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Controlling Epidemics Through Optimal Allocation
of Test Kits and Vaccine Doses Across Networks

Mingtao Xia

Abstract—Efficient testing and vaccination protocols are critical
aspects of epidemic management. To study the optimal allocation of
limited testing and vaccination resources in a heterogeneous
contact network of interacting susceptible, infected, and recovered
individuals, we present a degree-based testing and vaccination
model for which we derive optimal policies using control-theoretic
methods. Within our framework, we find that optimal intervention
policies first target high-degree nodes before shifting to lower-
degree nodes in a time-dependent manner. Using such optimal
policies, it is possible to delay outbreaks and reduce incidence
rates to a greater extent than uniform and reinforcement-
learning-based interventions, particularly on certain scale-free
networks.

Index Terms—Epidemics, infection networks, optimal control,
reinforcement learning, testing, vaccination.

I. INTRODUCTION

IMITING the spread of novel pathogens such as SARS-

CoV-2 requires efficient testing [1], [2] and quarantine
strategies [3], especially when vaccines are not available or
effective [4]. Even if effective vaccines are available at scale,
their population-wide distribution is a complex and time-consum-
ing endeavor, influenced by, for example, age-structure [S]-[7],
vaccine hesitancy [8], and different objectives [9].

Until a sufficient level of immunity within a population is
reached, distancing and quarantine policies can also be used
to help slow the spread and evolutionary dynamics [10] of
infectious diseases. Epidemic modeling and control-theoretic
approaches are useful for identifying both efficient testing
and vaccination policies. For an epidemic model of SARS-
CoV-2 transmission, Pontryagin’s maximum principle (PMP)
has been used to derive optimal distancing and testing strate-
gies that minimize the number of COVID-19 cases and
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intervention costs [11], [12]. Optimal control theory has also
been applied to a multi-objective control problem that uses
isolation and vaccination to limit epidemic size and dura-
tion [13]. These recent investigations describe the underlying
infectious disease dynamics through compartmental models
without underlying network structure, meaning that all inter-
actions among different individuals are assumed to be
homogeneous.

Multicompartment models that may be associated with con-
tact networks have been investigated. For example, optimal
vaccination strategies have been derived for a rapidly spread-
ing disease in a highly mobile multicompartment susceptible-
infected-recovered (SIR) model using PMP [14]. The applica-
tion of optimal control methods and PMP to heterogeneous
node-based susceptible-infected-recovered-susceptible (SIRS)
models were also studied in the context of multiplex net-
works [15] and rumor spreading [16].

Complementing these control-theory-based investigations,
reinforcement learning (RL) has been recently used to iden-
tify infectious high-degree nodes (“‘superspreaders”) in tem-
poral networks [17]. It has been found that RL was able to
outperform intervention policies derived from purely struc-
tural node characterizations that are, for instance, based on
centrality measures [17]. However, these RL methods could
only be applied to rather small networks with about 400
nodes. For social networks describing much larger popula-
tions, early work by May and Anderson employed effective
degree models to study the population-level dynamics of
human immunodeficiency virus (HIV) infections [18]. These
degree-based models and later variants [19]-[21] did not
account for degree correlations. Effective degree models for
susceptible-infected-susceptible (SIS) dynamics with degree
correlations were derived in [22] and applied to SIR dynamics
in [23]. A further generalization of these methods to model
SIR dynamics with networked and well-mixed transmission
pathways was presented in [24]. For a detailed summary of
degree-based epidemic models, see [25].

In this work, we focus on formulating both optimal control
and RL-based target policies on a degree-based epidemic
model [26] that is constrained only by the maximum degree
and not by the system size (i.e., number of nodes). We con-
struct effective control strategies to slow down disease spread
across heterogeneous network models which include both
degree distributions and higher-order correlations of the
degree distribution. Our approach is not limited by size as
agent-based models are [17], is simpler because we do not
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resolve interpersonal contact times or other individual details,
and is thus easier to solve. On the other hand, unlike simple
multicompartment epidemic control models [11], [13], we
take into account a heterogeneous contact network and control
measures that depend on both time and node degree.

In the next section, we propose and justify a degree-based
epidemic testing and quarantining model. An optimal control
framework for this model is presented in Section III and, given
limited testing resources, an optimal testing strategy is com-
puted. We extend the same underlying disease model to
include vaccination in Section IV and derive optimal vaccina-
tion strategies that minimize infection given a limited vaccina-
tion rate. We summarize our results and discuss how they
depend on network and dynamical features of the model in
Section V. For comparison, we also present in Appendix C a
reinforcement-learning-based algorithm that is able to approx-
imate optimal testing strategies for the model introduced in
Section II.

Finally, we implemented a stochastic Monte-Carlo simu-
lation of disease transmission, testing, and vaccination on
networks. By using the optimal strategies computed using
the PMP on ODE-based deterministic models, we find sig-
nificant differences in the stochastic model. In Appendix
D, we show that these differences arise from higher corre-
lations in network connectivity that arise in the discrete
stochastic model used.

II. DEGREE-BASED EPIDEMIC AND TESTING MODEL

For the formulation of optimal testing policies that allo-
cate testing resources to different individuals in a contact
network, we adopt an effective degree model of SIR
dynamics with testing in a static network of N nodes.
Nodes represent individuals, and edges between nodes rep-
resent corresponding contacts. Therefore, the degree of a
node represents the number of its contacts. If K is the
maximum degree across all nodes, we can divide the popu-
lation into K distinct subpopulations, each of size Ny
(k=1,2,...,K) such that all nodes in the k" group have
degree k. Therefore, N = Y1 | Nj.

In our epidemic model, we distinguish between untested
and tested infected individuals. Let Si(t), I}'(t), I;(t), and
Ry (t) denote the numbers of susceptible, untested infected,
tested infected, and recovered nodes with degree k at time ¢,
respectively. Since these subpopulations together represent
the entire population (the total number of nodes V), both NV
and N}, are constants in our model. Their values satisfy the
normalization condition Sj, + I}} + I} + R;, = IN;. The corre-
sponding fractions are

s(t) = Sk(t)/N,
i(t) = L(H)/N,

i(t) = L/(t)/N,
ri(t) = Ri(t)/N, (1
such that ), (sy + i} + i) + ;) = 1. Using an effective-

degree approach [18], [24], we describe the evolution of the
above subpopulations by
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where P(¢) = N;/N is the degree distribution. P(¢|k) is the
conditional probability that a chosen node with degree £ is
connected to a node with degree (. By defining Fy; as the
number of edges connecting a node with degree k with another
node with degree ¢ in a given network, the conditional proba-
bility can be directly evaluated as P({|k) = Ey;/(kN},). Our
degree-based formulation of SIR dynamics with testing, (2)—
(5), is an approximation of the full node-based dynamics
assuming that nodes of the same degree are equally likely to
be infected at any given time [26].

Susceptible individuals become infected through contact
with untested and tested infected individuals at rates " and
B*, respectively. Untested and tested infected individuals
recover at rates y" and y*, respectively. Differences in the
recovery rates " and y* reflect differences in disease severity
of and treatment options for untested and tested infected indi-
viduals. Once recovered, individuals develop long-lasting
immunity that protects them from reinfection. Temporary
immunity can be easily modeled by using an SIS type model
with or without delays. Reduced transmissibility of tested
infected (and potentially quarantined) individuals corresponds
to setting 8" < B".

The testing rate of nodes with degree k is defined as fj.(¢),
such that fi.(t)At is the total number of tests given to nodes
with degree k in time window At¢. Tests given to recovereds,
susceptibles, and already-tested infecteds do not lead to
quarantining and will not affect the disease dynamics. How-
ever, a fraction I}'/(S,+ I} + I} + Ry,) = I}/ Ny, of these
1r(t)At tests will be administered to untested infecteds. Once
infected nodes have been identified by testing, they can be
quarantined and removed from the disease transmission
dynamics. If infected individuals who already have been
tested strictly avoid future testing, more tests will be available
for the other subpopulations, increasing the rate at which the
remaining untested infecteds will be tested. In this case, the
fraction of tests administered to untested infecteds is modified:
I/(Sk+ I} + Ry) = I/ (N, — I};). After normalizing by
the total population NV to write tested fractions in terms of (1),
the testing term becomes —fi(t)i}/N; (see (3)) or
—fiu(®)i}/[Ni(1 — I;;/Ny)], respectively.

Biased testing can also be represented by using a testing
fraction of the form I1'e’/(I}€’ + Sy + I} + Ry), where b >
0 increases the fraction of tests given to infecteds. To correct
for false-positive tests, (2)—(5) can be modified by including
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Fig. 1. Degree distribution of a Barabasi—Albert network and a stochastic

block model. (a) The degree distribution of a Barabasi—Albert network with
99,817 nodes. To generate the network, we start with a dyad and iteratively
add new nodes until we reach 100,000 nodes. Each new node has 2 edges that
connect it to existing nodes using linear preferential attachment. Isolated
nodes or nodes with degrees larger than 100 [32] are then removed from the
network. The grey solid line is a guide-to-the-eye with slope -3 [30]. For illus-
tration, the inset shows a realization of a Barabdsi—Albert network with 100
nodes. Node size scales with their betweenness centrality. (b) The conditional
probability P(¢|k) associated with the Barabdsi—Albert network generated in
(a). (c) The degree distribution of a stochastic block model with four blocks
and 100,000 nodes. The inset shows a realization of a stochastic block model
with 800 nodes, but using the same block probability matrix. (d) The condi-
tional probability P(¢|k) associated with the SBM. In both (b) and (d), all ele-
ments that are strictly zero are uncolored.

an additional term that transfers the /; population back to Sj.
False negatives can be accounted for by a reduction in
f(t)/ Nyi. For a detailed overview of statistical models that
account for testing errors and bias, see [27], [28].

What remains is to assign network structures, extract P(¢|k)
from them, and determine reasonable parameter values before
calculating the optimal testing protocol fi(t). We apply our
disease-control framework to (i) a Barabasi-Albert (BA) net-
work [29], [30] and (ii) a stochastic block model (SBM) [31]
with four communities and a probability matrix

pP=10" (6)

N NN
NN N
N O NN
W N NN

These two network types exhibit properties, such as hub nodes
with high degrees and community structure, that are observ-
able in real-world contact networks [32], [33]. In the construc-
tion of the BA network, each new node is connected to 2
existing nodes using linear preferential attachment. Fig. 1(a)
shows the degree distribution of a 99,817-node BA network
that we use in this study. A heatmap of the conditional degree
distribution matrix of the BA network with the degree distri-
bution P(k) shown in Fig. 1(a) is given in Fig. 1(b). The
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degree distribution and the conditional degree distribution
matrix of the 100,000-node SBM network are shown in Fig. 1
(c) and (d), respectively. Taking into account empirical find-
ings on the degree distributions in real-world contact net-
works [32], we use a degree cutoff of £ < K = 100. We will
use the specific configurations of the BA and SBM networks
shown in Fig. 1 for our subsequent analysis of (2)-(5).

Next, to constrain the parameter values, we first invoke esti-
mates of the basic reproduction number (i.e., the average num-
ber of secondary cases that results from one case in a
completely susceptible population), which for a network
model is defined as [34], [35]

Ry = p(JV 1) (7

in which p(-) is the largest eigenvalue (spectral radius), V =
diag(y") € RE*K and J € RE*K is the Jacobian of the linear-
ized dynamical system (see (2) and (3)) about the disease-free
state with s(t = 0) = Nj/N and f; = 0 corresponding to the
initial, untested, and uncontrolled spread of the infection:

Jij = iP(J’I%‘)%& i,j < K. (8)
J
This “next-generation” method associates Ry with the largest
eigenvalue inherent to the dynamical system. Additional
expressions for Ry for an uncorrelated degree network are
given in Appendix A.

Empirically, the basic reproduction number for COVID-19
varies across different regions. For the early outbreak in
Wuhan [36], R was estimated to be 3.49, while for the early
outbreak in Italy Ry ~ 2.43 — 3.10 [37]. Here we set Ry =
4.5 which was suggested in [38] as the basic reproduction
number of early COVID-19 spread in the absence of any inter-
vention. For a given value of the recovery rate y" of untested
individuals, which can be inferred from empirical data [38],
[39], we determine the transmissibility " by numerically
solving Ry (B") = 4.5 for B". Our source codes are publicly
available at https://gitlab.com/ComputationalScience/epi-
demic-control.

III. ALLOCATING LIMITED TESTING RESOURCES

Without any testing constraints, it would be most effective
for disease control to use a testing rate f;(¢) sufficiently large
to keep the fraction of untested individuals, i} (¢), close to
zero. In general, the testing rates are constrained by

; t
f]illln S fkT() < JL‘IICIIE,\.X7 (9)

and the total testing rate is also bounded by availability and
logistics of testing

M=
=
=

I
o)
=

(10)
k=1

The goal is to determine, under these constraints, the function
fr(t) or fi(t)/ Ny that most effectively reduces the total
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number of infections. In practice, high-degree nodes (e.g.,
highly social individuals) might be subject to more testing
(and quarantining if positive) than low-degree nodes because
of their higher expected rate of infecting others. This rationale
translates to f,(t)/Ny, > fi(t)/Ny if K > K. In our numeri-
cal experiments, we use sufficiently broad bounds of f(¢) and
set fimn fmln and fmdx fmax~

To minimize the number of total infections over time, while
simultaneously stressing the importance of reducing early
infections, we define a loss function as

)+ B4 (t), (A1)

T tK K (
T):/Odts ;ksk ;T

where § € (0, 1] denotes a discount factor, which describes
how we balance between minimizing current infections
and future infections. The smaller the parameter §, the less
attention we pay to future infections, and the more we
focus on reducing early infections. For example, medical
resources can better handle confirmed patients and new
treatments can be given time to develop if the number of
infections are spread over longer time periods. These
effects can be effectively incorporated in the loss function
by using § < 1. Minimizing the loss (11) is equivalent to
minimizing the number of infections, weighted by the dis-
count factor &', in the time horizon [0,7]. To search for
the optimal testing function fi(¢) that minimizes (11), we
invoke Pontryagin’s maximum principle (PMP) and con-
struct the associated Hamiltonian

K
_ Stzksk Z(—) ﬂu u )+ﬁ*22(t))
=1

dse(t) | dig(®) . dig(t)
+Z(Ak S e T

K K p(¢]k)
— ((S )‘k )\u kSk Z ( | u u )+/3*ZZ( ))
k=1 /=1 (g)
- k(t) * _ yu\u _usu u kg *
+Z . (e = AR (8) — YU (OAL — v (AL
k=1

(12)

where A}, A}, and A; are adjoint variables associated with sy,
iy, and 7}, respectively. PMP states that a necessary condition
for the loss-minimizing control fi(¢) is that it minimizes H
(or maximizes —H) at every time point ¢. This method of opti-
mal control has been applied to many other contexts, including
control of economic growth [40]. In our problem, applying
PMP under the total budget constraint >°% et Ju(t) = F(t), we
explicitly find the minimizing testing function (f}) =
argmin fH , which we will assume to be optimal control that
minimizes L(T'). The dynamics for (A}, A}, \) obey
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with end conditions X;(T) = A}(T) = A\;(T) = 0. To mini-
mize H with respect to the testing rates f.(t), we have to mini-
mize the term

AU
Z N i (16)
given the budget constraints (9) and (10). Hence, after giving
each subpopulation the minimal testing resources fim Vg, we
maximize the testing rates fi(¢) with the smallest coefficients
(Af — AD)iR(t) /Ny of finax Nk as long as sufficient testing bud-
get is available. In other words, we should give testing resour-
ces to those groups presumed to be at the highest risk, as
quantified by the quantity (\; — A})i(t)/Ny. We use the
PMP-based algorithm outlined in Appendix B to iteratively
calculate the loss function (11) and optimal testing strategy.

In accordance with empirical data on COVID-19
patients [39], [41], [42], we set y = y" = y* = (1/14)/day
and B = B%10. The transmissibility of untested individuals,
BY, is calculated according to (7) as f* = 0.0411/day for the
BA network and " = 0.0130/day for the SBM network. We
set the discount factor § = 0.95 so that initial infections con-
tribute more to the loss function (11). The total daily number
of SARS-CoV-2 tests in the US after an initial ramping-up
phase in 2020 is about 0.6%/day [28]. Hence, we set

Ay (1)

> fil(t) = 0.006N, 17
k,
and fiuin = 0, finax = 0.4Nj. As initial condition, we use
sk(0) = P(k) — z(0), 4,(0) =0,
i(0) = 10°°P(k), r:(0) =0, (18)

corresponding to about 0.1 of an infected individual uniformly
distributed on N =2 10° susceptible nodes. The optimal testing
strategy is supposed to identify those nodes that are most
likely to be infected and transmit the disease to others. Upon
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Fig. 2. Optimal testing and quarantining strategy for 7" = 200 and discount factor § = 0.95. We plot the optimal strategies and the corresponding susceptible,
untested infected, and tested infected fractions at each degree k across time ¢ = nAt. (a) A heatmap of the PMP-optimal testing strategy (see Algorithm 1) for
the BA network. The corresponding populations of degree-k susceptibles, untested infecteds, and tested infecteds are plotted in (b-d), respectively. (e) Time-evo-
lution of the total fraction infected 1 — k;1 si(t) under the PMP-optimal testing strategy (dashed red). The fractions infected under hypothetical uniform test-
ing (dashed blue/circle) and no testing (black) scenarios are shown for comparison. For the BA network, optimal testing both delays and suppresses epidemic
spreading more effectively than uniform testing. The bottom row (f-j) shows analogous results for the SBM network. Panels (f-i) show the corresponding optimal
testing rates, susceptible, untested infected, and untested infected populations with degree k as a function of time. Panel (j) shows the fraction infected as a func-
tion of time. Although optimal testing and quarantining reduce the fraction infected relative to uniform or no testing, its effects are only modestly better. Given
the same testing budget constraint, the effects of optimal testing strategies are greater in the BA network because its distribution of node degrees is more hetero-
geneous and testing and quarantining high-degree nodes can more effectively control disease spread. However, since the node degree distribution in the SBM

network is sharply peaked, an optimal testing strategy is less effective overall.

using 7' = 200,At = 0.1 and § = 0.95, we find the optimal
testing strategy f(t)/ Ny for our BA network and plot it in
Fig. 2(a). Here (2)—(5) and (13)—(15) are solved using an
improved Euler method. For the BA network, the value of the
loss function defined in (11) is L(7' = 200) = 0.0109 under
the optimal testing strategy, while it is L(T = 200) = 0.0325
under uniform testing

N
fo = R =2, (19)

Fig. 2(b), (c), and (d) show the associated populations under
optimal testing, while (e) shows the dynamics of the fraction
of nodes infected, 1 — 51| s;(¢). The disease spread under
optimal testing is significantly slowed relative to the no testing
(black) and uniform testing (dashed blue/circle) cases. Fig. 2
(f) plots the optimal testing rate for the SBM network. Panels
(g-1) show the corresponding subpopulations, and panel (j)
plots the fraction of nodes infected under PMP-optimal, uni-
form, and no-testing conditions. For the SBM network, L(T =
200) = 0.0564 under the optimal strategy and L(7T = 200) =
0.0571 under the uniform testing strategy, suggesting that the
PMP approach yields better solutions than uniform testing.
However, the improvement is modest and the SBM network is
rather insensitive to testing and quarantining. The slight
improvement from testing is shown by the reduction in the
fraction infected relative to the no testing case (inset).

In both networks, nodes with larger degrees are more likely
to be tested at the beginning of the outbreak [Fig. 2(a) and (f)],
indicating that people with more contacts are more likely to

infect others or get infected, and should be given priority to get
tested. Yet, in both networks, as time evolves, the optimal testing
strategy tends to shift focus from higher degree nodes to nodes
with smaller degrees because testing those nodes that were
infected and have already recovered is not meaningful in terms
of disease control.

Comparing Fig. 2(e) and (j), we see that the differences
between optimal and uniform testing are larger for the BA net-
work compared to the SBM. A possible explanation for this
behavior is that in the BA network, the degree distribution
P(k) decays algebraically. Therefore, as long as testing
focuses primarily on high-degree nodes, the spreading of the
disease can be controlled very effectively since the majority
of nodes have small degrees and are more unlikely to be
infected. On the other hand, for our SBM network, the degrees
of most nodes are close to each other and larger than 10, indi-
cating that nodes with a small degree are more likely to be
infected compared to the BA network. Even if we use the
same uniform testing rates (see (19)) in both networks, the
proportion of infections in the BA network is less than that in
the SBM network.

IV. OPTIMAL VACCINATION POLICY

Optimal vaccination has also been studied within the
classic SIR model [43]. However, devising vaccination
strategies based on social network structure may provide a
more refined and efficient way of administering vaccines
and extinguishing an epidemic. Our simple testing model
presented in the previous section can be straightforwardly
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adapted to describe vaccination on a network. The goal is
to determine the optimal allocation of vaccine doses to a
population with heterogeneous contacts to minimize the
impact of the infection across the entire population.

For COVID-19, there are a variety of vaccines that require
one or two shots [44]. In our simulations, we assume that the
administered vaccine provides full protection after one shot
and that a vaccinated individual will instantly leave the sus-
ceptible group and enter the recovered group. This means that
vaccinated individuals will no longer be infectious and can be
treated as “recovered” after receiving one vaccination dose.
Furthermore, we assume that only susceptible persons will be
vaccinated. Other mechanisms such as prime-boost protocols
and time delays between vaccination and onset of immune
response can also be accounted for in similar models as
detailed in [45].

We reformulate (2)-(5) to study optimal vaccination pro-
tocols that are constrained by vaccine supplies in a hetero-
geneous population. For simplicity, we do not take into
account the effect of testing and quarantining when devising
optimal vaccinating strategies, although testing and vaccina-
tion can be performed concurrently. The resulting rate equa-
tions are

dt = PO N .
, K
GO _ g ;P ]f'e’)“)z ) -vin), @D
di(t) o Uk(t)
H0 iy + 20, 22

where vy (t) is the rate of vaccination of susceptibles with
degree k at time t. Once vaccinated, susceptibles become
“recovered” because they are immunized and no longer sus-
ceptible to the infection. The total rate of administering vac-
cines at time ¢ is defined as

> w(t) = V(). (23)

In other words, in time increment At at time {, we can
administer only V(¢)At doses. Equation (20) assumes that
vaccination is resource-limited and that the rate of protect-
ing susceptibles is proportional only to the rate vy (¢) of
administering vaccines. In addition, we assume that the vac-
cination rates for different subpopulations are confined to
the interval

(24)

Umin > N.Sk(t) < Umax
where VUnin, Umax € [0,0.4]/day are minimum and maximum
vaccination rates. Note that vaccines are allocated only to sus-
ceptibles, while tests are typically given to individuals of all
categories: susceptible, infected, and recovered, according
to their relative proportions. To formulate the vaccine

1427

Algorithm 1: Pseudo-Code for Determining Optimal Testing
Strategies Based on Pontryagin’s Maximum Principle.
1: Initialize t = 0, 54(0),7}(0),4;(0), At, T = nAt, g, B*, y*, v*, 6,
initial strategy F(k'At) k, fmaxy fmm, €, ileTmay
2: fork=0:n—1do

3:  Calculate si(t),4;(t),4(t) under the strategy F'(kAt) from
2@
4: end for
5: Set AL, LA =0,k=n
6: Calculate the loss function Ly in (11)
7:fork=n—1:0do
8:  Calculate A\, A}, A under the strategy F'(kAt) from (13)—(15)
9: end for
10: fork=0:n—1do
11:  First renew the strategy F'(kAt), then calculate sy, 4}, ; under
the strategy F'(kAt) from (2)—(4)
12: end for
13: Calculate the loss function Ls in (11)
14: 71
15: while|L; — Lo| > € && i < iterp,, do
16: i—i+1
17: L1 — L2
18:  Setk=mn,A,\;, A\, =0
19: fork=n—1:0do
20: Calculate A}, A}, A under the strategy F'(kAt) from (13)-
(15)
21:  end for
22: fork=0:n—1do
23: First renew the strategy F'(kAt), then calculate sy, i}, i
under the strategy F'(kAt) from (2)—(4)
24:  end for

25:  Calculate the Loss function Lo in (11)
26: end while

distribution problem in a heterogeneous contact network, we
use the following loss function

a8 S () SOER) g
L(T)= [ dt&" k — o(t 25
OEYRED ) S ONONNED
with the aim of minimizing the total number of infections over
time (with a constant discount factor § € (0, 1]) by appropri-
ately distributing vaccines to groups with different degree & at
different rates.
To minimize the loss function (25), we construct the
Hamiltonian

K K
H = g8t Z ksk(t) > Ppﬂf
k= (=1

s dSk i dik(t)
+ Z </\ i Ny

X P(€|k

)‘k + )\Z ksk
D20

(26)

+ZCk wmww)
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Vaccination model optimized for 7" = 150 under different constraints. We plot the optimal strategies and the corresponding susceptible, untested
infected, and tested infected fractions at each degree k across time ¢ = nAt. (a) Heatmap of the optimal vaccination strategy vy, (t)/(s

£ (t)Ny) for the BA network

given by Algorithm 1. Panels (b,c) show the corresponding susceptible and infected subpopulations s;(¢) and i;(t), while (d) plots the fraction infected as a func-
tion of time, derived from solving (20)—(22) under optimal vaccination using a discount factor § = 0.95. The dashed red curve indicates the fraction infected
under optimal vaccination. For comparison, the infected population under no vaccination (solid black) and constant, uniform (dashed blue/circles) vaccination
are also plotted and show how optimizing vaccination significantly suppresses infectivity. Panels (e-h) show the corresponding quantities for the SBM network.
Optimal vaccination is less effective at decreasing infection in the SBM network than in the BA network, again because of the SBM’s peaked (more homoge-
neous) node degree distribution. Note from the logarithmic scale that vaccination is qualitatively more effective in reducing infections than testing and

quarantining.

where A and i are the adjoint variables satisfying the differ-
ential equations

s K
Ay aH _ _ﬁkzp(euc) .

) (88 — X5+ \i 27
dx, _ _oH
dt i
B\ : -
—ZP E|0)Lso(t) (8" — X0+ M) + A (28)
P(k) =

Again, PMP explicitly generates the control that minimizes
(26) for every ¢, which we assume also minimizes the target
loss function (25). From the constraints (23) and (24), mini-
mizing the Hamiltonian is achieved by giving vaccination
doses to those subpopulations with the smallest \;. We use
the same Algorithm 1 to solve the minimization problem (25)
numerically and obtain the optimal strategy.

In the US, about two million doses of SARS-CoV-2 vac-
cines were delivered in May 2021 [46], most of which were
two-dose vaccines. Since approximately 0.3% of the entire
US population is fully vaccinated daily, we set V(t) =
0.003N /day, vmin = 0/day, and vy, = 0.4/day in the con-
straint (24). The infection rates B are set to be 0.0411/day
for the BA network and 0.0130/day for the SBM network,
and the recovery rate y = (1/14)/day. For comparison, we
also simulate a vaccination strategy with a uniform vaccina-
tion rate

sp(t)V(t
oeft) = AVE 29)
> k-1 Sk(t)
In all simulations, we use the following initial condition:
ir(0) = 107°P(k), r,(0) = 0, s4(0) = P(k) — i,(0). (30)

We plot the PMP-optimal vaccination strategy vy, /Ny, in Fig. 3
(a) and the corresponding susceptible and infected k-degree sub-
populations sy (¢) and i, (¢) in (b) and (c). We set T' = 150, At =
0.1 and we use an improved Euler method to numerically solve
(20)-(22), (27)—(28). Algorithm 1 is applied (without the
infected and tested compartment) to determine the optimal vac-
cination strategy by the PMP approach. For the BA network,
L(T = 150) = 1.165 x 107> under the PMP-optimal strategy
and L(T = 150) = 0.01953 under a uniform vaccination rate.
Fig. 3(d) shows that the optimal vaccination strategy on a BA
network significantly reduces the fraction infected compared to
the uniform vaccination strategy. Panels (e-h) show the corre-
sponding quantities for the SBM network for which L(T =
150) = 0.0210 under the optimal vaccination strategy and
L(T = 150) = 0.0360 under a constant, uniform vaccination
strategy. In both networks, the optimal vaccination strategies
obtained via Algorithm 1 tend to prioritize those nodes with
higher degrees first and eventually expand to those nodes with
smaller degrees [see Fig. 3(a) and (e)]. As with testing and
quarantining, the reduction in the fraction infected by vaccina-
tion is greater in the BA network. Since the BA network has a
degree distribution with algebraic decay, the effect of the
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optimal vaccination strategy will be more pronounced than for
the SBM, whose nodes have similar degrees.

V. DISCUSSION

Effective testing and vaccination strategies are an essential
part of epidemic management. In this paper, we derived opti-
mal testing and vaccination policies by applying Pontryagin’s
maximum principle to a degree-based epidemic model in a
heterogeneous contact network. We complemented our analyt-
ical results with reinforcement learning (RL) approaches that
identify effective policies (see Appendix C). On occasions
when the best optimal strategy can be analytically solved, the
controls derived from Pontryagin’s maximum principle out-
perform RL-based interventions. However, reinforcement
learning is useful for epidemic management problems when
an efficient procedure for computing optimal solutions solu-
tions is not available. Our results show that the two approaches
can complement each other; preliminary findings from opti-
mal-control analysis can be used to pre-train and restrict the
space of possible actions, which may lead to more efficient
RL algorithms. In addition to RL-based control strategies, it
may also be worthwhile to apply neural ODE control frame-
works [47], [48] to resource allocation problems since they
have exhibited better performance than RL and numerical
adjoint system solvers.

Our analytical results show that optimal testing and vaccina-
tion policies under resource constraints initially tend to priori-
tize nodes with higher degrees to control the spread of the
disease. In situations where the number of contacts of individu-
als is known or can be estimated with reasonable precision,
Algs. 1 and 2 may be useful for identifying effective epidemic
management strategies. Using our control-theoretic approach,
we also explored the relative effectiveness of testing and vacci-
nation under different conditions. If more information on con-
tact patterns of individual nodes is available, it is possible to
further refine the proposed policies using interventions that
rely not only on node degrees but also on other structural fea-
tures such as percolation and betweenness centrality [26], [49].

A. Effects of Delayed Intervention

First, we consider the effectiveness of interventions as a
function of the time between the first infection and the imple-
mentation of testing or vaccination. The initial conditions are
set to be the same as (18) and (30). Fig. 4 shows the total frac-
tion infected and the loss functions at 7' = 150, for both the BA
and SBM networks, as a function of intervention starting time
to. We set F' = F(t)l;>¢, or V = V(t)1;4, and explore the
effects of different constant levels of test Kits or vaccine avail-
ability, F(¢t) = 0.002N,0.004N,0.006 N, 0.008 N /day and
V(t) = 0.001N,0.002N,0.003N, 0.004 N /day, respectively.
The transmissibility rates A", 8", 8 and the recovery rates
y", v*, y are set to the same values as those used in Section III
for the testing model and those used in Section IV for the vacci-
nation model.

In the BA network, the total infected fraction shown in Fig. 4
(a) is fairly insensitive to starting times for all testing rates F’,
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especially at small starting times ¢, <50. However, the loss
functions corresponding to all testing rates increase monotoni-
cally with the testing starting time ¢, as shown in Fig. 4(b). On
the other hand, vaccination of a BA network leads to infected
fractions that change significantly with delay time, but with an
overall vaccination-rate-dependent starting time before which
disease spread can be nearly completely suppressed, as shown in
(c). For the vaccination model applied to both networks, an ear-
lier intervention time will always lead to fewer infected nodes.
Overall, we found that earlier and stronger intervention meas-
ures lead to more effective control of disease spread and a
smaller loss function defined by (11), (25). For all cases, the test-
ing loss functions monotonically increase with ¢,. Similarly, for
the SBM model, the final infections shown in Fig. 4(d) are insen-
sitive to starting times ¢ < 50 for each of the four choices of total
testing budgets F'. Earlier intervention times ¢, lead to smaller
testing loss functions which indicate more effective early-time
disease control and fewer early infections (which are followed
by larger later infections) than those associated with later start
times ty. Vaccination of the SBM network reveals more
smoothly monotonically increasing infected fraction and loss
functions and does not display the sigmoidal dependence on
intervention time t, as exhibited by the infected fraction and
loss function for the BA network. For the vaccination model
applied to both networks, an earlier intervention time will
always lead to fewer infected nodes.

Overall, higher levels of F' and V lead to high-k nodes
being addressed sooner and total infections can be reduced. In
summary, for both networks, when the discount factor § < 1,
earlier intervention starting times £, more effectively reduce
early infections although it might be at the cost of larger later
infections.

B. Dependence on Initial Conditions

Besides the start time of testing or vaccination, initial condi-
tions may also affect the optimal strategy. For example, the
initial propagation of the disease may depend on the degree k;
of the first infected individual [50]. Instead of an initial infec-
tious source that is uniformly distributed across all nodes, as
described in (18) and (30), we vary the degree of the first
infected node and explore how the strategies change as a func-
tion of concentrated initial condition i;(0) = Nolsx/N. We
take Ny = 1075V for both networks, k; = 3,20, 90 for the BA
network, and k; = 5,20, 30 for the SBM network. These dif-
ferent initial conditions are denoted IC1, IC2, and IC3 for
each network, respectively.

Optimal testing strategies are found to be subtly dependent
on the initial conditions, i.e., the degree of the initial infected
patient. In Fig. 5 we show only the optimal strategy associated
with IC2, but plot the time-dependent fraction infected under
optimal strategies for all ICs. Under both optimal testing and
vaccination, a smaller degree of the first infected source typi-
cally leads to a smaller subsequent infected population. Spe-
cifically for testing, this decrease is greatest at intermediate
times because at early stages there are fewer infecteds. At later
times, the testing strategy becomes insensitive to the initial
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Fig. 4. Total fraction infected under testing or vaccination model as a function of different intervention starting times ¢y. We minimize the corresponding loss
function at 7" = 150 and use 6 = 0.95. (a) The fraction infected in the BA network as a function of start times for different testing amplitudes F'. The total
infected fraction is fairly insensitive to intervention starting times, especially for small intervention delays. The effect of delayed vaccination on the fraction
infected is shown in (c¢), with the corresponding loss function shown in (d). For the SBM network, the fraction infected as a function of testing start time shown
in (e) reflects the small effect of testing on the infected population. However, the loss functions shown in (f) are monotonic in the starting time. This implies that
an early intervention time on the SBM network is able to “flatten” the curve by postponing infection so even if total infections stay roughly the same when %,
varies in ~ [0, 50], the earlier the intervention time, the fewer the earlier infections, with little change in the final total infected fraction. The starting time depen-
dence of the fraction infected on an optimally vaccinated SBM network in (g) shows a monotonic and smooth decrease in effectiveness as vaccination is delayed.
In (h), the loss function for vaccination on the SBM network also monotonically increases with the start time.

condition because persons with all degrees are infected and
those with a higher degree tend to be infected sooner.

The optimal vaccination strategies obtained through Algo-
rithm 1 are also relatively insensitive to initial conditions in both
networks, particularly at longer times. Although not shown, the
optimal strategies associated with different ICs are mostly the
same because nodes with larger degrees tend to always be vacci-
nated first to minimize the loss function (25). Susceptibles with
higher degrees are more vulnerable and should be vaccinated
first to mitigate subsequent infection events. For vaccination,
the different ICs lead to long-term differences in infected frac-
tions because low-degree ICs allows more time for vaccination
to more effectively remove susceptibles.

C. Monte-Carlo Simulation of Stochastic Network Model

Our results are derived from a mass-action ODE model and it
is unclear how they apply to stochastic network dynamics. To
compare these different representations of the disease, we define
the discrete stochastic versions of our network models and
impose a stochastic version of the optimal strategies found using
the PMP on our ODEs. In Appendix D we implemented the opti-
mal testing and vaccination strategies on the BA and SBM net-
work realizations used in the PMP study. Infection, recovery,
testing, and vaccination processes are described as Markov
events in continuous time. Results from rejection-free, event-
based Monte-Carlo simulation indicate that the degree-based
mean-field ODE model tends to overestimate new infections
because it assumes that all subpopulations interact in a well-
mixed manner, thus neglecting certain structural features of the

considered networks. The loss function derived from the sto-
chastic model and using the PMP-derived optimal strategy is
shown to be lower than that of the ODE model, except for vacci-
nation on the SBM network for which they are comparable.
Nonetheless, optimal strategies derived from the ODE model
still outperforms a uniform or unstructured testing or vaccination
strategy applied to the discrete stochastic model.

VI. SUMMARY AND CONCLUSIONS

Our overall results indicate that different network structures (
e.g., BA vs. SBM) have different susceptibilities to optimal inter-
vention strategies. Thus, policies such as selective social distanc-
ing can potentially be used to shift network structure towards one
that is more sensitive to direct testing and vaccination strategies.

We have analyzed testing and vaccination separately, but in
practice, both are simultaneously implemented. The relative
efforts of these two interventions, as a function of time, will
depend on their constraints and costs as well as the desired loss
function time 7". A further generalization of either our mass-action
or stochastic versions of our network models may be to derive dif-
ferent loss functions other than (11) and (25) to take into account
factors such as economic effects or prioritization of certain groups
(e.g., healthcare workers or individuals with comorbidities). For-
mulating more specific loss functions would allow one to balance
mitigation and suppression strategies, as studied in a well-mixed
SIR model [12]. Another important and straightforward extension
of our model is to consider the effects of waning protection of vac-
cination, which has become a relevant feature of disease control in
the context of booster shots. Recovered individuals that include
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Fig. 5. Dependence of intervention effectiveness on the degree of the initial infected individual. (a) The PMP-optimal testing strategy computed using IC2
(k; = 20) on the BA network. Strategies for IC1 (k; = 3) and IC3 (k; = 90) are qualitatively similar (not shown) with small differences at the beginning leading
to the different delays in the infection dynamics shown in (b). Specifically, for IC1 and IC3, the initial transient of the optimal testing strategy maximizes the test-
ing rate for the subpopulation with the same degree as k; and ks, respectively, indicating that the optimal testing strategy is sensitive to the degree properties of
the initial seed infection. Once the disease spreads out, the testing strategies “forget” the initial condition and converge to each other. Despite optimal testing, ini-
tial infecteds with larger degrees, such as IC3, lead to the earlier spread of the epidemic. Results are found by using a discount factor § = 0.95, the optimal strat-
egy given in Algorithm 1, and solving (2)—(5). (c-d) The optimal vaccination strategy for IC2 and the associated fraction infected for the BA network. As with
testing, the vaccination strategies associated with IC1 (k; = 5) and IC3 (k; = 30) lead to differences in infection magnitudes. However, the optimal vaccination
strategies are insensitive to different initial conditions, even at early times. Since the mechanism of vaccination is always to protect high-degree susceptibles, the
vaccination strategies are not as dependent on the current infected population as the testing strategies are. Panel (e) shows the optimal testing strategy for the
SBM network, assuming IC2 (k; = 20). (f) The fraction infected exhibits slower dynamics for smaller-degree initial conditions. (g) Optimal vaccination strategy
for IC2 in the SBM network, and (h), the associated infected fraction showing both delay and amplitude changes with changes in the initial condition.

previously vaccinated or infected individuals can become suscep-
tible again at a rate equal to the rate of loss of immunity. Thus,
another timescale (months) is introduced which is comparable to
timescales 7' that are used to define the loss function. We expect
even wider variety and richness in the analysis of optimization
problems under waning immunity.

Finally, the discrepancies between the effective degree ODE
model and the Monte-Carlo simulations, under the same ODE-
derived optimal strategies appear to arise from the differences
in the underlying disease propagation. The discrete stochastic
models tend to show lower infected fractions than the corre-
sponding mass-action ODE models since its discreteness and
finite infection lifetimes prevents high-degree nodes in some
network regions to be infected while the mass-action model
allows all nodes to be partially infected. Further analysis of
fluctuations in real-world stochastic models could provide
insight into a better estimation of optimal strategies without
simulating the large space of intervention strategies. This
and many other important extensions will be topics of future
exploration.

APPENDIX A
BASIC REPRODUCTION NUMBER

In this appendix, we analytically derive the basic reproduc-
tion number R, for uncorrelated networks and compare the

resulting values with those obtained using (7) and (8). As a
starting point, we note that the conditional degree distribution
P(£]k) can be expressed in terms of a symmetric (for undi-
rected networks) joint degree distribution P(/, k), the proba-
bility that a randomly chosen edge connects two nodes with
degrees ¢ and k. Marginalizing P (¢, k) over ¢ yields the distri-
bution over edge ends [51] P.(¢) =), P(¢, k) = LP(()/(k),
where (k) =), kP(k) is the mean degree. The conditional
degree distribution is related to the joint distribution via

Pl k)

Po(k)

(k) P(L, k)
kP (k)

__ B
kP(k)N’

P(tlk) = (31)
which can be further simplified in the uncorrelated network
limit where P(¢, k) = P,(k)P,(¢):

l

P()

(k) -

Equations (31) or (32) can be used as a simpler replace-
ment for P({|k) in (2) and (3) if Ey;/(kNy) is not directly
accessible. For example, for an uncorrelated network (i.e.,
for P(¢|k) = ¢P(¢)/(k)), we find

Pk ~ (32)

dig(1)
dt

—pBOS e, 63
&) 4
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where we have set testing rates f;(0) = 0 at the start of the
infection. According to [24], we define

1) =Y p(t), JU) =Y kip(t) (34)
k k
and obtain
dIu(t) _ 1 yJu uyu
g =P -,
=g G -y, (35)

We perform a linear stability analysis about the disease-free
state (I*, J*) = (0, 0) and find the eigenvalues to (35):

(k)
Ay ==y .
(k)
The transition from negative to positive eigenvalues occurs for
—y" + B*(k?)/{k) = 0. Hence, the basic reproduction number
is

(36)

R _B ) B ((k) +Var[k2]). (37)

vt k)t ()

If we use the conditional degree distribution P(¢|k) =
(¢ —1)P(¢)/{k) proposed by Kiss et al. [24] to account for a
reduction in neighboring susceptible vertices, the correspond-
ing basic reproduction number is modified to

20125

The mean degrees of the BA and SBM networks are 3.77 and
23.14, and the variances for the BA and SBM networks are
20.40 and 36.62, respectively. Using the values y* = 147! /day
and 8" = 0.0411/day for the BA network, we find that the basic
reproduction numbers Ry = 5.361 and R§ ™ = 4.777 are larger
than 4.5, the value we used to determine 8" according to the
next-generation matrix method (see (7) and (8)). The observed
approximation errors in (37) and (38) are a consequence of the
assumption that the underlying network is uncorrelated. For the
SBM network, we find Ry = 4.499 and ROKiSS = 4.317, close to
the 4.5 value used to find " = 0.0130 using (7) and (8).

To summarize, our comparison shows that in the SBM model
where the degrees of neighbors are uncorrelated, (37) and (38)
give close approximations of the actual reproduction number
calculated from the next-generation matrix method (7). For the
BA network, degree correlations make (37) and (38) overesti-
mate the actual reproduction number. Therefore, we recommend
using the next-generation matrix method to numerically deter-
mine the basic reproduction number unless degree correlations
are weak and (37) and (38) can provide accurate estimates of R.

Kiss _
Ry™ =

(38)

APPENDIX B
OPTIMAL TESTING AND VACCINATION ALGORITHMS

Below, we explicitly give the pseudo-code for the testing and
quarantine model based on Pontryagin’s maximum principle.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 3, MAY/JUNE 2022

Algorithm 2: Pseudo-Code of Q-Learning in Testing
Resource Allocation.
1: Initialize F, 8, C, s5;(0), 7}:(0), ,(0), B, B*, v, v*, M, €
2: Initialize replay memory D
3: Randomly initialize the hyperparameter set @~ « O for evaluat-
ing the action value function Q*(S, A; ©)

4: for episode / = 1: M do

5:  Initialize S

6: fort=0:T,. —1do

7: With probability €, randomly select an action a;

8: otherwise select A, = argmax ,Q(S;, A; ©)

9: Execute action .4, and observe reward R, and state S;.1

10: Store transition (S, A¢, R, S11) in D

11: Sample random minibatch of transitions

(), Aj, Rj, Sja) from D

12: if j = Thhax — 1 then

13: Sety; = R;

14: else

15: Set y; :Rj—O—BmaXA/Q(SjH,A’;@_)

16: Perform a gradient descent step on the minibatch
>l — QS Ajs 0)]* with respect to the network
hyperparameter set ®

17: end if

18:  end for

19:  Every Cstepsreset @ «— ©

20: end for

APPENDIX C
REINFORCEMENT-LEARNING STRATEGY

To identify effective testing and vaccination strategies, we
also investigated reinforcement-learning (RL) approaches. RL
explores the space of all possible actions and directly opti-
mizes the loss functions for testing and vaccination defined in
(11) and (25). Here, we use an RL approach with experience
replay to learn both the optimal testing strategy in (2)—(5) and
the optimal vaccination strategy in (20)—(22).

Typically, applying a policy-gradient method to a continu-
ous action space will usually yield poor results due to the
inability of such methods to explore the whole space. How-
ever, using our previous results based on PMP, we know that
the optimal strategy is always obtained by maximizing the
testing and vaccination rates for subpopulations presumed to
be at a higher risk.

Therefore, we do not need to explore the whole space of all
possible actions. Instead, from (16), (26), we can restrict our
strategy space to the extreme points' of the set

i

K
(Y fe = F), fuin < 57 < froax} (39
k=1 o

k

for determining the testing-resource allocation and the
extreme points of the set

! Extreme points are points in a set that cannot be written as a nontrivial
convex linear combination of any other points in the same set.
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Fig. 6. Ilustration of the neural network used to identify effective testing and vaccination strategies. The inputs of the input layer are
(81(t), -, 8 (t), 8 (1), - - -, 8% (8), 55 (41), - - -, i (t:)) € R*E. For each hidden layer i (1 < i < Ny), we normalize the corresponding outputs z; ; for all sam-

ples in a minibatch such that the resulting values 2; ; have zero mean and unit variance. These values are used as inputs to a rectified linear unit (ReLU) activation
function in the next hidden layer. Neurons labeled 1 are bias terms. The output V*(S;; ®) is an estimate of the state-value function under the optimal policy (see

(44)), where O denotes the set of hyperparameters.

K
K B v,
{(vk)|k7:1| ;’Uk‘ = V( y Umin < Nsk( ) < Umdx} (40)

for determining vaccination-resource allocation at each
step. The set of extreme points represents all strategies
that maximize the testing/vaccination rates for some
groups and minimize them for other groups. Such strate-
gies also cannot be written as nontrivial convex combina-
tions of other strategies. By confining ourselves to extreme
points, the possible action space is reduced to a finite set
on which we perform RL.

Since the curse of dimensionality increases the number of
all possible strategies exponentially with K, we further
restrict our RL approach to networks with degree cutoff K =
20. This additional constraint allows us to perform RL with a
computation time of about 30 days for the testing model on
the BA network, 3 days for the testing model on the SBM
network, 6 hours for the vaccination model on the BA net-
work, and 2 hours for the vaccination model on an SBM net-
work. All computations are performed using Python 3.8.10 on
a laptop with a 4-core Intel(R) Core(TM) i7-8550 U CPU @
1.80 GHz.

To identify effective testing and vaccination strategies, we
use the reward functions (11) and (25). We define the reward
at time t; = 1At as

Mx

Su-A H—l - Sk(tj)}, (41)

the “negative” of the number of total infections during the
time period [¢;,¢;11). Here, the state S; and action .4; are

Si = (s1(ti), ., sx(ti), iy (), . ., i% (L),
i), -5 (t) € RO,
.Al = fl(tt), .,f}(( )) (= RK (42)

for the testing model (2)—(5) and

S, = (Sl(ti),...,sK(t') .1(t,'),,7;]((t7;)) S
Ai = (vi(t:), ..., vk(t:) € R®

R2K,
(43)

for the vaccination model (20)—(22). We recursively define the
state-value function under a certain policy 7 to be

Vﬂ(8j+1)5 + R(Sh JT(S‘)),

g 7)) — 4 L [ 7<
V (8252)7{07 t:

7—‘1113.)( )
7“111({)( bl (44)

where 7(S;) is the action determined under policy 7 given S;
and § € (0,1] is a discount factor. We also define the action-
value function to be

ti, < T‘max - 1’
t; = Thyax — 1.

Q7 (81, A i) = {}Vz(‘(jﬁf + R(Si, A,

We use Q" and V* to denote the action-value and state-value
functions, respectively, under the best policy and apply the deep
Q-learning algorithm, which has been used to find the RL strate-
gies that can approximate optimal strategies of certain Atari
2600 games [52]. Here, we use a neural network with a hyper-
parameter set ©, representing neural-network weights and
biases to estimate the action-value function under the best policy
Q*(S, A; ©), which is improved over epochs by Algorithm 2.
An illustration of the neural network, its layers, and activa-
tion functions, is shown in Fig. 6. We use another neural net-
work with a hyperparameter set ®~ updated every C =4
steps to match ®. The neural network contains Ny = 4 hidden
layers with H = 30 neurons in each layer. The input data is
the state at the 7' step S;, and the output is V*(S;; ©), the pre-
diction for the optimal state-value function generated by the
neural network. In each layer, the batch normalization tech-
nique is used before a rectified linear unit (ReLU) function is
applied as an activation function. We compare the optimal
strategies based on the PMP approach from Algorithm 1 with
the RL strategies that are based on Algorithm 2. We set 7' =
100 and At =1 so that the strategy is updated every day.
Here, we use fim = 0.002/day, fiax = 0.4/day. We use (7)
with y" = (1/14)/day to calculate g* = 0.0703/day for the

(45)
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Fig. 7. Reduction in fractions of infected individuals calculated as the differ-

ence between the fractions infected obtained with testing and without testing
for the BA network shown in (a) and the SBM network shown in (b). The opti-
mal control approach based on PMP reduces early infections the most. RL out-
performs uniform testing in reducing the number of early-stage infections.
Additionally, the effect of the optimal strategy is more striking in the BA net-
work because it has a more heterogeneous node degree distribution.

K =20 BA network and 8" = 0.0632/day for the K = 20
SBM network. Both PMP and RL strategies are also compared
to the uniform testing strategy (19). For RL, we train the
underlying neural network for M = 100 epochs using Algo-
rithm 2. Fig. 7 shows the differences between the infected
fractions in simulations with and without testing. The PMP-
based optimal control reduces early infections the most for
both BA and SBM networks. Early infections contribute more
to the loss function (11) since we set the discount factor to § =
0.95. We also observe that RL-based testing strategies outper-
form uniform testing in reducing early-stage infections. Com-
paring Fig. 7(a) and (b), the effect of the optimal vaccination
strategy in the BA network is more pronounced than that in
the SBM network. In the BA network, node degrees are more
heterogeneous and most nodes have small degrees, indicating
that epidemic spreading can be controlled effectively as long
as the few high-degree nodes are monitored and tested.
Finally, comparing the result of the optimal-control approach
in Fig. 7 with Fig. 2, we observe that with a smaller K in the
SBM network, the effect of the optimal vaccination strategy is
less apparent because node degrees are more homogeneous.

Next, we compared the PMP approach with the RL
approach for the optimal vaccination strategy model (20)—
(22). Here, we set vy, = 0.0001, vy, = 1. For both net-
works, the optimal vaccination strategy obtained using PMP
can most effectively reduce the initial infections because early
infections have a higher weight in the loss function (25). Rein-
forcement-learning-based vaccination policies can also reduce
initial infections, but the reduction is less than that of the PMP
approach. Comparing Fig. 8(a) and (b), we again observe that
the effect of the optimal vaccination strategy for the BA net-
work is more pronounced than that of the SBM network
because the BA network has a more heterogeneous degree and
is dominated by small-degree nodes.

To summarize, the controls derived from PMP are more effec-
tive than those based on RL. One limitation of RL-based inter-
ventions is that the possible action space that needs to be
explored is usually large. However, based on our PMP results,
we can constrain the action space before the learning process.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 3, MAY/JUNE 2022

(a) BA vaccination (b) SBM vaccination

1r 1

-

§ - —— no vaccination — 1o \_'ac.("malliuu

§ 0.8 --e- uniform 0.8 --¢- uniform

& | — RL — RL

— - vagi - -+ - Pontryagin

é 06 Pontryagin 0.6-

g

= 0.4 0.4:

g 0.2 0.2/

:‘:” . ".__._.--.....--o A J

B UO 50 100 00 50 100
time time

Fig. 8. Fractions of infected individuals with vaccination and without vacci-

nation for the BA network is shown in (a) and the SBM network is shown in
(b). The optimal control approach using PMP can most effectively reduce
infections for both networks and successfully suppress the spreading of the
disease in the BA network. On the other hand, although not as good as the
PMP-optimal strategies, the strategies obtained by the RL algorithm Algo-
rithm 2 can obviously reduce infections compared to the uniform vaccination
rate strategy. As with testing, we observe that the effect of optimal vaccination
is more pronounced in the BA network than in the SBM network.

Such PMP-informed constraints allow us to explore just the
extreme points of the whole action space and thus make the
training more efficient. Yet, the total number of possible actions
grows exponentially with the maximal degree K and the strat-
egy obtained by the RL approach will probably be only locally
optimal, violating the PMP condition and thus under performing
PMP. Nonetheless, RL could be useful if a procedure for com-
puting an explicit solution cannot be formulated.

APPENDIX D
SIMULATIONS OF CORRESPONDING STOCHASTIC MODELS

We impose the optimal testing and vaccination strategies
derived from applying PMP to the ODE system (2)—(5) and
(20)—(22) on a simple discrete stochastic model and compare the
resulting total infections. The corresponding optimal testing or
vaccination is implemented by probabilistically testing or vacci-
nating each selected subpopulation. For example, in the testing
model, we can employ a rejection-free event-based Monte-Carlo
(MC) algorithm [53] that implements a testing strategy.

For initial conditions, we randomly choose two nodes with
degree k = 10 to be infected. Correspondingly, for the determin-
istic ODE models, we set s,(0) = p(k) — 10, (0) =
Hi.10,3(0) = 0 for the testing model and s(0) = p(k) —
%]1;6710 ,ix(0) = %ﬂk,l() for the vaccination model. We set the
recovery rates y = y" = y* = (14:)71 /day and use the same
reproduction number Ry(B") = 4.5 to calculate the uncon-
strained infection rates for the two networks from (7). The loss
functions defined for the testing and vaccination models in (11)
and (25) are plotted below.

From Fig. 9, the deterministic ODE models tend to overesti-
mate the loss functions since all subpopulations are well mixed
by the conditional degree distribution function P(¢|k) and there-
fore a single infected node could have an impact on the whole
system. This difference arises because in a fully discrete realiza-
tion of a BA or SBM network, each node can be in only one of
three or four states and the disease may never arrive at certain
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Fig. 9. Loss functions associated with the deterministic ODE models (2)—(5)
and (20)—(22), and the corresponding stochastic models. We apply PMP-based
(solid lines) and uniform (dashed lines) testing and vaccination protocols. Pan-
els (a) and (b) show the loss functions (11) and (25) associated with testing and
vaccination interventions in a BA network. Results from the ODE models are
shown in blue while the loss functions derived from the simulated stochastic
model are shown in red. Panels (c) and (d) show loss functions for the testing
and vaccination models in the SBM network. Note the different scales for the
ODE (blue, left) and the MC (red, right) results. The loss functions of the dis-
crete stochastic models are obtained by averaging over 100 trajectories with
the standard error of the mean (standard deviation of means divided by VN)
indicated by the error bars. For both networks, the deterministic ODE models
yield larger losses than those obtained from averaging MC trajectories. For
both deterministic ODEs and stochastic systems, the loss functions during
optimal testing and vaccination are much smaller than when testing and vacci-
nation are uniformly applied.

critical nodes, significantly delaying its spread allowing the
overall infection to dissipate before ever reaching portions of the
network. In contrast, the mass-action ODE model allows all
nodes to be partially infected, allowing continuous transmission
of the disease. Therefore, more network measures may be
needed to accurately quantify the dynamics of disease spread
across discrete agent-based network models. Higher-order inter-
actions beyond the pairwise conditional degree distribution [54]—
[56] could be helpful in explaining the discrepancy between
deterministic ODE and stochastic models and in estimating opti-
mal policies in the fully stochastic context.

Nonetheless, Fig. 9 shows that the PMP-based interventions
that we derived in the main text are also more effective than
uniform testing and vaccination strategies in the stochastic
agent-based model. This loss function reduction arises for
both the BA and SBM networks. Thus, the optimal testing and
vaccination strategies obtained from the deterministic model
outperforms uniform testing and vaccination strategies even
when applied on discrete stochastic network models, repre-
senting a reasonable starting point for approximating optimal
strategies within agent-based discrete systems.
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