “Agriculture” is numbered “2000”. Any sub-class within "Agriculture" is a
Level II class, numbered as 2X00. For the "Agriculture” class, this corresponded to four
sub-classes numbered with the 2X00 convention: “Cropland and Pastureland” (2100), “Tree
Crops” (2200), “Nurseries and Vineyards” (2400), and “Other Open Lands” (2600). The
final two levels in the hierarchy, Level IIl and Level 1V, are additional sub-classes of each
preceding level. In many cases, classes go no further than Level II. Using this framework,
the Florida Department of Transportation created a set of urban and built-up classifications
for the entire state [55]. FWC adapted these to include classes representing vegetative
communities occurring throughout the state [41]. SWFWMD refined these even further for
use along the west-central Gulf Coast of Florida where it conducts its operations [54]. One
benefit of using SWFWMD FLUCCS datasets is their consistency in application. FLUCCS
is the standard classification system used by agencies of the State of Florida and readily
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understood by their personnel. Furthermore, it is based on the Anderson classification,
itself a standard in LULC studies [29,30]. Finally, with 53 Level II and 1III classes within
eight Level I umbrella classes, it provides one of the more detailed schematics allowing
for greater control over its modification. The resultant LULC maps contained eight Level I

categories (Tables 1-3).
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Figure 2. The study area subbasin located inside the greater Tampa Bay Watershed showing sample

plot locations within and around the City of Tampa, Florida.
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Table 1. Initial SWFWMD Level II FLUCCS sub-classes for the “Urban and Built-up”, “Agriculture”,
and “Rangeland” Level I classes.

1000—Urban and Built-Up 2000—Agriculture 3000—Rangeland
1100 Residential, Low Density, <2 Dwellings/Acre 2100 Cropland /Pastureland 3200  Shrub/Brushland
1200 Residential, Med Density, 2-5 Dwellings/Acre 2200 Tree Crops 3300 Mixed Rangeland
1300 Residential, High Density, >5 Dwellings/Acre 2400  Nurseries and Vineyards
1400 Commercial and Services 2600  Other Open Lands—Rural
1500 Industrial
1700 Institutional
1800 Recreational
1820 Golf Courses
1900 Open Land

Table 2. Initial SWFWMD Level II FLUCCS sub-classes for the “Upland Forests” and “Water”
Level I classes.

4000—Upland Forests 5000—Water
4100 Upland Coniferous Forest 5100 Streams and Waterways
4110 Pine Flatwoods 5200 Lakes
4340 Upland Hardwood /Coniferous Mix 5300 Reservoirs
4400 Tree Plantation 5400 Bays and Estuaries

Table 3. Initial SWFWMD Level I FLUCCS sub-classes for the “Wetlands” and “Transportation,
Communication, and Utilities” classes.

6000—Wetlands 8000—Transportation, Communication, Utilities
6120 Mangrove Swamps 8100 Transportation
6150 Bottomlands 8300 Utilities
6210 Cypress
6300 Wetland Forested Mix
6410 Freshwater Marshes
6420 Saltwater Marshes
6430 Wet Prairies
6440 Emergent Aquatic Vegetation

2.5. Data QA/QC

LULC classifications were compared with ground-truth field observations during data
collection. Classifications that were inconsistent were removed. In addition, a number
of the plots sampled in 2006 were not resampled in 2011. Likewise, some plots were
added in 2011 that were not originally sampled in 2006. Plots without data for both years
were removed.

Finally, plots that experienced land-use or land-cover change between 2006 and
2011 were also removed. This was to ensure that changes in AGTC over time reflected
processes within the class and not the act of LULC change itself. There were initially
531 plots, with 409 (approximately 77%) remaining after removing plots to account for the
above constraints.

2.6. AGTC Classification

Level II FLUCCS classes within each Level I category were tested for differences in
AGTC (kg plot~1). Each plot was taken as one sample point. A one-way analysis of variance
AOV (x = 0.05) was used to compare sub-classes in each of the eight Level I categories. If
AOV results showed no difference between all combinations of sub-classes, they remained
together with the same Level I category and were considered a final LULC class.

The AOV test indicates whether differences exist between two or more sub-classes but
does not specify which classes differ. Therefore, any Level I class that showed a significant
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difference between two or more sub-classes was investigated using a post-hoc analysis.
The Games-Howell pairwise comparison was used to determine which sub-classes were
significantly different. This test is appropriate for groups with unequal sample sizes and
heterogeneous variances [56,57].

2.7. Structure Classification

The AGTC-based analysis grouped or split classes based on differences in carbon alone.
It did not reveal any information about canopy structure or socio-economic influences
within the classes. This information might be useful to understand the distribution of AGTC
across the landscape. This analysis creates a classification based on these considerations
with no inclusion of the SWFWMD land use and land cover classes. The RPART package
in R was used to create a decision tree that partitioned plot data by analyzing a group of
input variables [58]. Sample plots were partitioned into groups or “bins” to predict the
dependent variable. In this case, the actual predictions of the dependent variable (AGTC)
were not of interest. Instead, the split points, based on the input variables, were extracted
from the tree and incorporated into the LULC classification described earlier.

Six plot-level independent variables were included in the tree to test for their predictive
ability to partition the data: percent impervious surface, plot legacy, political boundary,
stem count, zoning code, and basal area (m? plot_l). Impervious surface, stem count, and
basal area (BA) were calculated using information provided in the initial plot inventory.
Plot legacy was a categorical variable that described the legacy of vegetation on the plot
defined as remnant, emergent, or managed. A plot was designated remnant if it contained
vegetation at least as early as 1948 up to 2007. Emergent plots held no vegetation in 1948
but were vegetated in 2007. Managed plots were those with current, actively managed
vegetation. Political boundary was either “Tampa” or “Exterior”, referring to a plot’s
location either within the City of Tampa proper, or outside of the city but within in the
subbasin boundaries of greater Hillsborough and Pasco counties. Zoning codes were
obtained from Hillsborough and Pasco Counties [59,60].

The algorithm used in the Recursive Partitioning and Regression Trees (RPART) pack-
age accomplished two tasks. First, it tested which variables were most significant in
partitioning the data. It then used these variables to determine split points and a set of
decision rules used to classify the plots. In effect, the final tree only used those variables
determined to be best for partitioning the data, given user-defined settings on how deep to
grow the tree. For a full description of RPART and the Classification and Regression Trees
(CART) packages, see Therneau and Atkinson [61].

2.8. Coupled Reclassification

Results from the AGTC and structure classifications were merged to create the final
classification. Splitting a class into two or more sub-classes created the opportunity to
observe nuances in the data at the cost of greater complexity. Furthermore, an increase in
classes reduced the sample size of each new sub-class. To retain statistical power, partitions
were restricted in classes with a sample size less than twenty.

3. Results
3.1. Initial FLUCCS Classification

SWFWMD FLUCCS codes comprised 53 Level Il to III classes across eight Level I
categories [54]. Of these, plot data represented seven Level I categories and 33 Level II or
III classes (Tables 1-3). With a total of 409 plots across 33 classes, many contained very few
plots. In particular, “Golf Courses” (1820), “Mixed Rangeland” (3300), “Upland Coniferous
Forest” (4100), “Wetland Forested Mix” (6300), and “Wet Prairies” (6430) had only one plot
each. A further 13 classes had between 2 and 10 plots, 9 had between 11 and 30 plots, and 4
had greater than 30. The Level I “Urban and Built-up” class contained the majority of plots
(276) across its 9 sub-classes. Of these sub-classes, the three residential classes (1100, 1200,
and 1300) totaled 161 plots.
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3.2. AGIC Classification

The AOV results (« = 0.05) indicated that sub-classes in four of the seven Level I cate-
gories were not significantly different (Tables 4 and 5). These were “Agriculture” (p = 0.218),
“Upland Forests” (p = 0.119), “Water” (p = 0.585), and “Transportation, Communication and
Utilities” (p = 0.379). Since no significant differences were found, these sub-classes were
merged and reclassified according to their Level I descriptions for the final classification.

Table 4. AOV results to test for differences in plot AGTC (kg) between sub-classes for Level I
“Urban and Built-up”, “Agriculture”, and “Upland Forest” classes (p: p-value; F: F-value; df: degrees
of freedom).

1000—Urban and Built-Up 2000—Agriculture 4000—Upland Forests
14 F df 4 F df P F df
0.005 % 3.00 7 0.218 1.73 1 0.119 2.77 1

2 Level I classes with significantly different sub-classes (& = 0.05).

Table 5. AOV results to test for differences in plot AGTC (kg) between sub-classes for Level I “Water”,
“Wetlands”, and “Transportation, Communication, and Utility” classes (p: p-value; F: F-value; df:
degrees of freedom).

5000—Water 6000—Wetlands 8000—Trans., Comm., and Utilities
p F df p F df p F df
0.585 0.67 3 0.0022 4.08 5 0.379 0.8 1

2 Level I classes with significantly different sub-classes (« = 0.05).

The “Rangeland” class contained only two sub-classes: “Shrub and Brushland” and
“Mixed Rangeland” (Table 1). Since “Mixed Rangeland” had only one plot, comparisons
were not possible. Therefore, these sub-classes were merged to form the “Rangeland” class
for the final classification.

Sub-classes within two Level I categories, “Urban and Built-up” and “Wetlands”, were
significantly different («x = 0.05, p = 0.005 and p = 0.002 respectively). Post-hoc analyses
were conducted to further investigate sub-class differences.

3.3. Post-Hoc Analyses

Pairwise comparisons were listed for the Level I “Urban and Built-up” and “Wetlands”
classes (Figures 3 and 4). To summarize, within the “Urban and Built-up” class, no differ-
ences were found between each of the three “Residential” classes (“High”, “Medium”, and
“Low” housing densities). No significant differences were found between the other five
urban sub-classes (“Commercial and Services”, “Industrial”, “Recreational”, “Institutional”,
and “Open Land”). Significant differences were found between each of the “Residential”
sub-classes and each of the other six urban classes. These results reveal two possible
groups within the larger “Urban and Built-up” class: “Residential”, consisting of the three
residential sub-classes; and an “Other urban” class, labeled as “Built-up, non-residential”
(Figure 5).
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* * ¥ X * *  * *  * *

* * * % X

Pair t df p
1100:1200 0.01 51.44 1.000
1100:1300 0.35 36.78 1.000
1100:1400 3.33 26.81 0.045
1100:1500 3.52 27.97 0.028
1100:1700 3.59 28.83 0.023
1100:1800 3.39 27.85 0.038
1100:1900 3.60 28.48 0.023
1200:1300 0.35 52.19 1.000
1200:1400 3.55 36.85 0.022
1200:1500 3.75 38.28 0.012
1200:1700 3.82 39.70 0.010
1200:1800 3.60 37.56 0.019
1200:1900 3.82 38.40 0.010
1300:1400 5.13 119.46 <0.001
1300:1500 5.32 85.19 <0.001
1300:1700 5.37 99.39 <0.001
1300:1800 5.05 57.53 <0.001
1300:1900 5.34 57.07 <0.001
1400:1500 0.57 33.52 0.999
1400:1700 0.77 44.05 0.994
1400:1800 0.29 19.82 1.000
1400:1900 0.80 20.58 0.991
1500:1700 0.21 34.33 1.000
1500:1800 0.25 19.87 1.000
1500:1900 0.25 20.78 1.000
1700:1800 0.45 23.60 1.000
1700:1900 0.05 24 .41 1.000
1800:1900 0.49 17.00 1.000

Code Key
1100 Residential, Low Density
1200 Residential, Medium Density
1300 Residential, High Density
1400 Commercial and Services
1500 Industrial
1700 Institutional
1800 Recreational
1900 Open Land

Figure 3. Games-Howell pairwise comparisons of AGTC kg plot~! between sub-classes of the
“Urban and Built-up” Level  SWFWMD class. Significantly different sub-classes (at o = 0.05) are
denoted with an asterisk.

Results for the “Wetlands” class reveal two possible groups based on the pairwise

comparisons: a “Forested Wetlands” group consisting of the “Bottomlands” and “Cypress”
sub-classes, and a “Non-forested & Mangrove Wetlands” group. This group was created
from the “Freshwater Marshes”, “Saltwater Marshes”, “Emergent Aquatic Vegetation”, and
“Mangrove Swamp” sub-classes because no significant differences were found between
them. Finally, the “Wetland Forested Mix” sub-class (1 = 1) was added to the new “Forested
Wetlands” group, and the “Wet Prairies” sub-class (1 = 1) was added to the “Non-forested
Wetland” group (Table 6).
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Pair t df P Code Key
* 6120:6150 7.89 50.12 <0.001 6120 Mangrove Swamps
* 6120:6210 5.63 17.99 <0.001 6150 Bottomlands
6120:6410 0.98 10.26 0.914 6210 Cypress
6120:6420 1.84 6.89 0.500 6410 Freshwater Marshes
6120:6440 1.58 5.86 0.638 6420 Saltwater Marshes
6440 Emergent Aquatic Vegetation
6150:6210 1.51 40.41 0.659
* 6150:6410 4.92 22.90 0.001
* 6150:6420 9.36 46.00 <0.001
* 6150:6440 9.08 40.64 <0.001
* 6210:6410 3.38 19.51 0.031
* 6210:6420 6.83 14.46 <0.001
* 6210:6440 6.64 15.00 <0.001
6410:6420 1.79 8.25 0.520
6410:6440 1.73 8.76 0.550
6420:6440 0.08 1.49 1.000

Figure 4. Games-Howell pairwise comparisons of AGTC kg plot~! between sub-classes of the
“Wetlands” Level I SWFWMD class. Significantly different sub-classes (at « = 0.05) are denoted with
an asterisk.

Urban and Built-up
Residential, Low Density
Residential, Medium Density | = Residential
Residential, High Density

Commercial and Services
Industrial

Institutional => Built-up, non-residential
Recreational
Open Land

Wetlands

Bottomlands
Cypress = Forested Wetlands
Wetland Forested Mix

Mangrove Swamps

Freshwater Marshes
Saltwater Marshes = Non-forested and Mangrove Wetlands
Wet Prairies
Emergent Aquatic Vegetation|

Figure 5. Group decisions based on AGTC kg plot~! pairwise comparisons for Level Il sub-classes of
the Level I “Urban and Built-up” and “Wetlands” SWFWMD classes.
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Table 6. Class equivalencies between original SWFWMD classes and new land use/land cover classes
after applying AOV and post-hoc analyses.

Reclass Results FLUCCS Classes Used
Residential Residential, Low Density; Residential, Med Density;
Residential, High Density
Built-up, Commercial and Services; Industrial; Institutional;
Non-residential Recreational; Golf Courses; Open Lands

Cropland and Pastureland; Tree Crops; Nurseries and
Vineyards; Other Open Lands, Rural
Rangeland Shrub and Brushland; Mixed Rangeland
Upland Coniferous Forests; Pine Flatwoods; Upland
Hardwood /Coniferous Mix; Tree Plantation
Streams and Waterways; Lakes, Reservoirs; Bays
and Estuaries
Forested Wetlands Bottomlands; Cypress; Wetland Forested Mix
Mangrove Swamps; Freshwater Marshes; Saltwater
Marshes; Wet Prairies; Emergent Aquatic Vegetation
Infrastructure Transportation; Utilities

Agriculture

Upland Forests

Water

Non-forested and Mangrove Wetlands

3.4. Structure Classification

The decision tree partitioned the plots into seven classes using BA and stem count
(Figure 6). Impervious surface, political boundary, zoning codes, and site legacy were
not included as partitioning variables based on importance tests for the six independent
variables (Figure 7). Figure 7 lists the variables in terms of predictive importance from
highest to lowest (top to bottom). The percent increase in mean square error (%IncMSE)
measures the percent increase in misclassification, using mean square error (MSE) when
a variable is randomly permuted. The MSE for a variable of low predictive importance
changes slightly. Conversely, a greater percent change implies that a variable has greater
importance in the model. In other words, it shows how much worse the model would
perform without that variable [62]. The results, ranked from high to low importance,
are as follows: BA (44.4%), stem count (16.32%), legacy (13.55%), zoning code (11.28%),
impervious surface (7.49%), and political boundary (3.79%).

To reduce complexity and standardize the classes, tree depth was pruned one level
to produce a final tree of five classes split on BA (Table 7, Figure 8). These split points
determine how plots were placed into one of the five structure classes based on observed
BA m?. The points were then incorporated into the LULC reclassification to derive the final
classification described in the next section.

3.5. Final Classification

The final classes are based on the AGTC reclassification and BA /structure classifi-
cation (Table 8). In total, there were fourteen final classes. The “Built, Non-residential”,
“Residential”, and “Forested Wetlands” classes were further sub-divided using the structure
classes. For others, the AGTC reclassification was kept intact and not further divided. This
was performed with the objective of minimizing complexity and maximizing plots per class.
For example, the “Rangeland” class had a total of six plots. Incorporating the structure
classification was found to be infeasible, since it already had a very small number of plots.
Similar decisions were made for the remainder of the classes. Additionally, the BA values
shown in the final classification were scaled to BA ha~!.
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Figure 6. Unpruned RPART decision tree showing final bins and decision splits based on BA m? plot.
The top number in each box shows the mean AGTC kg for the n plots in that box. The percentage
reflects each box’s plots as a proportion of the total number of plots (409).

Impervioussurf | ©

=
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Figure 7. Variable importance for the six variables used in the initial tree. The graphs show that BA is
significantly more important for partitioning data on AGTC than the other five variables, followed by
stem count.
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Table 7. Split points used to partition plot data into five structure classes based on BA (m? plot™1).

Class # Split Point
1 <0.31
2 0.31 to 0.68
3 0.68 to 1.19
4 1.20 to 2.50
5 >2.50

(' 1328
.n=409 100%

[yes| BasalArea_m2 < 0.68 | no |

- S 1 —
( 392 | 4075
.n=305 75% n=104 EE%J
BasalArea_m2 < 0.31 BasalArea_m2 < 2.5
[ 3453 ]
\n=92 22%)

BasalArea_m2 < 1.2

M [H [ B
' Qg [ 1304 f 2737 | 4235
\n=231 56% M\n=74 18% )\ n=48 12% }\n=44 11% n-12 3%

Figure 8. Pruned RPART decision tree with final bins and decision splits based on BA m? plot~!. The
top number in each box shows the mean AGTC kg for the n plots in that box. The percentage reflects

the number of plots in each box.

Table 8. Final classification combining AGTC classification with BA classification. BA values are
shown scaled (m? ha™1).

Class Number of Plots
Agriculture 12
Built, Non-residential, BA < 8 82
Built, Non-residential, BA 8 to 62 22
Forested Wetlands, BA 0 to 29 19
Forested Wetlands, BA 29.1 to 62 34
Forested Wetlands, BA > 62 10
Infrastructure 28
Non-Forested and Mangrove Wetlands 21
Rangeland 6
Residential, BA < 8 73
Residential, BA 8 to 17 42
Residential, BA 17.1 to 62 26
Upland Forests 17

Water 17
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4. Discussion
4.1. Comparison Examples

Regional studies often adopt classification systems developed by organizations in-
terested in global or national-scale projects [63]. A few attempts have been performed to
create comprehensive LULC classifications for the entire United States but often focus on
more “natural” and resource related “covers”, neglecting the complexity of “uses” inherent
in urban systems (e.g., National Resource Inventory, National Land Cover Dataset, and
the United States Geological Survey Land Cover Trends Project) [63]. To overcome this,
Theobald [63] constructed a national hierarchical classification scheme that focused on
human landscape activities to better capture variation in outcomes from LULC change
analyses. However, these efforts do not incorporate ecological data in the break-up of
LULC classes and may potentially lose useful information in the variation in an ES across
the landscape. This analysis modified an existing classification for use in a regional ES
study. The reclassification incorporated variation in an ecosystem service (AGTC) between
LULC classes. The intent was not to replace or standardize existing classifications, but
rather to directly integrate ecological data into a classification scheme that includes both
sociological and ecological LULC classes.

In their study of LULC change in suburban and urban regions in China, Ellis et al. [64]
created a classification scheme that incorporated both land “forms” and land “uses”.
According to their needs, the landforms component of the classification contained 27 classes,
16 of which were based on water flow features pursuant to the characteristics of the
landscape and determined by visual interpretation of GPS data [64]. Variable data were
directly incorporated into the classification scheme itself. Partitioning LULC classes using
ES data provides a novel way to categorize the landscape for ES mapping studies. The
results presented here can serve as a basis for future investigations into applicability and
for comparisons using traditional classification schemes. In addition, the methodology can
serve as a foundation for other regional studies to address a variety of ecosystem services.

4.2. Class Interpretations

Level I SWFWMD classes served as the foundation for the reclassification. This
assumes these classes, which are based on both spectral and practical interpretations, are
meaningful and/or accurate as a starting point in representing the landscape. For example,
there is a degree of arbitrary interpretation in creating a “Residential” class as separate
from a “Commercial” class in an urban setting. These interpretations are the basis for the
“use” aspect of LULC classifications compared with land “cover” [65]. However, Level I
classes were considered axiomatic for practical considerations, including ownership, access,
and management that are real and valid in urban systems [66].

These considerations add to the complexity introduced when implementing Anderson
Levels III and IV. Cadenasso et al. [31] introduced the concept of medium scale classification
with their HERCULES model by including a percent cover of several factors in addition
to the traditional interpretation of land use. For the structural classification, additional
variables were tested to represent the forested “structure” of the landscape. The results
showed that both stem count and basal area, two common forestry metrics, were better
variables for partitioning the data relative to others included in the analysis. For example,
the classification allows for the sub-division of “Residential” into “low”, “medium”, and
“high” BA sub-classes, which adds more structural detail at the cost of greater complexity.
For this reason, a mixed approach was taken when using the structural classification. Only
including the structure split-points in the Level I categories that showed a significant
difference in AGTC allowed for the use of BA in the scheme while limiting the complexity
introduced. If the BA classes were applied to all Level I classes, the total split count would
be three to four times higher, which is prohibitive with many LULC models.
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4.3. Impervious Surface

An interesting result was the low ranking and exclusion of impervious surface from
the decision tree. One possibility may be the distribution and size of landscape patches
in Tampa. It would be useful to compare the patches of Tampa’s urban area with longer
established cities with higher population densities and greater concentrations of built
structures. It is possible that Tampa’s landscape may have more patch fragmentation
between land use and land covers. As an urbanizing region, many of the suburban and
exurban areas in the TBW contain patches of concrete and built structures interspersed
with vegetation and water. However, cities with longer and more aggressive rates of
development may be less fragmented with a more homogenous composition of impervious
patches, though this was not investigated in the study. Additional fragmentation analyses
can compare the TBW with other urban areas and may provide insights into differences of
“urban-ness” between cities.

4.4. Structural Classification

The structural classification using BA was a useful approach to investigate novel
enhancements of current classifications. In addition, the integration of the structural classi-
fication with the ES classification revealed inherent difficulties in added information. The
combination of the structure and ES classifications resulted in 14 final classes. From an
analysis standpoint, any increase in classes adds complexity. In addition, the determination
of split-points within the integrated classes was objective at best. Lastly, it was difficult
to apply the structure-based classification given available data for the entire TBW. While
the ES classification can easily be applied to the landscape, due to available LULC maps
provided by SWFWMD, similar spatial projections of BA for the entire TBW were not
available. To apply the structure classification, each pixel of the landscape would need
a BA value assessed from ground or remotely sensed data. It is possible that kriging or
other interpolation methods can provide estimates, but a more complex investigation of
structure-based classifications was beyond the scope of this study. However, it was noted
that structure-based classifications are important for understanding ecosystem services.
Therefore, methods to incorporate this information into existing classifications are a worth-
while endeavor and may become more applicable if future research provides BA estimates
at the landscape scale.

4.5. Sample Sizes

Several LULC classes had relatively small sample sizes. However, the stratified sam-
pling procedure ensured that, percentagewise, the number of plots for each class was
representative of the percentage of total land for that class within the study area. Still, the
result was a limitation on how Level I and II classes could be sub-divided to maximize
statistical power. The trade-off between complexity and information was important. Al-
though the structural classification introduced additional plot-level information, it would
be imprudent to use this for every Level I class. If each class was further sub-divided, the
final total would have been greater than 25 classes, with the majority having less than
five plots each. Therefore, the BA partition was limited to the three classes with the high-
est number of plots, which in turn form the greatest percentage of the actual landscape
(“Residential” = 32.64%, “Urban, non-residential” = 22.1%, and “Wetlands” = 14.99%).

5. Conclusions

This study created a novel LULC classification scheme by incorporating ecological data
to redefine classes of the FLUCCS classification system based on variation in above-ground
tree carbon. AOV and Games-Howell pairwise comparisons showed that sub-classes
within a granted “land cover” class were similar for six of the seven classes. Significant
differences were found within the “Wetlands” class based on vegetation cover, forming two
distinct groups: “Forested Wetlands” and “Non-forested and Mangrove Wetlands”. The
urban “land use” class showed differences between “Residential” and “Non-residential”
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sub-classes, forming two new classes respectively. This implies that LULC classifications
can sometimes aggregate areas perceived as similar that are in fact distinct regarding
ecological variables. These aggregations can obscure the true variation in a parameter at
the landscape scale. Therefore, a study’s classification system should be designed to reflect
landscape variation in the parameter(s) of interest.

The broad and interdisciplinary nature of this study also introduced several limitations
which must be addressed. One is the relatively brief time span of tree data (2006-2011)
from which AGTC change estimates were derived. In addition, tree and stand age were
not collected, preventing a complete understanding of the relationship between growth
and carbon quantities over time. Some of the LULC classes had relatively small sample
sizes, impacting the statistical power of tests used in the analyses. The small sample sizes
also introduced a degree of error as indicated by standard deviations which were higher
than class means. This indicates that factors influencing landscape variation were not
captured by the data. Future data collection efforts can provide additional time periods to
incorporate into this analysis for a greater understanding of change over time.
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Abbreviations

%IncMSE Percent increase in mean square error

AGTC Above-ground tree carbon

AOV Analysis of variance

BA Basal area

CART Classification and Regression Trees

CO2 Carbon dioxide

DBH Diameter at breast height

ESs Ecosystem services

FLUCCS Florida Land Use Cover Classification System
FWC Florida Fish and Wildlife Conservation Commission

HERCULES High Ecological Resolution Classification for Urban Landscapes and
Environmental Systems

LULC Land use and land cover

MSE Mean square error



Forests 2022, 13, 745 18 of 20

PLANTS Plant List of Accepted Nomenclature, Taxonomy, and Symbols
RPART Recursive Partitioning and Regression Trees

SWFWMD Southwest Florida Water Management District

TBW Tampa Bay Watershed

UFORE Urban Forest Effects

References

1. Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems; Springer: New York, NY,
USA, 2008.

2. Schulp, CJ.; Nabuurs, G.J.; Verburg, PH. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst.
Environ. 2008, 127, 251-264. [CrossRef]

3. Gitz, V,; Ciais, P. Future expansion of agriculture and pasture acts to amplify atmospheric CO; levels in response to fossil-fuel
and land-use change emissions. Clim. Chang. 2004, 67, 161-184. [CrossRef]

4. Xian, G.; Crane, M. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sens. Environ.
2005, 97, 203-215. [CrossRef]

5. Wau, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209-221.
[CrossRef]

6. Dwyer, J.F.; Nowak, D.J.; Heather Noble, M.; Sisinni, S.M. Connecting People with Ecosystems in the 21ST Century: An Assessment of
Our Nation’s Urban Forests; General Technical Report PNW-GTR-490; USDA Forest Service, Pacific Northwest Research Station:
Portland, OR, USA, 2000.

7. United States Census Bureau. The 2010 United States Census. 2010. Available online: http://www.census.gov/2010census/
(accessed on 10 April 2019).

8. Hooke, R.L.; Martin-Duque, J.F.; Pedraza, J. Land transformation by humans: A review. GSA Today 2012, 22, 4-10. [CrossRef]

9.  Elmqvist, T.; Setdld, H.; Handel, S.N.; Van Der Ploeg, S.; Aronson, J.; Blignaut, ].N.; Gomez-Baggethun, E.; Nowak, D.J.;
Kronenberg, J.; De Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 2015, 14,
101-108. [CrossRef]

10. Goulder, L.H.; Kennedy, D. Interpreting and estimating the value of ecosystem services. In Natural Capital: Theory and Practice of
Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011; pp. 34-53.

11.  Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293-301. [CrossRef]

12.  Sukopp, H,; Starfinger, U. Disturbance in urban ecosystems. In Ecosystems of the World; Peter Lang Publishing: New York, NY,
USA, 1999; pp. 397-412.

13.  Goémez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235-245.
[CrossRef]

14. Jim, C.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187-194. [CrossRef]

15.  Dobbs, C.; Escobedo, EJ.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators.
Landsc. Urban Plan. 2011, 99, 196-206. [CrossRef]

16. Gomez-Baggethun, E.; Ruiz-Pérez, M. Economic valuation and the commodification of ecosystem services. Prog. Phys. Geogr.
2011, 35, 613-628. [CrossRef]

17.  Kosoy, N.; Corbera, E. Payments for ecosystem services as commodity fetishism. Ecol. Econ. 2010, 69, 1228-1236. [CrossRef]

18. Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, ].W.; Chan, K.M.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, PH.; et al.
Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812-8819. [CrossRef]

19. Bachelet, D.; Ferschweiler, K.; Sheehan, T.J.; Sleeter, B.M.; Zhu, Z. Projected carbon stocks in the conterminous USA with land use
and variable fire regimes. Glob. Chang. Biol. 2015, 21, 4548-4560. [CrossRef]

20. Jo, HK.; McPherson, G.E. Carbon storage and flux in urban residential greenspace. J. Environ. Manag. 1995, 45, 109-133.
[CrossRef]

21. Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381-389.
[CrossRef]

22. Andreu, M.G.; Friedman, M.H.; Landry, S.M.; Northrop, R.J. City of Tampa Urban Ecological Analysis 2006-2007; Final Report to the
City of Tampa; University of South Florida: Tampa, FL, USA, 2008; p. 24.

23. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37,
35-46. [CrossRef]

24. Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, L; Drakou, E.G.; Martin-Lopez, B. A blueprint for
mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4-14. [CrossRef]

25.  Burkhard, B.; Kroll, E; Nedkov, S.; Miiller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17-29.
[CrossRef]

26. Commission of the European Communities. CORINE Land Cover; European Environment Agency: Brussels, Belgium, 1995.

27. Burkhard, B.; Kroll, F.; Miiller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover
based assessments. Landsc. Online 2009, 15, 22. [CrossRef]

28. Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011.


http://doi.org/10.1016/j.agee.2008.04.010
http://doi.org/10.1007/s10584-004-0065-5
http://doi.org/10.1016/j.rse.2005.04.017
http://doi.org/10.1016/j.landurbplan.2014.01.018
http://www.census.gov/2010census/
http://doi.org/10.1130/GSAT151A.1
http://doi.org/10.1016/j.cosust.2015.05.001
http://doi.org/10.1016/S0921-8009(99)00013-0
http://doi.org/10.1016/j.ecolecon.2012.08.019
http://doi.org/10.1016/j.cities.2009.03.003
http://doi.org/10.1016/j.landurbplan.2010.11.004
http://doi.org/10.1177/0309133311421708
http://doi.org/10.1016/j.ecolecon.2009.11.002
http://doi.org/10.1073/pnas.1114773109
http://doi.org/10.1111/gcb.13048
http://doi.org/10.1006/jema.1995.0062
http://doi.org/10.1016/S0269-7491(01)00214-7
http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.1016/j.ecoser.2013.02.001
http://doi.org/10.1016/j.ecolind.2011.06.019
http://doi.org/10.3097/LO.200915

Forests 2022, 13, 745 19 of 20

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.
53.

54.

55.

56.

57.
58.

59.

Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office:
Washington, DC, USA, 1976; Volume 964.

Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA,
2005; p. 526.

Cadenasso, M.L.; Pickett, S.T.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a
framework for classification. Front. Ecol. Environ. 2007, 5, 80-88. [CrossRef]

Pickett, S.T.; Cadenasso, M.L. Linking ecological and built components of urban mosaics: An open cycle of ecological design. J.
Ecol. 2008, 96, 8-12. [CrossRef]

Pickett, S.T.; Burch, W.R.; Dalton, S.E.; Foresman, T.W.; Grove, ].M.; Rowntree, R. A conceptual framework for the study of human
ecosystems in urban areas. Urban Ecosyst. 1997, 1, 185-199. [CrossRef]

Cadenasso, M. Ecological heterogeneity in urban ecosystems: Reconceptualized land cover models as a bridge to urban design.
In Resilience in Ecology and Urban Design; Springer: Dordrecht, The Netherlands, 2013; pp. 107-129.

Zipperer, W.C.; Morse, W.; Gaither, C.J. Linking social and ecological systems. In Urban Ecology; Oxford University Press: Oxford,
UK, 2011; pp. 298-308.

Shi, Y.; Zhixin, Q.; Liu, X.; Niu, N.; Zhang, H. Urban land use and land cover classification using multisource remote sensing
images and social media data. Remote Sens. 2019, 11, 2719. [CrossRef]

Solérzano, J.V.; Mas, J.E,; Gao, Y.; Gallardo-Cruz, J. Land use land cover classification with U-Net: Advantages of combining
Sentinel-1 and Sentinel-2 imagery. Remote Sens. 2021, 13, 3600. [CrossRef]

Naushad, R.; Kaur, T.; Ghaderpour, E. Deep transfer learning for land use and land cover classification: A comparative study.
Sensors 2021, 21, 8083. [CrossRef]

Morgan Grove, J.; Cadenasso, M.L.; Burch, W.R,, Jr.; Pickett, S.T.; Schwarz, K.; O’Neil-Dunne, J.; Wilson, M.; Troy, A.; Boone, C.
Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc. Nat.
Resour. 2006, 19, 117-136. [CrossRef]

Wau, J.J. Landscape ecology. In Ecological Systems; Springer: New York, NY, USA, 2013; pp. 179-200.

Kawula, R. Florida Land Cover Classification System; Florida Fish and Wildlife Conservation Commission: Tallahassee, FL,
USA, 2014.

Seaber, P.; Kapinos, F; Knapp, G. Hydrologic Unit Maps. In US Geological Survey, Water Supply Paper 2294; US Dept of the Interior:
United States Government Printing Office: Washington, DC, USA, 1994.

Tampa Bay Partnership. Tampa Bay’s Population Growth Surpasses Growth Rate of the Entire Nation. 2013. Available online:
http:/ /www.tampabay.org/about-us/news-media/partnership-blog/2013-08-15/tampa-bays-population-growth-surpasses-
growth-rate (accessed on 12 March 2020).

Florida Department of Environmental Protection. Learn about Your Watershed: Tampa Bay Watershed. 2015. Available online:
http:/ /www.protectingourwater.org/watersheds/map/tampa_bay/ (accessed on 12 March 2020).

Xian, G.; Crane, M.; Su, J. An analysis of urban development and its environmental impact on the Tampa Bay watershed. .
Environ. Manag. 2007, 85, 965-976. [CrossRef]

Nowak, D.J.; Crane, D.E. The Urban Forest Effects (UFORE) Model: Quantifying Urban Forest Structure and Functions; Gen. Tech. Rep.
NC-212; U.S. Deptartment of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000.
Nowak, D.J.; Crane, D.E,; Stevens, ].C.; Hoehn, R.E. The Urban Forest Effects (UFORE) Model: Field Data Collection Manual; USDA
Forest Service: Portland, OR, USA, 2005.

USDA-NRCS. The PLANTS Database; National Plant Data Team: Greensboro, NC, USA, 2015; p. 27491.

Nowak, D.J.; Hoehn, R.E., III; Crane, D.E.; Stevens, ].C.; Walton, ].T. Walton Assessing Urban Forest Effects and Values, Washington,
DC'’s Urban Forest; USDA Forest Service: Newton Square, PA, USA, 2006.

Nowak, D.J.; Hoehn, R.E,, III; Crane, D.E.; Stevens, ].C.; Walton, J.T. Assessing Urban Forest Effects and Values, New York City’s Urban
Forest; USDA Forest Service: Newton Square, PA, USA, 2007.

Russo, A.; Escobedo, EJ.; Timilsina, N.; Schmitt, A.O.; Varela, S.; Zerbe, S. Assessing urban tree carbon storage and sequestration
in Bolzano, Italy. Int. ]. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 54-70. [CrossRef]

USDA Forest Service. i-Tree Eco User’s Manual, v5.0; USDA Forest Service: Portland, OR, USA, 2014.

Southwest Florida Water Management District. Land-Use/Land Cover Maps SWFWMD Cover. Area (1995, 1999, 2004-2011); S.EW.M.
District: Brooksville, FL, USA, 2015.

Southwest Florida Water Management District. Photo Interpretation Key for Land Use Classification; S.E.W.M. District: Brooksville,
FL, USA, 2010; p. 173.

Florida Department of Transportation. Florida Land Use Cover and Forms Classification System; Surveying and Mapping Office:
Tallahassee, FL, USA, 1999.

Games, P.A.; Howell, J.F. Pairwise multiple comparison procedures with unequal n’s and/or variances: A Monte Carlo study. J.
Educ. Behav. Stat. 1976, 1, 113-125.

Howell, D. Statistical Methods for Psychology; Cengage Learning: Belmont, CA, USA, 2012.

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2015.

City of Tampa. City of Tampa Zoning Maps; City of Tampa: Tampa, FL, USA, 2015.


http://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2
http://doi.org/10.1111/j.1365-2745.2007.01310.x
http://doi.org/10.1023/A:1018531712889
http://doi.org/10.3390/rs11222719
http://doi.org/10.3390/rs13183600
http://doi.org/10.3390/s21238083
http://doi.org/10.1080/08941920500394501
http://www.tampabay.org/about-us/news-media/partnership-blog/2013-08-15/tampa-bays-population-growth-surpasses-growth-rate
http://www.tampabay.org/about-us/news-media/partnership-blog/2013-08-15/tampa-bays-population-growth-surpasses-growth-rate
http://www.protectingourwater.org/watersheds/map/tampa_bay/
http://doi.org/10.1016/j.jenvman.2006.11.012
http://doi.org/10.1080/21513732.2013.873822

Forests 2022, 13, 745 20 of 20

60.
61.

62.
63.

64.

65.
66.

Pasco County. Zoning Map; P.C. Department of Zoning and Intake: New Port Richey, FL, USA, 2015.

Therneau, T.M.; Atkinson, E.J. An Introduction to Recursive Partitioning Using the RPART Routines; Mayo Foundation: Rochester,
NY, USA, 2015.

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Theobald, D.M. Development and applications of a comprehensive land use classification and map for the US. PLoS ONE 2014,
9, €94628. [CrossRef] [PubMed]

Ellis, E.C.; Wang, H.; Xiao, H.S.; Peng, K.; Liu, X.P; Li, S.C.; Ouyang, H.; Cheng, X.; Yang, L.Z. Measuring long-term ecological
changes in densely populated landscapes using current and historical high resolution imagery. Remote Sens. Environ. 2006, 100,
457-473. [CrossRef]

Comber, A.J. The separation of land cover from land use using data primitives. J. Land Use Sci. 2008, 3, 215-229. [CrossRef]
Grove, J.M. Cities: Managing densely settled social-ecological systems. In Principles of Ecosystem Stewardship; Chapin, ES.,
Kofinas, G.P,, Folke, C., Eds.; Springer: New York, NY, USA, 2009; pp. 281-294.


http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1371/journal.pone.0094628
http://www.ncbi.nlm.nih.gov/pubmed/24728210
http://doi.org/10.1016/j.rse.2005.11.002
http://doi.org/10.1080/17474230802465173

	Introduction 
	Urban Ecosystem Services 
	LULC Classifications 
	Objectives 

	Materials and Methods 
	Study Area 
	Plot Data 
	Carbon Estimates 
	LULC Data and Initial Classification 
	Data QA/QC 
	AGTC Classification 
	Structure Classification 
	Coupled Reclassification 

	Results 
	Initial FLUCCS Classification 
	AGTC Classification 
	Post-Hoc Analyses 
	Structure Classification 
	Final Classification 

	Discussion 
	Comparison Examples 
	Class Interpretations 
	Impervious Surface 
	Structural Classification 
	Sample Sizes 

	Conclusions 
	References

