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Abstract—Efficient testing and vaccination protocols are critical
aspects of epidemic management. To study the optimal allocation of
limited testing and vaccination resources in a heterogeneous
contact network of interacting susceptible, infected, and recovered
individuals, we present a degree-based testing and vaccination
model for which we derive optimal policies using control-theoretic
methods. Within our framework, we find that optimal intervention
policies first target high-degree nodes before shifting to lower-
degree nodes in a time-dependent manner. Using such optimal
policies, it is possible to delay outbreaks and reduce incidence
rates to a greater extent than uniform and reinforcement-
learning-based interventions, particularly on certain scale-free
networks.

Index Terms—Epidemics, infection networks, optimal control,
reinforcement learning, testing, vaccination.

I. INTRODUCTION

L IMITING the spread of novel pathogens such as SARS-

CoV-2 requires efficient testing [1], [2] and quarantine

strategies [3], especially when vaccines are not available or

effective [4]. Even if effective vaccines are available at scale,

their population-wide distribution is a complex and time-consum-

ing endeavor, influenced by, for example, age-structure [5]–[7],

vaccine hesitancy [8], and different objectives [9].

Until a sufficient level of immunity within a population is

reached, distancing and quarantine policies can also be used

to help slow the spread and evolutionary dynamics [10] of

infectious diseases. Epidemic modeling and control-theoretic

approaches are useful for identifying both efficient testing

and vaccination policies. For an epidemic model of SARS-

CoV-2 transmission, Pontryagin’s maximum principle (PMP)

has been used to derive optimal distancing and testing strate-

gies that minimize the number of COVID-19 cases and

intervention costs [11], [12]. Optimal control theory has also

been applied to a multi-objective control problem that uses

isolation and vaccination to limit epidemic size and dura-

tion [13]. These recent investigations describe the underlying

infectious disease dynamics through compartmental models

without underlying network structure, meaning that all inter-

actions among different individuals are assumed to be

homogeneous.

Multicompartment models that may be associated with con-

tact networks have been investigated. For example, optimal

vaccination strategies have been derived for a rapidly spread-

ing disease in a highly mobile multicompartment susceptible-

infected-recovered (SIR) model using PMP [14]. The applica-

tion of optimal control methods and PMP to heterogeneous

node-based susceptible-infected-recovered-susceptible (SIRS)

models were also studied in the context of multiplex net-

works [15] and rumor spreading [16].

Complementing these control-theory-based investigations,

reinforcement learning (RL) has been recently used to iden-

tify infectious high-degree nodes (“superspreaders”) in tem-

poral networks [17]. It has been found that RL was able to

outperform intervention policies derived from purely struc-

tural node characterizations that are, for instance, based on

centrality measures [17]. However, these RL methods could

only be applied to rather small networks with about 400

nodes. For social networks describing much larger popula-

tions, early work by May and Anderson employed effective

degree models to study the population-level dynamics of

human immunodeficiency virus (HIV) infections [18]. These

degree-based models and later variants [19]–[21] did not

account for degree correlations. Effective degree models for

susceptible-infected-susceptible (SIS) dynamics with degree

correlations were derived in [22] and applied to SIR dynamics

in [23]. A further generalization of these methods to model

SIR dynamics with networked and well-mixed transmission

pathways was presented in [24]. For a detailed summary of

degree-based epidemic models, see [25].

In this work, we focus on formulating both optimal control

and RL-based target policies on a degree-based epidemic

model [26] that is constrained only by the maximum degree

and not by the system size (i.e., number of nodes). We con-

struct effective control strategies to slow down disease spread

across heterogeneous network models which include both

degree distributions and higher-order correlations of the

degree distribution. Our approach is not limited by size as

agent-based models are [17], is simpler because we do not

Manuscript received July 19, 2021; revised December 6, 2021; accepted
January 14, 2022. Date of publication February 18, 2022; date of current ver-
sion May 23, 2022. This work was supported in part by NSF under Grant
DMS-1814364 and in part by Army Research Office under Grant W911NF-
18-1-0345. Recommended for acceptance by Prof. Xianbin Cao. (Correspond-
ing author: Tom Chou.)

Mingtao Xia is with the Department of Mathematics, University of Califor-
nia, Los Angeles, Los Angeles, CA 90095 USA (e-mail: xiamingtao97@g.
ucla.edu).

Lucas B€ottcher is with the Department of Computational Medicine, Uni-
versity of California, Los Angeles, Los Angeles, CA 90095 USA, and also
with the Frankfurt School of Finance and Management, 60322 Frankfurt, Ger-
many (e-mail: L.Boettcher@fs.de).

Tom Chou is with the Department of Computational Medicine and Mathe-
matics, University of California, Los Angeles, Los Angeles, CA 90095 USA
(e-mail: tomchou@ucla.edu).

Digital Object Identifier 10.1109/TNSE.2022.3144624

1422 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 3, MAY/JUNE 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



resolve interpersonal contact times or other individual details,

and is thus easier to solve. On the other hand, unlike simple

multicompartment epidemic control models [11], [13], we

take into account a heterogeneous contact network and control

measures that depend on both time and node degree.

In the next section, we propose and justify a degree-based

epidemic testing and quarantining model. An optimal control

framework for this model is presented in Section III and, given

limited testing resources, an optimal testing strategy is com-

puted. We extend the same underlying disease model to

include vaccination in Section IV and derive optimal vaccina-

tion strategies that minimize infection given a limited vaccina-

tion rate. We summarize our results and discuss how they

depend on network and dynamical features of the model in

Section V. For comparison, we also present in Appendix C a

reinforcement-learning-based algorithm that is able to approx-

imate optimal testing strategies for the model introduced in

Section II.

Finally, we implemented a stochastic Monte-Carlo simu-

lation of disease transmission, testing, and vaccination on

networks. By using the optimal strategies computed using

the PMP on ODE-based deterministic models, we find sig-

nificant differences in the stochastic model. In Appendix

D, we show that these differences arise from higher corre-

lations in network connectivity that arise in the discrete

stochastic model used.

II. DEGREE-BASED EPIDEMIC AND TESTING MODEL

For the formulation of optimal testing policies that allo-

cate testing resources to different individuals in a contact

network, we adopt an effective degree model of SIR

dynamics with testing in a static network of N nodes.

Nodes represent individuals, and edges between nodes rep-

resent corresponding contacts. Therefore, the degree of a

node represents the number of its contacts. If K is the

maximum degree across all nodes, we can divide the popu-

lation into K distinct subpopulations, each of size Nk

(k ¼ 1; 2; . . . ; K) such that all nodes in the kth group have

degree k. Therefore, N ¼
PK

k¼1 Nk.

In our epidemic model, we distinguish between untested

and tested infected individuals. Let SkðtÞ, Iuk ðtÞ, I�kðtÞ, and
RkðtÞ denote the numbers of susceptible, untested infected,

tested infected, and recovered nodes with degree k at time t,
respectively. Since these subpopulations together represent

the entire population (the total number of nodes N), both N
and Nk are constants in our model. Their values satisfy the

normalization condition Sk þ Iuk þ I�k þ Rk ¼ Nk. The corre-

sponding fractions are

skðtÞ ¼ SkðtÞ=N; iukðtÞ ¼ Iuk ðtÞ=N;

i�kðtÞ ¼ I�kðtÞ=N; rkðtÞ ¼ RkðtÞ=N; (1)

such that
P

kðsk þ iuk þ i�k þ rkÞ ¼ 1. Using an effective-

degree approach [18], [24], we describe the evolution of the

above subpopulations by

dskðtÞ
dt

¼ �kskðtÞ
X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ ðtÞ

� �

; (2)

diukðtÞ
dt
¼ kskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ðtÞ

� �

� guiukðtÞ �
fkðtÞ
Nk

iukðtÞ; (3)

di�kðtÞ
dt
¼ �g�i�kðtÞ þ

fkðtÞ
Nk

iukðtÞ; (4)

drkðtÞ
dt

¼ guiukðtÞ þ g�i�kðtÞ; (5)

where P ð‘Þ ¼ N‘=N is the degree distribution. P ð‘jkÞ is the
conditional probability that a chosen node with degree k is

connected to a node with degree ‘. By defining E‘;k as the

number of edges connecting a node with degree k with another
node with degree ‘ in a given network, the conditional proba-

bility can be directly evaluated as P ð‘jkÞ ¼ E‘;k=ðkNkÞ. Our
degree-based formulation of SIR dynamics with testing, (2)–

(5), is an approximation of the full node-based dynamics

assuming that nodes of the same degree are equally likely to

be infected at any given time [26].

Susceptible individuals become infected through contact

with untested and tested infected individuals at rates bu and

b�, respectively. Untested and tested infected individuals

recover at rates gu and g�, respectively. Differences in the

recovery rates gu and g� reflect differences in disease severity

of and treatment options for untested and tested infected indi-

viduals. Once recovered, individuals develop long-lasting

immunity that protects them from reinfection. Temporary

immunity can be easily modeled by using an SIS type model

with or without delays. Reduced transmissibility of tested

infected (and potentially quarantined) individuals corresponds

to setting b� � bu.

The testing rate of nodes with degree k is defined as fkðtÞ,
such that fkðtÞDt is the total number of tests given to nodes

with degree k in time window Dt. Tests given to recovereds,

susceptibles, and already-tested infecteds do not lead to

quarantining and will not affect the disease dynamics. How-

ever, a fraction Iuk=ðSk þ Iuk þ I�k þ RkÞ � Iuk=Nk of these

fkðtÞDt tests will be administered to untested infecteds. Once

infected nodes have been identified by testing, they can be

quarantined and removed from the disease transmission

dynamics. If infected individuals who already have been

tested strictly avoid future testing, more tests will be available

for the other subpopulations, increasing the rate at which the

remaining untested infecteds will be tested. In this case, the

fraction of tests administered to untested infecteds is modified:

Iuk=ðSk þ Iuk þRkÞ � Iuk=ðNk � I�kÞ. After normalizing by

the total population N to write tested fractions in terms of (1),

the testing term becomes �fkðtÞiuk=Nk (see (3)) or

�fkðtÞiuk=½Nkð1� I�k=NkÞ�, respectively.
Biased testing can also be represented by using a testing

fraction of the form Iuk e
b=ðIuk eb þ Sk þ I�k þ RkÞ, where b >

0 increases the fraction of tests given to infecteds. To correct

for false-positive tests, (2)–(5) can be modified by including
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an additional term that transfers the I�k population back to Sk.

False negatives can be accounted for by a reduction in

fkðtÞ=Nk. For a detailed overview of statistical models that

account for testing errors and bias, see [27], [28].

What remains is to assign network structures, extract P ð‘jkÞ
from them, and determine reasonable parameter values before

calculating the optimal testing protocol fkðtÞ. We apply our

disease-control framework to (i) a Barab�asi-Albert (BA) net-

work [29], [30] and (ii) a stochastic block model (SBM) [31]

with four communities and a probability matrix

P ¼ 10�4

1 2 2 2

2 4 2 2

2 2 5 2

2 2 2 3

0

B

B

@

1

C

C

A

: (6)

These two network types exhibit properties, such as hub nodes

with high degrees and community structure, that are observ-

able in real-world contact networks [32], [33]. In the construc-

tion of the BA network, each new node is connected to 2

existing nodes using linear preferential attachment. Fig. 1(a)

shows the degree distribution of a 99,817-node BA network

that we use in this study. A heatmap of the conditional degree

distribution matrix of the BA network with the degree distri-

bution P ðkÞ shown in Fig. 1(a) is given in Fig. 1(b). The

degree distribution and the conditional degree distribution

matrix of the 100,000-node SBM network are shown in Fig. 1

(c) and (d), respectively. Taking into account empirical find-

ings on the degree distributions in real-world contact net-

works [32], we use a degree cutoff of k � K ¼ 100. We will

use the specific configurations of the BA and SBM networks

shown in Fig. 1 for our subsequent analysis of (2)-(5).

Next, to constrain the parameter values, we first invoke esti-

mates of the basic reproduction number (i.e., the average num-

ber of secondary cases that results from one case in a

completely susceptible population), which for a network

model is defined as [34], [35]

R0 ¼ rðJV �1Þ (7)

in which rð�Þ is the largest eigenvalue (spectral radius), V �
diagðguÞ 2 RK	K , and J 2 RK	K is the Jacobian of the linear-

ized dynamical system (see (2) and (3)) about the disease-free

state with skðt ¼ 0Þ ¼ Nk=N and fk ¼ 0 corresponding to the

initial, untested, and uncontrolled spread of the infection:

Jij ¼ iPðjjiÞNi

Nj
bu; i; j � K: (8)

This “next-generation” method associates R0 with the largest

eigenvalue inherent to the dynamical system. Additional

expressions for R0 for an uncorrelated degree network are

given in Appendix A.

Empirically, the basic reproduction number for COVID-19

varies across different regions. For the early outbreak in

Wuhan [36], R0 was estimated to be 3.49, while for the early

outbreak in Italy R0 
 2:43� 3:10 [37]. Here we set R0 ¼
4:5 which was suggested in [38] as the basic reproduction

number of early COVID-19 spread in the absence of any inter-

vention. For a given value of the recovery rate gu of untested

individuals, which can be inferred from empirical data [38],

[39], we determine the transmissibility bu by numerically

solving R0ðbuÞ ¼ 4:5 for bu. Our source codes are publicly

available at https://gitlab.com/ComputationalScience/epi-

demic-control.

III. ALLOCATING LIMITED TESTING RESOURCES

Without any testing constraints, it would be most effective

for disease control to use a testing rate fkðtÞ sufficiently large

to keep the fraction of untested individuals, iukðtÞ, close to

zero. In general, the testing rates are constrained by

fmin
k � fkðtÞ

Nk
� fmax

k ; (9)

and the total testing rate is also bounded by availability and

logistics of testing

X

K

k¼1
fkðtÞ ¼ F ðtÞ: (10)

The goal is to determine, under these constraints, the function

fkðtÞ or fkðtÞ=Nk that most effectively reduces the total

Fig. 1. Degree distribution of a Barab�asi–Albert network and a stochastic
block model. (a) The degree distribution of a Barab�asi–Albert network with
99,817 nodes. To generate the network, we start with a dyad and iteratively
add new nodes until we reach 100,000 nodes. Each new node has 2 edges that
connect it to existing nodes using linear preferential attachment. Isolated
nodes or nodes with degrees larger than 100 [32] are then removed from the
network. The grey solid line is a guide-to-the-eye with slope -3 [30]. For illus-
tration, the inset shows a realization of a Barab�asi–Albert network with 100
nodes. Node size scales with their betweenness centrality. (b) The conditional
probability P ð‘jkÞ associated with the Barab�asi–Albert network generated in
(a). (c) The degree distribution of a stochastic block model with four blocks
and 100,000 nodes. The inset shows a realization of a stochastic block model
with 800 nodes, but using the same block probability matrix. (d) The condi-
tional probability P ð‘jkÞ associated with the SBM. In both (b) and (d), all ele-
ments that are strictly zero are uncolored.
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number of infections. In practice, high-degree nodes (e.g.,

highly social individuals) might be subject to more testing

(and quarantining if positive) than low-degree nodes because

of their higher expected rate of infecting others. This rationale

translates to fkðtÞ=Nk > fk0ðtÞ=Nk0 if k > k0. In our numeri-

cal experiments, we use sufficiently broad bounds of fkðtÞ and
set fmin

k ¼ fmin and f
max
k ¼ fmax.

To minimize the number of total infections over time, while

simultaneously stressing the importance of reducing early

infections, we define a loss function as

LðT Þ ¼
Z T

0

dt dt
X

K

k¼1
kskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ðtÞ

� �

; (11)

where d 2 ð0; 1� denotes a discount factor, which describes

how we balance between minimizing current infections

and future infections. The smaller the parameter d, the less

attention we pay to future infections, and the more we

focus on reducing early infections. For example, medical

resources can better handle confirmed patients and new

treatments can be given time to develop if the number of

infections are spread over longer time periods. These

effects can be effectively incorporated in the loss function

by using d < 1. Minimizing the loss (11) is equivalent to

minimizing the number of infections, weighted by the dis-

count factor dt, in the time horizon ½0; T �. To search for

the optimal testing function fkðtÞ that minimizes (11), we

invoke Pontryagin’s maximum principle (PMP) and con-

struct the associated Hamiltonian

H ¼ dt
X

K

k¼1
kskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ ðtÞ

� �

þ
X

K

k¼1
�s
k

dskðtÞ
dt
þ �u

k

diukðtÞ
dt
þ ��k

di�kðtÞ
dt

� �

¼
X

K

k¼1
ðdt � �s

k þ �u
kÞkskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ ðtÞ

� �

þ
X

K

k¼1

fkðtÞ
Nk
ð��k � �u

kÞiukðtÞ � guiukðtÞ�u
k � g�i�kðtÞ��k

� �

;

(12)

where �s
k, �

u
k , and ��k are adjoint variables associated with sk,

iuk , and i�k, respectively. PMP states that a necessary condition

for the loss-minimizing control fkðtÞ is that it minimizes H
(or maximizes �H) at every time point t. This method of opti-

mal control has been applied to many other contexts, including

control of economic growth [40]. In our problem, applying

PMP under the total budget constraint
PK

k¼1 fkðtÞ ¼ F ðtÞ, we
explicitly find the minimizing testing function ðf�k Þ ¼
argminfH, which we will assume to be optimal control that

minimizes LðT Þ. The dynamics for ð�s
k; �

u
k ; �

�
kÞ obey

d�s
k

dt
¼ � @H

@sk
¼ �dtk

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ðtÞ

� �

þ �s
kk

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ðtÞ

� �

� �u
kk

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ buiu‘ ðtÞ þ b�i�‘ðtÞ

� �

; (13)

d�u
k

dt
¼ � @H

@iuk
¼ � bu

P ðkÞ
X

K

j¼1
P ðkjjÞsjðtÞðdt � �s

j þ �u
j Þ

þ gu�u
k þ

fkðtÞ
Nk
ð�u

k � ��kÞ; (14)

d��k
dt
¼ � @H

@i�k

¼ � b�

P ðkÞ
X

K

j¼1
P ðkjjÞsjðtÞðdt � �s

j þ �u
j Þ þ g���k; (15)

with end conditions �s
kðT Þ ¼ �u

kðT Þ ¼ ��kðT Þ ¼ 0. To mini-

mizeH with respect to the testing rates fkðtÞ, we have to mini-

mize the term

X

K

k¼1

fkðtÞ
Nk
ð��k � �u

kÞiukðtÞ (16)

given the budget constraints (9) and (10). Hence, after giving

each subpopulation the minimal testing resources fminNk, we

maximize the testing rates fkðtÞ with the smallest coefficients

ð��k � �u
kÞiukðtÞ=Nk of fmaxNk as long as sufficient testing bud-

get is available. In other words, we should give testing resour-

ces to those groups presumed to be at the highest risk, as

quantified by the quantity ð��k � �u
kÞiukðtÞ=Nk. We use the

PMP-based algorithm outlined in Appendix B to iteratively

calculate the loss function (11) and optimal testing strategy.

In accordance with empirical data on COVID-19

patients [39], [41], [42], we set g ¼ gu ¼ g� ¼ ð1=14Þ=day
and b� ¼ bu=10. The transmissibility of untested individuals,

bu, is calculated according to (7) as bu ¼ 0:0411=day for the

BA network and bu ¼ 0:0130=day for the SBM network. We

set the discount factor d ¼ 0:95 so that initial infections con-

tribute more to the loss function (11). The total daily number

of SARS-CoV-2 tests in the US after an initial ramping-up

phase in 2020 is about 0.6%/day [28]. Hence, we set

X

k

fkðtÞ ¼ 0.006N; (17)

and fmin ¼ 0; fmax ¼ 0:4Nk. As initial condition, we use

skð0Þ ¼ P ðkÞ � iukð0Þ; i�kð0Þ ¼ 0;

iukð0Þ ¼ 10�6P ðkÞ; rkð0Þ ¼ 0; (18)

corresponding to about 0.1 of an infected individual uniformly

distributed on N � 105 susceptible nodes. The optimal testing

strategy is supposed to identify those nodes that are most

likely to be infected and transmit the disease to others. Upon
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using T ¼ 200;Dt ¼ 0:1 and d ¼ 0:95, we find the optimal

testing strategy fkðtÞ=Nk for our BA network and plot it in

Fig. 2(a). Here (2)–(5) and (13)–(15) are solved using an

improved Euler method. For the BA network, the value of the

loss function defined in (11) is LðT ¼ 200Þ ¼ 0:0109 under

the optimal testing strategy, while it is LðT ¼ 200Þ ¼ 0:0325
under uniform testing

fk ¼ F0

Nk

N
: (19)

Fig. 2(b), (c), and (d) show the associated populations under

optimal testing, while (e) shows the dynamics of the fraction

of nodes infected, 1�PK
k¼1 skðtÞ. The disease spread under

optimal testing is significantly slowed relative to the no testing

(black) and uniform testing (dashed blue/circle) cases. Fig. 2

(f) plots the optimal testing rate for the SBM network. Panels

(g-i) show the corresponding subpopulations, and panel (j)

plots the fraction of nodes infected under PMP-optimal, uni-

form, and no-testing conditions. For the SBM network, LðT ¼
200Þ ¼ 0:0564 under the optimal strategy and LðT ¼ 200Þ ¼
0:0571 under the uniform testing strategy, suggesting that the

PMP approach yields better solutions than uniform testing.

However, the improvement is modest and the SBM network is

rather insensitive to testing and quarantining. The slight

improvement from testing is shown by the reduction in the

fraction infected relative to the no testing case (inset).

In both networks, nodes with larger degrees are more likely

to be tested at the beginning of the outbreak [Fig. 2(a) and (f)],

indicating that people with more contacts are more likely to

infect others or get infected, and should be given priority to get

tested. Yet, in both networks, as time evolves, the optimal testing

strategy tends to shift focus from higher degree nodes to nodes

with smaller degrees because testing those nodes that were

infected and have already recovered is not meaningful in terms

of disease control.

Comparing Fig. 2(e) and (j), we see that the differences

between optimal and uniform testing are larger for the BA net-

work compared to the SBM. A possible explanation for this

behavior is that in the BA network, the degree distribution

P ðkÞ decays algebraically. Therefore, as long as testing

focuses primarily on high-degree nodes, the spreading of the

disease can be controlled very effectively since the majority

of nodes have small degrees and are more unlikely to be

infected. On the other hand, for our SBM network, the degrees

of most nodes are close to each other and larger than 10, indi-

cating that nodes with a small degree are more likely to be

infected compared to the BA network. Even if we use the

same uniform testing rates (see (19)) in both networks, the

proportion of infections in the BA network is less than that in

the SBM network.

IV. OPTIMAL VACCINATION POLICY

Optimal vaccination has also been studied within the

classic SIR model [43]. However, devising vaccination

strategies based on social network structure may provide a

more refined and efficient way of administering vaccines

and extinguishing an epidemic. Our simple testing model

presented in the previous section can be straightforwardly

Fig. 2. Optimal testing and quarantining strategy for T ¼ 200 and discount factor d ¼ 0:95. We plot the optimal strategies and the corresponding susceptible,
untested infected, and tested infected fractions at each degree k across time t ¼ nDt. (a) A heatmap of the PMP-optimal testing strategy (see Algorithm 1) for
the BA network. The corresponding populations of degree-k susceptibles, untested infecteds, and tested infecteds are plotted in (b-d), respectively. (e) Time-evo-
lution of the total fraction infected 1�PK

k¼1 skðtÞ under the PMP-optimal testing strategy (dashed red). The fractions infected under hypothetical uniform test-
ing (dashed blue/circle) and no testing (black) scenarios are shown for comparison. For the BA network, optimal testing both delays and suppresses epidemic
spreading more effectively than uniform testing. The bottom row (f-j) shows analogous results for the SBM network. Panels (f-i) show the corresponding optimal
testing rates, susceptible, untested infected, and untested infected populations with degree k as a function of time. Panel (j) shows the fraction infected as a func-
tion of time. Although optimal testing and quarantining reduce the fraction infected relative to uniform or no testing, its effects are only modestly better. Given
the same testing budget constraint, the effects of optimal testing strategies are greater in the BA network because its distribution of node degrees is more hetero-
geneous and testing and quarantining high-degree nodes can more effectively control disease spread. However, since the node degree distribution in the SBM
network is sharply peaked, an optimal testing strategy is less effective overall.
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adapted to describe vaccination on a network. The goal is

to determine the optimal allocation of vaccine doses to a

population with heterogeneous contacts to minimize the

impact of the infection across the entire population.

For COVID-19, there are a variety of vaccines that require

one or two shots [44]. In our simulations, we assume that the

administered vaccine provides full protection after one shot

and that a vaccinated individual will instantly leave the sus-

ceptible group and enter the recovered group. This means that

vaccinated individuals will no longer be infectious and can be

treated as “recovered” after receiving one vaccination dose.

Furthermore, we assume that only susceptible persons will be

vaccinated. Other mechanisms such as prime-boost protocols

and time delays between vaccination and onset of immune

response can also be accounted for in similar models as

detailed in [45].

We reformulate (2)-(5) to study optimal vaccination pro-

tocols that are constrained by vaccine supplies in a hetero-

geneous population. For simplicity, we do not take into

account the effect of testing and quarantining when devising

optimal vaccinating strategies, although testing and vaccina-

tion can be performed concurrently. The resulting rate equa-

tions are

dskðtÞ
dt

¼ �bkskðtÞ
X

K

‘¼1

P ð‘jkÞ
P ð‘Þ i‘ðtÞ �

vkðtÞ
N

; (20)

dikðtÞ
dt
¼ bkskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ i‘ðtÞ � gikðtÞ; (21)

drkðtÞ
dt
¼ gikðtÞ þ

vkðtÞ
N

; (22)

where vkðtÞ is the rate of vaccination of susceptibles with

degree k at time t. Once vaccinated, susceptibles become

“recovered” because they are immunized and no longer sus-

ceptible to the infection. The total rate of administering vac-

cines at time t is defined as

X

K

k¼1
vkðtÞ ¼ V ðtÞ: (23)

In other words, in time increment Dt at time t, we can

administer only V ðtÞDt doses. Equation (20) assumes that

vaccination is resource-limited and that the rate of protect-

ing susceptibles is proportional only to the rate vkðtÞ of

administering vaccines. In addition, we assume that the vac-

cination rates for different subpopulations are confined to

the interval

vmin �
vkðtÞ
NskðtÞ

� vmax; (24)

where vmin; vmax 2 ½0; 0:4�=day are minimum and maximum

vaccination rates. Note that vaccines are allocated only to sus-

ceptibles, while tests are typically given to individuals of all

categories: susceptible, infected, and recovered, according

to their relative proportions. To formulate the vaccine

distribution problem in a heterogeneous contact network, we

use the following loss function

LðT Þ ¼
Z T

0

dt dt
X

K

k¼1
kskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ bðtÞi‘ðtÞ; (25)

with the aim of minimizing the total number of infections over

time (with a constant discount factor d 2 ð0; 1�) by appropri-

ately distributing vaccines to groups with different degree k at

different rates.

To minimize the loss function (25), we construct the

Hamiltonian

H ¼ bdt
X

K

k¼1
kskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ i‘ðtÞ

þ
X

K

k¼1
�s
k

dskðtÞ
dt
þ �i

k

dikðtÞ
dt

� �

¼ b
X

K

k¼1
ðdt � �s

k þ �i
kÞkskðtÞ

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ i‘ðtÞ

þ
X

K

k¼1

vkðtÞ
N

�s
kðtÞ � gikðtÞ�i

kðtÞ
� �

; (26)

Algorithm 1: Pseudo-Code for Determining Optimal Testing

Strategies Based on Pontryagin’s Maximum Principle.

1: Initialize t ¼ 0, skð0Þ; iukð0Þ; i�kð0Þ, Dt, T ¼ nDt, bu;b�, gu; g�, d,
initial strategy F ðkDtÞ; k, fmax, fmin, �, itermax

2: for k ¼ 0 : n� 1 do

3: Calculate skðtÞ; i�kðtÞ; iukðtÞ under the strategy F ðkDtÞ from
(2)–(4)

4: end for

5: Set �s
k; �

u
k ; �

�
k ¼ 0; k ¼ n

6: Calculate the loss function L1 in (11)

7: for k ¼ n� 1 : 0 do

8: Calculate �s
k; �

u
k ; �

�
k under the strategy F ðkDtÞ from (13)–(15)

9: end for

10: for k ¼ 0 : n� 1 do

11: First renew the strategy F ðkDtÞ, then calculate sk; i
u
k ; i
�
k under

the strategy F ðkDtÞ from (2)–(4)

12: end for

13: Calculate the loss function L2 in (11)

14: i 1

15: whilejL1 � L2j > � && i < itermax do

16: i iþ 1

17: L1  L2

18: Set k ¼ n; �s
k; �

u
k ; �

�
k ¼ 0

19: for k ¼ n� 1 : 0 do

20: Calculate �s
k; �

u
k ; �

�
k under the strategy F ðkDtÞ from (13)–

(15)

21: end for

22: for k ¼ 0 : n� 1 do

23: First renew the strategy F ðkDtÞ, then calculate sk; i
u
k ; i
�
k

under the strategy F ðkDtÞ from (2)–(4)

24: end for

25: Calculate the Loss function L2 in (11)

26: end while
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where �s
k and �i

k are the adjoint variables satisfying the differ-

ential equations

d�s
k

dt
¼ � @H

@sk
¼ �bk

X

K

‘¼1

P ð‘jkÞ
P ð‘Þ i‘ðtÞðdt � �s

k þ �i
kÞ (27)

d�i
k

dt
¼ � @H

@ik

¼ � b

P ðkÞ
X

K

‘¼1
P ðkj‘Þ‘s‘ðtÞðdt � �s

‘ þ �i
‘Þ þ g�i

k: (28)

Again, PMP explicitly generates the control that minimizes

(26) for every t, which we assume also minimizes the target

loss function (25). From the constraints (23) and (24), mini-

mizing the Hamiltonian is achieved by giving vaccination

doses to those subpopulations with the smallest �s
k. We use

the same Algorithm 1 to solve the minimization problem (25)

numerically and obtain the optimal strategy.

In the US, about two million doses of SARS-CoV-2 vac-

cines were delivered in May 2021 [46], most of which were

two-dose vaccines. Since approximately 0.3% of the entire

US population is fully vaccinated daily, we set V ðtÞ ¼
0:003N=day, vmin ¼ 0=day, and vmax ¼ 0:4=day in the con-

straint (24). The infection rates b are set to be 0:0411=day
for the BA network and 0:0130=day for the SBM network,

and the recovery rate g ¼ ð1=14Þ=day. For comparison, we

also simulate a vaccination strategy with a uniform vaccina-

tion rate

vkðtÞ ¼
skðtÞV ðtÞ
PK

k¼1 skðtÞ
: (29)

In all simulations, we use the following initial condition:

ikð0Þ ¼ 10�6P ðkÞ; rkð0Þ ¼ 0; skð0Þ ¼ P ðkÞ � ikð0Þ: (30)

We plot the PMP-optimal vaccination strategy vk=Nk in Fig. 3

(a) and the corresponding susceptible and infected k-degree sub-
populations skðtÞ and ikðtÞ in (b) and (c).We set T ¼ 150;Dt ¼
0:1 and we use an improved Euler method to numerically solve

(20)–(22), (27)–(28). Algorithm 1 is applied (without the

infected and tested compartment) to determine the optimal vac-

cination strategy by the PMP approach. For the BA network,

LðT ¼ 150Þ ¼ 1:165	 10�5 under the PMP-optimal strategy

and LðT ¼ 150Þ ¼ 0:01953 under a uniform vaccination rate.

Fig. 3(d) shows that the optimal vaccination strategy on a BA

network significantly reduces the fraction infected compared to

the uniform vaccination strategy. Panels (e-h) show the corre-

sponding quantities for the SBM network for which LðT ¼
150Þ ¼ 0:0210 under the optimal vaccination strategy and

LðT ¼ 150Þ ¼ 0:0360 under a constant, uniform vaccination

strategy. In both networks, the optimal vaccination strategies

obtained via Algorithm 1 tend to prioritize those nodes with

higher degrees first and eventually expand to those nodes with

smaller degrees [see Fig. 3(a) and (e)]. As with testing and

quarantining, the reduction in the fraction infected by vaccina-

tion is greater in the BA network. Since the BA network has a

degree distribution with algebraic decay, the effect of the

Fig. 3. Vaccination model optimized for T ¼ 150 under different constraints. We plot the optimal strategies and the corresponding susceptible, untested
infected, and tested infected fractions at each degree k across time t ¼ nDt. (a) Heatmap of the optimal vaccination strategy vkðtÞ=ðskðtÞNkÞ for the BA network
given by Algorithm 1. Panels (b,c) show the corresponding susceptible and infected subpopulations skðtÞ and ikðtÞ, while (d) plots the fraction infected as a func-
tion of time, derived from solving (20)–(22) under optimal vaccination using a discount factor d ¼ 0:95. The dashed red curve indicates the fraction infected
under optimal vaccination. For comparison, the infected population under no vaccination (solid black) and constant, uniform (dashed blue/circles) vaccination
are also plotted and show how optimizing vaccination significantly suppresses infectivity. Panels (e-h) show the corresponding quantities for the SBM network.
Optimal vaccination is less effective at decreasing infection in the SBM network than in the BA network, again because of the SBM’s peaked (more homoge-
neous) node degree distribution. Note from the logarithmic scale that vaccination is qualitatively more effective in reducing infections than testing and
quarantining.
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optimal vaccination strategy will be more pronounced than for

the SBM, whose nodes have similar degrees.

V. DISCUSSION

Effective testing and vaccination strategies are an essential

part of epidemic management. In this paper, we derived opti-

mal testing and vaccination policies by applying Pontryagin’s

maximum principle to a degree-based epidemic model in a

heterogeneous contact network. We complemented our analyt-

ical results with reinforcement learning (RL) approaches that

identify effective policies (see Appendix C). On occasions

when the best optimal strategy can be analytically solved, the

controls derived from Pontryagin’s maximum principle out-

perform RL-based interventions. However, reinforcement

learning is useful for epidemic management problems when

an efficient procedure for computing optimal solutions solu-

tions is not available. Our results show that the two approaches

can complement each other; preliminary findings from opti-

mal-control analysis can be used to pre-train and restrict the

space of possible actions, which may lead to more efficient

RL algorithms. In addition to RL-based control strategies, it

may also be worthwhile to apply neural ODE control frame-

works [47], [48] to resource allocation problems since they

have exhibited better performance than RL and numerical

adjoint system solvers.

Our analytical results show that optimal testing and vaccina-

tion policies under resource constraints initially tend to priori-

tize nodes with higher degrees to control the spread of the

disease. In situations where the number of contacts of individu-

als is known or can be estimated with reasonable precision,

Algs. 1 and 2 may be useful for identifying effective epidemic

management strategies. Using our control-theoretic approach,

we also explored the relative effectiveness of testing and vacci-

nation under different conditions. If more information on con-

tact patterns of individual nodes is available, it is possible to

further refine the proposed policies using interventions that

rely not only on node degrees but also on other structural fea-

tures such as percolation and betweenness centrality [26], [49].

A. Effects of Delayed Intervention

First, we consider the effectiveness of interventions as a

function of the time between the first infection and the imple-

mentation of testing or vaccination. The initial conditions are

set to be the same as (18) and (30). Fig. 4 shows the total frac-

tion infected and the loss functions at T ¼ 150, for both the BA

and SBM networks, as a function of intervention starting time

t0. We set F ¼ F ðtÞ t> t0 or V ¼ V ðtÞ t> t0 and explore the

effects of different constant levels of test kits or vaccine avail-

ability, F ðtÞ ¼ 0:002N; 0:004N; 0:006N; 0.008N=day and

V ðtÞ ¼ 0:001N; 0:002N; 0:003N; 0.004N=day, respectively.

The transmissibility rates bu;b�;b and the recovery rates

gu; g�; g are set to the same values as those used in Section III

for the testing model and those used in Section IV for the vacci-

nation model.

In the BA network, the total infected fraction shown in Fig. 4

(a) is fairly insensitive to starting times for all testing rates F ,

especially at small starting times t0950. However, the loss

functions corresponding to all testing rates increase monotoni-

cally with the testing starting time t0, as shown in Fig. 4(b). On

the other hand, vaccination of a BA network leads to infected

fractions that change significantly with delay time, but with an

overall vaccination-rate-dependent starting time before which

disease spread can be nearly completely suppressed, as shown in

(c). For the vaccination model applied to both networks, an ear-

lier intervention time will always lead to fewer infected nodes.

Overall, we found that earlier and stronger intervention meas-

ures lead to more effective control of disease spread and a

smaller loss function defined by (11), (25). For all cases, the test-

ing loss functions monotonically increase with t0. Similarly, for

the SBMmodel, the final infections shown in Fig. 4(d) are insen-

sitive to starting times t0950 for each of the four choices of total

testing budgets F . Earlier intervention times t0 lead to smaller

testing loss functions which indicate more effective early-time

disease control and fewer early infections (which are followed

by larger later infections) than those associated with later start

times t0. Vaccination of the SBM network reveals more

smoothly monotonically increasing infected fraction and loss

functions and does not display the sigmoidal dependence on

intervention time t0 as exhibited by the infected fraction and

loss function for the BA network. For the vaccination model

applied to both networks, an earlier intervention time will

always lead to fewer infected nodes.

Overall, higher levels of F and V lead to high-k nodes

being addressed sooner and total infections can be reduced. In

summary, for both networks, when the discount factor d < 1,

earlier intervention starting times t0 more effectively reduce

early infections although it might be at the cost of larger later

infections.

B. Dependence on Initial Conditions

Besides the start time of testing or vaccination, initial condi-

tions may also affect the optimal strategy. For example, the

initial propagation of the disease may depend on the degree ki
of the first infected individual [50]. Instead of an initial infec-

tious source that is uniformly distributed across all nodes, as

described in (18) and (30), we vary the degree of the first

infected node and explore how the strategies change as a func-

tion of concentrated initial condition ikð0Þ ¼ N0 k;ki=N . We

take N0 ¼ 10�6N for both networks, ki ¼ 3; 20; 90 for the BA
network, and ki ¼ 5; 20; 30 for the SBM network. These dif-

ferent initial conditions are denoted IC1, IC2, and IC3 for

each network, respectively.

Optimal testing strategies are found to be subtly dependent

on the initial conditions, i.e., the degree of the initial infected

patient. In Fig. 5 we show only the optimal strategy associated

with IC2, but plot the time-dependent fraction infected under

optimal strategies for all ICs. Under both optimal testing and

vaccination, a smaller degree of the first infected source typi-

cally leads to a smaller subsequent infected population. Spe-

cifically for testing, this decrease is greatest at intermediate

times because at early stages there are fewer infecteds. At later

times, the testing strategy becomes insensitive to the initial
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condition because persons with all degrees are infected and

those with a higher degree tend to be infected sooner.

The optimal vaccination strategies obtained through Algo-

rithm 1 are also relatively insensitive to initial conditions in both

networks, particularly at longer times. Although not shown, the

optimal strategies associated with different ICs are mostly the

same because nodes with larger degrees tend to always be vacci-

nated first to minimize the loss function (25). Susceptibles with

higher degrees are more vulnerable and should be vaccinated

first to mitigate subsequent infection events. For vaccination,

the different ICs lead to long-term differences in infected frac-

tions because low-degree ICs allows more time for vaccination

to more effectively remove susceptibles.

C. Monte-Carlo Simulation of Stochastic Network Model

Our results are derived from a mass-action ODE model and it

is unclear how they apply to stochastic network dynamics. To

compare these different representations of the disease, we define

the discrete stochastic versions of our network models and

impose a stochastic version of the optimal strategies found using

the PMP on our ODEs. In Appendix Dwe implemented the opti-

mal testing and vaccination strategies on the BA and SBM net-

work realizations used in the PMP study. Infection, recovery,

testing, and vaccination processes are described as Markov

events in continuous time. Results from rejection-free, event-

based Monte-Carlo simulation indicate that the degree-based

mean-field ODE model tends to overestimate new infections

because it assumes that all subpopulations interact in a well-

mixed manner, thus neglecting certain structural features of the

considered networks. The loss function derived from the sto-

chastic model and using the PMP-derived optimal strategy is

shown to be lower than that of the ODEmodel, except for vacci-

nation on the SBM network for which they are comparable.

Nonetheless, optimal strategies derived from the ODE model

still outperforms a uniform or unstructured testing or vaccination

strategy applied to the discrete stochastic model.

VI. SUMMARY AND CONCLUSIONS

Our overall results indicate that different network structures (

e.g., BA vs. SBM) have different susceptibilities to optimal inter-

vention strategies. Thus, policies such as selective social distanc-

ing can potentially be used to shift network structure towards one

that is more sensitive to direct testing and vaccination strategies.

We have analyzed testing and vaccination separately, but in

practice, both are simultaneously implemented. The relative

efforts of these two interventions, as a function of time, will

depend on their constraints and costs as well as the desired loss

function timeT . A further generalization of either ourmass-action

or stochastic versions of our network models may be to derive dif-

ferent loss functions other than (11) and (25) to take into account

factors such as economic effects or prioritization of certain groups

(e.g., healthcare workers or individuals with comorbidities). For-

mulating more specific loss functions would allow one to balance

mitigation and suppression strategies, as studied in a well-mixed

SIR model [12]. Another important and straightforward extension

of ourmodel is to consider the effects of waning protection of vac-

cination, which has become a relevant feature of disease control in

the context of booster shots. Recovered individuals that include

Fig. 4. Total fraction infected under testing or vaccination model as a function of different intervention starting times t0. We minimize the corresponding loss
function at T ¼ 150 and use d ¼ 0:95. (a) The fraction infected in the BA network as a function of start times for different testing amplitudes F . The total
infected fraction is fairly insensitive to intervention starting times, especially for small intervention delays. The effect of delayed vaccination on the fraction
infected is shown in (c), with the corresponding loss function shown in (d). For the SBM network, the fraction infected as a function of testing start time shown
in (e) reflects the small effect of testing on the infected population. However, the loss functions shown in (f) are monotonic in the starting time. This implies that
an early intervention time on the SBM network is able to “flatten” the curve by postponing infection so even if total infections stay roughly the same when t0
varies in 
 ½0; 50�, the earlier the intervention time, the fewer the earlier infections, with little change in the final total infected fraction. The starting time depen-
dence of the fraction infected on an optimally vaccinated SBM network in (g) shows a monotonic and smooth decrease in effectiveness as vaccination is delayed.
In (h), the loss function for vaccination on the SBM network also monotonically increases with the start time.
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previously vaccinated or infected individuals can become suscep-

tible again at a rate equal to the rate of loss of immunity. Thus,

another timescale (months) is introduced which is comparable to

timescales T that are used to define the loss function. We expect

even wider variety and richness in the analysis of optimization

problems under waning immunity.

Finally, the discrepancies between the effective degree ODE

model and the Monte-Carlo simulations, under the same ODE-

derived optimal strategies appear to arise from the differences

in the underlying disease propagation. The discrete stochastic

models tend to show lower infected fractions than the corre-

sponding mass-action ODE models since its discreteness and

finite infection lifetimes prevents high-degree nodes in some

network regions to be infected while the mass-action model

allows all nodes to be partially infected. Further analysis of

fluctuations in real-world stochastic models could provide

insight into a better estimation of optimal strategies without

simulating the large space of intervention strategies. This

and many other important extensions will be topics of future

exploration.

APPENDIX A

BASIC REPRODUCTION NUMBER

In this appendix, we analytically derive the basic reproduc-

tion number R0 for uncorrelated networks and compare the

resulting values with those obtained using (7) and (8). As a

starting point, we note that the conditional degree distribution

P ð‘jkÞ can be expressed in terms of a symmetric (for undi-

rected networks) joint degree distribution P ð‘; kÞ, the proba-

bility that a randomly chosen edge connects two nodes with

degrees ‘ and k. Marginalizing P ð‘; kÞ over ‘ yields the distri-
bution over edge ends [51] Peð‘Þ �

P

k P ð‘; kÞ ¼ ‘P ð‘Þ=hki,
where hki ¼

P

k kP ðkÞ is the mean degree. The conditional

degree distribution is related to the joint distribution via

P ð‘jkÞ ¼ P ð‘; kÞ
PeðkÞ

¼ hkiP ð‘; kÞ
kP ðkÞ ¼

E‘;k

kP ðkÞN ; (31)

which can be further simplified in the uncorrelated network

limit where P ð‘; kÞ � PeðkÞPeð‘Þ:

P ð‘jkÞ � ‘P ð‘Þ
hki : (32)

Equations (31) or (32) can be used as a simpler replace-

ment for P ð‘jkÞ in (2) and (3) if E‘;k=ðkNkÞ is not directly

accessible. For example, for an uncorrelated network (i.e.,

for P ð‘jkÞ ¼ ‘P ð‘Þ=hki), we find

diukðtÞ
dt
¼ bu kskðtÞ

hki
X

‘

‘iu‘ ðtÞ � guiukðtÞ; (33)

Fig. 5. Dependence of intervention effectiveness on the degree of the initial infected individual. (a) The PMP-optimal testing strategy computed using IC2
(ki ¼ 20) on the BA network. Strategies for IC1 (ki ¼ 3) and IC3 (ki ¼ 90) are qualitatively similar (not shown) with small differences at the beginning leading
to the different delays in the infection dynamics shown in (b). Specifically, for IC1 and IC3, the initial transient of the optimal testing strategy maximizes the test-
ing rate for the subpopulation with the same degree as k1 and k3, respectively, indicating that the optimal testing strategy is sensitive to the degree properties of
the initial seed infection. Once the disease spreads out, the testing strategies “forget” the initial condition and converge to each other. Despite optimal testing, ini-
tial infecteds with larger degrees, such as IC3, lead to the earlier spread of the epidemic. Results are found by using a discount factor d ¼ 0:95, the optimal strat-
egy given in Algorithm 1, and solving (2)–(5). (c-d) The optimal vaccination strategy for IC2 and the associated fraction infected for the BA network. As with
testing, the vaccination strategies associated with IC1 (ki ¼ 5) and IC3 (ki ¼ 30) lead to differences in infection magnitudes. However, the optimal vaccination
strategies are insensitive to different initial conditions, even at early times. Since the mechanism of vaccination is always to protect high-degree susceptibles, the
vaccination strategies are not as dependent on the current infected population as the testing strategies are. Panel (e) shows the optimal testing strategy for the
SBM network, assuming IC2 (ki ¼ 20). (f) The fraction infected exhibits slower dynamics for smaller-degree initial conditions. (g) Optimal vaccination strategy
for IC2 in the SBM network, and (h), the associated infected fraction showing both delay and amplitude changes with changes in the initial condition.
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where we have set testing rates fkð0Þ ¼ 0 at the start of the

infection. According to [24], we define

IuðtÞ :¼
X

k

iukðtÞ; JuðtÞ :¼
X

k

kiukðtÞ (34)

and obtain

dIuðtÞ
dt

¼ buJuðtÞ � guIuðtÞ;

dJuðtÞ
dt

¼ bu hk2i
hki JðtÞ � guJuðtÞ: (35)

We perform a linear stability analysis about the disease-free

state ðI�; J�Þ ¼ ð0; 0Þ and find the eigenvalues to (35):

�� ¼ �gu � bu hk2i
hki : (36)

The transition from negative to positive eigenvalues occurs for

�gu þ buhk2i=hki ¼ 0. Hence, the basic reproduction number

is

R0 ¼
bu

gu
hk2i
hki ¼

bu

gu
hki þ Var½k2�

hki

� �

: (37)

If we use the conditional degree distribution P ð‘jkÞ ¼
ð‘� 1ÞP ð‘Þ=hki proposed by Kiss et al. [24] to account for a

reduction in neighboring susceptible vertices, the correspond-

ing basic reproduction number is modified to

RKiss
0 ¼ bu

gu
hki � 1þ Var½k2�

hki

� �

: (38)

The mean degrees of the BA and SBM networks are 3.77 and

23.14, and the variances for the BA and SBM networks are

20.40 and 36.62, respectively. Using the values gu ¼ 14�1=day
and bu ¼ 0:0411=day for the BA network, we find that the basic

reproduction numbersR0 ¼ 5:361 andRKiss
0 ¼ 4:777 are larger

than 4.5, the value we used to determine bu according to the

next-generation matrix method (see (7) and (8)). The observed

approximation errors in (37) and (38) are a consequence of the

assumption that the underlying network is uncorrelated. For the

SBM network, we findR0 ¼ 4:499 andRKiss
0 ¼ 4:317, close to

the 4.5 value used to find bu ¼ 0:0130 using (7) and (8).
To summarize, our comparison shows that in the SBMmodel

where the degrees of neighbors are uncorrelated, (37) and (38)

give close approximations of the actual reproduction number

calculated from the next-generation matrix method (7). For the

BA network, degree correlations make (37) and (38) overesti-

mate the actual reproduction number. Therefore, we recommend

using the next-generation matrix method to numerically deter-

mine the basic reproduction number unless degree correlations

are weak and (37) and (38) can provide accurate estimates ofR0.

APPENDIX B

OPTIMAL TESTING AND VACCINATION ALGORITHMS

Below, we explicitly give the pseudo-code for the testing and

quarantine model based on Pontryagin’s maximum principle.

APPENDIX C

REINFORCEMENT-LEARNING STRATEGY

To identify effective testing and vaccination strategies, we

also investigated reinforcement-learning (RL) approaches. RL

explores the space of all possible actions and directly opti-

mizes the loss functions for testing and vaccination defined in

(11) and (25). Here, we use an RL approach with experience

replay to learn both the optimal testing strategy in (2)–(5) and

the optimal vaccination strategy in (20)–(22).

Typically, applying a policy-gradient method to a continu-

ous action space will usually yield poor results due to the

inability of such methods to explore the whole space. How-

ever, using our previous results based on PMP, we know that

the optimal strategy is always obtained by maximizing the

testing and vaccination rates for subpopulations presumed to

be at a higher risk.

Therefore, we do not need to explore the whole space of all

possible actions. Instead, from (16), (26), we can restrict our

strategy space to the extreme points1 of the set

fðfkÞjKk¼1j
X

K

k¼1
fk ¼ F ðtÞ; fmin �

fk
Nk
� fmaxg (39)

for determining the testing-resource allocation and the

extreme points of the set

Algorithm 2: Pseudo-Code of Q-Learning in Testing

Resource Allocation.

1: Initialize F; d; C, skð0Þ, iukð0Þ; i�kð0Þ;bu;b�; gu; g�;M; �
2: Initialize replay memoryD
3: Randomly initialize the hyperparameter set Q�  Q for evaluat-

ing the action value function Q�ðS;A;QÞ
4: for episode ‘ ¼ 1 : M do

5: Initialize S0
6: for t ¼ 0 : Tmax � 1 do

7: With probability �, randomly select an action ai
8: otherwise select At ¼ argmaxAQðSt;A;QÞ
9: Execute action At and observe reward Rt and state Stþ1
10: Store transition ðSt;At; Rt;Stþ1Þ inD
11: Sample random minibatch of transitions

ðSj;Aj; Rj;Sjþ1Þ fromD
12: if j ¼ Tmax � 1 then

13: Set yj ¼ Rj

14: else

15: Set yj ¼ Rj þ dmaxA0Q̂ðSjþ1;A0;Q�Þ
16: Perform a gradient descent step on the minibatch

P

j½yj �QðSj;Aj;QÞ�2 with respect to the network

hyperparameter set Q

17: end if

18: end for

19: Every C steps reset Q�  Q

20: end for

1 Extreme points are points in a set that cannot be written as a nontrivial
convex linear combination of any other points in the same set.
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fðvkÞjKk¼1j
X

K

k¼1
vk ¼ V ðtÞ; vmin �

vk
NskðtÞ

� vmaxg (40)

for determining vaccination-resource allocation at each

step. The set of extreme points represents all strategies

that maximize the testing/vaccination rates for some

groups and minimize them for other groups. Such strate-

gies also cannot be written as nontrivial convex combina-

tions of other strategies. By confining ourselves to extreme

points, the possible action space is reduced to a finite set

on which we perform RL.

Since the curse of dimensionality increases the number of

all possible strategies exponentially with K, we further

restrict our RL approach to networks with degree cutoff K ¼
20. This additional constraint allows us to perform RL with a

computation time of about 30 days for the testing model on

the BA network, 3 days for the testing model on the SBM

network, 6 hours for the vaccination model on the BA net-

work, and 2 hours for the vaccination model on an SBM net-

work. All computations are performed using Python 3.8.10 on

a laptop with a 4-core Intel(R) Core(TM) i7-8550 U CPU @

1.80 GHz.

To identify effective testing and vaccination strategies, we

use the reward functions (11) and (25). We define the reward

at time ti ¼ iDt as

RðSi;AiÞ ¼
X

K

k¼1
skðtiþ1Þ � skðtiÞ½ �; (41)

the “negative” of the number of total infections during the

time period ½ti; tiþ1Þ. Here, the state Si and action Ai are

Si ¼ ðs1ðtiÞ; . . . ; sKðtiÞ; iu1ðtiÞ; . . . ; iuKðtiÞ;
i�1ðtiÞ; . . . ; i�KðtiÞÞ 2 R3K ;

Ai ¼ ðf1ðtiÞ; . . . ; fKðtiÞÞ 2 RK (42)

for the testing model (2)–(5) and

Si ¼ ðs1ðtiÞ; . . . ; sKðtiÞ; i1ðtiÞ; ; iKðtiÞÞ 2 R2K ;

Ai ¼ ðv1ðtiÞ; . . . ; vKðtiÞÞ 2 RK (43)

for the vaccination model (20)–(22). We recursively define the

state-value function under a certain policy p to be

V pðSi; iÞ ¼
V pðSiþ1ÞdþRðSi;pðSiÞÞ; ti < Tmax;
0; ti ¼ Tmax;

�

(44)

where pðSiÞ is the action determined under policy p given Si
and d 2 ð0; 1� is a discount factor. We also define the action-

value function to be

QpðSi;Ai; iÞ ¼
V pðSiþ1ÞdþRðSi;AiÞ; ti < Tmax � 1;
RðSi;AiÞ; ti ¼ Tmax � 1:

�

(45)

We use Q� and V � to denote the action-value and state-value

functions, respectively, under the best policy and apply the deep

Q-learning algorithm, which has been used to find the RL strate-

gies that can approximate optimal strategies of certain Atari

2600 games [52]. Here, we use a neural network with a hyper-

parameter set Q, representing neural-network weights and

biases to estimate the action-value function under the best policy

Q�ðS;A;QÞ, which is improved over epochs by Algorithm 2.

An illustration of the neural network, its layers, and activa-

tion functions, is shown in Fig. 6. We use another neural net-

work with a hyperparameter set Q
� updated every C ¼ 4

steps to match Q. The neural network containsNH ¼ 4 hidden

layers with H ¼ 30 neurons in each layer. The input data is

the state at the ith step Si, and the output is V �ðSi;QÞ, the pre-
diction for the optimal state-value function generated by the

neural network. In each layer, the batch normalization tech-

nique is used before a rectified linear unit (ReLU) function is

applied as an activation function. We compare the optimal

strategies based on the PMP approach from Algorithm 1 with

the RL strategies that are based on Algorithm 2. We set T ¼
100 and Dt ¼ 1 so that the strategy is updated every day.

Here, we use fmin ¼ 0:002=day; fmax ¼ 0:4=day. We use (7)

with gu ¼ ð1=14Þ=day to calculate bu ¼ 0:0703=day for the

Fig. 6. Illustration of the neural network used to identify effective testing and vaccination strategies. The inputs of the input layer are
ðs1ðtiÞ; . . . ; sKðtiÞ; iu1ðtiÞ; . . . ; iuKðtiÞ; i�1ðtiÞ; . . . ; i�KðtiÞÞ 2 R3K . For each hidden layer i (1 � i � NH ), we normalize the corresponding outputs xi;j for all sam-
ples in a minibatch such that the resulting values x̂i;j have zero mean and unit variance. These values are used as inputs to a rectified linear unit (ReLU) activation
function in the next hidden layer. Neurons labeled 1 are bias terms. The output V �ðSi;QÞ is an estimate of the state-value function under the optimal policy (see
(44)), where Q denotes the set of hyperparameters.
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K ¼ 20 BA network and bu ¼ 0:0632=day for the K ¼ 20

SBM network. Both PMP and RL strategies are also compared

to the uniform testing strategy (19). For RL, we train the

underlying neural network for M ¼ 100 epochs using Algo-

rithm 2. Fig. 7 shows the differences between the infected

fractions in simulations with and without testing. The PMP-

based optimal control reduces early infections the most for

both BA and SBM networks. Early infections contribute more

to the loss function (11) since we set the discount factor to d ¼
0:95. We also observe that RL-based testing strategies outper-

form uniform testing in reducing early-stage infections. Com-

paring Fig. 7(a) and (b), the effect of the optimal vaccination

strategy in the BA network is more pronounced than that in

the SBM network. In the BA network, node degrees are more

heterogeneous and most nodes have small degrees, indicating

that epidemic spreading can be controlled effectively as long

as the few high-degree nodes are monitored and tested.

Finally, comparing the result of the optimal-control approach

in Fig. 7 with Fig. 2, we observe that with a smaller K in the

SBM network, the effect of the optimal vaccination strategy is

less apparent because node degrees are more homogeneous.

Next, we compared the PMP approach with the RL

approach for the optimal vaccination strategy model (20)–

(22). Here, we set vmin ¼ 0:0001; vmax ¼ 1. For both net-

works, the optimal vaccination strategy obtained using PMP

can most effectively reduce the initial infections because early

infections have a higher weight in the loss function (25). Rein-

forcement-learning-based vaccination policies can also reduce

initial infections, but the reduction is less than that of the PMP

approach. Comparing Fig. 8(a) and (b), we again observe that

the effect of the optimal vaccination strategy for the BA net-

work is more pronounced than that of the SBM network

because the BA network has a more heterogeneous degree and

is dominated by small-degree nodes.

To summarize, the controls derived fromPMP aremore effec-

tive than those based on RL. One limitation of RL-based inter-

ventions is that the possible action space that needs to be

explored is usually large. However, based on our PMP results,

we can constrain the action space before the learning process.

Such PMP-informed constraints allow us to explore just the

extreme points of the whole action space and thus make the

training more efficient. Yet, the total number of possible actions

grows exponentially with the maximal degree K and the strat-

egy obtained by the RL approach will probably be only locally

optimal, violating the PMP condition and thus under performing

PMP. Nonetheless, RL could be useful if a procedure for com-

puting an explicit solution cannot be formulated.

APPENDIX D

SIMULATIONS OF CORRESPONDING STOCHASTIC MODELS

We impose the optimal testing and vaccination strategies

derived from applying PMP to the ODE system (2)–(5) and

(20)–(22) on a simple discrete stochastic model and compare the

resulting total infections. The corresponding optimal testing or

vaccination is implemented by probabilistically testing or vacci-

nating each selected subpopulation. For example, in the testing

model, we can employ a rejection-free event-based Monte-Carlo

(MC) algorithm [53] that implements a testing strategy.

For initial conditions, we randomly choose two nodes with

degree k ¼ 10 to be infected. Correspondingly, for the determin-

istic ODE models, we set skð0Þ ¼ pðkÞ � 2
N k;10 ; i

u
kð0Þ ¼

2
N k;10 ; i

�
kð0Þ ¼ 0 for the testing model and skð0Þ ¼ pðkÞ �

2
N k;10 ; ikð0Þ ¼ 2

N k;10 for the vaccination model. We set the

recovery rates g ¼ gu ¼ g� ¼ ð14Þ�1=day and use the same

reproduction number R0ðbuÞ ¼ 4:5 to calculate the uncon-

strained infection rates for the two networks from (7). The loss

functions defined for the testing and vaccination models in (11)

and (25) are plotted below.

From Fig. 9, the deterministic ODE models tend to overesti-

mate the loss functions since all subpopulations are well mixed

by the conditional degree distribution functionP ð‘jkÞ and there-
fore a single infected node could have an impact on the whole

system. This difference arises because in a fully discrete realiza-

tion of a BA or SBM network, each node can be in only one of

three or four states and the disease may never arrive at certain

Fig. 7. Reduction in fractions of infected individuals calculated as the differ-
ence between the fractions infected obtained with testing and without testing
for the BA network shown in (a) and the SBM network shown in (b). The opti-
mal control approach based on PMP reduces early infections the most. RL out-
performs uniform testing in reducing the number of early-stage infections.
Additionally, the effect of the optimal strategy is more striking in the BA net-
work because it has a more heterogeneous node degree distribution.

Fig. 8. Fractions of infected individuals with vaccination and without vacci-
nation for the BA network is shown in (a) and the SBM network is shown in
(b). The optimal control approach using PMP can most effectively reduce
infections for both networks and successfully suppress the spreading of the
disease in the BA network. On the other hand, although not as good as the
PMP-optimal strategies, the strategies obtained by the RL algorithm Algo-
rithm 2 can obviously reduce infections compared to the uniform vaccination
rate strategy. As with testing, we observe that the effect of optimal vaccination
is more pronounced in the BA network than in the SBM network.
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critical nodes, significantly delaying its spread allowing the

overall infection to dissipate before ever reaching portions of the

network. In contrast, the mass-action ODE model allows all

nodes to be partially infected, allowing continuous transmission

of the disease. Therefore, more network measures may be

needed to accurately quantify the dynamics of disease spread

across discrete agent-based network models. Higher-order inter-

actions beyond the pairwise conditional degree distribution [54]–

[56] could be helpful in explaining the discrepancy between

deterministic ODE and stochastic models and in estimating opti-

mal policies in the fully stochastic context.

Nonetheless, Fig. 9 shows that the PMP-based interventions

that we derived in the main text are also more effective than

uniform testing and vaccination strategies in the stochastic

agent-based model. This loss function reduction arises for

both the BA and SBM networks. Thus, the optimal testing and

vaccination strategies obtained from the deterministic model

outperforms uniform testing and vaccination strategies even

when applied on discrete stochastic network models, repre-

senting a reasonable starting point for approximating optimal

strategies within agent-based discrete systems.
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