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Abstract
Climate impacts are not always easily discerned in wild populations as detecting cli-
mate change signals in populations is challenged by stochastic noise associated with 
natural climate variability, variability in biotic and abiotic processes, and observation 
error in demographic rates. Detection of the impact of climate change on popula-
tions requires making a formal distinction between signals in the population associ-
ated with long-term climate trends from those generated by stochastic noise. The 
time of emergence (ToE) identifies when the signal of anthropogenic climate change 
can be quantitatively distinguished from natural climate variability. This concept has 
been applied extensively in the climate sciences, but has not been explored in the 
context of population dynamics. Here, we outline an approach to detecting climate-
driven signals in populations based on an assessment of when climate change drives 
population dynamics beyond the envelope characteristic of stochastic variations in 
an unperturbed state. Specifically, we present a theoretical assessment of the time of 
emergence of climate-driven signals in population dynamics (ToEpop). We identify the 
dependence of ToEpop on the magnitude of both trends and variability in climate and 
also explore the effect of intrinsic demographic controls on ToEpop . We demonstrate 
that different life histories (fast species vs. slow species), demographic processes (sur-
vival, reproduction), and the relationships between climate and demographic rates 
yield population dynamics that filter climate trends and variability differently. We il-
lustrate empirically how to detect the point in time when anthropogenic signals in 
populations emerge from stochastic noise for a species threatened by climate change: 
the emperor penguin. Finally, we propose six testable hypotheses and a road map for 
future research.
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1  |  INTRODUC TION

Climate change is expected to have significant effects on biological 
populations (Mason et al., 2019). Many studies have assessed the 
influence of particular climate variables on demographic rates (e.g., 
survival) and population sizes (e.g., see review Gaillard et al., 2013; 
Jenouvrier, 2013; Reed et al., 2021). However, while the primacy of 
climate influence is commonly accepted, specific detection and at-
tribution of population trends to anthropogenic changes in climate 
is complicated by substantial stochastic noise related to observation 
error (i.e., errors due to measurement imprecision) and process error 
in biological processes (i.e., unexplained variation in true abundance 
driven by unobserved biotic such as species interactions or abiotic 
processes such as habitat quality, resource variability, etc.), and cli-
mate variability (Che-Castaldo et al., 2017; Parmesan et al., 2013; 
Table 1). Climate variability is an important characteristic of the cli-
mate system and a driver of population dynamics (Boyce et al., 2006; 
Vázquez et al., 2015) that may occlude the population response to 
the underlying climate change signal.

Natural climate variability is a noise from unforced variability 
generated internally within the climate system (Mann et al., 2021; 
Table 1). Natural variability in the climate system occurs over a broad 
range of temporal and spatial scales, with spectral properties in the 
seasonal, inter-annual to decadal bands. It arises from different 
sources, including variations that are (1) driven by a periodic external 
forcing, like the diurnal or the seasonal cycle of insolation, (2) due to 
the nonlinear interplay of feedbacks within the climate system, such 
as coupled mode of variability (e.g., El Niño-Southern Oscillation, 
North Atlantic Oscillation, Pacific Decadal Oscillation), and (3) as-
sociated with random fluctuations in the external or internal climate 
system (Ghil, 2002). In addition, climate change is characterized by 
an anthropogenic climate change signal (Table 1). This secular trend 
is the deterministic response of the climate system to an external 
forcing driven by anthropogenic emissions of greenhouse gases and 
changes in land use. Hence, the detection of anthropogenic forced 
change is a signal to noise problem.

To detect and attribute the threats to a species posed by cli-
mate, climate-driven signals in population should be distinguished 
from stochastic noise. The concept of time of emergence (ToE) ex-
actly does that: it identifies when the signal of anthropogenic cli-
mate change can be formally distinguished from noise associated 
with natural variability (Table 1). In climate science, the ToE has 
been studied extensively (Hawkins et al., 2020; Hawkins & Sutton, 
2012). It is used to detect climatic changes and to describe whether 
climate changes are potentially beyond the known natural environ-
mental variability of ecosystems (Giorgi & Bi, 2009; Mahlstein et al., 
2013).

Although this concept of ToE has yet to be formally applied to 
ecological time series, some studies have quantified when novel 
climate conditions relevant for ecological processes will emerge 
from natural variability. For example, Beaumont et al. (2011) have 
characterized the standard deviation (SD) of surface air temperature 
for a baseline period (1961–1990) and then evaluated the number 

of months that the temperature exceeds 2 SDs by 2070 for various 
ecoregions of exceptional biodiversity. They found that more than 
83% of terrestrial and freshwater ecoregions will be exposed to tem-
perature exceeding 2 SDs by 2070.

TA B L E  1  Glossary adapted from the IPCC definitions (IPCC  
et al., 2018)

Climate change

Change in the state of the climate that can be identified (e.g., using 
statistical tests) by changes in the mean and/or the variability of 
its properties and that persists for an extended period, typically 
decades or longer. Climate change may be due to natural internal 
processes or external forcings such as modulations of the solar 
cycles, volcanic eruptions, and persistent anthropogenic changes 
in the composition of the atmosphere or in land use.

Climate model

A numerical representation of the climate system based on the 
physical, chemical, and biological properties of its components, 
their interactions and feedback processes, and accounting for 
some of its known properties. Climate models have structural 
differences for example, in their spatial resolution, complexity of 
parameterizations, and processes that are explicitly represented.

Climate signal

Variations in the state of the climate system that have an identifiable 
and statistically discernible structure in time and/or space, such 
as a long-term warming trend.

Climate simulation

A model simulation of the climate state. This can include the 
simulated response of the climate system to characterize 
historical climate conditions, climate predictions, or climate 
projections.

Climate projection

A simulated response of the climate system to a forcing scenario of 
future emission or concentration of greenhouse gases (GHGs) 
and aerosols, generally derived using climate models.

Climate variability

Variations in the mean state and other statistics (such as standard 
deviations, the occurrence of extremes, etc.) of the climate on 
all spatial and temporal scales beyond that of individual weather 
events. Variability may be due to natural internal processes 
within the climate system (internal variability), or to variations in 
natural or anthropogenic external forcing (external variability).

Natural climate variability

Climate fluctuations from unforced variability generated internally 
within the climate system (e.g., weather) or associated with 
external forces to the climate system (e.g., volcanoes).

(Model) Ensemble

A group of parallel model climate simulations. Ensembles made 
with the same model but different initial conditions characterize 
the simulation uncertainty associated with internal climate 
variability, whereas multimodel ensembles including simulations 
by several models also include the impact of model differences.

Time of emergence

The time at which the signal of climate change emerges from the 
noise of natural climate variability.

Emergence threshold

A threshold at which climate change is consider to emerge.
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The ToE explicitly characterizes the point in time when anthro-
pogenic climate change can be formally distinguished from noise 
associated with natural variability. Hence, it informs on how fast 
changes exceed natural variability and can help prioritize decisions 
about when, where, and for which conservation and management 
actions may be necessary. Some studies have characterized explic-
itly the ToE of ecosystem drivers in marine ecosystems (Henson 
et al., 2017; Schlunegger et al., 2020). For example, Henson et al. 
(2017) found that climate change signals of pH and SST emerge 
rapidly while climate change trends in interior oxygen content and 
primary productivity emerge later. In terrestrial ecosystems, Rojas 
et al. (2019) focused on the timing when the precipitation changes 
will emerge outside the range of natural variability during the 21th 
century relevant for agricultural activities. They found early timing 
of emergence in precipitation trends for the production regions of 
four major crops (wheat, soybean, rice, and maize) even under a low-
emission scenario. Sorte et al. (2019) characterized the seasonal and 
spatial variations in the emergence of novel climates characterized 
by precipitation, minimum and maximum temperature, along the mi-
gration routes of 77 passerine bird species. They found that earlier 
ToE occurs for migrants that winter within the tropics. However, 
none of these studies have applied directly the concept of ToE to 
time series of population dynamics.

Here, we apply the concept of ToE to characterize climate-driven 
signals in population dynamics. We present a new perspective on 

detecting climate-related impacts in populations by characterizing 
the ToE in population growth rate (hereafter, ToEpop), the point in time 
when climate-driven signals in population dynamics can be quantita-
tively distinguished from noise associated with year-specific stochastic 
variations in population growth rates (Figure 1). While in climate sci-
ence, the noise is associated with climate natural variability, applying 
this approach to population dynamics does not exclude other sources 
of noise (e.g., observation and process errors; demographic and envi-
ronmental variability, the latter being driven by fluctuations in physical 
habitat, resource availability, and biological interactions).

For species threatened by climate change, ToEpop can represent 
the time at which the population will detectably decline to a level 
below its historical variability. This point in time potentially corre-
sponds to the time at which the species will be exposed to high ex-
tinction risk, to the time at which individuals will migrate massively 
to track ecological niches, or to the time at which individuals may 
have to adapt to new conditions through evolutionary adaptations. 
The earlier the ToEpop occurs, the faster novel conditions emerge out 
of the natural range of variability, the faster the population will reach 
a non-historical level, with less time for the organisms to adapt or 
migrate. The ToEpop is one illustrative metric that acknowledges the 
dual role of natural variability and an anthropogenic climate change 
signal, also useful for populations increasing under climate change 
(Román-Palacios & Wiens, 2020; Stephens et al., 2016). Importantly, 
ToE allows meaningful comparative studies of when the signal of 

F I G U R E  1  Conceptual diagram of the time of emergence (ToE) in climate (ToEclimate) and in populations (ToEpop). ToE identifies the 
point in time when the signal of anthropogenic climate change (red time series) emerges from the noise associated with natural variability 
(black time series). ToEpop depends on the response of population growth rate to climate that is defined by (1) the impact of climate on 
demographic rates (e.g., survival) with different functional forms that influence the sensitivity of demographic rates to climate; (2) the impact 
of demographic rates on the population growth rate resulting from nonlinear demographic processes occurring throughout the species life 
cycle (described in section Population projections)
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anthropogenic climate change emerges from natural variability 
across ecosystem drivers (Henson et al., 2017), species (Sorte et al., 
2019), ecosystems (Beaumont et al., 2011), and for future socio-
economic processes relevant for climate mitigation (Schlunegger 
et al., 2020).

From a conceptual viewpoint, ToEpop occurs earlier when the 
slope of the population climate-driven trend is large and/or when the 
population variability is small (Figure 1). Both the population climate-
driven trend and variability depend on the species’ life history and 
the functional relationships between climate and the demographic 
rates (Barraquand & Yoccoz, 2013). Specifically, species of both 
plant and animal kingdoms can be ranked along a main axis of life-
history variation, the so-called "slow-fast continuum" (Gaillard et al., 
2016; Oli, 2004; Sæther, 1987; Salguero-Gómez et al., 2016; Stearns, 
1983). Species with fast life history are characterized by early matu-
rity, high reproductive output, and short lifespan; while species with 
slow life history have opposite characteristics. Previous work has 
shown that depending on their position along this continuum, spe-
cies exhibit contrasting demographic responses to climate change 
with various spectrum of variability and amplitude of the response 
(Compagnoni et al., 2021; Doak & Morris, 2010; Jenouvrier et al., 
2005; Morris et al., 2008; Paniw et al., 2017). In addition, the popu-
lation responses to climate change depend on the function that links 
climate variables to demographic rates (survival, growth, reproduc-
tion) that drive population growth rate and structure (i.e., functional 
relationships, Figure S1).

After briefly reviewing the time of emergence in climate (Section 
2), we present this concept in the context of population dynamics 
(Section 3). Then, we characterize and compare the time of emer-
gence of climate-driven signals in population dynamics in a theoreti-
cal context to address five questions (Section 4):

•	 How does ToEpop in populations relate to ToE in climate?
•	 How does ToEpop vary across life histories (e.g., slow–fast species)?
•	 How does ToEpop vary across demographic processes (e.g., sur-

vival, reproduction)?
•	 How does ToEpop vary among different functional relationship be-

tween climate and demographic rates?
•	 Do some species, demographic processes, or functional relation-

ship magnify the signal of anthropogenic climate change?

We find that different life histories (e.g., long vs. short-lived 
species) and demographic processes by which climate affects the 
population (i.e., through survival, reproduction) provide different 
“scale-dependent” filters so that some life histories magnify signal-
to-noise ratios while other demographic dynamics prolong ToEpop . 
Furthermore, to illustrate our theoretical results, we quantify the 
ToEpop of an iconic species endangered by climate change: the em-
peror penguin (Aptenodytes forsteri; Jenouvrier et al., 2021; Section 
5). Finally, we propose a set of six testable hypotheses based on the 
patterns of ToE in climate (hereafter ToEclimate) and the demographic 
processes across life histories and propose a road map for future stud-
ies on the ToEpop (Section 6).

2  |  TIME OF EMERGENCE IN CLIMATE

The concept of ToEclimate has been discussed for several decades in 
the climate sciences with studies attempting to detect the carbon 
dioxide warming signal published more than 80 years ago (Callendar, 
1938; Revelle & Suess, 1957; see review in Hawkins et al., 2020). The 
time of emergence has been characterized in temperature (Mahlstein 
et al., 2011), precipitation (Giorgi & Bi, 2009), climate extremes (King 
et al., 2015), in sea level (Lyu et al., 2014), in Arctic climate (Landrum 
& Holland, 2020), and biogeochemical variables (e.g., Henson et al., 
2017; Long et al., 2016; Schlunegger et al., 2020).

Different methods have been used to quantify ToEclimate, most of 
them use climate model simulations (but see Hawkins et al., 2020, for 
an application using observation of temperature). The common meth-
ods for estimating ToEclimate are the signal threshold method (Section 3), 
and the signal-to-noise ratio method with a particular cutoff (Hawkins & 
Sutton, 2012); a variant of this approach is the identification of the signal-
to-noise ratio using a predefined threshold across multiple consecutive 
years (refereed as the exceedance threshold; Mora et al., 2013). Various 
statistical methods have been developed, from statistical test to assess 
for significant differences between time periods (Zappa et al., 2015), es-
timation of the standard error of the regression to estimate the lead time 
required for a linear trend to emerge from natural variability (Mahlstein 
et al., 2012), development of hierarchical statistical state-space model 
(Barnhart et al., 2016), or artificial neural networks (Barnes et al., 2018).

Recently, the availability of large ensembles of climate (or Earth sys-
tem) models has open new doors to quantify climate natural variabil-
ity and hence evaluations of the ToEclimate. An ensemble is a collection 
of coupled climate simulations (Table 1) that are integrated in parallel, 
typically with small differences in initial conditions applied to each en-
semble member. Climate model generates internal variability as a prod-
uct of interactions between components internal to the climate system 
(Hasselmann, 1976). Since the climate system is chaotic, perturbations 
in initial conditions grow with time, randomizing the phase of natural 
variability and leading to spread across the ensemble. This spread can 
be interpreted as a measure of the amplitude of natural climate variabil-
ity. As all the ensemble members are subject to the same external forc-
ing (i.e., emissions scenario), the deterministic response of the climate 
system can be assessed as the mean across the ensemble members, 
which effectively filters out the noise associated with natural variabil-
ity (Kay et al., 2015). Modeling centers usually contribute a small num-
ber of ensemble members to international climate change projection 
assessments, typically ranging from 3 to 10 ensemble members for a 
given model. Large ensembles with ensemble sizes ranging from 30 to 
100 members permit climatologists to compute emergence thresholds 
to formally consider the uncertainty in the forced response due to nat-
ural climate variability (Barnhart et al., 2016).

Here, we use signal threshold method (Section 3) based on a 
large ensemble by constructing prediction interval of the climate 
and population projections, and estimate the time taken by the sys-
tem to emerge from the background of natural variability (Barnhart 
et al., 2016). For example, the left part of Figure 2 shows an ideal-
ized climate trajectory corresponding to a single ensemble member 
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(red line) and the associated envelope of natural variability based 
on a 95% prediction interval (gray). ToEclimate is the time when the 
projected future conditions under the influence of climate change, 
“forced conditions” (red lines), exceeds a pre-defined threshold for 
emergence that is based on the historical unperturbed conditions 
(gray area, with the horizontal line illustrating the baseline threshold 
at which climate change is defined to emerge).

The emergence thresholds are typically based on the percentile of 
the distribution of the historical and forced projections. They define 
the prediction intervals at which the signal of climate change emerges 
from the natural climate variability. We present the results for one 
threshold of wide confidence envelope with a 95% prediction interval 
based on emergence thresholds defined by the 2.5 or 97.5 percentile 
values of the distribution, where impacts are triggered by the extreme 
historical conditions only. The analysis with a narrow confidence en-
velope with emergence thresholds defined by the 20 or 80 percen-
tile values of the confidence interval (i.e., 60% prediction interval) is 
shown in appendix (Figure S3). In that case, the system is likely highly 
sensitive to climate as severe impacts are thought to occur for lower 
percentile of the climate conditions distribution experienced during 
the historical run. Our results are qualitatively the same between 95% 
and 60% prediction intervals (Figure 3 vs. Figure S3).

In our simulations, we construct a large ensemble of climate time se-
ries for both the historical and forced environments for various natural 
climate variability (σ2) and warming trends (�). Specifically, the historical 
climate time series are obtained by sampling into a normal distribution—
centered on a zero mean and with a specific standard deviation �—with 

independent draws each year (i.e., independent and identically distrib-
uted random variables [IID]). The forced climate time series are calcu-
lated by adding to this natural variability a linear trend of slope �. In that 
context, this ToE calculation in an IID environment is directly related to 
the signal-to-noise ratio: ToE = (2P)∕(SNratio) with P the climate value 
corresponding the threshold of the prediction interval.

In our theoretical study, we explore a range of parameters con-
sistent with the observed standard deviation of the inter-annual 
temperature variability (figure 1 of Hawkins & Sutton, 2012) and 
the projected climate warming by 2100 (IPCC), with �C ∈

[
0.2 1.5

]
 

and �C ∈
[
0.01 0.15

]
 (Figure 2). In our empirical example, we used 

40  members from the Community Earth System Model Large 
Ensemble (CESM-LE, Kay et al., 2015) to characterize the confidence 
envelope of sea ice, hence the ToEclimate and ToEpop.

3  |  CONCEPTUAL MODEL OF THE TIME 
OF EMERGENCE IN POPUL ATION

The time of emergence depends both on (1) the time-varying sig-
nal, T (t) estimated as the long-term monotonic trend (red trend 
in Figure 1) and (2) the noise based on the range of natural vari-
ability over some historical period (variations of the black time 
series in Figure 1, Section 2). Hence, it is important to under-
stand how the climate-driven trend in population growth rate 
and its year-specific stochastic variations are related to climate 
trend and variability (Section 3.2, Figure 1). Although previous 

F I G U R E  2  Illustrative figure of the time of emergence in climate (ToEclimate on left panel) and in populations (ToEpop on right panels) 
of four species along the gradient of life histories, from fast species (species 1) to slow species (species 4). The figure shows one time 
series simulated during the historical environment (black line) and forced environment (red line). The emergence thresholds are based on 
a 95% prediction interval of 1000 simulations (grey area). The natural variability in climate is σ = 0.5. The forced perturbation caused by 
anthropogenic climate change starts at year 80 resulting in a positive trend in climate. The values indicated on the panels show the time it 
takes for the signal to emerge after this year 80. Climate affects negatively maturation rate (slope of the linear relationship on logit scale: 
β = −0.125). Y-axis is different for each species
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theoretical studies have shown that the variance in annual 
population growth rates depends on the variance in climate in a 
stationary environment (Engen et al., 2005), we still lack a theo-
retical understanding on how the population trend and variabil-
ity respond to climate in a non-stationary environment. Hence, 
after introducing the methods to estimate the time of emer-
gence in population (Section 3.1), we discuss conceptually the 
links between the trend and variability of population and climate 
(Section 3.2, Figure 1). In addition, to partially shedding light on 
those concepts, we build on previous theoretical studies (Engen 
et al., 2005; Morris et al., 2008) to show analytically how the 
variance in annual population growth rates can be related (lin-
early for small environmental changes) to the climate variance in 
a stochastic and stationary environment by explicitly accounting 
for the functional relationship between climate and demographic 
rates (Section 3.3, Equation 8).

3.1  |  Methods to estimate ToEpop

As in climate (Section 2), population ecologists can use various meth-
ods to estimate the time of emergence in population ToEpop. Figure 2 
illustrates the signal threshold method used here (Section 2), where 
the time of emergence is the first year when the projected future 
state of a variable crosses a pre-defined emergence threshold based 
on the historical variations. For example, the projected future state 
of a population can be depicted by the gray envelope of future pro-
jections (red lines in Figures 1 and 2) under a specific forcing scenar-
ios based on a range of emissions of greenhouse gases (GHGs), while 
the emergence threshold can be determined from the gray envelope 
of historical population projections (black lines in Figures 1 and 2).

In ecological impact studies, the emergence threshold (e.g., hor-
izontal lines in Figures 1 and 2) can be interpreted as thresholds be-
yond which management-relevant impacts will occur and depend on 

F I G U R E  3  Relationship between 
ToEclimate (x-axis) and ToEpop (y-axis) for 
four life-history strategies (from fast 
(species 1) to slow (species 4)), whereby 
climate affects only one demographic 
parameter at a time (colored dots: blue is 
fertility, red is juvenile survival, orange is 
adult survival, and purple is maturation 
rate). Black lines represent the time when 
ToEpop = ToEclimate

(a)

(b)
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the management sensitivity to changes in climate conditions. Indeed, 
emergence thresholds are not necessarily set at the extreme 2.5% high 
or 2.5% low of the range of historical population variations (~2�) usu-
ally used in risk impact studies but can be set at any thresholds at which 
the decline or increase in population is perceived as unsustainable. For 
example, high management sensitivity threshold may be desirable for 
increasing species, whereby management actions are triggered by low 
emergence thresholds, for example, 60% prediction interval of popula-
tion growth distribution during the baseline period (Figure S3).

3.2  |  Factors influencing the ToEpop

Figure 2  shows that the time of emergence in populations varies 
among species. From a conceptual viewpoint, this depends on the 
sensitivity of the population growth rate to climate: ��∕�C (Figure 1). 
This sensitivity can be decomposed into two main components. 
First, it depends on the sensitivity of the demographic rates them-
selves �i (e.g., survival, reproduction) to climate ��i∕�C (panel 1 in 
the demographic rates box in Figure 1). Therefore, the functional 
relationships between climate and the demographic rates likely play 
a key role in the sensitivity of the population growth rate to climate. 
Second, ��∕�C depends on the sensitivity of the population growth 
rate to demographic rates ��∕��i (panel 2 in the demographic rates 
box in Figure 1). The latter is influenced by the species’ life history 
(Saether & Bakke, 2000). For instance, the “demographic buffering” 
hypothesis posits that in long-lived species, adult survival is ex-
pected to be buffered against environmental changes (environmen-
tal canalization sensu Gaillard & Yoccoz, 2003) and reproduction is 
expected to be more variable with stronger functional relationships 
with climate. The opposite patterns are expected in short-lived spe-
cies (see Hilde et al., 2020 for a review). Therefore, demographic 
rates of species with contrasting life histories are expected to be dif-
ferently influenced by climate, influencing, in turn, the sensitivity of 
the population growth rate to climate, the variance in annual popula-
tion growth rates, and the climate-driven change in population. As a 
result, time of emergence in populations is expected to vary among 
species, but the pattern of such variations is difficult to predict con-
ceptually. Indeed, in next section, we show that the magnitude of 
the demographic response to climate (i.e., ��i∕�C) increases both the 
variance and the climate-driven trend of the population, with effect 
size that varies with the mean state of climate (see Appendix S1 and 
Figure 1), hence unknown resulting impact on ToEpop.

3.3  |  Population variability in a stationary 
environment

In this section, we show how the variance in annual population 
growth rates depends on the variance in climate, �2, and the func-
tional relationship between the mean climate C and demographic 
rates, assuming a stationary environment (i.e., one in which the mean 
C and variance �2 do not vary over time). For a structured population 

model of the form nt+1 = Atnt (see Section 4, Figure 1) in a stationary 
environment characterized by small variations, the environmental 
variance of the population growth rate �t (such that Nt+1 = �tNt) can 
be approximated (first-degree Taylor approximation) by (see Engen 
et al., 1998, 2005):

with �, the vector of mean demographic parameters including fertility, 
survival of juveniles and adult, and maturation rates (Table 1).

This variance is important as it influences the long-term stochas-
tic growth rate of the population:

Let us assume that the environment affects only one demo-
graphic rate, �i (the other rates �j remain constant over time), then 
Equation (1) simplifies as:

The demographic rate �i is a function of a climatic variable Ct. 
�i is also affected by other unknown variables generating environ-
mental stochasticity �, such as observation and process errors. � is 
a stochastic environmental noise of mean 0, and variance var

(
�t
)
 

and is considered as an additional variability independent from C. 
For example, let us assume that �i is an inverse logit function of a 
linear function of C:

where �0 and �1 are the constant regression coefficient of the func-
tional relationship between climate and the demographic rate (Figure 
1); g is the inverse logit link function so that �i ∈

[
0 1

]
. Applying the 

second-order Taylor expansion, the variance of the demographic rate 
�i is:

with �2 the variance of the climatic variable C and

Hence, Equation (3) can be simplified as:

(1)var
(
�t
)
=

∑
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��
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��

��j |�j=�j
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,
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T
log‖AT−1⋯A0n (0) ‖ .

(3)var
(
�t
)
=
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��

��i |�i=�i

)2

var
(
�it
)
.

(4)�it = �i
(
Ct , �t

)
= g

(
y = �0Ct + �1 + �t

)
,

(5)var
(
�it
)
≈ (g� (y) )2var (y) =
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��i

�C |C=C

)2 (
�2
0
�2 + var(�t)

2
)
,

(6)��i
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exp( − �0C − �)
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.
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)2 (
��i
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)2

(�2
0
�2 + var(�t)
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Applying the derivative chain rule and assuming � = 0, that is, 
that the demographic rate �i is a deterministic function of climate, 
like in our simulations, we obtain:

Hence, the year-specific stochastic variation depends on 
climate internal variability �2, the stochastic environmental 
variability, as well as the sensitivity of the population growth 
rate to the demographic rate and the sensitivity of the demo-
graphic rate to climate in a stationary environment that both 
define the overall the sensitivity of the population growth rate 
to climate.

In a non-stationary environment (Figure 1), C  is changing, 
and var (�) varies, in general, nonlinearly with C  depending on 
the sensitivity of the population growth rate to climate (��∕�C) 
(see Appendix S2 and Figure 1), this latter also influences the 
population trend. Hence, it is difficult to posit a priori how 
ToEpop will vary with the signal and noise in climate across life 
histories and demographic processes for various functional re-
lationship between climate and demographic rates. In Section 
4, we use a simulation framework to answer our five questions 
posed in the introduction, and discuss six testable hypotheses 
in Section 6.

4  |  TIME OF EMERGENCE IN 
POPUL ATIONS

4.1  |  Population projections

To project the population dynamics of species with four contrast-
ing life histories along the slow–fast gradient (Table 2), we use a 
simple two-stage climate-dependent population matrix model that 
permits to explore some of the diversity of life cycles (Caswell, 
2001; Neubert & Caswell, 2000; Figure 1). The model distinguishes 
non-reproducing juveniles and reproducing adults (see life cycle in 
Figure 1). The population is projected from year t to year t + 1 by:

with nt the population vector made of the abundances of juveniles and 
adults and A the population transition matrix including demographic 
rates �

[(
Ct

)]
 that are defined by specific functional relationship with 

climate C (Figure 1, Figure S1). The demographic rates are the survival 
of juveniles Sj and adults Sa, the development rate of juveniles into 
adults � (maturation rate), and the fertility of adults F.

(8)var
(
�t
)
= �2

0
�2

(
��

�C |C=C

)2

.

(9)nt+1 = A
(
�
[(
Ct

)])
nt,

(10)A =

⎡
⎢⎢⎣
Sj (1−�) F

Sj� Sa

⎤
⎥⎥⎦
.

Species 1 Species 2 Species 3 Species 4

Life history strategies

Reproductive strategy Semelparous Iteroparous Iteroparous Iteroparous

Developmental strategy Precocious Precocious Delayed Ex-Delayed

Survival strategy Short-lived Short-lived Long-lived Ex-Long-lived

Demographic rates

Annual fertility rate 5.06 3.00 1.00 0.50

Juvenile survival prob. 0.20 0.30 0.40 0.60

Adult survival prob. 0.03 0.39 0.83 0.93

Maturation rate 0.95 0.60 0.30 0.11

Life history outcomes

Generation time 2.04 2.77 7.40 16.30

Life expectancy at birth 1.21 1.47 2.39 4.17

Remaining life at 
adulthood

1.03 1.63 6.02 14.29

Probability to return to 
adult state

0.03 0.39 0.83 0.93

Note: The fertility (F is the number of offspring that are produced per adult female in year t) 
is reported here. The fecundity (b is the number of offspring born per unit time per female) is 
discounted by the probability that an adult will actually survive from the time of the census to the 
birth pulse (F = bSa). The deterministic population growth rate is one for all species. The generation 
time (in years) is the mean age of parents (equation 14 of Bienvenu & Legendre, 2015), from the 
fundamental matrix the following demographic outputs are calculated: the mean life expectancy 
at birth and the mean remaining life at adulthood (equation 20 of Roth & Caswell, 2018); the 
probability to return to the adult state (from equation 47 of Roth & Caswell, 2018 using state A in 
Figure 2). Ex stands for extreme.

TA B L E  2  Demographic rates and 
outcomes for the four life-history 
strategies (species in columns)
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This model permits the simulation of population dynamics 
of species with four contrasting life histories with increasing 
generation time (the mean age of mothers at child birth), which 
is a reliable metric to rank species along the continuum of life-
history variation (Gaillard et al., 2005). Species differ in terms of 
reproductive strategy (semelparous vs. iteroparous), age at first 
reproduction (precocial vs. delayed; Neubert & Caswell, 2000), 
and lifespan (short vs. long) and thus range along the slow–fast 
continuum of life-history variation (Gaillard et al., 2016) from fast 
species with short generation time, high reproductive output, and 
short lifespan (species 1) to slow species with opposite character-
istics (species 4; Table 2). For example, species 1 represents or-
ganisms with rapid life cycle development, only one reproductive 
event in their lifetime and high fecundity (b ∼ 168) (Table 2), such 
as many annual plants and insects. Species 2 are short-lived iter-
oparous species producing 7–8 offspring per unit time per female 
such as small mammals and birds. At the other end of the spec-
trum, species 4 are long-lived species with delayed first repro-
duction, low reproductive output per breeding event, and long 
lifespan such as primates, whales, or albatross. While these spe-
cies do not capture the full diversity of life history, especially for 
plants that exhibit a vast amount of life-history variations, they 
provide a reasonable sample of characteristic traits across a rep-
resentative range. Indeed, Salguero-Gómez et al. (2016) showed 
that the first axis of life-history variations of 418 plant species 
worldwide representing the slow–fast continuum explains 34% 
of the variation in plant life-history strategies, while it explains 
even a higher percentage of variations (60%–80%) among mam-
mals (Oli, 2004), birds (Sæther, 1987), and reptiles (Bauwens & 
Diaz-Uriarte, 1997).

We include the effects of climate acting on only one demo-
graphic parameter at a time �i and assume that the inter-annual 
variability in population growth rates is induced by climate only 
(i.e., � = 0 in Equation 7). In each case, the functional relationship 
between demographic rates and climate �i (C) is linear, sigmoid, or 
a bell-shaped curve functions (Figure 1, Figure S1) and is defined by 
Equation 4 with � = 0 and �1 = �ih the mean demographic parameter 
in the historical unperturbed environment that leads to a stable pop-
ulation with C = 0 (Table 1). Specifically, relationships can be linear 
functions on the real scale, with

and results are shown only in Figure S4 for all demographic rates. 
Relationships can be sigmoid functions, with

and g is the inverse logit link function. Relationships can be bell-shaped 
curves functions with quadratic functional relationship between de-
mographic rate and climate:

For most demographic rates, g is the inverse logit link function so that 
�i ∈

[
0 1

]
, but not for fertilities of species 1–3 that vary on the real scale.

To characterize a reasonable range of demographic rates and life-
time outcomes in the set of projected environmental conditions, �0 
varies in a specific range that depends on the functional relationship. 
For linear functional relationships between climate and demographic 
parameters (Equation 11), the slope varies as �0 ∈

[
− 0.03 0.03

]
 

(Figure S4). For sigmoid functional relationships, the slope varies as 
�0 ∈

[
− 0.15 0.15

]
 (Figure 3a). For bell-shaped functional relation-

ships the slope vary as: �0 ∈
[
− 0.025 to 0.01

]
 (Figure 3b).

We calculate the time of emergence of population using the thresh-
old methods following the same methodology as for climate (Section 
2). We assume that the historical population is stable in an unperturbed 
stationary environment with C = 0 and variance �2; that is, the stochas-
tic long-run growth rate is null: ln

(
�s
)
= 0 (calculated from Equation 2). 

ln
(
�s
)
 depends on variance in annual population growth rates var (�) 

(Lande et al., 2003; Tuljapurkar & Orzack, 1980) that is driven by the 
natural climate variability �2 (Section 3). Climate fluctuations that in-
crease the variance of demographic rates usually decrease the stochas-
tic long-run growth rate of populations (Engen et al., 2005; Lande et al., 
2003; Tuljapurkar, 1982). Hence, to set ln

(
�s
)
= 0 across environmen-

tal historical conditions, the vector of demographic parameters � is 
slightly tuned for each environmental variability �.

4.2  |  Time of emergence in population depends on 
climate variability and trend

We found that ToEpop can be predicted by the climate signal-to-noise 
ratio and occurs earlier as the signal-to-noise in climate becomes 
larger (Figure 3). Indeed, the ToEpop is linearly and positively corre-
lated to the ToEclimate (Figure 3) as both the variability and trend in 
population are positively related to the natural variability and trend 
of climate (Figure 4).

Remarkably, the ToEpop can be earlier or later than the ToEclimate , 
depending on the life-history strategies and the demographic pro-
cesses by which climate affects demographic rates (Figure 3). For 
example, the ToEpop is earlier than ToEclimate for iteroparous species 
for which climate affects maturation or adult survival rates for long-
lived species (species 3 and 4) or juvenile survival for short-lived 
species (species 2). Hence, some life histories may permit an earlier 
detection of the time at which the signal of anthropogenic climate 
change emerges from the noise of natural climate variability.

4.3  |  Time of emergence in population across life 
histories and demographic processes

The ToEpop can be predicted by life histories and demographic processes 
(Figures 3 and 5). Across life histories, the ToEpop is the largest for species 
1 (semelparous short-lived strategy), which have on average the larg-
est population variations (Table 2, Figure 5). Across demographic pro-
cesses, the ToEpop is the longest for the fertility (Table 2). For iteroparous 

(11)�i
(
Ct

)
= �0Ct + �ih,

(12)�i
(
Ct

)
= = g

(
y = �0Ct + �ih

)
,

(13)�i
(
Ct

)
= = g

(
y = �0C

2
t
+ �ih

)
.



    |  2245JENOUVRIER et al.

F I G U R E  4  (a) The variability in annual population growth rates depends on the natural variability of climate � , in both in the historical and 
perturbed environments (example for � = 0.125, � = 0.05). (b) The trend of population growth rate at the time of emergence in population 
depends on the trend of climate � (example for � = 0.125 and � = 0.5). Colors refer to the climate-dependent demographic rate: blue is 
fertility, red is juvenile survival, orange is adult survival, and purple is maturation rate. The dots on (a) stand for the forced environment while 
square shows the historical environment. Panels show four different life-history strategies, from fast (species 1) to slow (species 4)

(a)

(b)
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species, the ToEpop depends on the sensitivity of the population growth 
rate to the demographic rate affected by climate and occurs earlier as 
the sensitivity increases (Figure 5). As a consequence, the ToEpop occurs 
later as species longevity increases when climate affects fertility and 
juvenile survival. However, the opposite pattern occurs when climate 
affects adult survival and maturation rate: ToEpop occurs earlier for long-
lived than short-lived species (Figure 3, Table 2).

4.4  |  Time of emergence in population among 
different functional relationships between 
climate and demographic rates

Surprisingly, the type of functional relationship between climate 
and demographic rates and its slope have little effect on the 
ToEpop (Figures 3 and 6). While the variability of the population in 

F I G U R E  5  ToEpop as function of the 
sensitivity of the population growth 
rate to the demographic rate affected 
by climate. The ToEpop is the median 
across various natural variability and 
trend of climate and various slope in the 
functional relationship between climate 
and the demographic rate (Table 2). The 
sensitivity of the population growth rate 
to the demographic rate is calculated for 
the averaged population matrix in the 
historical environment. Symbols refer to 
species

F I G U R E  6  ToEpop as function of the absolute slope of the functional relationship between climate and demographic rate �0. Example for a 
climate trend of � = 0.05 and climate variability of � = 0.5. Colors refer to demographic pathway by which climate affects demographic rates: 
blue is fertility, red is juvenile survival, orange is adult survival, and purple is maturation rate. The dots stand for 𝛽0 > 0, while square shows 
𝛽0 < 0. Panels show four life-history strategies
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the historical environment is smaller for bell shape versus linear 
relationships (see Equation 9, Section 3), both the trend and vari-
ability are larger for bell shape relationship in the non-stationary 
forced environment (Table 3). Indeed, the variability in the forced 
environment increases substantially compared to the variability in 
the historical environment for bell shape, while it does not change 
for linear relationships (Table 3). However, the ratio of the trend 
to the magnitude of variability is very similar between bell shape 
and linear relationship, and the patterns of time of emergence are 
thus very similar regardless of the shape of the functional rela-
tionship. The slope of those relationships has also little impact of 
the ToEpop relative to life histories and demographic processes, 

probably because it affects both the trend and variability simul-
taneously (Figure 1).

5  |  TIME OF EMERGENCE OF EMPEROR 
PENGUIN POPUL ATION

The emperor penguin is a relevant example to test our theoretical pre-
dictions, specifically that long-lived species (comparable to species 4) 
may permit an earlier detection of anthropogenic climate change in-
fluence in population growth rates (Figure 3, Section 4.2). Penguins 
are threatened by future climate change as they rely on sea ice for 

TA B L E  3  Time of emergence, trend and variability of population growth rate, with its sensitivity to climate across all simulations for four 
life-history strategies (species in row) and four demographic pathways by which climate affects demography rates (columns)

LINEAR BELL SHAPE

F Sj Sa � F Sj Sa �

ToEpop

Species 1 133 134 125 140 133 126 125 146

Species 2 102 64 70 87 106 68 73 86

Species 3 116 73 56 63 107 75 60 65

Species 4 123 99 54 54 120 105 58 58

TToEpop∕varToEpop

Species 1 0.04 0.04 0.04 0.04 0.06 0.04 0.02 0.06

Species 2 0.05 0.11 0.09 0.07 0.06 0.11 0.09 0.07

Species 3 0.03 0.08 0.15 0.11 0.01 0.08 0.14 0.12

Species 4 0.03 0.05 0.16 0.16 0.03 0.03 0.15 0.16

TToEpop

Species 1 0.0010 0.0032 0.0002 0.0003 0.0041 0.0067 0.0001 0.0085

Species 2 0.0010 0.0021 0.0010 0.0008 0.0027 0.0021 0.0011 0.0018

Species 3 0.0008 0.0008 0.0008 0.0006 0.0007 0.0010 0.0007 0.0005

Species 4 0.0002 0.0004 0.0004 0.0003 0.0005 0.0004 0.0003 0.0002

varToEpop

Species 1 0.024 0.088 0.003 0.005 0.092 0.216 0.005 0.149

Species 2 0.019 0.019 0.011 0.013 0.047 0.021 0.014 0.027

Species 3 0.024 0.010 0.005 0.005 0.054 0.013 0.005 0.005

Species 4 0.006 0.008 0.002 0.002 0.023 0.020 0.002 0.002
� �

� C
C=CToEpop

Species 1 0.010 0.019 0.003 0.004 0.0018 0.0060 0.0002 0.0005

Species 2 0.012 0.024 0.011 0.009 0.0022 0.0048 0.0023 0.0021

Species 3 0.014 0.009 0.010 0.007 0.0025 0.0019 0.0021 0.0013

Species 4 0.001 0.003 0.005 0.004 0.0005 0.0009 0.0011 0.0008

var
(
�t
)

Species 1 0.025 0.108 0.003 0.006 0.005 0.022 0.001 0.002

Species 2 0.019 0.019 0.011 0.014 0.003 0.004 0.002 0.003

Species 3 0.031 0.010 0.006 0.005 0.007 0.002 0.001 0.001

Species 4 0.008 0.009 0.003 0.002 0.002 0.002 0.001 0.000

Note: Median of the time of emergence of population is denoted ToEpop. At the time of emergence in the population: the median of the trend is TToEpop,  
the median of the variability in the forced environment is varToEpop and their ratio is TToEpop∕varToEpop at ToEpop; and the median of the sensitivity of the 
population growth rate to climate is � �

� C
C=CToEpop

. Historical variability is denoted var
(
�t
)
.
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breeding substrate and warming is driving reductions in sea ice cover 
(Jenouvrier et al., 2014, 2020, 2021). Adult survival is strongly affected 
by sea ice during four seasons of the life cycle resulting in complex, 
nonlinear bell shape relationships (Jenouvrier et al., 2012). Adult sur-
vival is maximized at intermediate levels of sea ice because neither the 
complete absence of sea ice (low food resources and/or high preda-
tion) nor heavy and persistent sea ice (longer foraging trips) provide 
satisfactory conditions. Thus, in contrast to our theoretical examples, 
relationships between climate and demographic rates are even more 
complex for the emperor penguin. Indeed, sea ice affects a multitude 
of demographic rates during various seasons, with different functional 
responses among sexes. Furthermore, other processes contribute to 
the variability in population growth rate (i.e., 𝜀 > > 0 in Equation 7, re-
lated to sampling variance and process variance due to unmeasured 
environmental conditions such as local fast ice dynamics or large-scale 
atmospheric perturbations, see Trathan et al., 2020 for a review).

5.1  |  Emperor penguin life cycle

The life cycle of emperor penguins includes five stages according 
to breeding status and sex (Figure 7): male and female pre-breeders 
(birds that have yet to breed for the first time), breeding pairs, and 
male and female non-breeders (birds that have bred before but do 
not do so in the current year). The demographic rates describing the 
transitions between these stages from year t to t + 1 include the fol-
lowing: the probability that an individual of a given stage returns to 
the breeding site, the probability of mating as a function of the avail-
ability of potential mates, the probability of breeding success (raising 
an offspring given that the female lays an egg), the primary sex ratio 
(fixed at 0.5), the survival of offspring during the first year at sea, 
and the annual survival of pre-breeders, non-breeders, and male and

The functional relationships between demographic parameters 
and sea ice concentration anomalies depend on four seasons (de-
scribed in detail in Jenouvrier et al., 2012):

1.	 The non-breeding season from January to March,
2.	 The arrival, copulation, and laying period (April–May), hereafter 

called the laying period,
3.	 The incubation period (June–July),
4.	 The rearing period (August–December).

Relationships are sigmoid functions, with linear (�2 = 0) or qua-
dratic functional relationship between demographic rate and sea ice 
x on the logit scale:

including the parameter estimates �k and the environmental stochas-
ticity � generated by other unknown variables. � is a stochastic envi-
ronmental noise of mean 0, and variance var

(
�t
)
 is considered as an 

additional variability independent from sea ice. g is the inverse logit link 
function so that �i ∈

[
0, 1

]
.

5.2  |  Emissions scenario, climate model, and 
climate outputs

The climate outputs from multiple AOGCMs (Atmosphere Ocean 
General Circulation Model) are publicly available in a standardized 
format on the Coupled Model Intercomparison Project (CMIP) 
website. CMIP5 provides a framework for coordinated climate 
change experiments for assessment in the IPCC Fifth Assessment 
Report (AR5) in 2014 using four Representative Concentration 

(14)�i (x (t)) = = g(y = �0 + �1x (t) + �2x
(
t)2 + �t

)
,

F I G U R E  7  Annual life cycle graph for the emperor penguin. It represents a two-sex model with males (black) and females (gray). Fertilities 
are shown by dotted lines, and the transitions between stages of individuals already present in the population are represented by solid  
lines (see figure 1 from Jenouvrier et al., 2010 for more details on seasonal cycle of the emperor penguin)
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Pathways (RCP) describing future GHG concentration trajectories 
based on socio-economic assumptions. Newer emissions forcing 
scenarios have been developed and used for climate projections in 
CMIP6 for the Sixth Assessment Report (AR6) released in August 
2021. These “Shared Socioeconomic Pathways” (O'Neill et al., 
2016) differ in the time evolution of specific climate forcers, such 
as GHG and aerosol emissions, but bracket the same range in en-
ergy flux variations in the atmosphere caused by anthropogenic 
factors of climate change (i.e., radiative forcing range) as the RCP 
scenarios.

There are several sources of uncertainties in climate projections 
that affect the time of emergence, including the structural uncer-
tainty associated with the different climate models used to make 
projections, and the scenario uncertainty associated with different 
future emission pathways (Deser et al., 2012; Hawkins & Sutton, 
2009; Schlunegger et al., 2020). However, here we use one climate 
model and one scenario to obtain the sea ice outputs from a large 
ensemble (Kay et al., 2015) for illustrative purposes, as large ensem-
ble simulations using several scenarios from several climate models 
were not available at the time of our analysis.

Specifically, we used RCP 8.5  high-emission scenario 
(Meinshausen et al., 2011) that represents a future in which green-
house gas emissions continue unabated. RCP 8.5 is considered as 
a useful scenario for quantifying physical climate risk, especially 
over near- to midterm policy-relevant time horizons (Schwalm et al., 
2020). Indeed, the total cumulative CO2 emissions since 2005 pro-
jected under RCP8.5 by 2020 are in close agreement with historical 
observed total cumulative CO2 emissions (Schwalm et al., 2020). In 
addition, the total cumulative CO2 emissions since 2005 projected 
under RCP8.5 by 2050 agree well with energy forecasts under cur-
rent and stated policies by 2050, with still highly plausible levels of 
CO2 emissions by 2100 (Schwalm et al., 2020).

We use sea ice outputs from a large ensemble produced by the 
Community Earth System Model (CESM), development of which 
is coordinated by the National Center for Atmospheric Research 
(NCAR), allowing us to characterize the natural climate variability 
(Kay et al., 2015). In addition, the CESM model resolves very well 
the Antarctic sea ice conditions that influence the most emperor 
penguin population growth rates (Jenouvrier et al., 2020).

5.3  |  Sea ice and penguin projections

We calculate ToEpop for the 54  known colonies around the coast 
of Antarctica (Fretwell et al., 2012; Fretwell & Trathan, 2009; 
Figure S7) following the approach outlined in Section 2 based on 
projections of population growth rates driven by sea ice changes. 
Specifically, to project emperor penguin population growth rate at 
each colony, we link a climate-dependent demographic matrix model 
to sea ice projections (Section 5.2). Our sea ice-dependent demo-
graphic model includes demographic rates that depend on the sea 
ice conditions during four seasons (non-breeding, laying, incubat-
ing, and rearing; Section 5.1), and accounts for differences in the 

impact of sea ice conditions on adult survival between sexes (see 
Supporting Information S3 for more details). These relationships and 
their estimations are described in detail in Jenouvrier et al. (2012). 
The model includes sources of stochasticity and uncertainties: (1) 
parameter uncertainty describes statistical uncertainty in the esti-
mates of demographic parameters (e.g., survival, and their responses 
to sea ice concentration anomalies) and (2) process variance (i.e., en-
vironmental stochasticity) reflects true “unexplained” temporal vari-
ance in demographic rates that is not accounted for by sea ice, which 
when combined reflect the term var (�) in Equation (7), Section 3. 
As we ignored these context-specific uncertainties in our theoreti-
cal simulation, we present the results with two scenarios: with or 
without var (�).

For our historical environment, we used sea ice projections from 
1920 to 1950, and for the forced environment we used sea ice pro-
jections from 1950 to 2100 under climate scenario RCP 8.5 (Section 
5.2). We assume that the population is stable in the historical, un-
perturbed environment and our emergence threshold is based on 
the 95% prediction interval. This permits us to characterize when 
anthropogenic signals in emperor penguin populations are very likely 
to emerge from stochastic noise.

5.4  |  Time of emergence in sea ice and penguin

The ToEclimate in sea ice varies among seasons and colonies (Figure 8, 
Figure S5) and as a consequence, the ToEpop varies among colo-
nies. The ToE in sea ice and populations are earlier for colonies 
in East Antarctica, than in the Ross, Bellingshausen, Amundsen, 
and Weddell Seas (Figure S7). The variability and trend are nega-
tively related (Figure S6), so regions showing a larger signal also 
exhibit larger variability in climate and population as sea ice loss 
are projected into the future. When the environmental stochas-
ticity generated by other factors than sea ice (var (�)) is ignored, 
the ToEpop occurs earlier than climate for most colonies, except 
the ones located from Enderby Land to Terre Adelie Land in East 
Antarctica for which the ToE in sea ice is the earliest. When pa-
rameter uncertainty and process variance are included, the ToEpop 
occurs later than ToEclimate for almost all colonies, except the few 
colonies in the Bellingshausen and Amundsen Seas for sea ice dur-
ing the rearing season.

6  |  DISCUSSION

Anthropogenic climate change has triggered impacts on ecosystems 
worldwide, yet the timing at which these biological impacts can be 
formally detected has been insufficiently described (Beaumont et al., 
2011). Here we focused on detecting climate-driven signals in popu-
lation, but this approach can be applied to climate-related impacts 
on changes in distribution by accounting for the temporal dynam-
ics in those spatial changes. Heretofore, changes in distribution are 
often assumed to depend only on the climate signal and analyses 
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using, for example, species distribution models often ignore climate 
variability (but see Zimmermann et al., 2009).

We found that the time of emergence of climate-driven signals 
in population dynamics ToEpop depends on (1) the magnitude of cli-
mate change and variability and (2) life histories and demographic 
processes by which climate affects the population and we propose 
six testable predictions. In the context of detection and attribution 
of climate change, we find that some life histories magnify signal-to-
noise ratios in climate (ToEclimate), enabling observations of popula-
tions to yield earlier detection of anthropogenic climate change than 
observations of a climate variable itself, while other demographic 
dynamics prolong the detection of anthropogenic climate change 
relative to ToEclimate.

In our emperor penguin example, density-dependent processes 
occur because of sex-biased mortality in response to sea ice, which 
displays spatiotemporal autocorrelation, affecting reproduction 
and survival. These dynamics result in complex covariations among 
demographic rates, and the life cycle is structured in several stages. 
Our main theoretical result—some life histories enable an earlier 
ToEpop than ToEclimate—is well supported by our example when the 
noise is driven by climate natural variability and all complexities 
arising in natural systems discussed in the following sections are 
included.

However, when stochastic variations from observation error 
and other biotic and abiotic processes other than sea ice natural 

variability are included, the ToEpop occurs later than ToEclimate for al-
most all colonies. Nevertheless, sampling and process errors can be 
reduced by increasing monitoring effort and improving our under-
standing of how the biological systems respond to biotic and abiotic 
factors. Furthermore, aggregating abundance across space attenu-
ates the random component of the underlying growth rates and may 
permit a better detection of anthropogenic signals in populations 
(Che-Castaldo et al., 2017).

Regardless of whether the stochastic noise associated with other 
sources than natural variability in climate occludes an earlier ToEpop 
than ToEclimate, the time of emergence identifies when the signal of 
anthropogenic climate change in populations can be quantitatively 
distinguished from year-specific stochastic variation. Quantifying 
ToEpop is critically needed to provide relevant cost/benefit evalu-
ations for climate mitigation and adaptation strategies, as well as 
accurate assessments of the risks climate change poses to conserva-
tion and management of ecosystems (Hawkins et al., 2020; Hawkins 
& Sutton, 2012). In this context, we propose a road map for future 
research.

6.1  |  ToEpopis predicted from ToEclimate

We find that the ToEpop depends almost linearly on the ToEclimate 
(Figure 3). Hence, we suggest the following hypotheses.

F I G U R E  8  Difference between the time of emergence in sea ice and ToEpop of emperor penguin (ToEclimate − ToEpop) for the 54 known 
colonies (x-axis) and four seasons (color). The calculation of ToEpop accounts for var (�) generated by parameter uncertainty and process 
variance (i.e., environmental stochasticity) (a) or not (b)
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[H1] Tropical species may permit an earlier detection of anthro-
pogenic climate change than temperate species, especially if tem-
perature in summer affects their demographic rates. Many climate 
studies have shown that the ToE in temperature is earlier for low-
latitude regions than for mid-latitude regions and is of interme-
diate duration for polar regions (Hawkins et al., 2020; Hawkins 
& Sutton, 2012; Mahlstein et al., 2011, 2012). The emergence of 
signal of anthropogenic climate warming occurs the soonest in the 
summer season at low latitudes (Mahlstein et al., 2011). The stud-
ies of Beaumont et al. (2011) and Sorte et al. (2019) support this 
hypothesis: tropical and subtropical ecosystems, and mangroves, 
face extreme conditions earliest than boreal forests and tundra bi-
omes because the low SD compensates for the relatively small ab-
solute changes (Beaumont et al., 2011). Passerine bird species that 
migrate between temperate breeding grounds in North America 
and southern tropical wintering grounds experience an earlier 
ToEclimate than species wintering in the subtropics (Sorte et al., 
2019). ToEclimate exceeding 2300 occurred only in the northern 
latitudes corresponding to the southern non-breeding grounds of 
some birds (Sorte et al., 2019). Studies on the thermal tolerance of 
terrestrial ectotherms also support this hypothesis. For example, 
tropical insects are relatively sensitive to temperature change and 
are currently living very close to their optimal temperature, while 
species at higher latitudes have broader thermal tolerance and are 
living in climates that are currently cooler than their physiological 
optima (Deutsch et al., 2008).

[H2] In terrestrial systems, species affected by temperature may 
yield earlier detection of anthropogenic climate change than species 
affected by precipitation. Climate studies have shown that changes 
in precipitation are often harder to detect because natural vari-
ability in precipitation is larger than in temperature (Giorgi & 
Bi, 2009). For example, the ToEclimate in precipitation extremes 
does not occur prior to 2100 in many regions (King et al., 2015). 
However, an anthropogenic signal is emerging soon in winter-
time heavy precipitation events over much of Eurasia and North 
America, so species in these regions may experience earlier ToEpop

. However, this hypothesis depends also on the sensitivity of the 
population growth rate to temperature versus precipitation. In a 
comparative study of time series of 165 plants populations around 
the globe, Compagnoni et al. (2021) found that demographic re-
sponses to climate are larger for precipitation than temperature, 
but large noise hampers the detection of the impact of precipita-
tion on plant populations.

[H3] In marine systems, species dependent on the upper ocean bi-
ological cycling of carbon, photosynthetic activity, or salinity may yield 
later detection of anthropogenic climate change than species affected 
by sea surface temperature or pH. Several studies found that variables 
integrating the effect of invading anthropogenic carbon into the 
global ocean (e.g., pH) and sea surface temperature emerged most 
rapidly while variables related to the upper ocean mixing, associated 
changes in biological processes (e.g., export of organic matter, pri-
mary productivity) and salinity, only emerge after several decades 
(Henson et al., 2017; Schlunegger et al., 2020).

6.2  |  ToE in population is predicted from life 
histories and demographic processes

The ToEpop can be also predicted by life histories and demographic 
processes that will interact with our previous three hypotheses 
based on the relationships between ToEpop and ToEclimate.

[H4]ToEpop occurs later in selmeparous species. Semelparous species, 
such as salmon, bamboos, and monocarpic herbs, exhibit a “big-bang 
reproduction” whereby individuals die immediately after the first re-
production (e.g., Metcalf et al., 2003). As a consequence, their popu-
lation dynamics is often more variable than population of iteroparous 
species. Indeed, the various reproductive events of iteroparous spe-
cies may be spread out throughout their life as a bet-hedging strategy 
in unpredictable environments, buffering the effect of environmental 
variability on population growth rate (Hilde et al., 2020). However, 
there is little theory available to predict how the degree of iteroparity 
might influence the demographic response to climate. A comparative 
study found no correlation between the degree of iteroparity with 
population responses to climate in plants (Compagnoni et al., 2021). 
Further work should entail a direct comparison of the influence of the 
generation time and degree of iteroparity on ToEpop.

[H5] TheToEpop of iteropareous species depends on the sensitiv-
ity of the population growth rate to the demographic parameter af-
fected by climate (Figure 5). For population dynamics that are 
mainly affected by the impact of climate on adult survival during 
the non-breeding season (“tub” hypothesis; Sæther et al., 2004), 
the ToEpop will occur earlier in long-lived species than short-lived 
species. This might be the case for many migratory species, when 
the climate conditions affects survival during the migration, and in 
the non-breeding quarters (Sorte et al., 2019). The “tap” hypoth-
esis (Sæther et al., 2004) proposes that environmental conditions 
during the breeding season affect population size the following 
year because it influences the inflow of new recruits into the 
population. The ToEpop in population occurs earlier if climate con-
ditions during the breeding season have carry-over effect on de-
mographic rates influencing the number of recruits, as observed in 
many species (e.g., Szostek & Becker, 2015). Specifically, this will 
occur when climate affects juvenile survival for short-lived species 
and maturation rate for long-lived species. Obviously, the under-
lying processes of the “tub-tap” effects are not mutually exclusive, 
and multiple demographic rates are affected by climate that will 
eventually shorten or prolong the ToEpop.

[H6] Iteropareous species can act as earlier indicators of the de-
tection of anthropogenic climate change than climate itself. Earlier 
ToEpop than ToEclimate occurs when climate affects the demographic 
rates that most influence the population growth rate: adult sur-
vival and maturity for long-lived iteroparous species and juvenile 
survival for short-lived ones (Figures 3 and 5). This hypothesis is 
supported by our empirical example: the population growth rate 
is mostly sensitive to the adult survival (Jenouvrier et al., 2010), 
which is affected by sea ice conditions (Jenouvrier et al., 2012). 
Here, we found that the ToEpop occurs earlier than ToEclimate 
when process variance due to other environmental factors and 
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demographic parameter uncertainties is ignored (Figure 8a). In 
natural system, the process variance may be large, obscuring an 
earlier detection of anthropogenic climate change in populations 
than in climate variables itself (Figure 8b, Sæther et al., 2004, 
2007). However, if the goal is to use earlier indicator species in the 
detection of anthropogenic climate change, it is possible to reduce 
the demographic parameter uncertainties with higher sampling ef-
fort and decrease the process variance by a better understanding 
of the factors affecting the demographic processes.

6.3  |  Road map for the future

We provide the first theoretical study of the ToEpop to understand 
the proximate mechanisms of the impact of climate change and varia-
bility and demographic processes using a simple model. We illustrate 
how to use a climate explicit population model to quantify ToEpop for 
emperor penguin, and argue that climate-dependent demographic 
models could be developed for several species allowing future com-
parative analysis. But many questions remained unanswered about 
the effect of more complex climate-driven demographic processes 
occurring in natural systems such as density dependence, autocor-
relation in climate, covariation among demographic rates, population 
structure, and multiple climate drivers, to name a few. We propose 
a road map for future research, and acknowledge that we only 
scratched the surface on these important topics.

6.3.1  |  Comparative studies of the ToE in 
population using climate explicit population models

Characterizing the time of emergence requires long-term time series 
to define the historical unperturbed state. For many species, the un-
perturbed state benchmark is not available as most long-term eco-
logical time series cover only recent decades while profound global 
changes were already underway. It is challenging to characterize ToE 
from observations in natural systems using statistical approaches, 
even in climate sciences. Hence, most of the climate studies have 
used climate outputs from atmospheric-oceanic global circulation 
models (AOGCMs) to quantify the ToEclimate (Hawkins et al., 2020; 
Hawkins & Sutton, 2012). Similarly, we propose to develop climate 
explicit population models to characterize the ToE in population. We 
have illustrated our approach using a simple structured population 
matrix model (Caswell, 2001), but other demographic, trait-based, or 
eco-evolutionary modeling frameworks can be developed.

We argue that the ToEpop can be quantified for many species al-
ready (Doak & Morris, 2010; Sæther et al., 2019; Treurnicht et al., 
2016) allowing comparative studies to address our specific hypoth-
eses on the variations of ToEpop across regions, ecosystems drivers, 
and species life histories. In recent decades, there is an increase in 
the number of studies measuring the effect of climate accounting for 
multiple seasonal and carry-over effects of climate on the complete 
life cycle of a species (Cordes et al., 2020; Doak & Morris, 2010; Iles 

& Jenouvrier, 2019; Jenouvrier, 2013; Ozgul et al., 2010). Although 
fewer studies have developed climate-dependent population model, 
the information is available in the literature to integrate the statistical 
relationships between climate and demographic rates into population 
models. The last step requires an interdisciplinary approach to use 
climate-dependent population models with projections of historical 
and future climate from AOGCMs (Iles & Jenouvrier, 2019; Jenouvrier, 
2013). AOGCMs project (often nonlinear) changes in climate over time, 
and critically, provide quantitative estimates of natural climate vari-
ability (Kay et al., 2015). We hope that ecologists will take advantage 
of the free availability of climate outputs in both the pre-industrial, 
historical, and future environment supervised by the Coupled Model 
Intercomparison Project (Section 5.2). The most recently completed 
phase of the project (CMIP6) includes more climate models and output 
variables than previous phases, and importantly, includes several large 
ensemble runs of the same AOGCMs and experiment to account for 
natural variability in climate models (Deser et al., 2020).

Finally, the key to quantifying ToEpop is to characterize the pop-
ulation variability in the historical stationary environment. This 
requires careful consideration of the demographic stochasticity, 
especially for small populations, environmental stochasticity not 
driven by climate, density dependence and interactions with other 
species, which can be incorporated in demographic models (Lande 
et al., 2003). Other important environmental drivers of population 
dynamics such as habitat quality and resource variability can be in-
corporated into demographic models to reduce the process variance 
in the historical environment, enabling an earlier detection of the 
impact of climate change on populations. This is particularly import-
ant as habitat loss and resources exploitation (land-use change, fish-
eries, and deforestation) are key threatening processes driving the 
global loss in biodiversity that have synergistic effects with climate 
change (Dobson et al., 2021; Lemmer et al., 2021; Mantyka-pringle 
et al., 2012). If the combined effects of those threats and climate 
change are greater than the effects of each threat individually, the 
climate-driven trend in population maybe larger than the climate-
driven trend without interaction with other threats, with potentially 
earlier detection of anthropogenic forced change in populations. 
On the other hand, if those threats augment noise in the system, 
that may reduce the signal-to-noise ratio and delay the detection 
of anthropogenic climate change relative to ToEclimate. For example, 
the effects of fragmentation and loss of important habitat types will 
reduce population size and increase the impact of demographic sto-
chasticity on the population dynamics (Hanski & Gaggiotti, 2004; 
Lande, 1998), which reduces the power of detecting any signal of cli-
mate variation. In addition, environmentally induced fluctuations in 
population size can be magnified by harvesting (harvest-interaction 
hypothesis) that may also prolong the ToEpop (Gamelon et al., 2019).

6.3.2  |  Density dependence

Our population model does not include density dependence. The im-
pact on the ToEpop will depend on the strength and type of the density 
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dependence (negative density dependence: exact compensation, over-
compensation, under-compensation, positive density dependence), 
the specific demographic rate that is affected by density dependence, 
the interaction between climate and density dependence, and the 
life history of the species. For example, populations with undercom-
pensating growth tend to respond slowly to environmental changes 
(Gamelon et al., 2017; Hansen et al., 2019), that may prolong the ToEpop

. For population declining in response to climate change, the results 
should be qualitatively similar, except if Allee effects occur (a posi-
tive relationship between demographic rates and population), thereby 
accelerating extinction rate at low density (Courchamp et al., 1999, 
2008). The Allee effect will increase the magnitude of the decline of 
the population trend and ToEpop will probably occur earlier (Lande, 
1998), but that will depend if an increase variance compensate for this 
larger signal. For population increasing in response to climate change, 
the patterns found without density dependence are more likely to 
change, that will depend on the emergence thresholds and carrying ca-
pacity of the population. For example, for invasive species, the emer-
gence thresholds may be defined well below the carrying capacity of 
the population; hence, the results would be qualitatively the same as 
without density dependence. However, if the emergence thresholds 
are defined above the carrying capacity, the signal of anthropogenic 
climate change in population cannot be formally distinguished from 
population variability.

6.3.3  |  Temporal autocorrelation in climate and 
demographic rates

Our simulated environment does not include autocorrelation in the 
climate time series, while most environmental variables exhibit a red 
noise that may increase the probability of extinction of populations 
(Mustin et al., 2013; Rescan et al., 2020). Environmental variables in 
reddened environments imply consecutive periods of favorable or un-
favorable conditions (positive autocorrelation), and a lower probability 
of at least one extremely poor year compared with white noise for a 
given time period, which may both decrease or increase population ex-
tinction risk (Schwager et al., 2006). The response of species to colored 
environmental variations depends on the timescale considered, the 
strength of environmental fluctuations, the particular life-history traits 
that are affected by environmental change and the species life cycle 
defining the sensitivity of population dynamics to these fluctuations 
(Engen et al., 2013). For example, a study from 454 plant and animal 
populations found that fast life histories show highest sensitivities to 
temporal autocorrelation in demographic rates across reproductive 
strategies, while slow life histories are less sensitive to temporal auto-
correlation, but their sensitivities increase for species with a large de-
gree of iteroparity (Paniw et al., 2017). An important question is then 
how the sensitivities to temporal autocorrelation in demographic rates 
are related to the ToEpop, and can be addressed by incorporating such 
autocorrelation in our current framework. Since the patterns of the 
sensitivities of the population growth rate to both inter-annual vari-
ability and temporal autocorrelation in demographic rates are similar 

(Iles et al., 2019; Paniw et al., 2017), and the influence of autocorre-
lations on the population variability driven by environmental noise is 
small (Engen et al., 2013), we do not expect that including temporal 
autocorrelation will change our six hypothesis.

6.3.4  |  Correlation among demographic rates

Correlations among demographic rates can occur when climate af-
fects rates simultaneously and were ignored in our simulations. 
Positive covariation and autocorrelation in demographic rates tend 
to increase the variability in demographic rates, decreasing the 
stochastic growth rate and increasing the variability in population 
growth rates (Engen et al., 2013; Tuljapurkar et al., 2009). On the 
opposite, negative covariation and autocorrelation tend to decrease 
the variability in demographic rates, such as the survival–fecundity–
trade-offs that reduces the variance in the population growth rate 
(Colchero et al., 2019; Sæther & Engen, 2015). Correlations of op-
posite signs among the various demographic rates may cancel out 
the effect of each other, and the resulting effect on the population 
growth rate may be small. In addition, the life-history strategy and 
density dependence affect the population responses to covariation 
and autocorrelation in demographic rates (Colchero et al., 2019; Iles 
et al., 2019) making challenging to predict how the trend and varia-
bility in population, hence the ToEpop, will be affected by covariation 
among demographic rates. Demographic rate correlations had the 
largest effect on the population growth rate for life histories with 
short to medium generation time (Iles et al., 2019) that may amplify 
or dampen the detection of anthropogenic climate change.

6.3.5  |  Population structure

Our population model includes the simplest age-structure by aggre-
gating age-classes into two stages: juvenile and adult. Although this 
simple life cycle is useful to explore a wide range of life histories 
(Table 1), it leads to a reduced variance in annual population growth 
rates in an unperturbed environment (Colchero et al., 2019). In our 
definition, the ToEpop is based on the comparison of the variability 
between the unperturbed and perturbed environment. Hence, the 
resulting ToEpop should not be highly sensible to the structure of 
the population, except if the life cycle structure buffers or amplifies 
the population variability response to population structure in a non-
stationary environment.

The life cycle of many species is much more complex than our 
simulated life histories. For example, the life cycles of plants include 
cryptic life stages such as long-term seedbanks and dormant adults. 
The reproduction of plants is highly variable with some plants repro-
ducing vegetatively and seed mass and per-capita seed production 
ranging typically across six orders of magnitude (Kattge et al., 2011). 
Plants exhibit also an incredible range of longevity, from weeks to 
millennia (Peñuelas & Munné-Bosch, 2010). For example, an alpine 
carex, Carex curvuIa is a very slow-growing rhizomatous sedge and 
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can have a life span of 2000 years (Steinger et al., 1996). The range of 
temperature variations that this alpine flora can sustain (i.e., breath 
of thermal niche) is exceeding the worst climate warming scenarios 
(Körner & Hiltbrunner, 2021), suggesting that the time of emergence 
would be prolonged for those species. Those complex life-history 
traits are not exclusive to the plant kingdom, and further work fo-
cusing on how age, stage, and trait structure affect the dynamics of 
populations and potentially dampen or amplify the climate-driven 
variability in population (e.g., cohort resonance, Bjørnstad et al., 
2004), will provide fundamental insights to theoretical and applied 
research of the detection of anthropogenic climate change. For ex-
ample, Bjørnstad et al. (2004) showed that spectral frequencies of 
the catches of cod in the Skagerrak were not the dominant frequen-
cies of key environmental drivers, rather there was a spectral shift 
with a frequency peak at cod generational timescales, the so-called 
cohort resonance. Population dynamics may also potentially retain a 
memory of prior forcing, especially when climate events occurring in 
one season or stage of the life cycle affect individual performance 
in a subsequent season or stage (e.g., carry-over effects of climate; 
effect of climate at young age classes that may delay age at first 
recruitment; Hollowed & Sundby, 2014; Lindström & Kokko, 2002; 
Ranta et al., 2005; effect of climate on dormant stages; Hairston Jr., 
1996).

6.3.6  |  Multiple climate drivers

Our modeling framework includes only a single environmental time 
series. The cumulative integrations of white-noise atmospheric 
forcing in ecosystem drivers can generate population responses 
that are characterized by strong transitions and prolonged appar-
ent state changes in marine ecosystems that will affect the ToEpop 
(Di Lorenzo & Ohman, 2013). In addition, integrating multiple driv-
ers to characterize the ToEpop is important, as different climate var-
iables affect organisms at various seasons and stages of their life 
cycle, sometimes in opposite ways (Jenouvrier, 2013; Jenouvrier 
et al., 2018). In a butterfly species, warmer temperatures have a 
positive effect on the survival of eggs, pre-diapause larvae and 
pupae but a negative effect on the survival of overwintering lar-
vae (Radchuk et al., 2013). Climatic conditions experienced at 
different stages cause complex patterns of environmental covari-
ance among demographic rates even across generations, which 
may either buffer or amplify the signal of anthropogenic climate 
change, emphasizing the importance of considering the complete 
life history of individuals when predicting and detecting the effect 
of climatic change on population dynamics (Herfindal et al., 2015; 
Iles et al., 2019; Jenouvrier, 2013).

7  |  CONCLUSION

In the current global biodiversity crisis, the development of tools to 
detect, quantify, and compare the signal of anthropogenic climate 

change is essential to understand, anticipate, and adapt to climate 
change. Here, we provide a new perspective on how climate-induced 
changes in populations can be detected by quantifying the time of 
emergence in populations. We hope that ecologists will embrace the 
relevance of this concept in their attempt to understand population 
responses to climate change in non-stationary environments and 
provide a robust assessment of future climate risk to inform man-
agement and policy decisions.
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